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Abstract

We consider the problem of optimal power allocation over a family of parallel
Gaussian broadcast channels, each with a different set of noise powers for the users,
and obtain a characterization of the optimal solution as well as the resulting capacity
region. The solution has a simple greedy structure, just like the corresponding
solution to the parallel Gaussian multi-access channel. It is a generalization of the
classic water-filling solution for parallel single-user channels. Application of the
results to the problem of power control for the downlink wireless fading channel is
discussed.

1 Introduction

Many communication channels, such as channels with inter-symbol interference (ISI), fad-

ing channels and multi-antenna systems, can be analyzed as a family of parallel Gaussian

channels. For example, in the case of ISI channels, each of the parallel channels corre-

sponds to a frequency; in the case of fading channels, each corresponds to a fading state.

For single-user parallel Gaussian channels when the transmitter can measure and track

the channel, it is well known that capacity can be achieved by an optimal power allocation

over the parallel channels. Moreover, the optimal power allocation can be computed via

a simple water-filling construction [3].

The concept of decomposition into a family of parallel channels extend to multi-user

scenarios as well. These channels can be used to model multi-access or broadcast situations

∗This author is partially supported by AFOSR under grant F49620-96-1-0199 and by a NSF CAREER
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when each transmitter-receiver pair experiences possibly different ISI or channel fading.

For example, in a Gaussian ISI multi-access channel where Hi(f) is the frequency response

from the ith transmitter to the receiver, one can view it as a family of parallel multi-

access flat Gaussian channel, one for each frequency f , with the path gain from the ith

transmitter to the receiver to be Hi(f). It is of interest to obtain the capacity region of

such multi-user channels, in analogy to the capacity characterization of single-user parallel

Gaussian channels.

Cheng and Verdu have shown that all points in the capacity region of the multi-access

ISI channel can be obtained by power allocation over the component parallel channels,

and moreover derived the optimal power allocation in the special case of the two-user

multi-access channel. A general solution for Gaussian multi-access channels with arbitrary

number of users was obtained recently [9, 10], in the context of power control problems for

multi-access fading channels. By exploiting the polymatroid structure of the multi-access

Gaussian capacity region, explicit greedy power allocations were obtained to achieve all

points on the boundary of the capacity region, yielding an explicit characterization of the

region.

In this paper, we will provide an analogous solution for parallel Gaussian broadcast

channels. We will obtain, just as for the multi-access channel, explicit greedy power

allocations to achieve all point on the boundary of the capacity region, together with

an explicit characterization of the region for a given power constraint. Moreover, we

will present a simple iterative algorithm to solve the dual problem, that of finding the

minimum power required to achieve a given set of target rates. At the end of the paper,

we will briefly mention the application of some of these results in the context of power

control for the downlink of a wireless fading channel. A more comprehensive study, using

some of the results described here, can be found in [8].

After the conference presentation of this work [11], we were informed that a similar

optimal power allocation solution was obtained in earlier unpublished work [6]. Our

solution and proofs are presented in a simpler form, emphasizing the greedy structure of

the optimal solution as well as the similarity to the corresponding solution to the multi-

access channel. Moreover, the greedy solution is readily extended to power allocation

problems where there are additional power constraints.
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2 Parallel Gaussian Broadcast Channels

Consider the M -user Gaussian broadcast channel:

Yi = X + Zi i = 1, . . . , M

where the Zi’s are independent zero-mean Gaussian noise and the variance of Zi is ni. The

transmitter is subjected to a total average power constraint of P̄ , and we want to send

independent information to each of the receivers. This is a degraded broadcast channel

and the capacity region is well known [1, 4]. Assuming without loss of generality that

n1 ≤ n2 ≤ . . . ≤ nM , the boundary of the capacity region Cb(n, P̄ ) is given by

{R : Ri =
1

2
log(1 +

αiP̄

ni +
∑

j<i αjP̄
) i = 1, . . . , M, where

∑
i αi = 1} (1)

Each point on the boundary corresponds to a choice of α: αi is the fraction of the

total transmit power used for user i’s signal. The point is achieved by superposition

coding, where users’ signals are superimposed on each other, together with interference

cancellation, with the ith user decoding and cancelling the signals intended for the users

with noisier channels before decoding its own.

