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Abstract

We consider the problem of optimal power allocation in a sensor network where the sensors observe

a dynamic parameter in noise and coherently amplify and forward their observations to a fusion center

(FC). The FC uses the observations in a Kalman filter to track the parameter, and we show how to

find the optimal gain and phase of the sensor transmissions under both global and individual power

constraints in order to minimize the mean squared error (MSE) of the parameter estimate. For the case of

a global power constraint, a closed-form solution can be obtained. A numerical optimization is required

for individual power constraints, but the problem can be relaxed to a semidefinite programming problem

(SDP), and we show that the optimal result can be constructedfrom the SDP solution. We also study

the dual problem of minimizing global and individual power consumption under a constraint on the

MSE. As before, a closed-form solution can be found when minimizing total power, while the optimal

solution is constructed from the output of an SDP when minimizing the maximum individual sensor

power. For purposes of comparison, we derive an exact expression for the outage probability on the

MSE for equal-power transmission, which can serve as an upper bound for the case of optimal power

control. Finally, we present the results of several simulations to show that the use of optimal power
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control provides a significant reduction in either MSE or transmit power compared with a non-optimized

approach (i.e., equal power transmission).

Index Terms

Distributed estimation, distributed tracking, wireless sensor networks, amplify-and-forward

networks

I. INTRODUCTION

A. Background

In a distributed analog amplify-and-forward sensor network, the sensor nodes multiply their

noisy observations by a complex factor and transmit the result to a fusion center (FC). In a

coherent multiple access channel (MAC), the FC uses the coherent sum of the received signals

to estimate the parameter. It has been shown that for Gaussian sensor networks, an analog

transmission scheme such as this can achieve the minimum distortion between the source and

the recovered signal [1]–[3]. The key problem in this setting is designing the multiplication

factor for each sensor to meet some goal in terms of estimation accuracy or power consumption.

Furthermore, for an optimal solution, these multipliers would have to be updated in scenarios

where the parameter or wireless channels are time-varying.In this paper, we focus on tracking

a dynamic parameter in a coherent MAC setting.

Most prior work on estimation in distributed amplify-and-forward sensor networks has focused

on the situation where the parameter(s) of interest are time-invariant, and either deterministic or

i.i.d. Gaussian. The case of an orthogonal MAC, where the FC has access to the individual signals

from each sensor, has been studied in [4]–[10]. For a coherent MAC, relevant work includes [5],

[9], [11]–[14]. In [4]–[6], [8], two kinds of problems were considered: minimizing the estimation

error under sum or individual power constraints, and minimizing the sum transmit power under

a constraint on the estimation error. Scaling laws for the estimation error with respect to the

number of sensors were derived in [7], [9] under different access schemes and for different

power allocation strategies. In [13], [14], the authors exploited a multi-antenna FC to minimize

the estimation error.

More relevant to this paper is interesting recent work by Leong et al, who model the (scalar)

parameter of interest using a dynamic Gauss-Markov processand assume the FC employs a

Kalman filter to track the parameter [15], [16]. In [15], boththe orthogonal and coherent MAC
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were considered and two kinds of optimization problems wereformulated: MSE minimization

under a global sum transmit power constraint, and sum power minimization problem under

an MSE constraint. An asymptotic expression for the MSE outage probability was also derived

assuming a large number of sensor nodes. The problem of minimizing the MSE outage probability

for the orthogonal MAC with a sum power constraint was studied separately in [16].

B. Contributions

In this paper, we consider scenarios similar to those in [15]. In particular, we focus on the

coherent MAC case assuming a dynamic parameter that is tracked via a Kalman filter at the

FC. As detailed in the list of contributions below, we extendthe work of [15] for the case of a

global sum power constraint, and we go beyond [15] to study problems where either the power

of the individual sensors is constrained, or the goal is to minimize the peak power consumption

of individual sensors:

1) We find a closed-form expression for the optimal complex transmission gains that minimize

the MSE under a constraint on the sum power of all sensor transmissions. While this

problem was also solved in [15] using the KKT conditions derived in [5], our approach

results in a simpler and more direct solution. We also examine the asymptotic form of the

solution for high total transmit power or high noise power atthe FC.

2) We find a closed-form expression for the optimal complex transmission gain that minimizes

the sum power under a constraint on the MSE. In this case, the expression depends on the

eigenvector of a particular matrix. Again, while this problem was also addressed in [15],

the numerical solution therein is less direct than the one weobtain. In addition, we find

an asymptotic expression for the sum transmit power for a large number of sensors.

3) We show how to find the optimal transmission gains that minimize the MSE under indi-

vidual sensor power constraints by relaxing the problem to asemi-definite programming

(SDP) problem, and then proving that the optimal solution can be constructed from the

SDP solution.

4) We show how to find the optimal transmission gains that minimize the maximum individual

power over all of the sensors under a constraint on the maximum MSE. Again, we solve

the problem using SDP, and then prove that the optimal solution can be constructed from

the SDP solution.
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5) For the special case where the sensor nodes use equal powertransmission, we derive an

exact expression for the MSE outage probability.

A subset of the above results were briefly presented in an earlier conference paper [17].

C. Organization

The rest of the paper is organized as follows. Section II describes the system model for

the parameter tracking problem and provides an expression for the MSE obtained at the FC

using a standard Kalman filter. Section III investigates theMSE minimization problem under the

assumption that the sensor nodes have a sum transmit power constraint. The MSE minimization

problem with individual sensor power constraints is formulated and solved in Section III-B. The

problems of minimizing the sum power or the maximum individual sensor power with MSE

constraints are formulated and optimally solved in SectionIV. In Section V, the MSE outage

probability for equal power allocation is derived. Numerical results are presented in Section VI

and the conclusions are summarized in Section VII.

