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Abstract—This paper proposes an optimal power allocation
analysis for a point-to-point wireless system when powered by a
smart grid. We propose to minimize the total power consumption
cost while ensuring individual and total throughput constraints.
The power cost is computed based on different dynamic pricing
models of the power consumption. Analytical solutions are
derived for each pricing model. The derived solutions are shown
to be modified versions of the water-filling solution. Water-filling
based algorithms are proposed for the resource allocation with
each pricing model. Performance comparison and pricing effect
are shown through simulations.

Index Terms—Energy consumption awareness, spectrum access
efficiency, smart grid systems.

I. I NTRODUCTION

Power consumption has become one of the key design
requirements of communication systems since the emergence
of the concept of ‘green communications’ [1]. In fact, modern
wireless systems are urged to cope with the new regulations
and reduce their power consumption andCO2 impact. On the
other hand, smart grids are shown to be the future of energy
delivery due to their high abilities to dynamically adapt the
prices in order to prevent energy concentration and flatten the
peak loads. It holds the promise to create a distributed energy
delivery network and enhance the capacity and the efficiency
of the grid by means of two-way communications between
end-users and power plants, as well as by the inclusion and use
of various types of renewable energy sources [2]. Therefore,
smart grids are envisioned to provide a real-time power-
usage pricing, thereby creating an opportunity for wireless
systems to adjust their power consumption accordingly to
reduce their power consumption’s cost. Given that, modern
wireless systems should adapt their transmission schemes to
profit from opportunities given by smart grids.

On the other hand, the concept of cognitive radios (CR) has
emerged as a key solution for the current spectrum scarcity
caused by the static spectrum allocation policies [3], [4].
It allows an efficient use of the spectrum by allowing the
coexistence of license-exempt users, called secondary users,
with legacy users, called primary users. Due to its potentials,
CR has created a significant research interest, ranging from
spectrum sensing methods [5], [6] to resource allocation
methods [4]. With the emergence of smart grids, resource
allocation problems in CR become more pertinent due to the
new opportunities given by dynamic power pricing. Therefore,
it is important to revisit the resource allocation protocols

proposed for CR networks by taking into consideration the
power provided from smart grids.

In smart grids, CR has been seen as the best alternative
to address the communication challenge between the different
components of the grid due to its spectrum efficiency capabil-
ities [7]. In our work, we are envisaging to profit from smart
grid power pricing opportunities to enhance cognitive radio
energy efficiency. To this end, optimizing resource allocation
for wireless systems when enabled by smart grid power
has been investigated in the literature. In [8], the authors
considered an LTE system when powered by a smart grid
system that includes different retailers. The resource allocation
for the operator tried to minimize the power consumption
through the shut off of the non-used base stations and optimize
the procured power from the retailers. On the other hand, other
works considered a pricing scheme for the allocation of the
available resources [9]. For instance, the authors proposed a
Stackelberg game to allocate the power among a set of users
while a price on the interference was imposed by the primary
users which provide some revenue. Dynamic pricing was also
a key component that affects the consumption behavior and
may encourage the shift of the power consumption. Different
research works have considered this scheme. For example,
in [10], the authors proposed a usage based dynamic pricing
by considering different threshold that models the peak loads
and the normal load and tries to influence the users’ behavior.

In this work, we propose a resource allocation analysis
for a point-to-point wireless system when powered by the
smart grid. Different pricing models are studied. The objective
is to minimize the total power consumption cost of the
wireless system while ensuring minimum individual and total
throughput thresholds and respecting interference constraints
towards licensed users. Even-though the targeted power gains
are not important to generate profit in the case of classic
wireless systems due to small power consumption, this work
can be of paramount importance for large wireless systems
with high power consumption and high targeted throughput
(60 Ghz communication, free space optical communication)
which are envisaged to replace back-haul connections basedon
wired links until now. We are targeting analytical solutions to
allow analysis of the system’s performance and obtained gains.
Obtained results can be employed later in decision algorithms
for multiple service providers.

The rest of this paper is organized as follows. Section II
describes the system model. In Section III, we formulate our978-1-4799-4811-6/14/$31.00c©2014 IEEE



resource allocation problem and present the smart grid dy-
namic power pricing models used in this work. In Section IV,
we analyze the resource allocation problems and propose the
power allocation solutions for the different pricing models.
Simulation-based analysis is presented in Section V. Finally,
conclusions are presented in Section VI.