Consider now a family of K parallel broadcast channels, such that in the kth compo-

nent channel, user i has noise variance n
(k)
i . The transmitter has a total power constraint

of P̄ . Note that in general, this channel is not degraded, since the orderings of the noise

powers of the users are not necessarily the same in each of the component channels.

Nevertheless, the capacity region for the case when there are two users and two parallel

channels was characterized by El Gamal [5], and the following result is a straightforward

generalization to the case when there are M users and K parallel channels.

Theorem 2.1. The capacity region of the family of parallel broadcast Gaussian channels

is given by

C(P̄ ) =
⋃

{P:
PK

k=1 P (k)=P̄}

K∑

k=1

Cb(n
(k), P (k))

(where for two sets A and B, A + B ≡ {u + v : u ∈ A,v ∈ B})

Here, P (k) can be interpreted as the total amount of power allocated to the kth com-

ponent channel. The above theorem says that any achievable rate vector in the overall

region is the sum of rate vectors achievable in each of the component broadcast channels,

under some power allocation. While the achievability part of the above theorem is obvi-

ous, the converse part demonstrates that indeed all optimal capacity-achieving strategies

can be viewed as that of power allocation over the component channels.
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3 Explicit Characterization of Capacity Region

The above characterization of the capacity region C(P̄ ) is only implicit, in the sense that

it does not give the optimal power and rate allocation (among channels and among users)

to achieve each point on the boundary. In this section, we will compute the optimal power

and rate allocations, which in turn leads to an explicit characterization of the capacity

region C(P̄ ).

3.1 A Lagrangian Characterization

Before we present the solution, it is instructive to review the corresponding solution for

the single-user case. Here, the problem is

maxP
k P (k)=P̄

∑

k

1

2
log

(
1 +

P (k)

n(k)

)

where n(k) is the noise variance in the kth component channel. The Lagrangian formula-

tion of this convex optimization problem yields:

max
{P (k)}

∑

k

[
1

2
log

(
1 +

P (k)

n(k)

)
− λP (k)

]
=

∑

k

max
P (k)

[
1

2
log

(
1 +

P (k)

n(k)

)
− λP (k)

]

with the “power price” λ chosen such that the total power constraint is satisfied. Thus,

the overall optimization problem is decomposed into a family of optimization problems,

one for each of the component channels. The optimal solution is given by:

P (k)∗ =

(
1

2λ
− n(k)

)+

.

where we use the notation x+ ≡ max(x, 0). This is the classic water-filling solution.

The following lemma shows that the optimal power allocation problem for the broad-

cast channel can also be decomposed to solving a family of optimization problems, one

for each of the parallel channels.

Lemma 3.1. A rate vector R∗ lies on the boundary surface of C(P̄) if and only if there

exists a nonnegative ~µ ∈ <M such that R∗ is a solution to the optimization problem:

max ~µ ·R subject to R ∈ C(P̄). (2)

For a given ~µ, a rate vector R∗ solves the above problem if and only if there exist λ ∈ <+,

rate allocation R(k) ∈ <M and power allocation P (k), k = 1, . . . K such that for every
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channel k, (R(k), P (k)) is a solution to the optimization problem:

max
(R,P )

~µ ·R− λP subject to R ∈ C(n(k), P ) (3)

and
k∑

k=1

R(k) = R∗,
K∑

k=1

P (k) = P̄

For a given ~µ vector, the rate vector R∗ given in the above proposition is the one on

the boundary which maximizes ~µ · R. The vector ~µ can be interpreted as a set of rate

rewards, used in prioritizing the users in the resource allocation. As ~µ is varied, we get all

points on the boundary of the convex capacity region; thus, ~µ can be used to parameterize

the boundary of the capacity region. The scalar λ is the Lagrangian multiplier (“power

price”) chosen such that the total power constraint is satisfied.The vector R(k) and power

P (k) are the optimal rate and power allocated to channel k to achieve R∗.

Proof. The capacity region C(P̄ ) is convex because we can always perform time-sharing.

Hence the first statement follows immediately.

To show the second statement, we first express the capacity region (1) Cb(n, P ) of an

individual broadcast channel in terms of a single inequality, where n is the vector of noise

variances and P is the power constraint.

Without loss of generality, assume that the noise variances ni’s are in increasing order.