II. SYSTEM MODEL

We model the evolution of a complex-valued dynamic parameter θn using a first-order Gauss-

Markov process:

θn = αθn−1 + un ,

wheren denotes the time step,α is the correlation parameter and the process noiseun is zero-

mean complex normal with varianceσ2
u (denoted byCN (0, σ2

u)). We assume thatθ0 is zero

mean and that the norm|α| < 1, so thatθn is a stationary process. Thus, the variance ofθn is

constant and given byσ2
θ = σ2

u/ (1− |α|2). A set ofN sensors measuresθn in the presence of

noise; the measurement for theith sensor at timen is described by

si,n = θn + vi,n ,

where the measurement noisevi,n is distributed asCN (0, σ2
v,i). In an amplify-and-forward sensor

network, each sensor multiplies its observation by a complex gain factor and transmits the result

over a wireless channel to a fusion center (FC). The FC receives a coherent sum of the signals
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from all N sensors in additive noise:

yn =
N
∑

i=1

hi,nai,nsi,n + wn

=

N
∑

i=1

(hi,nai,nθn + hi,nai,nvi,n) + wn ,

wherehi,n is the gain of the wireless channel between sensori and the FC,ai,n is the complex

transmission gain of sensori, andwn is noise distributed asCN (0, σ2
w). This model can be

written more compactly in matrix-vector form, as follows:

yn = aH
n hnθn + aH

n Hnvn + wn ,

wherehn = [h1,n, . . . , hN,n]
T , (·)T and (·)H denote the transpose and complex conjugate trans-

pose respectively,an = [a1,n, . . . , aN,n]
H is a vector containing the conjugate of the sensor

transmission gains,Hn = diag{h1,n, . . . , hN,n} is a diagonal matrix, and the measurement noise

vectorvn = [v1,n, . . . , vN,n]
T has covarianceV = E{vnv

H
n } = diag

{

σ2
v,1, · · · , σ2

v,N

}

.

The FC is assumed to know the statistics of the various noise processes, the current channel

statehn, and the transmission gainsan, and it uses a standard Kalman filter to track the parameter

θn according to the equations below [18]:

• Prediction Step:̂θn|n−1 = αθ̂n−1|n−1

• Prediction MSE:Pn|n−1 = α2Pn−1|n−1 + σ2
u

• Kalman Gain:

kn =
Pn|n−1h

H
n an

aH
n HnVHH

n an + Pn|n−1aH
n hnhH

n an + σ2
w

• Measurement Update:

θ̂n|n = θ̂n|n−1 + kn

(

yn − aH
n hnθ̂n|n−1

)

• Filtered MSE:

Pn|n = (1− kna
H
n hn)Pn|n−1 . (1)

The goal is to determine an optimal choice for the gainsan that minimizes the filtered MSE

under a power constraint, or that minimizes the power consumed in transmitting the data to the

FC under an MSE constraint. The optimal gains are then fed back to the individual sensors to

use at timen.
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III. M INIMIZING MSE UNDER A POWER CONSTRAINT

A. Global Sum Power Constraint

In this section, we briefly consider the problem of minimizing the MSE under the assumption

that the sensor nodes have a sum power constraint. As mentioned earlier, this problem has

already been studied in [15], but the solution we provide here is simpler and more direct. The

optimization problem can be written as

min
an

Pn|n (2)

s.t. aH
n Dan ≤ PT ,

whereaH
n Dan andPT respectively represent the actual and total available transmit power, with

D = diag{σ2
θ + σ2

v,1, · · · , σ2
θ + σ2

v,N}. From (1), minimizing the MSEPn|n is equivalent to

maximizing

kna
H
n hn =

Pn|n−1a
H
n hnh

H
n an

aH
n HnVHH

n an + Pn|n−1aH
n hnhH

n an + σ2
w

,

and after a simple manipulation, the optimization problem in (2) is equivalent to

max
an

aH
n hnh

H
n an

aH
n HnVHH

n an + σ2
w

(3)

s.t. aH
n Dan ≤ PT .

Denote the optimal solution to (3) asa∗
n. It is easy to verify that the objective function of (3)

is monotonically increasing in the norm ofan, which implies that at the optimal solution, the

sum transmit power constraint should be met with equalitya∗H
n Da∗

n = PT . Thus (3) becomes a

Rayleigh quotient under a quadratic equality constraint. Since the numerator involves a rank-one

quadratic term, a simple closed-form solution is possible.If we defineB = HnVHH
n + σ2

w

PT
D,

the optimal solution is given by

a∗
n =

√

PT

hH
n B

−1DB−1hn

B−1hn . (4)

Note that the phase of each sensor transmission gain is the conjugate of the channel to the

FC (recall thatan contains the conjugate of these transmission gains). In [15], this property

was assumed from the beginning in order to get an optimization problem with only real-valued

variables; however, we see that this phase-matched solution results even without this assumption.
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The maximum value of the objective function in (3) can be expressed as

a∗H
n hnh

H
n a

∗
n

a∗H
n (HnVHH

n + σ2
w

PT
D)a∗

n

= hH
n B

−1hn .

