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ABSTRACT
Server farms today consume more than 1.5% of the total
electricity in the U.S. at a cost of nearly $4.5 billion. Given
the rising cost of energy, many industries are now seeking
solutions for how to best make use of their available power.
An important question which arises in this context is how
to distribute available power among servers in a server farm
so as to get maximum performance.

By giving more power to a server, one can get higher server
frequency (speed). Hence it is commonly believed that, for
a given power budget, performance can be maximized by
operating servers at their highest power levels. However,
it is also conceivable that one might prefer to run servers
at their lowest power levels, which allows more servers to be
turned on for a given power budget. To fully understand the
effect of power allocation on performance in a server farm
with a fixed power budget, we introduce a queueing theo-
retic model, which allows us to predict the optimal power
allocation in a variety of scenarios. Results are verified via
extensive experiments on an IBM BladeCenter.

We find that the optimal power allocation varies for differ-
ent scenarios. In particular, it is not always optimal to run
servers at their maximum power levels. There are scenar-
ios where it might be optimal to run servers at their lowest
power levels or at some intermediate power levels. Our anal-
ysis shows that the optimal power allocation is non-obvious
and depends on many factors such as the power-to-frequency
relationship in the processors, the arrival rate of jobs, the
maximum server frequency, the lowest attainable server fre-
quency and the server farm configuration. Furthermore, our
theoretical model allows us to explore more general settings
than we can implement, including arbitrarily large server
farms and different power-to-frequency curves. Importantly,
we show that the optimal power allocation can significantly
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improve server farm performance, by a factor of typically
1.4 and as much as a factor of 5 in some cases.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Theory, Experimentation, Measurement, Performance

1. INTRODUCTION
Servers today consume ten times more power than they

did ten years ago [3, 21]. Recent articles estimate that a
300W high performance server requires more than $330 of
energy cost per year [24]. Given the large number of servers
in use today, the worldwide expenditure on enterprise power
and cooling of these servers is estimated to be in excess of
$30 billion [21].

Power consumption is particularly pronounced in CPU
intensive server farms composed of tens to thousands of
servers, all sharing workload and power supply. We consider
server farms where each incoming job can be routed to any
server, i.e., it has no affinity for a particular server.

Server farms usually have a fixed peak power budget. This
is because large power consumers operating server farms are
often billed by power suppliers, in part, based on their peak
power requirements. The peak power budget of a server
farm also determines its cooling and power delivery infras-
tructure costs. Hence, companies are interested in maxi-
mizing the performance at a server farm given a fixed peak
power budget [4, 8, 9, 21].

The power allocation problem we consider is: how to dis-
tribute available power among servers in a server farm so
as to minimize mean response time. Every server running a
given workload has a minimum level of power consumption,
b, needed to operate the processor at the lowest allowable
frequency and a maximum level of power consumption, c,
needed to operate the processor at the highest allowable fre-
quency. By varying the power allocated to a server within
the range of b to c Watts, one can proportionately vary the
server frequency (See Fig. 2). Hence, one might expect that
running servers at their highest power levels of c Watts,
which we refer to as PowMax, is the optimal power allocation
scheme to minimize response time. Since we are constrained
by a power budget, there are only a limited number of servers
that we can operate at the highest power level. The rest of



the servers remain turned off. Thus PowMax corresponds to
having few fast servers. In sharp contrast is PowMin, which
we define as operating servers at their lowest power levels of
b Watts. Since we spend less power on each server, PowMin
corresponds to having many slow servers. Of course there
might be scenarios where we neither operate our servers at
the highest power levels nor at the lowest power levels, but
we operate them at some intermediate power levels. We
refer to such power allocation schemes as PowMed.

Understanding power allocation in a server farm is intrin-
sically difficult for many reasons: First, there is no single
allocation scheme which is optimal in all scenarios. For ex-
ample, it is commonly believed that PowMax is the optimal
power allocation scheme [1, 7]. However, as we show later,
PowMin and PowMed can sometimes outperform PowMax
by almost a factor of 1.5. Second, it turns out that the
optimal power allocation depends on a very long list of ex-
ternal factors, such as the outside arrival rate, whether an
open or closed workload configuration is used, the power-
to-frequency relationship (how power translates to server
frequency) inherent in the technology, the minimum power
consumption of a server (b Watts), the maximum power that
a server can use (c Watts), and many other factors. It is sim-
ply impossible to examine all these factors via experiments.

To fully understand the effect of power allocation on mean
response time in a server farm with a fixed power budget,
we introduce a queueing theoretic model, which allows us to
predict the optimal power allocation in a variety of scenarios.
We then verify our results via extensive experiments on an
IBM BladeCenter.

Prior work in power management has been motivated by
the idea of managing power at the global data center level [8,
20] rather than at the more localized single-server level.
While power management in server farms often deals with
various issues such as reducing cooling costs, minimizing idle
power wastage and minimizing average power consumption,
we are more interested in the problem of allocating peak
power among servers in a server farm to maximize perfor-
mance. Notable prior work dealing with peak power alloca-
tion in a server farm includes Raghavendra et al. [21], Femal
et al. [10] and Chase et al. [5] among others. Raghavendra
et al. [21] present a power management solution that co-
ordinates different individual approaches to simultaneously
minimize average power, peak power and idle power wastage.
Femal et al. [10] allocate peak power so as to maximize
throughput in a data center while simultaneously attempt-
ing to satisfy certain operating constraints such as load-
balancing the available power among the servers. Chase et
al. [5] present an auction-based architecture for improving
the energy efficiency of data centers while achieving some
quality-of-service specifications. We differ from the above
work in that we specifically deal with minimizing mean re-
sponse time for a given peak power budget and understand-
ing all the factors that affect it.

Our contributions
As we have stated, the optimal power allocation scheme
depends on many factors. Perhaps the most important of
these is the specific relationship between the power allocated
to a server and its frequency (speed), henceforth referred
to as the power-to-frequency relationship. There are sev-
eral mechanisms within processors that control the power-
to-frequency relationship. These can be categorized into
DFS (Dynamic Frequency Scaling), DVFS (Dynamic Volt-

age and Frequency Scaling) and DVFS+DFS. Section 2 dis-
cusses these mechanisms in more detail. The functional
form of the power-to-frequency relationship for a server de-
pends on many factors such as the workload used, maxi-
mum server power, maximum server frequency and the volt-
age and frequency scaling mechanism used (DFS, DVFS
or DVFS+DFS). Unfortunately, the functional form of the
server level power-to-frequency relationship is only recently
beginning to be studied (See the 2008 papers [21, 25]) and is
still not well understood. Our first contribution is the inves-
tigation of how power allocation affects server frequency in a
single server using DFS, DVFS, and DVFS+DFS for various
workloads. In particular, in Section 3 we derive a functional
form for the power-to-frequency relationship based on our
measured values (See Figs. 2(a) and (b)).

Our second contribution is the development of a queue-
ing theoretic model which predicts the mean response time
for a server farm as a function of many factors including
the power-to-frequency relationship, arrival rate, peak power
budget, etc. The queueing model also allows us to determine
the optimal power allocation for every possible configuration
of the above factors (See Section 4).