The rate vector R on the boundary of the capacity region corresponding to a power

allocation α1P, . . . , αMP is given in (1). Solving the αi’s in terms of the rate vector R

yields an equivalent system of equations:

∑
i≤m

αiP =
∑
i≤m

(ni − ni−1) exp

(
2
∑
j≥i

Rj

)
− nm m = 1, . . . ,M (4)

where n0 ≡ 0. We observe that the right-hand side of the above equation is monotonically

increasing in m. Hence, given any rate vector R, provided that eqn. (4) is satisfied for

m = M , i.e.

P =
∑
i≤M

(ni − ni−1) exp

(
2
∑
j≥i

Rj

)
− nM

then there must exist a power allocation {αi} such that eqn. (4) is satisfied for all m, i.e.

R lies on the boundary of the capacity region. Hence, an equivalent characterization of

Cb(n, P ) is Cb(n, P ) = {R : f(R) ≤ P}, where

f(R) ≡
M∑
i=1

(nπ(i) − nπ(i−1)) exp

(
2
∑
j≥i

Rπ(j)

)
− nπ(M)
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and π is a permutation such that nπ(1) ≤ . . . ≤ nπ(M). We observe that the function f is

convex.

Let us now define the set

S ≡ {(R, P ) : R ∈ C(P )}

We claim that the set S is convex. Indeed let r ∈ C(P ) and s ∈ C(Q) , and α ∈ [0, 1].

Let r =
∑

k r(k) and s =
∑

k s(k), with r(k) ∈ Cb(n
(k), P (k)), s(k) ∈ Cb(n

(k), Q(k)) and∑
k P (k) = P,

∑
k Q(k) = Q. For each channel k, the capacity region is given by:

Cb(n
(k), P (k)) = {R : fk(R) =

M∑
i=1

(n
(k)
π(i) − n

(k)
π(i−1)) exp

(
2
∑
j≥i

Rπ(j)

)
− n

(k)
π(M) ≤ P}

and π is a permutation such that n
(k)
π(1) ≤ . . . ≤ n

(k)
π(M). If we define rate vectors t(k) ≡

αr(k) +(1−α)s(k) and power allocation U (k) = αP (k) +(1−α)Q(k), then by the convexity

of fk,

fk(t
(k)) ≤ αfk(r

(k)) + (1− α)fk(s
(k)) ≤ αP (k) + (1− α)Q(k) = U (k)

and so t(k) ∈ Cb(n
(k), U (k)). This implies that αr + (1 − α)s =

∑
k t(k) is in the capacity

region C (αP + (1− α)Q). Hence the set S is convex.

The second statement in the lemma now follows from this fact. By the convexity of S,

a rate vector R∗ solves the optimization problem (2) if and only if there exists Lagrange

multiplier λ ∈ <+ such that (R∗, P̄ ) is a solution to the optimization problem

max
(R,P )∈S

~µ ·R− λP (5)

By definition of C(P ), R ∈ C(P ) if and only there exists R(k)’s and P (k)’s such that

R =
∑

k R(k), P =
∑

k P (k) and R(k) ∈ Cb(n
(k), P (k)) for all component channels k. Hence,

the optimization problem (5) now decomposes into a family of independent optimization

problems:

max
R(k)∈Cb(n(k),P (k))

~µ ·R(k) − λP (k) ∀k.

This completes the proof of the lemma.

3.2 Optimal Power and Rate Allocation

The above lemma implies that to characterize the optimal power and rate allocation, we

have to solve the optimization problem (3) for each of the parallel channels. It turns out

that there is a simple and explicit greedy solution to the optimization problem (3).
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Theorem 3.2. For given Lagrange multipliers ~µ and λ and noise variance vector n,

consider the optimization problem:

max
R,P

~µ ·R− λP s.t. R ∈ Cb(n, P ) (6)

Assume that there are no two users i and j such that ni = nj and µi = µj.

Define for i = 1, . . . ,M the marginal utility functions:

ui(z) ≡ µi

2(ni + z)
− λ (7)

u∗(z) ≡
[
max

i
ui(z)

]+

(8)

and the sets

Ai ≡ {z ∈ [0,∞) : ui(z) = u∗(z)}

Then the optimal value for the optimization problem (6) is:

∫ ∞

0

u∗(z)dz

and attained at an unique point:

R∗
i (~µ, λ) =

∫

Ai

1

2(ni + z)
dz i = 1, . . . , M (9)

P ∗(~µ, λ) =
[
max

i

(µi

λ
− ni

)]+

(10)

To explain the optimal power and rate allocation, let us first re-interpret the classic

water-filling solution for the single user case. The solution in that setting is to solve, for

each component channel, the optimization problem:

max
P≥0

[
1

2
log

(
1 +

P

n

)
− λP

]
,

where n is the noise power in the channel. We can write

1

2
log

(
1 +

P

n

)
=

∫ P

0

1

2(n + z)
dz.