Given that

hH
n B

−1hn

(a)
< hH

n (HVHH)−1hn (5)

=

N
∑

i=1

1

σ2
v,i

, (6)

where (a) follows from B−1 ≺ (HVHH)−1, a lower bound on the MSE can be obtained by

plugging (6) into (1):

Pn|n >











1− 1

1 + 1
(

∑N
i=1

1

σ2
v,i

)

Pn|n−1











Pn|n−1

=
Pn|n−1

1 +
(

∑N

i=1
1

σ2
v,i

)

Pn|n−1

. (7)

Equation (5) becomes an equality whenσ2
w/PT → 0 or when the signal-to-noise-ratio (SNR) at

the FC is very high, and the resulting optimal sensor transmission gains become

a∗
n=

√

√

√

√

PT
∑N

i=1
1

σ4
v,i|hn,i|2(σ2

θ
+σ2

v,i)

[

1

h1,nσ2
v,1

, · · · , 1

hN,nσ2
v,N

]H

. (8)

In this case, sensors with small channel gains or low measurement noise are allocated more

transmit power. On the other hand, for low SNR at the FC whereσ2
w/PT → ∞, we have

B ≈ σ2
w

PT
D, and hence from (4) the optimal gain vector is proportional to

a∗
n∝
[

h1,n

σ2
θ + σ2

v,1

, · · · , hN,n

σ2
θ + σ2

v,N

]H

. (9)

Interestingly, unlike the high SNR case, for low SNR the sensors with large channel gains are

assigned higher power. This observation will be highlighted later in the simulations of Section VI.

B. Individual Power Constraints

In a distributed sensor network, it is more likely that the power of the individual sensors would

be constrained, rather than the total sum power of the network. As seen in the previous section,

when the SNR at the FC is high (low), a weak (strong) channel for a given sensor can lead
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to a high transmission power that the sensor may not be able tosupport. Thus, in this section

we address the problem of minimizing the MSE under individual sensor power constraints, as

follows:

min
an

Pn|n (10)

s.t. |ai,n|2(σ2
θ + σ2

v,i) ≤ PT,i , i = 1, · · · , N ,

wherePT,i is the maximum transmit power available at theith sensor node. Similar to (2),

problem (10) can be rewritten as

max
an

aH
n hnh

H
n an

aH
n HnVHH

n an + σ2
w

(11)

s.t. |ai,n|2(σ2
θ + σ2

v,i) ≤ PT,i , i = 1, · · · , N .

Problem (11) is a quadratically constrained ratio of quadratic functions (QCRQ), and as explained

below we will use the approach of [19] to transform the QCRQ problem into a relaxed SDP

problem.

Introduce a real auxiliary variablet and definẽan = tan, so that problem (11) is equivalent

to

max
an,t

ãH
n hnh

H
n ãn

ãH
n HnVHH

n ãn + σ2
wt

2
(12)

s.t. ãH
n Diãn ≤ t2PT,i , i = 1, · · · , N

t 6= 0 ,

whereDi = diag{0, · · · , 0, σ2
θ + σ2

v,i, 0, · · · , 0}. We can further rewrite problem (12) as

max
an,t

ãH
n hnh

H
n ãn (13)

s.t. ãH
n HnVHH

n ãn + σ2
wt

2 = 1

ãH
n Diãn ≤ t2PT,i, i = 1, · · · , N .

Note that the constraints in problem (13) already guaranteethat t 6= 0, so this constraint is

removed.

Define ān = [ãH
n t]H and the matrices

H̄n =





hnh
H
n 0

0T 0



 , C̄n =





HnVHH
n 0

0T σ2
w



 , D̄i =





Di 0

0T −PT,i



 ,
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so that problem (13) can be written in the compact form

max
ān

āH
n H̄nān (14)

s.t. āH
n C̄nān = 1

āH
n D̄iān ≤ 0 , i = 1, · · · , N .

Defining the(N + 1)× (N + 1) matrix Ā = ānā
H
n , problem (14) is equivalent to

max
Ā

tr(ĀH̄n) (15)

s.t. tr(ĀC̄n) = 1

tr(ĀD̄i) ≤ 0 , i = 1, · · · , N

rank(Ā) = 1

Ā � 0 .

Were it not for the rank constraint, the problem in (15) wouldbe a standard SDP problem

and could be solved in polynomial time using (for example) the interior point method. Given the

difficulty of handling the rank constraint, we choose to relax it and solve the simpler problem

max
Ā

tr(ĀH̄n) (16)

s.t. tr(ĀC̄n) = 1

tr(ĀD̄i) ≤ 0 , i = 1, · · · , N .

Ā � 0 ,

which would provide an upper bound on the optimal value of problem (11), and would in

general lead to a suboptimal solution for the vectoran of transmission gains. However, in the

following we show that the optimal solution to the original problem in (10) can be constructed

from the solution to the relaxed SDP problem in (16). The optimality of a rank-relaxed SDP

problem similar to the one we consider here has previously been noted in [20], but for a different

problem related to physical layer security. To describe howto find the optimal solution from the

rank-relaxed problem in (16), definēA∗ to be the solution to (16),̄A∗
l,m as the(l, m)th element

of Ā∗, and Ā∗
N as theN th order leading principal submatrix of̄A∗ formed by deleting the

(N + 1)st row and column ofĀ∗. Then the optimal solution can be found via the following

theorem.

May 11, 2018 DRAFT
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Theorem 1. Define the optimal solution to problem (16) as̄A∗. ThenĀ∗
N = aaH is rank-one

and the optimal solution to problem (10) is given by

a∗
n =

1
√

Ā∗
N+1,N+1

a .

Proof: We first utilize the strong duality between problem (16) and its dual to find properties

of the optimal solutionĀ∗. The dual of problem (16) is given by [21]:

min
yi,z

z (17)

s.t.

N
∑

i=1

yiD̄i + zC̄n − H̄n � 0

y1, . . . , yN , z ≥ 0 .

It is easy to verify that there exist strictly feasible points for problems (16) and (17). In particular,

for (16), we can construct

Āf = diag{ab, · · · , ab, b} ,

where

0 <a < min
i

PT,i

σ2
θ + σ2

v,i

,

b =
1

∑N

i=1 a|hn,i|2σ2
v,i + σ2

w

.