II. SYSTEM MODEL

We consider a cognitive radio system composed of one
secondary user noted CU and one primary user noted PU. We
assume an underlay interference sharing mode where the CU is
allowed to share all the available channels with the PU under
the constraint of not exceeding the interference temperature
I th threshold at the PU receiver. We supposeN channels are
available for the CU transmission. In our work, we do not
specify the nature of these channels but it can be applied
to different multi-channel schemes (time, frequency, space, or
physical division). The gains of the direct channels of the CU
are denoted by{g(c)1 , ..., g

(c)
j , ..., g

(c)
N }, while the interference

channels from the cognitive transmitter to the primary receiver
are denoted by{g(p)1 , ..., g

(p)
j , ..., g

(p)
N }.

III. PROBLEM FORMULATION

A. Power Allocation Problem

The objective of our work is to determine the optimal
allocated powerPj at each channelj that minimizes the cost
of the power consumption while guaranteeing a minimum total
throughputrth

T as well as an individual minimum throughput
rth

j at each channelj and respecting the interference constraint
at the PU. Mathematically, the optimization problem is written
as follows

min
P1,...,PN

N
∑

j=1

cj(P1, ..., PN ) (1a)

S.t
N
∑

j=1

rj(Pj) ≥ rth
T (1b)

rj(Pj) ≥ rth
j ∀ j ∈ {1...N}, (1c)

Pjg
(p)
j ≤ I th ∀ j ∈ {1...N}, (1d)

wherecj(P1, ..., PN ) is the cost of the power consumed at the
j-th channel andrj(Pj) is the throughput obtained through the
j-th channel, written using the Shannon expression as

rj(Pj) = log2

(

1 +
Pjg

(c)
j

N0

)

, (2)

whereN0 is the power spectral density of the noise.
One of the application of these constraints, theN channels

represent different paths for the CU transmission (different
time slots, different antennas, different users).rth

j will be
used as an individual throughput per path that needs to be
guaranteed as a minimum required service per path whilerth

T

will be the total needed throughput of the wireless system.
In this optimization problem, depending on the values of

the individual throughput thresholdrth
j , the total throughput

thresholdrth
T , and the interference thresholdsI th, we distin-

guish these two special cases:

• If
N
∑

j=1

rth
j ≥ rth

T , then the total throughput constraint is

not useful since in this case it will be automatically
guaranteed.

• If rj

(

I th

g
(p)
j

)

< rth
j or

N
∑

j=1

rj

( I th

g
(p)
j

)

< rth
T , the problem is

infeasible as the maximum power allowed in each channel
to guarantee respecting the interference constraint does
not allow to reach the minimum required throughput.

B. Power Pricing Model

We assume that the smart grid is governed by a policy
affecting the unit price in real time function of the market price
and the user’s consumption. We denote byµj(P1, ..., PN )
the unit price function of the power consumed at thej-th
channel (the unit price function is a channel dependent since
the channels can represent time slots in the case of time
division or different physical locations or even differentservice
providers). The power cost per channel is then deduced as

cj(P1, ..., PN ) = µj(P1, ..., PN ) Pj . (3)

IV. PROBLEM ANALYSIS WITH DIFFERENTPRICING

MODELS

Given a convex cost function of the powercj(P1, ..., PN ),
the problem (1) is a convex optimization problem. Thus,
we propose to alternatively solve its dual problem using the
Karush-Kuhn-Tucker (K.K.T) conditions as duality gap is
zero under the Slater condition [11]. For our problem the
Slater condition is satisfied when the problem is feasible.
Mathematically, these Slater conditions are required:

rj

(

I th

g
(p)
j

)

≥ rth
j , ∀j ∈ {1, ..., N} (4)

N
∑

j=1

rj

(

I th

g
(p)
j

)

≥ rth
T . (5)

The dual problem of the category problem (1) can be written
as follows

L

(

{Pj}
N
j=1, λ0, {λj}

N
j=1, {νj}

N
j=1

)

=

N
∑

j=1

cj(P1, ..., PN ) + λ0

(

rth
T −

N
∑

j=1

rj(Pj)
)

+
N
∑

j=1

λj

(

rth
j − rj(Pj)

)

+
N
∑

j=1

νj

(

Pjg
(p)
j − I th

)

, (6)

whereλ0, {λj}
N
j=1, and{νj}Nj=1 are the K.K.T multipliers.



After simplifications, the K.K.T constraints are written as
follows

N
∑

i=1

∂ci(P1, ..., PN )

∂Pj
=

g
(c)
j λ0/N0

(1 + Pjg
(c)
j /N0) log 2

∀j ∈ {1...N} (7)

λ0

(

rth
T −

N
∑

j=1

rj(Pj)
)

= 0 (8)

Pj ≥ 2
rth
j −1

g
(c)
j

/N0

∀j ∈ {1...N} (9)

Pj ≤ I th

g
(p)
j

∀j ∈ {1...N} (10)

λ0 ≥ 0. (11)

Hence, the optimal power allocation is deduced function of
the power cost function and the channel gains as follows

Pj =

[

λ′
0

∑N
i=1

∂ci(P1,...,PN )
∂Pj

−
N0

g
(c)
j

]P+
j

P−
j

, (12)

where λ′

0 is a constant proportional toλ0 determined
such that the total throughput constraint is saturated (i.e.,
∑N

j=1 rj(Pj) = rth
T ), while P−

j andP+
j defined as











P−

j = 2
rth
j −1

g
(c)
j /N0

P+
j = I th

g
(p)
j

(13)

Note that in (12), we use the following notation

[

x

]x+

x−

=











x+ if x > x+,

x− if x < x−,

x otherwise.