This integral representation can be given a rate splitting interpretation, where the trans-

mission to a single user can be visualized as being split into many low-rate data streams,

each with transmit power dz. The total rate is achieved by successive cancellation among

these streams in decreasing order of z, with the rate of the stream decoded at interference

level n + z to be 1/[2(n + z)] · dz.
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The optimization problem can be recast in the integral form:

max
P≥0

∫ P

0

[
1

2(n + z)
− λ

]
dz.

Let us define

u(z) ≡ 1

2(n + z)
− λ

and interpret u(z) · dz as the marginal utility (rate revenue minus power cost) of adding a

virtual user at interference level n + z. The optimal solution can be described by adding

more data streams until the marginal utility of adding any further data stream is negative.

The power allocated at this point is precisely

P ∗ =

(
1

2λ
− n

)+

.

In particular, if u(0) ≤ 0, then nothing is transmitted at all.

The optimal solution for the multiuser broadcast problem is a natural generalization

of this interpretation of the single-user solution. The quantity ui(z) · dz (ui defined in

eqn. (7)) can be interpreted as the marginal increase in the value of the overall objective

function ~µ ·R− λP due to transmitting a low-rate data stream using power dz to user i

at interference level ni + z. Starting at z = 0, the optimal solution is obtained in a greedy

manner by choosing at each value z, to transmit a data stream of rate 1/[2(ni + z)] ·dz to

user i which will lead to the largest positive marginal increase in the objective function.

Here, the choice is whether to transmit such a data stream, and if so, to which user.

The value z can be interpreted as the amount of interference caused by the data streams

already allocated. The proof of Theorem 3.2 shows that this interpretation of z is valid in

the sense that the data streams added later in the procedure will always be transmitted

to users with weaker channel so that they can always be decoded and subtracted off by

the user to which the data stream at level z is transmitted to. When no user can be found

such that ui(z) > 0, the procedure terminates. The total rate and power allocated to

each user is obtained by aggregating the rates and powers of all the low-rate data streams

transmitted to that user, yielding (9) and (10) respectively. An example is shown in Fig.

1.

We now prove that the claimed solution is indeed achievable and optimal.

Proof. Let the optimal solution to (3) be achieved at

R∗
π(i) =

1

2
log

(
1 +

α∗π(i)P
∗

nπ(i) +
∑

j<i α
∗
π(j)

)
i = 1, . . . , M
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marginal
  utility

u1(z)

u2(z)

u3(z)

α∗1P
∗ P ∗

z

ui(z) = µi

2(ni+z)
− λ

Figure 1: A 3-user example illustrating the greedy power allocation. The x-axis represents
the interference level z and y-axis the marginal utility of each user at the interference levels.
At each interference level z, the user to which a low-rate data stream is transmitted is
the one with the highest marginal utility. Aggregating the data streams yield the optimal
rate and power allocation. In this example, the optimal solution is such that user 1 and
user 2 are allocated transmit powers α∗1P

∗ and (1 − α∗1)P
∗ respectively. The solution is

achieved by user 2 decoding treating user 1 as noise, while user 1 decodes user 2 signal,
strips off its signal, and decodes its own signal in the presence of only the background
noise. The proof of the theorem shows that it must be the case that in this example,
user 2 has the weaker channel. Note that user 3 gets no power and hence no rate in this
component channel.
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with power P ∗, where π is a permutation of {1, . . . , M} in increasing order of the noise

variances and
∑M

i=1 α∗i = 1. The optimal value J∗ of the problem then satisfies:

J∗ =
M∑
i=1

µiR
∗
i − λP ∗

=
1

2

M∑
i=1

µπ(i)

[
log

(
nπ(i) +

∑
j≤i

απ(j)P
∗
)
− log

(
nπ(i) +

∑
j≤i−1

απ(j)P
∗
)]