For (17), we can randomly selectyfi > 0, and setzf large enough such that

zf > max

{

hH
n hn+

∑N

i=1 y
f
i PT,i

σ2
w

,
hH
n hn−yfi (σ

2
θ+σ2

v,i)

|hn,i|2σ2
v,i

}

.

Then, according to Slater’s theorem, strong duality holds between the primal problem (16) and

the dual problem (17) and we have the following complementary condition:

tr(Ā∗G∗) = 0 , (18)

whereG∗ =
∑N

i=1 y
∗
i D̄i + z∗C̄n − H̄n and y∗i and z∗ denote the optimal solution to problem

(17). Due to the special structure ofD̄i, C̄n andH̄n, G∗ can be expressed as

G∗ =





G∗
N 0

0T G∗
N+1,N+1



 ,
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whereG∗
N =

∑N

i=1 y
∗
iDi + z∗HnVHH

n − hnh
H
n andG∗

N+1,N+1 = z∗σ2
w −∑N

i=1 y
∗
iPT,i. Since

both Ā∗ andG∗ are positive semidefinite, (18) is equivalent to

Ā∗G∗ = 0 .

Additionally, with consideration of the structure ofG∗, we have

Ā∗
NG

∗
N = 0 .

DefineVG as a set of vectors orthogonal to the row space ofG∗
N . Then the column vectors

of Ā∗
N must belong to span(VG) and rank(Ā∗

N) ≤ rank(VG). For any two matricesM andN,

we have [22] that rank(M+N) ≥ |rank(M)− rank(N)|, so

rank(G∗
N) ≥ rank

(

N
∑

i=1

y∗iDi + z∗HnVHH
n

)

− rank(hnh
H
n )

= N − 1 .

and

rank(VG) = N − rank(G∗
N) ≤ 1 . (19)

Since tr(Ā∗H̄) = hH
n Ā

∗
Nhn and tr(Ā∗H̄) > tr(ĀfH̄) > 0, we have

Ā∗
N 6= 0 , rank(Ā∗

N) ≥ 1 . (20)

Combining (19) and (20) then leads to

rank(Ā∗
N) = 1 .

Although at this point we don’t know whether the optimal solution Ā∗ is rank-one, we can

construct a rank-one optimal solution based onĀ∗. Define the rank-one decomposition ofĀ∗
N

as Ā∗
N = aaH , so that the optimal rank-one solution to problem (16) is

Ā
′

= ā∗ā∗H , (21)

where ā∗ =
[

aH
√

Ā∗
N+1,N+1

]H

. It is easy to verify that the rank-one matrix̄A
′

can achieve

the same result for problem (16) as̄A∗.

Since (11) is equivalent to problem (10) and (15), and (16) isrealized from problem (15) by

relaxing the rank-one constraint, in general the solution to (16) provides an upper bound on the

optimal value achieved by (11). If the optimal solution to (10) is a∗
n, then

a∗H
n hnh

H
n a

∗
n

a∗H
n HVHHa∗

n + σ2
w

≤ tr(Ā∗H̄) , (22)
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wherea∗
n andĀ∗ are the optimal solutions to problems (10) and (16) respectively. Equality can

be achieved in (22) provided that an optimal rank-one solution exists for (16), and (21) indicates

that such a rank-one solution exists. In the following, we will show how to constructa∗
n based

on Ā∗. According to problem (16), since tr(Ā∗C̄n) = 1 and Ā � 0, then we havēA∗ 6= 0 and

further Ā∗
N+1,N+1 > 0. Based on̄a∗, the optimal solution to (10) is given by

a∗
n =

ā∗

√

Ā∗
N+1,N+1

, (23)

and plugging (23) into (22) we have

a∗H
n hnh

H
n a

∗
n

a∗H
n HVHHa∗

n + σ2
w

= tr(Ā∗H̄) ,

which verifies the optimality ofa∗
n.

IV. M INIMIZING TRANSMIT POWER UNDER AN MSE CONSTRAINT

In this section, we consider the converse of the problems investigated in Section III. We

first look at the problem addressed in [15], where the goal is to minimize the sum power

consumption of all the sensors under the constraint that theMSE is smaller than some threshold.

The asymptotic behavior of the solution is then characterized for a large number of sensors,N .

Next we study the case where the maximum individual transmitpower of any given sensor is

minimized under the MSE constraint.

A. Minimizing Sum Transmit Power

We can express the problem of minimizing the sum transmit power under the constraint that

the MSE is smaller thanǫ as follows:

min
an

aH
n Dan (24)

s.t. Pn|n ≤ ǫ .

To make (24) feasible, according to (1) and (7) the value ofǫ should satisfy

Pn|n−1

1 +
(

∑N

i=1
1

σ2
v,i

)

Pn|n−1

≤ ǫ ≤ Pn|n−1 . (25)

As discussed earlier, the MSE is monotonically decreasing in the norm ofan, so it is clear

that settingPn|n = ǫ results in the minimum possible transmit power, which we refer to asP ∗
T .
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Conceptually, the problem can be solved by finding the value of P ∗
T for which Pn|n = ǫ, and

then substituting this value into the solution found in (4):

a∗
n =

√

P ∗
T

hH
n B

−1DB−1hn

B−1hn .

Unlike [15], where an unspecified numerical procedure was required to solve this problem, in

the following we present a direct “closed-form” solution that finds the result in terms of the

eigenvalue and eigenvector of a particular matrix.