(14)

A. Constant Unit Price

In this section, we assume the simplest model of a constant
unit price function for all channelsµj(P1, ..., PN ) = µ, ∀j,
then power price consumption is given bycj(Pj) = µPj .
Hence, the power expression in (12) is simplified to

Pj =

[

λ′

0 −
N0

g
(c)
j

]P+
j

P−
j

. (15)

The throughput per channel is written as

rj =

[

log2

(

λ′

0g
(c)
j

N0

)]r+j

r−j

, (16)

with r−j andr+j defined as






r−j = rj(P
−

j ) = rth
j

r+j = rj(P
+
j ) = log2

(

1 +
I thg

(c)
j

N0g
(p)
j

)

.
(17)

In this case,λ′

0 can be deduced analytically as

λ′
0 =

(

2r
th
T

∏

j∈Sc

2r
−
j

∏

j∈Sp

2r
+
j

∏

j 6∈{Sc∪Sp}

(g
(c)
j /N0)

) 1
N−(|Sc|+|Sp|)

,

(18)

with Sc andSp defind as










Sc =
{

j ∈ {1, ..., N} such thatλ′

0 −
N0

g
(c)
j

< P−

j

}

Sp =
{

j ∈ {1, ..., N} such thatλ′

0 −
N0

g
(c)
j

> P+
j

}

.

(19)
We observe that we obtain a similar equation as the well-

known water-filling expression used in resource allocation
algorithms over multichannel systems [12]. This is due to
the constant unit price function which makes our optimization
problem mathematically equivalent to a total power minimiza-
tion problem under individual and total rate constraints.

B. Channel Dependent Unit Price

In this section, we assume that the unit price depends
on the channel without dependence on the power consumed
µj(P1, ..., PN ) = µj , then the allocated power expression is
reduced to

Pj =

[

λ′

0 − µj
N0

g
(c)
j

]P+
j

P−
j

, (20)

where the water-levelλ′

0 is expressed as

λ′
0 =

(

2r
th
T

∏

j∈Sc

2r
−
j

∏

j∈Sp

2r
+
j

∏

j 6∈{Sc∪Sp}

(
g
(c)
j /N0

µj
)

) 1
N−(|Sc|+|Sp|)

,

(21)
with Sc andSp defind as










Sc =
{

j ∈ {1, ..., N} such thatλ
′
0

µj
− N0

g
(c)
j

< P−

j

}

Sp =
{

j ∈ {1, ..., N} such thatλ
′
0

µj
− N0

g
(c)
j

> P+
j

}

.

(22)
Here also, we obtain a water-filling expression with the

modification that the channel unit price power will affect
the power allocated in each channel. The allocated power is
obtained as the difference between the water-level and the
product of the unit price by the noise-to-signal ratio instead
of the noise to signal ratio only in ordinary water-filling.

C. Power Consumption Dependent Unit Price

In this section, we assume that the unit price depends on the
consumed power by that channel. In this scenario, we consider
that the unit price function depends on the consumed power in
that channel only. This case is obtained when each channel unit
price is determined independently from the other channels’
power consumption. Generalization to interdependent channel
consumption will be studied later. We consider the following
function for the unit price

µj(P1, ..., PN ) = µj(Pj), (23)

Inserting (23) in (12), we obtain the following equation to
solve for the allocated power per channel

Pj =

[

λ′

0

Pj
∂µj(Pj)

∂Pj
+ µj(Pj)

−
N0

g
(c)
j

]P+
j

P−
j

. (24)



Then, the problem of solving the power allocation per
channelPj is written as finding the zero of a function in a
finite interval,P−

j ≤ Pj ≤ P+
j , as follows

g(Pj) =
(

Pj +
N0

g
(c)
j

)(

Pj
∂µj(Pj)

∂Pj
+ µj(Pj)

)

− λ′

0

= 0. (25)

The expression ofλ′

0 is obtained by solving the total
throughput constraint which is transformed into finding the
zero of the functionf(λ′

0) for λ′

0 ≥ 0 with

f(λ′
0) = rth

T −

[

∑

j∈Sc

r−j +
∑

j∈Sp

r+j +
∑

j 6∈{Sc∪Sp}

rj(Pj)

]

= 0, (26)

with Sc andSp defined as














Sc =
{

j ∈ {1, ..., N} such that λ′
0

Pj
∂µj(Pj)

∂Pj
+µj(Pj)

− N0

g
(c)
j

< P−
j

}

Sp =
{

j ∈ {1, ..., N} such that λ′
0

Pj
∂µj(Pj)

∂Pj
+µj(Pj)

− N0

g
(c)
j

> P+
j

}

.