Our third contribution is the experimental implementa-
tion of our schemes, PowMax, PowMin, and PowMed, on
an IBM BladeCenter, and the measurement of their response
time for various workloads and voltage and frequency scal-
ing mechanisms (See Sections 5 and 6). Importantly, our
experiments show that using the optimal power allocation
scheme can significantly reduce mean response time, some-
times by as much as a factor of 5. To be more concrete, we
show a subset of our results in Fig. 1, which assumes a CPU
bound workload in an open loop setting. Fig. 1(a) depicts
one possible scenario using DFS where PowMax is optimal.
By contrast, Fig. 1(b) depicts a scenario using DVFS where
PowMin is optimal for high arrival rates. Lastly, Fig. 1(c)
depicts a scenario using DVFS+DFS where PowMed is op-
timal for high arrival rates.

We experiment with different workloads. While Section 5
presents experimental results for a CPU bound workload,
LINPACK, Section 6 repeats all the experiments under the
STREAM memory bound workload, the WebBench web work-
load, and other workloads. In all cases, experimental results
are in excellent agreement with our theoretical predictions.
Section 7 summarizes our work. Finally, Section 8 discusses
future applications of our model to more complex situations
such as workloads with varying arrival rates, servers with
idle (low power) states and power management at the sub-
system level, such as the storage subsystem.

2. EXPERIMENTAL FRAMEWORK

2.1 Experimental setup
Our experimental setup consists of a server farm with up

to fourteen IBM BladeCenter HS21 blade servers featuring
two 3.0 GHz dual-core Intel Woodcrest Xeon processors and
1 GB memory per blade, all residing in a single chassis. We
installed and configured Apache as an application server on
each of the blade servers to process transactional requests.
To generate HTTP requests for the Apache web servers, we
employ an additional blade server on the same chassis as
the workload generator to reduce the effects of network la-
tency. The workload generator uses the web server perfor-
mance benchmarking tool httperf [19] in the open server
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Figure 1: Subset of our results, showing that no single power allocation scheme is optimal. Fig.(a) depicts
a scenario using DFS where PowMax is optimal. Fig.(b) depicts a scenario using DVFS where PowMin is
optimal at high arrival rates whereas PowMax is optimal at low arrival rates. Fig.(c) depicts a scenario using
DVFS+DFS where PowMed is optimal at high arrival rates whereas PowMax is optimal at low arrival rates.

farm configuration and wbox [23] in the closed server farm
configuration. We modified and extended httperf and wbox
to allow for multiple servers and to specify the routing prob-
ability among the servers. We measure and allocate power to
the servers using IBM’s Amester software. Amester, along
with additional scripts, collects all relevant data for our ex-
periments.

2.2 Voltage and frequency scaling mechanisms
Processors today are commonly equipped with mecha-

nisms to reduce power consumption at the expense of re-
duced server frequency. Common examples of these mecha-
nisms are Intel’s SpeedStep Technology and AMD’s Cool ‘n’
Quiet Technology. The power-to-frequency relationship in
such servers depends on the specific voltage and frequency
scaling mechanism used. Most mechanisms fall under the
following three categories:

Dynamic Frequency Scaling (DFS) a.k.a. Clock
Throttling or T-states is a technique to manage power
by running the processor at a less-than-maximum clock fre-
quency. Under DFS, the Intel’s 3.0 GHz Woodcrest Xeon
processors we use allow for 8 operating points which corre-
spond to effective frequencies of 12.5%, 25%, 37.5%, 50%,
62.5%, 75%, 87.5%, and 100% of the maximum server fre-
quency.

Dynamic Voltage and Frequency Scaling (DVFS)
a.k.a. P-states is a more efficient power-savings mech-
anism that reduces server frequency by reducing the pro-
cessor voltage and frequency. Under DVFS, our processors
allow for 4 operating points which correspond to effective
frequencies of 66.6%, 77.7%, 88.9%, and 100% of the maxi-
mum server frequency.

DVFS+DFS attempts to leverage both DVFS, and DFS
by applying DFS on the lowest performance state available
in DVFS. Under DVFS+DFS, our processors allow for 11
operating points which correspond to effective frequencies
of 8.3%, 16.5%, 25%, 33.3%, 41.6%, 50.0%, 58.3%, 66.6%,
77.7%, 88.9%, and 100% of the maximum server frequency.

2.3 Power consumption within a single server

When allocating power to a server, there is a minimum
level of power consumption (b) needed to operate the proces-
sor at the lowest allowable frequency and a maximum level
of power consumption (c) needed to operate the processor
at the highest allowable frequency (Of course the specific
values of b and c depend on the application that the server
is running). Formally, we define the following notation:
Baseline power: b Watts The minimum power consumed
by a fully-utilized server over the allowable range of proces-
sor frequency.
Speed at baseline: sb Hertz The speed (or frequency) of
a fully utilized server running at b Watts.
Maximum power: c Watts The maximum power con-
sumed by a fully-utilized server over the allowable range of
processor frequency.
Speed at maximum power: sc Hertz The speed (or fre-
quency) of a fully utilized server running at c Watts.

3. POWER-TO-FREQUENCY
An integral part of determining the optimal power allo-

cation is to understand the power-to-frequency relationship.
This relationship differs for DFS, DVFS, and DVFS+DFS,
and also differs based on the workload in use. Unfortunately,
the functional form of the power-to-frequency relationship is
not well studied in the literature. The servers we use sup-
port all three voltage and frequency scaling mechanisms and
therefore can be used to study the power-to-frequency rela-
tionships. In this section, we present our measurements de-
picted in Figs. 2(a) and (b) showing the functional relation-
ship between power allocated to a server and its frequency
for the LINPACK [13] workload. We generalize the func-
tional form of the power-to-frequency relationship to other
workloads in Section 6 (See Figs. 8 and 10). Throughout we
assume a homogeneous server farm.

We use the tools developed in [17] to limit the maxi-
mum power allocated to each server. Limiting the maximum
power allocated to a server is usually referred to as capping
the power allocated to a server. We run LINPACK jobs



back-to-back to ensure that the server is always occupied by
the workload, and that the server is running at the specified
power cap value. Hence, the power values we observe will
be the peak power values for the specified workload. Recall
from Section 2 that the voltage and frequency scaling mech-
anisms have certain discrete performance points (in terms of
frequency) at which the server can operate. At each of these
performance points, the server consumes a certain amount
of power for a given workload. By quickly dithering between
available performance states, we can ensure that the server
never consumes more than the set power cap value. In this
way, we also get the best performance from the server for
the given power cap value. Note that when we say power,
we mean the system-level power which includes the power
consumed by the processor and all other components within
the server.

Fig. 2(a) illustrates the power-to-frequency curves obtained
for LINPACK using DFS and DVFS. From the figure, we see
that the power-to-frequency relationship for both DFS and
DVFS is almost linear. It may seem surprising that the
power-to-frequency relationship for DVFS looks like a lin-
ear plot. This is opposite to what is widely suggested in
the literature for the processor power-to-frequency relation-
ship, which is cubic [11]. The reason why the server power-
to-frequency relationship is linear can be explained by two
interrelated factors. First, manufacturers usually settle on
a limited number of allowed voltage levels (or performance
states), which results in a less-than-ideal relationship be-
tween power and frequency in practice. Second, DVFS is
not applied on many components at the system level. For
example, power consumption in memory remains propor-
tional to the number of references to memory per unit time,
which is only linearly related to the frequency of the pro-
cessor. Thus, the power-to-frequency curve for both DFS
and DVFS can be approximated as a linear function. Using
the terminology introduced in Section 2, we approximate
the server speed (or frequency), s GHz, as a function of the
power allocated to it, P Watts, as:

s = sb + α(P − b). (1)

where the coefficient α (units of GHz per Watt) is the slope
of the power-to-frequency curve. Specifically, our experi-
ments show that α = 0.008 GHz/W for DVFS and α = 0.03
GHz/W for DFS. Also, from our experiments, we find that
b = 180W and c = 240W for both DVFS and DFS. How-
ever, sb = 2.5 GHz for DVFS and sb = 1.2 GHz for DFS.
The maximum speed in both cases is sc = 3 GHz, which is
simply the maximum speed of the processor we use. Note
that the specific values of these parameters change depend-
ing on the workload in use. Section 6 discusses our measured
parameter values for different workloads.