Assuming thatǫ satisfies the feasibility constraint of (25), we use (1) andPn|n = ǫ to

convert (24) to the following form:

min
an

aH
n Dan (26)

s.t. aH
n Enan ≥

(

Pn|n−1

ǫ
− 1

)

σ2
w ,

whereEn = Pn|n−1hnh
H
n −

(

Pn|n−1

ǫ
− 1
)

HnVHH
n . It’s obvious that the constraint in problem

(26) should be active at the optimal solution and we can rewrite problem (26) as

min
an

aH
n Dan

aH
n Enan

(27)

s.t. aH
n Enan =

(

Pn|n−1

ǫ
− 1

)

σ2
w .

Since both ofaH
n Dan andaH

n Enan are positive, problem (27) is equivalent to

max
an

aH
n Enan

aH
n Dan

(28)

s.t. aH
n Enan =

(

Pn|n−1

ǫ
− 1

)

σ2
w .

Settingy = D
1
2an, problem (28) becomes a Rayleigh quotient maximization:

max
y

yHD− 1
2EnD

− 1
2y

yHy

s.t. yHD− 1
2EnD

− 1
2y =

(

Pn|n−1

ǫ
− 1

)

σ2
w ,

whose solution is given by

y∗ =

√

√

√

√

(

Pn|n−1

ǫ
− 1
)

σ2
w

v1D
− 1

2EnD
− 1

2v1

v1 ,
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wherev1 denotes the unit-norm eigenvector corresponding to the largest eigenvalue ofD− 1
2EnD

− 1
2 .

The optimal solution to the original problem in (24) is thus

a∗
n =

√

√

√

√

(

Pn|n−1

ǫ
− 1
)

σ2
w

v1D
− 1

2EnD
− 1

2v1

D− 1
2v1 .

The minimum transmit power required to achievePn|n = ǫ can be expressed as

P ∗
T = a∗H

n Da∗
n =

(Pn|n−1 − ǫ)σ2
w

ǫλmax{D− 1
2EnD

− 1
2}

, (29)

whereλmax(·) represents the largest eigenvalue of its matrix argument. Amore precise expression

for P ∗
T can be found when the number of sensorsN is large, as shown in Theorem 2 below.

The theorem assumes that the channel coefficients are described by the following model:

hi,n =
h̃i,n

dγi
, h̃i,n ∼ CN (0, 1) , (30)

wheredi denotes the distance between sensori and the FC, andγ is the propagation path-loss

exponent.

Theorem 2. Assume the channels between the sensors and FC obey the modelof (30). When

the number of sensors is large, the minimum sum transmit power P ∗
T that achievesPn|n = ǫ is

bounded by
(

Pn|n−1 − ǫ
)

σ2
w

ǫ(Pn|n−1h
H
n D

−1hn − ξ)
< P ∗

T <

(

Pn|n−1 − ǫ
)

σ2
w

ǫPn|n−1h
H
n D

−1hn(1− ζ)
,

where random variablesζ , ξ are defined as

ξ =

(

Pn|n−1

ǫ
− 1

)

min
i

{ |hi,n|2σ2
v,i

σ2
θ + σ2

v,i

}

ζ =

(

Pn|n−1

ǫ
− 1
)

maxi

{

|hi,n|2σ2
v,i

σ2
θ
+σ2

v,i

}

Pn|n−1hH
n D

−1hn

,

and ζ , ξ converge to0 in probability.

Proof: See Appendix A.

According to the above theorem, whenN → ∞, the termPn|n−1h
H
n D

−1hn is the dominant

factor in the denominator of the bounds on the sum transmit power, and we have the following

asymptotic expression

lim
N→∞

P ∗
T ≃ (Pn|n−1 − ǫ)σ2

w

ǫPn|n−1hH
n D

−1hn

. (31)
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This expression illustrates that to achieve the same MSE, increasing the number of sensors

reduces the total required transmit power of the network, aswell as the required transmit power

per sensor. A similar observation was made in [15]. As shown later, our simulation results show

that (31) provides an accurate approximation to (29) as longas ǫ is not too small.

As a final comment on this problem, we note that (24) is equivalent to

min
A

tr(AD) (32)

s.t. tr(AEn) ≥
(

Pn|n−1

ǫ
− 1

)

σ2
w

rank(A) = 1

A � 0

for A = ana
H
n . Relaxing the rank-one constraint onA, problem (32) becomes

min
A

tr(AD) (33)

s.t. tr(AEn) ≥
(

Pn|n−1

ǫ
− 1

)

σ2
w ,

A � 0 .

Based on the complementary conditions between the dual and primal problems, we can prove

that the solution to (33) is rank one, and hence that the relaxed SDP yields the optimala∗
n.

B. Minimizing Maximum Individual Transmit Power

Here we focus on the problem of minimizing the maximum transmit power of the individual

sensors while attempting to meet an MSE objective:

min
an

max
i

|ai,n|2(σ2
θ + σ2

v,i) (34)

s.t. Pn|n ≤ ǫ .

As in Section III-B, we will convert the problem to a rank-relaxed SDP whose solution nonethe-

less obeys the rank constraint and hence provides the optimal result. To proceed, introduce an

auxiliary variablet and rewrite (34) as

min
an,t

t (35)

s.t. Pn|n ≤ ǫ

|ai,n|2(σ2
θ + σ2

v,i) ≤ t, i = 1, · · · , N .
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Problem (35) is equivalent to

min
A,t

t (36)

s.t. tr(AEn)−
(

Pn|n−1

ǫ
− 1

)

σ2
w ≥ 0

tr(ADi)− t ≤ 0, i = 1, · · · , N

A � 0

rank(A) = 1 ,

whereA = ana
H
n , En is defined as in (26), andDi = diag{0, · · · , σ2

θ+σ2
v,i, 0, · · · , 0}, as before.