(27)

Although in this case we do not obtain a strictly speaking
water-filling expression, a similar algorithm can be developed
where λ′

0 will represent a fictive water-level as it remains
constant for all channels. The pseudo water-filling expression
can be deduced from (24) as follows

Pj =

[

λ′

0

µ̂j
−

N0

g
(c)
j

]P+
j

P−
j

, (28)

with µ̂j = Pj
∂µj(Pj)

∂Pj
+ µj(Pj) is the effective power cost

in the j-th channel. Note that this is not a water-filling
equation asµ̂j depends on the allocated powerPj but it only
allows to analyze the allocated power function to the channel
gains and the price coefficients. Thus, we obtain a system
of non-linear coupled equations (26) and (25). An iterative
approach allow us to determine this water-level and thus
obtain the optimal power allocation per channel by solving
at each step consecutively (26) and (25) until convergence.
This algorithm has the same convergence speed as the regular
water-filling algorithm. The only difference is that the water-
level is determined analytically in regular water-filling while
it is obtained numerically by solving (26) in this case.

V. SIMULATION RESULTS

We consider a cognitive user randomly located in a cell
with a radiusd0 = 1 Km. We assume that the CU is equipped
with a smart meter that could provide it with (instantaneous)
unit pricing in real-time. We considerN = 10 channels. The
total required throughputrth

T = 50 Mbps while the individual
required throughput per channel isrth

j = 1 Mbps, ∀j.
We consider a Rayleigh fading channel model. The inter-
ference threshold is fixed to be equal to the noise floor
I th = N0 = −120 dBm. For the pricing coefficients,
unless stated differently in the figures’ legend, we consider
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Fig. 1. Snapshot of allocated power per channel with power dependent pricing
model.

the following values. For the constant unit price model, we
useµ = 1. For the channel dependent unit price model,µj

are generated from a random variable uniformly distributed
between0 and1. For the power dependent unit price model,
we useµj(Pj) = aPj + b with a = 1 andb = 0.1.

In Fig. 1, we plot the allocated throughput per channel
for a sample generation of channel gains. We observe the
behavior of the allocated power per channel and verify that
it is similar to a water-filling but with a fictive water-level
since the unit power price is not fixed but it depends on the
power as explained earlier.

In Fig. 2, we compare the obtained total power cost for the
proposed different pricing models when taking into consid-
eration pricing dynamics to the assumption of static pricing
(simple power minimization). The total cost is presented for
different average channel gains. We first observe that as the
channel gain increases, the total power cost decreases for the
different pricing models since less power is needed to achieve
the targeted throughput. Comparing the total power cost when
considering dynamic pricing to the power optimization with
the assumption of constant pricing, we observe the incurred
gain due to the employed algorithms. Obviously, there is
no gain with the constant pricing model since in this case
the power consumption minimization and the power cost
minimization are equivalent.

In Fig. 3, we plot the obtained the total power cost function
of the channels’ average gain for different values of the
pricing coefficients to observe their effect on the total cost.
Obviously, the total power cost is increasing proportionally to
the increase of the pricing coefficients. The constant pricing
model corresponds to the linearly dependent pricing model
with b = 0 that is why whenb is small enough, the obtained
cost with the two models becomes very close.

In Fig. 4, we plot the total power cost function of the number
of channels. As the number of channels increases, the total
power cost decreases as there are more opportunities for the
system to guarantee the required throughput with lower power
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required. And for this reason, we observe that the total cost
became nearly equal with the two pricing models for high
number of channels as the power per channel became very
small. This is in part due also to the independence between
channels in the unit price function. It will be interesting to
propose a power allocation when the unit price is affected by
all channels consumption and to see the effect of increasing
the number of channels on the total price.

VI. CONCLUSION

This paper proposes a resource allocation scheme for a
smart grid-enabled cognitive radio user. The smart grid al-
lows the user to obtain real time power pricing policy. This
information is exploited by the user to minimize its power
consumption cost through intelligent power allocation. An-
alytic expressions of the allocated power are developed for
different cost functions and low-cost algorithms are presented
for the power allocation. Simulation results show the gain that
the cognitive system achieved by profiting from the dynamic
power pricing through the proposed power allocation scheme.
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