For DVFS+DFS, we expect the power-to-frequency rela-
tionship to be piecewise linear since it is a combination of
DVFS and DFS. Experimentally, we see from Fig. 2(b) that
the power-to-frequency relationship is in fact piecewise lin-
ear (3 GHz - 2.5 GHz and then 2.5 GHz - 1.2 GHz).

Though we could use a piecewise linear fit for DVFS+DFS,
we choose to approximate it using a cubic curve for the fol-
lowing reasons:

1. Using a cubic fit demonstrates how we can extend our
results to non-linear power-to-frequency relationships.

2. As previously mentioned, several papers consider the

power-to-frequency relationship to be cubic, especially
for the processor. By using a cubic model for DVFS+DFS,
we wish to analyze the optimal power allocation policy
for those settings.

Approximating DVFS+DFS using a cubic fit gives the fol-
lowing relationship between the speed of a server and the
power allocated to it:

s = sb + α′ 3√P − b. (2)

Specifically, our experiments show that α′ = 0.39 GHz/ 3
√

W .
Also, from our experiments, we found that b = 150W, c =
250W, sb = 1.2 GHz and sc = 3 GHz for DVFS+DFS.

4. THEORETICAL RESULTS
The optimal power allocation depends on a large num-

ber of factors including the power-to-frequency relationship
just discussed in Fig. 2, the arrival rate, the minimum and
maximum power consumption levels (b and c respectively),
whether the server farm has an open loop configuration or
a closed loop configuration, etc.

In order to investigate the effects of all these factors on
the optimal power allocation, we develop a queueing the-
oretic model which predicts the mean response time as a
function of all the above factors (See Section 4.1). We then
produce theorems that determine the optimal power allo-
cation for every possible configuration of the above factors,
including open loop configuration (See Theorems 1 and 2 in
Section 4.2) and closed loop configuration (See Theorems 3,
4 and 5 in Section 4.3).

4.1 Queueing model

Figure 3: Illustration of our k-server farm model

Fig. 3 illustrates our queueing model for a server farm
with k servers. We assume that there is a fixed power bud-
get P, which can be split among the k servers, allocating
Pi power to server i where

∑k
i=1 Pi = P. The correspond-

ing server speeds are denoted by (s1, . . . , sk). Each server,



(a) DFS and DVFS (b) DVFS+DFS

Figure 2: Power-to-frequency curves for DFS, DVFS, and DVFS+DFS for the CPU bound LINPACK workload.
Fig.(a) illustrates our measurements for DFS and DVFS. In both these mechanisms, we see that the server
frequency is linearly related to the power allocated to the server. Fig.(b) illustrates our measurements for
DVFS+DFS, where the power-to-frequency curve is better approximated by a cubic relationship.

i, receives a fraction qi of the total workload coming in to
the server farm. Corresponding to any vector of power allo-
cation (P1, . . . ,Pk), there exists an optimal workload allo-
cation vector (q∗1 , . . . , q∗k). We derive the optimal workload
allocation for each power allocation and use that vector,
(q∗1 , . . . , q∗k), both in theory and in the actual experiments.
The details of how we obtain the optimal (q∗1 , . . . , q∗k) are
deferred to the appendix.

Our model assumes that the jobs at a server are scheduled
using the Processor-Sharing (PS) scheduling discipline. Un-
der PS, when there are n jobs at a server, they each receive
1/nth of the server capacity. PS is identical to Round-Robin
with quantums (as in Linux), when the quantum size ap-
proaches zero. A job’s response time, T , is the time from
when the job arrives until it has completed service, includ-
ing waiting time. We aim to minimize mean response time,
E[T ].

We will analyze our server farm model under both an open
loop configuration (See Section 4.2) and a closed loop con-
figuration (See Section 4.3). An open loop configuration is
one in which jobs arrive from outside the system and leave
the system after they complete service. We assume that
the arrival process is Poisson with average rate λ jobs/sec.
Sometimes it will be convenient to, instead, express λ in
units of GHz. This conversion is easily achievable since an
average job has size E[S] gigacycles. In the theorems pre-
sented in the paper, λ is in the units of GHz. However, in the
appendix, when convenient for queueing analysis, we switch
to jobs/sec. Likewise, while it is common for us to express
the speed of the server, s, in GHz, we sometimes switch
to jobs/sec in the appendix when convenient. A closed loop
configuration is one in which there are always a fixed number
of users N (also referred to as the multi-programming level)
who each submit one job to the server. Once a user’s job is
completed, he immediately creates another job, keeping the
number of jobs constant at N .

In all of the theorems that follow, we find the optimal
power allocation, (P∗

1 ,P∗
2 , . . . ,P∗

k ), for a k-server farm, which
minimizes the mean response time, E[T ], given the fixed
peak power budget P =

∑k
i=1 P

∗
i . While deriving the op-

timal power allocation is non-trivial, computing E[T ] for a
given allocation is easy. Hence we omit showing the mean
response time in each case and refer the reader to the ap-
pendix. Due to lack of space, we defer all proofs to the
appendix. However, we present the intuition behind the
theorems in each case. Recall from Section 2 that each fully
utilized server has a minimum power consumption of b Watts
and maximum power consumption of c Watts.

To illustrate our results clearly, we shall assume through-
out this section (and the Appendix) that the power budget
P is such that PowMax allows us to run n servers (each at
power c) and PowMin allows us to run m servers (each at
power b). This is equivalent to saying:

P = m · b = n · c (3)

where m and n are less than or equal to k. Obviously, m ≥ n.

4.2 Theorems for open loop configurations
Theorem 1 derives the optimal power allocation in an open

loop configuration for a linear power-to-frequency relation-
ship, as is the case for DFS and DVFS. In such cases, the
server frequency varies with the power allocated to it as
si = sb + α(Pi − b). The theorem says that if the speed
at baseline, sb, is sufficiently low, then PowMax is optimal.
By contrast, if sb is high, then PowMin is optimal for high
arrival rates and PowMax is optimal for low arrival rates. If
s∗i is the speed of server i when run at power P∗

i , then the
stability condition requires that λ <

∑k
i=1 s∗i .

Theorem 1. Given an open k-server farm configuration
with a linear power-to-frequency relationship (given by Eq. (1))
and power budget P, the following power allocation mini-
mizes E[T ]:

If sb
b ≤ α: P∗

1,2,..,n = c, P∗
n+1,n+2,..,k = 0

If sb
b > α:

{
P∗

1,2,..,n = c, P∗
n+1,n+2,..,k = 0 if λ ≤ λlow

P∗
1,2,..,m = b, P∗

m+1,m+2,..,k = 0 if λ > λlow

where λlow = α · P.

Corollary 1. For DFS, PowMax is optimal. For DVFS,
PowMax is optimal at low arrival rates and PowMin is op-
timal at high arrival rates.