Relaxing the rank constraint and rewriting the problem to bein standard form, problem (36)

becomes

min
Ã

tr(ÃT) (37)

s.t. tr(ÃẼn)−
(

Pn|n−1

ǫ
− 1

)

σ2
w ≥ 0

tr(ÃFi) ≤ 0, i = 1, · · · , N

Ã � 0 ,

where

Ã =





A w

wH t



 , T =





0 0

0 1



 , Ẽn =





En 0

0T 0



 , Fi =





Di 0

0T −1



 ,

and w is otherwise arbitrary. Theorem 3 establishes that the optimal solution to (34) can be

constructed from the solution to the above relaxed SDP.

Theorem 3. Define the optimal solution to problem (37) as̃A∗. ThenÃ∗
N = ããH is rank-one

and the optimal solution to problem (34) is given bya∗
n = ã .

Proof: The dual of problem (37) is given by

max
yi,z

(

Pn|n−1

ǫ
− 1

)

σ2
wz (38)

s.t. T+
N
∑

i=1

yiFi − zẼn � 0

y1, · · · , yN , z ≥ 0 .
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Using an approach similar to the proof of Theorem 1, one can verify that both (37) and (38)

are strictly feasible, and that strong duality holds between the dual problem (38) and the primal

problem (37). Based on the complementary conditions, it canbe shown that rank(Ã∗
N) = 1. For

brevity the details of the proof are omitted.

Similar to problems (2) and (24), duality also exists between (10) and (34). Define the optimal

solution to problem (10) asa∗
n and the corresponding minimum MSE asP ∗

n|n. If we setǫ = P ∗
n|n

in (34), the optimal solution is alsoa∗
n.

V. MSE OUTAGE PROBABILITY FOR EQUAL POWER ALLOCATION

Here we calculate the MSE outage probability for the suboptimal solution in which each

sensor transmits with the same power. The outage probability derived here can serve as an upper

bound for the outage performance of the optimal algorithm with individual power constraints.

For equal-power transmission, the transmit gain vector is given by

ae =

√

PT

N





1
√

σ2
θ + σ2

v,1

, · · · , 1
√

(σ2
θ + σ2

v,N )





T

,

and the corresponding MSE is

Pn|n =

(

1− Pn|n−1a
H
e hnh

H
n ae

aH
e HnVHnae + Pn|n−1a

H
e hnhH

n ae + σ2
w

)

Pn|n−1 .

As in Theorem 2, we will assume the Gaussian channel model of (30). The outage probability

Pout = Pr
{

Pn|n > ǫ
}

is evaluated as follows:

Pout = Pr

{

aH
e hnh

H
n ae

aH
e HVHHae + σ2

w

<
Pn|n−1 − ǫ

ǫPn|n−1

}

= Pr
{

aH
e hnh

H
n ae − βaH

e HVHHae < βσ2
w

}

= Pr

{

h̃H
n

(

Mãeã
H
e M− βQ

)

h̃n ≤ βσ2
w

PT

}

,

where

β =
Pn|n−1 − ǫ

ǫPn|n−1

, ãe =
1√
PT

ae ,

M = diag

{

1

dα1
, · · · , 1

dαN

}

,

Q = diag

{

σ2
v,1

N(σ2
θ + σ2

v,1)d
2α
1

, · · · , σ2
v,N

N(σ2
θ + σ2

v,N )d
2α
N

}

,

h̃n = [h̃1,n , · · · , h̃N,n]
T .
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If we defineR = Mãeã
H
e M − βQ, and label the eigenvalues ofR asλ1, · · · , λN , then the

random variablẽhH
n Rh̃n can be viewed as the weighted sum of independent chi-squaredrandom

variables
∑N

i=1 λiχi(2). From [23], we have

Pout = 1−
N
∑

i=1

λN
i

∏

l 6=i(λi − λl)

1

|λi|
e
−

(Pn|n−1−ǫ)σ2
w

ǫPn|n−1PT λi u(λi) , (39)

whereu(·) is the unit step function. Lete1 ≥ · · · ≥ eN denote the eigenvalues ofQ, so that

from Weyl’s inequality [24] we have the following bounds forthe λi:

ãH
e M

2ãe − βe1 ≤ λ1 ≤ ãH
e M

2ãe − βeN , (40)

−βeN−i+1 ≤ λi ≤ −βeN−i+2 , 2 ≤ i ≤ N , (41)

where ãH
e M

2ãe =
∑N

i=1
1

N(σ2
θ
+σ2

v,i)d
2α
i

. From (40), whenβ is large,λ1 is negative, and when

β is small enough,λ1 is positive. Meanwhile, since all the eigenvalues ofQ is positive, then

according to (41) we have thatλi < 0 for 2 ≤ i ≤ N . Since onlyλ1 can be positive, equation (39)

can be simplified as

Pout =











1− λN−1
1

∏

l 6=1(λ1−λl)
e
−

(Pn|n−1−ǫ)σ2
w

ǫPn|n−1PT λ1 λ1 > 0

1 λ1 ≤ 0 .

(42)

From (42), when the thresholdǫ is too small,β =
Pn|n−1−ǫ

ǫPn|n−1
will be very large andλ1 ≤ 0,

then the outage probabilityPout equals 1, which means the MSEPn|n is larger thanǫ for every

channel realizationhn. For PT → ∞, the outage probability converges to

Pout =







1− λN−1
1

∏

l 6=1(λ1−λl)
λ1 > 0

1 λ1 ≤ 0 .

VI. SIMULATION RESULTS

To investigate the performance of the proposed optimization approaches, the results of sev-

eral simulation examples are described here. Unless otherwise indicated, the simulations are

implemented with the following parameters: distance from the FC to the sensorsdi is uniformly

distributed over the interval[2, 8], path loss exponent is set toγ = 1, the observation noise power

σ2
v,i at the sensors is uniformly distributed over[0, 0.5], the power of the additive noise at the FC

is set toσ2
w = 0.5, the parameterθ is assumed to satisfyσ2

θ = 1, and the initial MSE is given by

P0|−1 = 0.5. The MSE shown in the plots is obtained by averaging over 300 realizations ofhn.
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Two different sum power constraints are considered in the simulations:PT = 300 andPT = 3000.