=
M∑
i=1

∫ P
j≤i απ(j)P

∗

P
j≤i−1 απ(j)P

∗

µπ(i)

nπ(i) + z
dz − λP ∗

=
M∑
i=1

∫ P
j≤i απ(j)P

∗

P
j≤i−1 απ(j)P

∗
ui(z)dz

≤
∫ ∞

0

u∗(z)dz

We also see that if this upper bound is actually attained by some power allocation, then

the optimal solution must be unique. Thus our remaining task is to show the achievability

of this upper bound. First, note that by the monotonicity of the marginal utility functions

ui’s, the function u∗ is monotonically decreasing. Also, since limz→∞ maxi ui(z) = −λ < 0,

there exists a finite z0 such that u∗(z0) = 0. Define now the sets

Ai ≡ {z ∈ [0, z0] : ui(z) = u∗(z)},

which form a partition of [0, z0]. Consider the rate and power allocation:

R∗
i =

∫

Ai

1

2(ni + z)
dz i = 1, . . . , M (11)

α∗i P
∗ = |Ai| (12)

P ∗ = z0

It can be seen that

~µ ·R∗ − λP ∗ =

∫ ∞

0

u∗(z)dz.

So to verify that (R∗, P ∗) is indeed optimal, it suffices to show that R∗ is achievable using

total power of P ∗, i.e. R∗ ∈ Cb(n, P ∗). We will in fact show that the power allocation

α∗i P
∗ among the users will do it.

Consider any two marginal utility functions ui(z) and uj(z) and suppose they intersect

at z = z̄. Then
µi

ni + z̄
=

µj

nj + z̄
. (13)
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Also,
u′i(z̄)

u′j(z̄)
=

µi

µj

(
nj + z̄

ni + z̄

)2

=
nj + z̄

ni + z̄
(14)

by eqn. (13). We observe that whether this ratio is greater or less than 1 is independent of

the intersecting point z̄. Since the derivatives of the utility functions are always negative,

this implies that the derivative of one function is always greater than the other at all the

intersections. Clearly this implies that any two utility functions ui and uj can intersect

at most once. Since Ai is the set of all z’s where ui dominates over all other uj’s, this

implies that the sets Ai’s must all be contiguous, i.e. single intervals.

Next we investigate how the sets Ai’s are ordered on the real line. Suppose Ai and

Aj are both non-empty and adjacent to each other, then the point z̄ where ui and uj

intersect is also the point where Ai and Aj touch. Suppose also that Ai is to the left of

Aj. This implies that for z < z̄, ui(z) > uj(z) and for z > z̄, ui(z) < uj(z), i.e.

u′i(z̄)

u′j(z̄)
> 1

From eqn. (14), this implies that nj > ni. Thus the sets Ai’s are ordered on the real

line in increasing values of the noise variances ni’s, although some of the sets Ai’s can be

empty. Let π be the permutation such that nπ(1) < . . . < nπ(M). Using eqn. (12), we can

write

Aπ(i) =

[∑
j<i

α∗π(j)P
∗,

∑
j≤i

α∗π(j)P
∗
]

and using eqn. (11), we can write

R∗
π(i) =

∫ P
j≤i α∗

π(j)
P ∗

P
j<i α∗

π(j)
P ∗

1

2(ni + z)
dz

=
1

2
log

(
1 +

α∗π(i)P
∗

ni +
∑

j<i α
∗
π(j)P

∗

)

Thus, the rate vector R∗ is achievable by superposition coding and interference cancella-

tion, by allocating power α∗i P
∗ to the ith user and decoding it by first canceling off the

signals intended for users with noisier channels. The total power used is P ∗ which is the

zero of u∗(z), i.e. the largest of the zeros of the functions ui(z)’s:

P ∗ =
[
max

i

(µi

λ
− ni

)]+

This concludes the proof.
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We note the assumption that there are no two users with identical rate rewards µi’s

and noise variances ni’s is made without loss of generality. For if there are two such users,

we can combine them into a “super-user” with rate and power allocated being the sum of

the two individual users. Any optimal solution for the new system would translate into

an optimal solution for the original system by any arbitrary split in the power allocated.

Naturally, the solution is no longer unique in that case.