Intuition For a linear power-to-frequency relationship,
we have from Eq. (1) that the speed of a server, si, varies
with the power allocated to it, Pi, as si = sb + α(Pi − b).
From this equation, it follows that the frequency per Watt
for a single server, si

Pi
, can be written as:

si

Pi
=

sb − αb
Pi

+ α.

Hence, maximizing the frequency per Watt depends on whether
sb ≤ αb or sb > αb. If sb ≤ αb, maximizing si

Pi
is equivalent

to maximizing Pi, which is achieved by PowMax. Alterna-
tively, if sb > αb, we want to minimize Pi, which is achieved
by PowMin. However, the above argument still does not take
into account the mean arrival rate, λ. If λ is sufficiently low,
there are very few jobs in the server farm, hence, few fast
servers, or PowMax, is optimal. The corollary follows by
simply plugging in the values of sb, α and b for DFS and
DVFS from Section 3.

Theorem 2 derives the optimal power allocation for non-
linear power-to-frequency relationships, such as the cubic
relationship in the case of DVFS+DFS. In such cases, the
server frequency varies with the power allocated to it as
si = sb + α′ 3

√
Pi − b. The theorem says that if the arrival

rate is sufficiently low, then PowMax is optimal. However, if
the arrival rate is high, PowMed is optimal. Although The-
orem 2 specifies a cubic power-to-frequency relationship, we
conjecture that similar results hold for more general power-
to-frequency curves where server frequency varies as the n-th
root of the power allocated to the server.

Theorem 2. Given an open k-server farm configuration
with a cubic power-to-frequency relationship (given by Eq. (2))
and power budget P, the following power allocation mini-
mizes E[T ]:

P∗
1,2,..,n = c, P∗

n+1,n+2,..,k = 0 if λ ≤ λ′low

P∗
1,2,..,l = P

l , P∗
l+1,l+2,..,k = 0 if λ > λ′low

.

where λ′low = nlα′

l−n

(
3
√

c− b− 3
√
P
l − b

)
and l =

⌊
P

b+
(

α′P
3λ

) 3
2

⌋
.

Corollary 2. For DVFS+DFS, PowMax is optimal at
low arrival rates and PowMed is optimal at high arrival
rates.

Intuition When the arrival rate is sufficiently low, there
are very few jobs in the system, hence, PowMax is optimal.
However, for higher arrival rates, we allocate to each server
the amount of power that maximizes its frequency per Watt
ratio. For the cubic power-to-frequency relationship, which
has a downwards concave curve (See Fig. 2(b)), we find that
the optimal power allocation value for each server (derived
via calculus) lies between the maximum c and the minimum
b. Hence, PowMed is optimal.

4.3 Theorems for closed loop configurations
We now move on to closed loop configurations, where the

number of jobs in the system, N , is always constant. We
will rely on asymptotic operational laws (See [14]) which
approximate the performance of the system for very high N
and very low N (see Appendix).

Theorem 3 says that for a closed server farm configuration
with sufficiently low value of N , PowMax is optimal.

Theorem 3. Given a closed k-server farm configuration
with a linear or cubic power-to-frequency relationship (given

by Eqs. (1) and (2)), the following power allocation mini-
mizes E[T ] for low N , based on the asymptotic approxima-
tions in [14]:

P∗
1,2,..,n = c, P∗

n+1,n+2,..,k = 0

Corollary 3. For a closed-loop server farm configura-
tion with low N , PowMax is optimal for DFS, DVFS, and
DVFS+DFS.

Intuition When N is sufficiently low, there are very few
jobs in the system. Hence few fast servers are optimal since
there aren’t enough jobs to utilize the servers, leaving servers
idle. Thus PowMax is optimal. This is similar to the case of
low arrival rate that we considered for an open loop server
farm configuration in Theorems 1 and 2.

When N is high, the optimal power allocation is non-
trivial. From here on, we assume N is large enough to keep
all servers busy, so that asymptotic bounds apply (See [14]).
In our experiments, we find that N > 10k suffices.

Theorem 4 says that for high N , if the speed at baseline,
sb, is sufficiently low, then PowMax is optimal. By contrast,
if sb is high, then PowMin is optimal.

Theorem 4. Given a closed k-server farm configuration
with a linear power-to-frequency relationship (given by Eq. (1)),
the following power allocation minimizes E[T ] for high N ,
based on the asymptotic approximations in [14]:

If sb
b < α: P∗

1,2,..,n = c, P∗
n+1,n+2,..,k = 0

If sb
b ≥ α: P∗

1,2,..,m = b, P∗
m+1,m+2,..,k = 0

Corollary 4. For DFS, PowMax is optimal for high N .
For DVFS, PowMin is optimal for high N .

Intuition For a closed queueing system with zero think
time, the mean response time is inversely proportional to
the throughput of the system. Hence, to minimize the mean
response time, we must maximize the throughput of the k-
server farm with power budget P. When N is high, under
a server farm configuration, all servers are busy. Hence the
throughput is the sum of the server speeds. It can be easily
shown that the throughput of the system under PowMin,
sb ·m, exceeds the throughput of the system under PowMax,
sc · n, when sb ≥ αb. Hence the result.

Theorem 5 deals with the case of high N for a non-linear
power-to-frequency relationship. The theorem says that if
the speed at baseline, sb, is sufficiently low, then PowMax is
optimal. By contrast, if sb is high, then PowMed is optimal.

Theorem 5. Given a closed k-server farm configuration
with a cubic power-to-frequency relationship (given by Eq. (2)),
the following power allocation minimizes E[T ] for high N ,
based on the asymptotic approximations in [14]:

If sb < s′: P∗
1,2,..,n = c, P∗

n+1,n+2,..,k = 0
If sb ≥ s′: P∗

1,2,..,l = b + x, P∗
l+1,l+2,..,k = 0

where l =
⌊
P

b+x

⌋
, s′ = msc

l − α′ 3
√

x and x is the non-

negative, real solution of the equation b = 2x + 1
α′ (3x

2
3 sb).

Corollary 5. For DVFS+DFS, for high N , PowMed is
optimal if sb is high, else PowMax is optimal.

Intuition As in the case of Theorem 4, we wish to maximize
the throughput of the system. When we turn on a new
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Figure 4: Open loop experimental results for mean response time as a function of the arrival rate using DFS
and DVFS for LINPACK. In Fig.(a) PowMax outperforms PowMin for all arrival rates under DFS, by as
much as a factor of 5. By contrast in Fig.(b), for DVFS, at lower arrival rates, PowMax outperforms PowMin
by up to 22%, while at higher arrival rates, PowMin outperforms PowMax by up to 14%.

server at b units of power, the increase in throughput of the
system is sb GHz. For low values of sb, this increase is small.
Hence, for low values of sb, we wish to turn on as few servers
as possible. Thus, PowMax is optimal. However, when sb

is high, it pays to turn servers on. Once a server is on, the
initial steep increase in frequency per Watt afforded by a
cubic power-to-frequency relationship advocates running the
server at more than the minimal power b. The exact optimal
PowMed power value (b + x in the Theorem) is close to the
knee of the cubic power-to-frequency curve.

5. EXPERIMENTAL RESULTS
In this section we test our theoretical results from Sec-

tion 4 on an IBM BladeCenter using the experimental setup
discussed in Section 2. We shall first present our experimen-
tal results for the open server farm configuration and then
move on to the closed server farm configuration. For the
experiments in this section, we use the Intel LINPACK [13]
workload, which is CPU bound. We defer experimental re-
sults for other workloads to Section 6.