To fairly compare the results under sum and individual powerconstraints, we setPT,i =
PT

N
,

which means that all sensors have the same maximum power whenindividual constraints are

imposed.

Fig. 1 plots the MSE as a function of the number of sensors in the network for both sum and

individual power constraints. The results demonstrate that compared with equal power allocation,

the optimized power allocation significantly reduces the MSE; in fact, adding sensors with equal

power allocation actually increases the MSE, while the MSE always decreases for the optimal

methods. The extra flexibility offered by the global power constraint leads to better performance

compared with individual power constraints, but the difference in this case is not large. The lower

bound on MSE in (7) is also plotted to indicate the performance that that could be achieved

with PT → ∞.

Figs. 2 and 3 respectively examine sum and peak transmit powers required to achieve MSE

values of 0.02, 0.04 and 0.1 for varying numbers of sensors. As expected, individual power

constraints lead to higher sum power requirements, while sum power constraints result in higher

peak power. Interestingly, the individual power constraints lead to roughly a doubling of the

required total sum power to achieve the same MSE regardless of the number of sensors, whereas

the increase in peak power for the sum constraint relative toindividual power constraints grows

with N , reaching a factor of 4 to 5 on average whenN = 30. Fig. 4 compares the minimum

required sum transmit power to achieve various MSE values in(29) with the approximate

expression obtained in (31). Whenǫ ≥ 0.1, the approximation is reasonably good even whenN

is on the order of only 20 to 40. The approximation is less accurate for tighter requirements on

ǫ, and requires a larger value ofN for the approximation to be valid.

The impact of the SNR at the FC on the sensor power allocation is illustrated in Fig. 5 for

a given channel realization andN = 30 sensors. The x-axis of each plot is ordered according

to the channel gain of the sensors, which is shown in the upperleft subfigure. The upper right

subfigure shows the variance of the measurement noise for each sensor, which for this example

was uniformly drawn from the interval[0.4, 0.5] to better illustrate the effect of the channel gain.

The optimal power allocation for this scenario was found assuming both sum and individual

power constraints under both low and high SNRs at the FC. The middle subfigures show the

power allocation for minimizing MSE assuming a low SNR case with PT = 5, while the bottom
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subfigures show the allocation for high SNR withPT = 1000. Note that, as predicted by (9),

the power allocated to the sensors under the sum power constraint for low SNR tends to grow

with the channel gain, while as predicted by (8), the allocated power is reduced with increasing

sensor gain. The explanation for the different behavior at low and high SNR can be explained

as follows: when the SNR is high, the measurement noise will dominate the estimation error

at the FC, and the higher the channel gain, the more the measurement noise is amplified, so

the sensor nodes with higher channel gains will be allocatedless power. When the SNR is low,

the additive noise at the FC will dominate the estimation error, the effect of the measurement

noise can be neglected, so the nodes with higher channel gains will be allocated more power

to increase the power of the desired signal. For individual power constraints, we see that all of

the sensors transmit with a maximum power ofPT/N = 5/30 at low SNR, while at high SNR

only the sensors with small channel gains use maximum power (in this casePT/N = 1000/30),

and the power allocated to sensors with large channel gains decreases, as with the sum power

constraint.

Finally, in Fig. 6, we show that our analytical expression in(42) for the outage probability

under equal power allocation closely follows the simulation results for various transmit power

levels for a case withN = 10 sensors. While these outage probabilities represent upperbounds

for the optimal (and generally unequal) transmission gains, we note that these bounds are not

particularly tight. The outage probabilities achieved by the optimal algorithms are typically much

lower than predicted by (42).

VII. CONCLUSION

In this paper, we considered the problem of optimally allocating power in an analog sensor

network attempting to track a dynamic parameter via a coherent multiple access channel. We

analyzed problems with either constraints on power or constraints on achieved MSE, and we

also examined cases involving global sum and individual sensor power constraints. While prior

work had been published for minimizing MSE under a sum power constraint and minimizing

sum power under an MSE constraint, we were able to derive closed-form solutions that were

simpler and more direct. Going beyond the prior work, we derived new asymptotic expressions

for the transmission gains that illustrated their limitingbehavior for both low and high SNR at

the fusion center, and we found a simple expression for the required sum transmit power when
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the number of sensors is large. Furthermore, we showed how tominimize MSE under individual

power constraints, or minimize peak sensor power under MSE constraints, cases that had not

been previously considered. In particular, we demonstrated that solutions to these problems could

be found by solving a rank-relaxed SDP using standard convexoptimization methods. Finally,

we derived an exact expression for the MSE outage probability for the special case where the

sensors transmit with equal power, and presented a number ofsimulation results that confirmed

our analysis and the performance of the proposed algorithms.

APPENDIX A

PROOF OFTHEOREM 2

Proof: SinceD− 1
2EnD

− 1
2 is the sum of a rank-one and a diagonal matrix, we have the

following bounds forλmax{D− 1
2EnD

− 1
2}:

λmax{D− 1
2EnD

− 1
2} < Pn|n−1h

H
n D

−1hn −
(

Pn|n−1

ǫ
− 1

)

min
i

{ |hi,n|2σ2
v,i

σ2
θ + σ2

v,i

}

= Pn|n−1h
H
n D

−1hn − ξ , (43)

λmax{D− 1
2EnD

− 1
2} > Pn|n−1h

H
n D

−1hn −
(

Pn|n−1

ǫ
− 1

)

max
i

{ |hi,n|2σ2
v,i

σ2
θ + σ2

v,i

}

= Pn|n−1h
H
n D

−1hn(1− ζ) , (44)

where we define

ξ =

(

Pn|n−1

ǫ
− 1

)

min
i

{ |hi,n|2σ2
v,i

σ2
θ + σ2

v,i

}

,

ζ =

(

Pn|n−1

ǫ
− 1
)

maxi

{

|hi,n|2σ2
v,i

σ2
θ
+σ2

v,i

}

Pn|n−1hH
n D

−1hn

.

For any positive constantν, we have

Pr{ξ ≥ ν} ≤ Pr
{

ηmin
i

{

|h̃i,n|2
}

≥ ν̃
}

= Pr

{

min
i

{

|h̃i,n|2
}

≥ ν̃

η

}

=

(

1− Pr

{

|h̃i,n|2 ≤
ν̃

η

})N

(b)
= e−

Nν̃
η ,
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where

ν̃ =
ν

Pn|n−1

ǫ
− 1

,

η = max
i

{

σ2
v,i

(σ2
v,i + σ2

θ)d
γ
i,n

}

,

and (b) is due to the fact that2|h̃i,n|2 is a chi-square random variable with degree 2. When

N → ∞, we have

lim
N→∞

Pr{ξ ≥ ν} ≤ lim
N→∞

e−
Nν̃
η (45)

= 0 ,

and thusξ converges to0 in probability.

From the definition ofζ ,

ζ =

(

Pn|n−1 − ǫ

Pn|n−1ǫ

)

max
i











|hi,n|2σ2
v,i

σ2
θ
+σ2

v,i

∑N

k=1
|hk,n|2

σ2
θ
+σ2

v,k











<

(

Pn|n−1 − ǫ

Pn|n−1ǫ

)

max
i











|hi,n|
2σ2

v,i

σ2
θ
+σ2

v,i

∑N

k=1,k 6=i

|hk,n|2

σ2
θ
+σ2

v,k











< τ max
i

{

|h̃i,n|2
∑N

k=1,k 6=i |h̃k,n|2

}

,

where

τ =

(

Pn|n−1 − ǫ

Pn|n−1ǫ

) maxi

{

σ2
v,i

(σ2
θ
+σ2

v,i)d
γ
i,n

}

mini

{

1
(σ2

θ
+σ2

v,i)d
γ
i,n

} .

For any positive constantµ, we have

Pr{ζ ≥ µ} = 1− Pr{ζ ≤ µ}

≤ 1− Pr

{

max
i

{

|h̃i,n|2
∑N

k=1,k 6=i |h̃k,n|2

}

≤ µ̃

}

= 1−
(

Pr

{

|h̃i,n|2
∑N

k=1,k 6=i |h̃k,n|2
≤ µ̃

})N

= 1−
(

Pr

{

∑N

k=1,k 6=i |h̃k,n|2

|h̃i,n|2
≥ 1

µ̃

})N

= 1−
(

Pr

{

∑N

k=1,k 6=i |h̃k,n|2

(N − 1)|h̃i,n|2
≥ 1

(N − 1)µ̃

})N

, (46)
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whereµ̃ = µ/τ .

In (46), the random variableX =
∑N

k=1,k 6=i |h̃k,n|
2

(N−1)|h̃i,n|2
has anF-distribution with parametersN − 1

and2. Thus, the cumulative density function ofX is given by [21]

F (x) =

(

(N − 1)x

(N − 1)x+ 1

)N−1

,

and thus
(

Pr

{

X ≥ 1

(N − 1)µ̃

})N

=

(

1− Pr

{

X ≤ 1

(N − 1)µ̃

})N

=

(

1− 1

(1 + µ̃)N−1

)N

=

(

1− 1

(1 + µ̃)N−1

)(1+µ̃)N−1 N

(1+µ̃)N−1

.

Sinceµ̃ > 0 and hencelimN→∞(1 + µ̃)N−1 = ∞, we have

lim
N→∞

(

Pr

{

X ≥ 1

(N − 1)ũ

})N

= lim
N→∞

(

1− 1

(1 + µ̃)N−1

)(1+ũ)N−1 N

(1+µ̃)N−1

= lim
N→∞

e
N

(1+ũ)N−1 .

Furthermore,

lim
N→∞

N

(1 + µ̃)N−1
= lim

N→∞

1

(1 + µ̃)N−1 ln(1 + µ̃)
= 0 ,

and thus

lim
N→∞

(

Pr

{

X ≥ 1

(N − 1)µ̃

})N

= 1 . (47)

Substituting (47) into (46) yields

lim
N→∞

Pr{ζ ≥ µ} = 0 , (48)

and we conclude that whenN → ∞, ζ converges to0 in probability. The proof of the theorem

is completed by substituting the results of (43), (44), (45)and (48) into (29).
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Fig. 1. MSE vs. number of sensors forPmax = 300 or 3000.
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Fig. 2. Required sum transmit power vs. number of sensors forvarious MSE constraints.
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Fig. 3. Maximum individual transmit power vs. number of sensors for various MSE constraints.
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Fig. 4. Exact and approximate sum transmit power vs. number of sensors.
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Sum Power Constraint, Low SNR
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Fig. 5. Stem plot for the channel gain, measurement noise variance and the individual transmit power allocated to the sensor

nodes. The x-axis denotes the sensor node ID and the sensor nodes are indexed according to their channel gain, in ascending

order. For the high SNR case the total transmit power is set toPT = 1000 and for the low SNR case the total transmit power

is PT = 5.
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Fig. 6. MSE outage probability for equal power allocation vs. sum transmit power forN = 10 sensors.
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