As noted in Section 3, the baseline power level and the
maximum power level for both DFS and DVFS are b = 180W
and c = 240W respectively. For DVFS+DFS, b = 150W
and c = 250W. In each of our experiments, we try to fix the
power budget, P, to be an integer multiple of b and c, as in
Eq. (3).

5.1 Open server farm configuration
Fig. 4(a) plots the mean response time as a function of

the arrival rate for DFS with a power budget of P = 720W.
In this case, PowMax (represented by the dashed line) de-
notes running 3 servers at c = 240W and turning off all
other servers. PowMin (represented by the solid line) de-
notes running 4 servers at b = 180W and turning off all other
servers. Clearly, PowMax outperforms PowMin throughout
the range of arrival rates. This is in agreement with the
predictions of Theorem 1. Note from Fig. 4(a) that the im-
provement in mean response time afforded by PowMax over
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Figure 5: Open loop experimental results for mean
response time as a function of the arrival rate using
DVFS+DFS for LINPACK. At lower arrival rates,
PowMax outperforms PowMed by up to 12%, while at
higher arrival rates, PowMed outperforms PowMax
by up to 20%. Note that PowMin is worse than both
PowMed and PowMax throughout the range of arrival
rates.

PowMin is huge; ranging from a factor of 3 at low arrival
rates (load, ρ ≈ 0.2) to as much as a factor of 5 at high
arrival rates (load, ρ ≈ 0.7). This is because the power-to-
frequency relationship for DFS is steep (See Fig. 2(a)), hence
running servers at maximum power levels affords a huge gain
in server frequency. Arrival rates higher than 0.22 jobs/sec
cause our systems to overload under PowMin because sb is
very low for DFS. Hence, we only go as high as 0.22 jobs/sec.

Fig. 4(b) plots the mean response time as a function of the
arrival rate for DVFS with a power budget of P = 720W.
PowMax (represented by the dashed line) again denotes run-
ning 3 servers at c = 240W and turning off all other servers.
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Figure 6: Closed loop experimental results for mean response time as a function of number of jobs (N) in the
system using DFS and DVFS for LINPACK. In Fig.(a), for DFS, PowMax outperforms PowMin for all values
of N , by almost a factor of 2 throughout. By contrast in Fig.(b), for DVFS, at lower values of N , PowMax is
slightly better than PowMin, while at higher values of N , PowMin outperforms PowMax by almost 30%.

PowMin (represented by the solid line) denotes running 4
servers at b = 180W and turning off all other servers. We see
that when the arrival rate is low, PowMax produces lower
mean response times than PowMin. In particular, when
the arrival rate is 0.5 jobs/sec, PowMax affords a 22% im-
provement in mean response time over PowMin. However,
at higher arrival rates, PowMin outperforms PowMax, as
predicted by Theorem 1. In particular, when the arrival
rate is 1 job/sec, PowMin affords a 14% improvement in
mean response time over PowMax. Under DVFS, we can
afford arrival rates up to 1 job/sec before overloading the
system. To summarize, under DVFS, we see that PowMin
can be preferable to PowMax. This is due to the flatness of
the power-to-frequency curve for DVFS (See Fig. 2(a)), and
agrees perfectly with Theorem 1.

Fig. 5 plots the mean response time as a function of the
arrival rate for DVFS+DFS with a power budget of P =
1000W. In this case, PowMax (represented by the dashed
line) denotes running 4 servers at c = 250W and turning
off all other servers. PowMed (represented by the solid line)
denotes running 5 servers at b+c

2 = 200W and turning off
all other servers. We see that when the arrival rate is low,
PowMax produces lower mean response times than PowMed.
However, at higher arrival rates, PowMed outperforms Pow-
Max, exactly as predicted by Theorem 2. For the sake of
completion, we also plot PowMin (dotted line in Fig. 5).
Note that PowMin is worse than both PowMed and Pow-
Max throughout the range of arrival rates. Note that we
use the value of b+c

2 = 200W as the optimal power allocated
to each server in PowMed for our experiments as this value
is close to the theoretical optimum predicted by Theorem 2
(which is around 192W for the range of arrival rates we use)
and also helps to keep the power budget at 1000W .

5.2 Closed server farm configuration
We now turn to our experimental results for closed server

farm configurations. Fig. 6(a) plots the mean response time
as a function of the multi-programming level (MPL = N)
for DFS with a power budget of P = 720W. In this case,
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Figure 7: Closed loop experimental results for mean
response time as a function of number of jobs (N)
in the system using DVFS+DFS for LINPACK. At
lower values of N , PowMed is slightly better than
PowMax, while at higher values of N , PowMed out-
performs PowMax, by as much as 40%. Note that
PowMin is worse than both PowMed and PowMax
for all values of N .

PowMax (represented by the dashed line) denotes running
3 servers at c = 240W and turning off all other servers.
PowMin (represented by the solid line) denotes running 4
servers at b = 180W and turning off all other servers. Clearly,
PowMax outperforms PowMin throughout the range of N ,
by almost a factor of 2 throughout the range. This is in
agreement with the predictions of Theorem 3.

Fig. 6(b) plots the mean response time as a function of
the multi-programming level for DVFS with a power bud-
get of P = 720W. PowMax (represented by the dashed line)
again denotes running 3 servers at c = 240W and turning
off all other servers. PowMin (represented by the solid line)



(a) DFS and DVFS (b) DVFS+DFS

Figure 8: Power-to-frequency curves for DFS, DVFS, and DVFS+DFS for the CPU bound DAXPY workload.
Fig.(a) illustrates our measurements for DFS and DVFS. In both these mechanisms, we see that the server
frequency is linearly related to the power allocated to the server. Fig.(b) illustrates our measurements for
DVFS+DFS, where the power-to-frequency curve is better approximated by a cubic relationship.
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Figure 9: Open loop experimental results for mean response time as a function of the arrival rate using DFS,
DVFS, and DVFS+DFS for the CPU bound DAXPY workload. In Fig.(a), for DFS, PowMax outperforms
PowMin throughout the range of arrival rates by as much as a factor of 5. In Fig.(b), for DVFS, PowMax
outperforms PowMin throughout the range of arrival rates by around 30%. In Fig.(c), for DVFS+DFS, PowMax
outperforms both PowMed and PowMin throughout the range of arrival rates. While at lower arrival rates
PowMax only slightly outperforms PowMed, at higher arrival rates the improvement is around 60%.

denotes running 4 servers at b = 180W and turning off all
other servers. We see that when N is high, PowMin pro-
duces lower mean response times than PowMax. This is in
agreement with the predictions of Theorem 4. In particular,
when N = 100, PowMin affords a 30% improvement in mean
response time over PowMax. However, when N is low, Pow-
Max produces slightly lower response times than PowMin.
This is in agreement with Theorem 3.

Fig. 7 plots the mean response time as a function of the
multi-programming level for DVFS+DFS with a power bud-
get of P = 1000W. In this case, PowMax (represented by
the dashed line) denotes running 4 servers at c = 250W
and turning off all other servers. PowMed (represented by
the solid line) denotes running 5 servers at b+c

2 = 200W
and turning off all other servers. PowMin (represented by
the dotted line) denotes running 6 servers at 170W. We
see that when N is high, PowMed produces lower mean re-
sponse times than PowMax. This is in agreement with the

predictions of Theorem 5. In particular, when N = 100,
PowMed affords a 40% improvement in mean response time
over PowMax. However, when N is low, PowMed produces
only slightly lower response times than PowMax. Note that
throughout the range of N , PowMin is outperformed by both
PowMax and PowMed.

6. OTHER WORKLOADS
Thus far we have presented experimental results for a CPU

bound workload LINPACK. In this section we present ex-
perimental results for other workloads. Our experimental
results agree with our theoretical predictions even in the
case of non-CPU bound workloads.

We fully discuss experimental results for two workloads,
DAXPY and STREAM, in this section and summarize our
results for other workloads at the end of the section. Due to
lack of space, we only show results for open loop configura-



tions.
DAXPY
DAXPY [22] is a CPU bound workload which we have sized
to be L1 cache resident. This means DAXPY uses a lot
of processor and L1 cache but rarely uses the server mem-
ory and disk subsystems. Hence, the power-to-frequency
relationship for DAXPY is similar to that of CPU bound
LINPACK except that DAXPY’s peak power consumption
tends to be lower than that of LINPACK, since DAXPY
does not use a lot of memory or disk.

Figs. 8(a) and (b) present our results for the power-to-
frequency relationship for DAXPY. The functional form of
the power-to-frequency relationship under DFS and DVFS
in Fig. 8(a) is clearly linear. However, the power-to-frequency
relationship under DVFS+DFS in Fig. 8(b) is better approx-
imated by a cubic relationship. These trends are similar to
the power-to-frequency relationship for LINPACK seen in
Fig. 2.

Figs. 9(a), (b) and (c) present our power allocation results
for DAXPY under DFS, DVFS, and DVFS+DFS respec-
tively. For DFS, in Fig. 9(a), PowMax outperforms PowMin
throughout the range of arrival rates, by as much as a fac-
tor of 5. This is in agreement with Theorem 1. Note that
we use 165W as the power allocated to each server under
PowMin to keep the power budget same for PowMin and
PowMax. For DVFS, in Fig. 9(b), PowMax outperforms
PowMin throughout the range of arrival rates, by around
30%. This is in contrast to LINPACK, where PowMin out-
performs PowMax at high arrival rates. The reason why
PowMax outperforms PowMin for DAXPY is the lower value
of sb = 2.2 GHz for DAXPY as compared to sb = 2.5 GHz
for LINPACK. Since sb

b = 0.0137 < α = 0.014 for DAXPY
under DVFS, Theorem 1 rightly predicts PowMax to be op-
timal. Finally, in Fig. 9(c) for DVFS+DFS, PowMax out-
performs both PowMed and PowMin throughout the range
of arrival rates. Again, this is in contrast to LINPACK,
where PowMed outperforms PowMax at high arrival rates.
The reason why PowMax outperforms PowMed for DAXPY
is the higher value of α′ = 0.46 GHz/ 3

√
W for DAXPY as

compared to α′ = 0.39 GHz/ 3√W for LINPACK. This is
in agreement with the predictions of Theorem 2 for high
values of α′. Intuitively, for a cubic power-to-frequency re-
lationship, we have from Eq. (2): s = sb + α′ 3

√
P − b. As

α′ increases, we get more server frequency for every Watt of
power added to the server. Thus, at high α′, we allocate as
much power as possible to every server, implying PowMax.
STREAM
STREAM [18] is a memory bound workload which does not
use a lot of processor cycles. Hence, the power consumption
at a given server frequency for STREAM is usually lower
than CPU bound LINPACK and DAXPY.

Figs. 10(a) and (b) present our results for the power-
to-frequency relationship for STREAM. Surprisingly, the
functional form of the power-to-frequency relationship under
DFS, DVFS, and DVFS+DFS is closer to a cubic relation-
ship than to a linear one. In particular, the gain in server
frequency per Watt at higher power allocations is much lower
than the gain in frequency per Watt at lower power alloca-
tions. We argue this observation as follows: At extremely
low server frequencies, the bottleneck for STREAM’s perfor-
mance is the CPU. Thus, every extra Watt of power added
to the system would be used up by the CPU to improve its
frequency. However, at higher server frequencies, the bottle-

neck for STREAM’s performance is the memory subsystem
since STREAM is memory bound. Thus, every extra Watt
of power added to the system would mainly be used up by
the memory subsystem and the improvement in processor
frequency would be minimal.

Figs. 11(a), (b) and (c) present our power allocation re-
sults for STREAM under DFS, DVFS, and DVFS+DFS re-
spectively. Due to the downwards concave nature of the
power-to-frequency curves for STREAM studied in Fig. 10,
Theorem 2 says that PowMax should be optimal at low ar-
rival rates and PowMed should be optimal at high arrival
rates. However, for the values of α′ in Fig. 10, we find that
the threshold point, λlow, below which PowMax is optimal,
is quite high. Hence, PowMax is optimal in Fig. 11(c). In
Figs. 11(a) and (b), PowMax and PowMed produce similar
response times.
GZIP and BZIP2
GZIP and BZIP2 are common software applications used for
data compression in Unix systems. These CPU bound com-
pression applications use sophisticated algorithms to reduce
the size of a given file. We use GZIP and BZIP2 to compress
a file of uncompressed size 150 MB. For GZIP, we find that
PowMax is optimal for all of DFS, DVFS, and DVFS+DFS.
These results are similar to the results for DAXPY. For
BZIP2, the results are similar to those of LINPACK. In
particular, at low arrival rates, PowMax is optimal. For
high arrival rates, PowMax is optimal for DFS, PowMin is
optimal for DVFS and PowMed is optimal for DVFS+DFS.
WebBench
WebBench [15] is a benchmark program used to measure
web server performance by sending multiple file requests to
a server. For WebBench, we find the power-to-frequency
relationship for DFS, DVFS, and DVFS+DFS to be cubic.
This is similar to the power-to-frequency relationships ob-
served for STREAM since WebBench is more memory and
disk intensive. As theory predicts (See Theorem 2), we find
PowMax to be optimal at low arrival rates and PowMed
to be optimal at high arrival rates for DFS, DVFS, and
DVFS+DFS.

7. SUMMARY
In this paper, we consider the problem of allocating an

available power budget among servers in a server farm to
minimize mean response time. The amount of power allo-
cated to a server determines its speed in accordance to some
power-to-frequency relationship. Hence, we begin by mea-
suring the power-to-frequency relationship within a single
server. We experimentally find that the power-to-frequency
relationship within a server for a given workload can be ei-
ther linear or cubic. Interestingly, we see that the relation-
ship is linear for DFS and DVFS when the workload is CPU
bound, but cubic when it is more memory bound. By con-
trast, the relationship for DVFS+DFS is always cubic in our
experiments.

Given the power-to-frequency relationship, we can view
the problem of finding the optimal power allocation in terms
of determining the optimal frequencies of servers in the server
farm to minimize mean response time. However, there are
several factors apart from the server frequencies that affect
the mean response time for a server farm. These include
the arrival rate, the maximum speed of a server, the total
power budget, whether the server farm has an open or closed
configuration, etc. To fully understand the effects of these



(a) DFS and DVFS (b) DVFS+DFS

Figure 10: Power-to-frequency curves for DFS, DVFS, and DVFS+DFS for the memory bound STREAM
workload. Fig.(a) illustrates our measurements for DFS and DVFS, while Fig.(b) illustrates our measurements
for DVFS+DFS. In all the three mechanisms, the power-to-frequency curves are downwards concave, depicting
a cubic relationship between power allocated to a server and its frequency.
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Figure 11: Open loop experimental results for mean response time as a function of the arrival rate using
DFS, DVFS, and DVFS+DFS for the memory bound STREAM workload. In Figs.(a) and (b), for DFS and
DVFS respectively, PowMed and PowMax produce similar response times. In Fig.(c) however, for DVFS+DFS,
PowMax outperforms PowMed by as much as 30% at high arrival rates. In all three cases, PowMin is worse
than both PowMed and PowMax.

factors on mean response time, we develop a queueing theo-
retic model (See Section 4.1) that allows us to predict mean
response time as a function of the above factors. We then
produce theorems (See Sections 4.2 and 4.3) that determine
the optimal power allocation for every possible configuration
of the above factors.

To verify our theoretical predictions, we conduct extensive
experiments on an IBM BladeCenter for a range of work-
loads using DFS, DVFS, and DVFS+DFS (See Section 5
and 6). In every case, we find that the experimental results
are in excellent agreement with our theoretical predictions.

8. DISCUSSION AND FUTURE WORK
There are many extensions to this work that we are ex-

ploring, but are beyond the scope of this paper.
First of all, the arrival rate into our server farm may vary

dynamically over time. In order to adjust to a dynamically
varying arrival rate, we may need to adjust the power alloca-

tion accordingly. The theorems in this paper already tell us
the optimal power allocation for any given arrival rate. We
are now working on incorporating the effects of switching
costs into our model.

Second, while we have considered turning servers on or off,
today’s technology [2, 6] allows for servers which are sleep-
ing (HALT state or deep C states). These sleeping servers
consume less power than servers that are on, and can more
quickly be moved into the on state than servers that are
turned off. We are looking at ways to extend our theorems
to allow for servers with sleep states.

Third, while this paper deals with power management
at the server level (measuring and allocating power to the
server as a whole), our techniques can be extended to deal
with individual subsystems within a server, such as power
allocation within the storage subsystem. We are looking
at extending our implementation to individual components
within a server.
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APPENDIX
A. PROOFS OF OPEN LOOP CONFIGURA-

TION THEOREMS (SECTION 4.2)
In this appendix we provide brief sketches of the proofs of

each theorem from the paper. All theorems, again, assume
Eq. (3).

Theorem 1. Given an open k-server farm configuration
with a linear power-to-frequency relationship and power bud-
get P, the following power allocation setting minimizes E[T ]:

If sb
b ≤ α: P∗

1,2,..,n = c, P∗
n+1,n+2,..,k = 0

If sb
b > α:

{
P∗

1,2,..,n = c, P∗
n+1,n+2,..,k = 0 if λ ≤ λlow

P∗
1,2,..,m = b, P∗

m+1,m+2,..,k = 0 if λ > λlow

where λlow = α · P.

Proof. We provide a complete proof for the case of k = 2
in Lemma 1. We then use this result to prove the theorem
for the case of arbitrary k by contradiction.

Lemma 1. Given an open 2-server farm configuration with
linear power-to-speed relationship and power budget P, the
following power allocation minimizes E[T]:
If sb

b ≤ α: P∗
1 = min {c,P} ,P2 = P − P∗

1

If sb
b > α:






P∗
1 = min {c,P} ,P∗

2 = P − P∗
1 if λ ≤ λlow

P∗
1 = b,P∗

2 = P − b if 2b ≤ P ≤ b + c & λ > λlow

P∗
1 = min {c,P}P∗

2 = min {c,P − P∗
1 } otherwise

where λlow = sc+α
√

(c− b)(c + b− P)−
√

sb(sb + α(P − 2b)).

Proof. [Lemma 1] The proof is trivial for the cases P <



2b and P ≥ 2c. Thus, assume 2b ≤ P < 2c. Let P be split
among the two servers as (P1,P2).

The goal is to find the optimal power allocation that min-
imizes E[T ] given the constraint:

P = P1 + P2 (4)

Assuming a linear power-to-frequency relationship, we have
the following relationship for the speed of server i, si, as a
function of the power allocated to it, Pi:

si = sb + α(Pi − b), (5)

where α, sb and b are as defined in Sections 2.3 and 3.
We now wish to derive E[T ] for a 2-server farm with speeds

s1 and s2. Recall from Section 4.1 that we have a PS schedul-
ing discipline and a Poisson arrival process with some mean
λ. It is well-known [16] that for a single M/G/1/PS queue
with speed s, Poisson arrival rate λ and general job size,
E[T ] is as follows:

E[T ]M/G/1/PS =
1

s− λ

By exploiting Poisson splitting in our model, we have that
the mean response time of jobs in the server farm with split-
ting parameter q (where q is the fraction of jobs sent to the
1st server) and server speeds s1 and s2 is:

E[T ] =
q

s1 − λq
+

(1− q)
s2 − λ · (1− q)

(6)

given the stability constraints:

s1 > λq and s2 > λ(1− q) (7)

From Eq. (6) we see that E[T ] is a function of s1, s2 and q.
However, using Eqs. (4) and (5), we can express s2 in terms
of s1 as:

s2 = 2sb + α(P − 2b)− s1 (8)

We now derive the optimal value of q, which we call q∗. To
do this, we fix the speeds s1 and s2 in Eq. (6) and set the
derivative of E[T ] w.r.t. q to be 0. This yields:

q∗ =
s1
√

s2 + λ
√

s1 − s2
√

s1

λ(
√

s1 +
√

s2)
(9)

Using q∗ in the expression for E[T ] from Eq. (6) gives us:

E[T ] =
−1
λ

+
λ + 2

√
s1s2

λ(s1 + s2 − λ)
(10)

At this point, we can express E[T ] in terms of just s1 by
substituting for s2 from Eq. (8). Hence we can differentiate
E[T ] w.r.t. s1 to yield the optimal s1, which translates via
Eq. (5) to P∗

1 . We find that for sb
b ≤ α, PowMax minimizes

E[T ], where PowMax for 2 servers refers to P∗
1 = min {c,P}

and P∗
2 = P − P1. For sb

b > α, we find that PowMax
minimizes E[T ] for λ ≤ λlow, whereas PowMin minimizes
E[T ] for λ >λ low. PowMin for 2 servers refers to P∗

1 =
b,P∗

2 = P − b if 2b ≤ P ≤ b + c and P∗
1 = min {c,P} ,P∗

2 =
min {c,P − P∗

1 } otherwise.

We now return to the proof of Thm. 1. We first consider
the case sb

b ≤ α. The proof proceeds by contradiction. We
claim that PowMax is optimal. Thus, assume we have a
power allocation π = (P1, . . . ,Pk), which is not the same as
PowMax. Since π is not PowMax, there must exist at least

two servers, say servers i and j, such that b ≤ Pi < c and
b ≤ Pj < c. We invoke Lemma 1 on servers i and j with
total power P ′ = Pi+Pj . Lemma 1 tells us that the optimal
power allocation for servers i and j is P∗

i = min {c,P ′} and
P∗

j = P ′−P∗
i . It can also be shown (see [12]) that reducing

the mean response time of the 2-server system consisting
of servers i and j reduces the mean response time of the
whole system. Thus, we have shown that the mean response
time of the system under π can reduced. Thus, PowMax is
optimal.

The case of sb
b > α is more complex. We want to show

that the servers that are turned on should either all run at
power c or all run at power b, depending on λ. We start
with an arbitrary power allocation and show that we can
repeatedly apply Lemma 1 to two servers at a time to end
up in a power allocation where we have some servers at
power b, some servers at power c and at most one server at
some intermediate power. At this point, we optimize over
all power allocation settings of the above type, and find that
E[T ] is minimized in the particular power allocation where
either n servers are at power c (for low λ) or m servers are
at power b (for high λ). For details, see [12].

Theorem 2. Given an open k-server farm configuration
with a cubic power-to-frequency relationship (as in Eq. (2))
and power budget P, the following power allocation setting
minimizes E[T ]:

P∗
1,2,..,n = c, P∗

n+1,n+2,..,k = 0 if λ ≤ λ′low

P∗
1,2,..,l = P

l , P∗
l+1,l+2,..,k = 0 if λ > λ′low

.

where λ′low = nlα′

l−n

(
3
√

c− b− 3
√
P
l − b

)
and l =

⌊
P

b+
(

α′P
3λ

) 3
2

⌋
.

Proof. We follow the same process as in the proof of
Thm. 1. Staring with the case of two servers, we note that
Eq. (9) is still valid in the case of a cubic power-to-frequency
relationship. However, Eq. (8) now takes the form:

s2 = sb + 3
√

α′3(P − 2b)− (s1 − sb)3 (11)

where α′, sb and b are as defined in Section 2.3. We can
now express E[T ] (from Eq. (10)) in terms of just s1 by
substituting for q and s2 from Eqs. (9) and (11). Hence
we can differentiate E[T ] w.r.t. s1 to yield the optimal s1,
which translates to P∗

1 . We find that, for the 2-server case,
PowMax is optimal at low arrival rates, whereas PowMed
is optimal at high arrival rates. Note that PowMed for two
servers refers to P∗

1 = P∗
2 = min

{
c, P2

}
if P ≥ 2b and

P∗
1 = P,P∗

2 = 0 otherwise.
We now return to the proof of Thm. 2. When there are

k > 2 servers, we want to show that we should either run n
servers at power c or run l servers at power P

l , depending
on λ. We start with an arbitrary power allocation and show
that we can repeatedly apply the two server result discussed
above to pairs of servers at a time to end up in a power
allocation where we have some v servers at power c and some
w servers at power P−vc

w . At this point, we optimize over
all power allocation settings of the above type, and find that
E[T ] is minimized in the particular power allocation where
either n servers are at power c (for low λ) or l servers are at
power P

l (for high λ). For details, see [12].

B. PROOFS OF CLOSED LOOP CONFIG-
URATION THEOREMS (SECTION 4.3)



For closed loop configurations, [14] provides well-known
asymptotic bounds for the mean response time both in the
case where N, the number of jobs in the system, is very high
and in the case where N is very low. These bounds provide
excellent approximations for E[T ] . Here, N is considered
high if it significantly exceeds the number of servers that are
on, and N is considered low if it is close to 1. We will use
these approximations from [14] to derive the optimal power
allocations in Theorem 3 (low N) and in Theorems 4 and 5
(high N).

Theorem 3. Given a closed k-server farm configuration
with a linear or cubic power-to-frequency relationship, the
following power allocation minimizes E[T ] for low N , based
on the asymptotic approximations in [14]:

P∗
1,2,..,n = c, P∗

n+1,n+2,..,k = 0

Proof. We start by assuming the number of jobs in the
system, N , is low. From [14] we have that:

E[T ] ≈
k∑

i=1

qi

si
for low N (12)

Without loss of generality, assume s1 ≥ s2 ≥ . . . ≥ sk.
This implies 1

s1
≤ 1

s2
≤ . . . ≤ 1

sk
. Thus, E[T ] given by

Eq. (12) is minimized by setting q1 = 1 if s1 > s2, or q1 =
. . . = qa = 1

a if s1 = . . . = sa for some integer a. If s1 > s2,
we want to minimize E[T ] = 1

s1
. Thus PowMax is optimal

in this case. For the case of s1 = . . . = sa for some integer
a, we want to minimize E[T ] = 1

si
, for i = 1, 2, . . . , a. This

is achieved by maximizing si. Clearly, by setting a = P
c , si

is maximized by P∗
i = c for i = 1, 2, . . . , a. Hence, for low

N , PowMax is optimal.

Theorem 4. Given a closed k-server farm configuration
with a linear power-to-frequency relationship , the following
power allocation minimizes E[T ] for high N , based on the
asymptotic approximations in [14]:

If sb
b < α: P∗

1,2,..,n = c, P∗
n+1,n+2,..,k = 0

If sb
b ≥ α: P∗

1,2,..,m = b, P∗
m+1,m+2,..,k = 0

Proof. Assuming that N is high, from [14] we have that:

E[T ] ≈ N · max

{
q1

s1
,
q2

s2
, . . . ,

qk

sk

}
for high N (13)

Without loss of generality, assume q1
s1
≥ q2

s2
≥ . . . ≥ qj

sj
,

where j ≤ k denotes the number of servers that are turned
on. Thus, E[T ] = N · q1

s1
from Eq. (13). Since N is a

constant, minimizing E[T ] is now equivalent to minimizing
q1
s1

, which attains the lowest value of q2
s2

when q1
s1

= q2
s2

.
However q2

s2
itself attains the lowest value of q3

s3
when q2

s2
=

q3
s3

and so on. Thus, to minimize E[T ], we must set q1
s1

=
q2
s2

= . . . =
qj

sj
= r, say. Since

∑j
i=1 qi = 1, we have:

E[T ] = N · q1

s1
= N · r =

N
∑j

i=1 si

Thus, minimizing E[T ] is equivalent to maximizing
∑j

i=1 si.
For a linear power-to-frequency relationship given by Eq. (5),
we have:

si = sb + α(Pi − b),

where α, sb and b are as defined in Section 2.3. Thus we
have:

j∑

i=1

si =
j∑

i=1

(sb + α(Pi − b))

= j(sb − αb) + α
j∑

i=1

Pi

= j(sb − αb) + αP

Hence, if sb
b ≥ α, E[T ] is minimized by maximizing j. Thus

PowMin is optimal for sb
b ≥ α. When sb

b < α, E[T ] is
minimized by minimizing j. Thus PowMax is optimal for
sb
b < α.

Theorem 5. Given a closed k-server farm configuration
with a cubic power-to-frequency relationship, the following
power allocation minimizes E[T ] for high N , based on the
asymptotic approximations in [14]:

If sb < s′: P∗
1,2,..,n = c, P∗

n+1,n+2,..,k = 0
If sb ≥ s′: P∗

1,2,..,l = b + x, P∗
l+1,l+2,..,k = 0

where l =
⌊
P

b+x

⌋
, s′ = msc

l − α′ 3
√

x and x is the non-

negative solution of the equation b = 2x + 1
α′ (3x

2
3 sb).

Proof. As in the proof for Theorem 4, minimizing E[T ]
is equivalent to maximizing

∑j
i=1 si, where j ≤ k is the

number of servers that are turned on. For a cubic power-to-
frequency relationship given by Eq. (2), we have:

si = sb + α′ 3
√
Pi − b,

where α′, sb and b are as defined in Section 2.3. Thus we
have:

j∑

i=1

si =
j∑

i=1

(
sb + α′ 3

√
Pi − b

)

= jsb + α′
j∑

i=1

3
√
Pi − b

Since the sum of Pi’s is a constant, the sum of their cube
roots attains its maximum value when all the Pi’s are equal.
This follows from the generalized mean inequality. Thus,

we wish to maximize j
(
sb + α′ 3

√
P
j − b

)
. By looking at

the derivative of
∑j

i=1 si, we find the power allocation that
maximizes the sum of speeds, and thus minimizes the mean
response time. We find that PowMax is optimal for low
values of sb whereas PowMed is optimal for high values of
sb. Hence the result.