It is interesting to observe this optimal power allocation solution has a similar structure

to the corresponding solution for parallel Gaussian multi-access channels [10]. In that

setting, a component multi-access channel is:

Y =
M∑
i=1

hiXi + Z

where h = (h1, . . . , hM) are channel attenuations, and Z ∼ N(0, σ2). Each of the parallel

channels has a different value of h. User i has a total power constraint of P̄i. Using

Lagrangian techniques, it can be shown that for given rate rewards ~µ, the optimal power

and rate allocation which maximizes the rate revenue in the overall capacity region solves

the following optimization problem for each of the parallel channels:

max
R,P

~µ ·R− λ ·P s.t. R ∈ Cm(h, ,P)

where

Cm(h,P) =

{
R :

∑
i∈S

Ri ≤ 1

2
log

(
1 +

1

σ2

∑
i∈S

hiPi

)
, ∀S ⊂ {1, . . . ,M}

}

is the capacity region of a multi-access channel with transmit power Pi’s. Here, λi is the

Lagrangian multiplier reflecting the total power constraint for user i. If we define the

received power of user i to be Qi = hiPi and consider for each user the marginal utility

function:

ui(z) =
µi

2(σ2 + z)
+

λi

hi

,

then applying exactly the same greedy procedure as for the broadcast channel gives as

the optimal rates R∗ and the optimal received powers Q∗ allocated for this component

channel.

3.3 Boundary of the Capacity Region

Let us now use the optimal rate and power allocation derived above for parallel broadcast

channels to compute explicitly the capacity region. For any non-negative ~µ, the uniqueness
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of the optimal rate and power allocation implies that we can define a parameterization

R∗(µ) of the boundary, which is the unique rate vector on the boundary which maximizes

~µ ·R. Combining the Lagrangian formulation given in Lemma 3.1 and the optimal power

and rate allocation solution in Theorem 3.2, we get:

Theorem 3.3. Assume that the noise variances of the users are distinct in each of the

broadcast channels. Then the boundary is given by:

{R∗(~µ, P̄ ) :
∑

i

µi = 1}

where

R∗
i (~µ, P̄ ) =

∫ ∞

0





∑

{k:u
(k)
i (z)=[maxj u

(k)
j (z)]+}

1

2(n
(k)
i + z)





dz

and λ satisfies:
K∑

k=1

[
max

i

(µi

λ
− n

(k)
i

)]+

= P̄ (15)

To compute the optimizing rates R∗(~µ, P̄ ) for given rate rewards ~µ, it is necessary to

solve eqn. (15) for the appropriate power price λ. Since the left-hand side of eqn. (15) is

monotonically decreasing in λ, this can be done by a simple binary search.

Again, if the noise variances in some of the channels are the same, then there may not

be a unique rate vector R∗ maximizing ~µ ·R for some values of ~µ. These correspond to

linear surfaces formed by convex hull of points obtained by giving strict priority to one

of the users with identical rate rewards and noise variances.

It is interesting to look at the point on the boundary corresponding to all the rate

rewards µi’s equal, say to 1. The associated rate vector is the one which maximizes the

total throughput
∑

i Ri. In this case, the marginal utility function of the ith user in the

kth component channel is:

u
(k)
i (z) =

1

2(n
(k)
i + z)

− λ.

Observe that in a given component channel, the marginal utility functions of all users

are parallel: for users with different noise variances, their utility functions do not intersect.

We conclude that the optimal power allocation is always allocating all power, if any, to

the user with the best reception in each of the component channels. (If more than one

user has the best channel, any arbitrary split in the power allocation among these users

would be optimal.) Furthermore, if even the noise variance of the best user does not meet
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a certain threshold, no power is allocated at all. More precisely, the optimal rate and

power allocation for the case when the noise variances are distinct in all of the parallel

channels is given by:

R
(k)
i =





1
2
log

[
1 +

(
1

λn
(k)
i

− 1

)+
]

if n
(k)
i < n

(k)
j for all j 6= i

0 otherwise

P (k) =

(
1

λ
−min

i
n

(k)
i

)+

Thus the optimal solution has the interesting feature that the information for no more

than one user is broadcasted in each of the parallel channels (the user with the best

reception), and the power allocation across the channels is a water-filling solution. The

optimal power allocation is the same as that of a family of single-user parallel channels

with noise variance in each of the channels the same as that of the user with the best

reception in the broadcast channel. We note that the corresponding solution for parallel

multi-access channels has the same structure [2].

3.4 An Iterative Algorithm for Resource Allocation

We have formulated the problem of optimal power allocation and computation of the

resulting capacity region as that of optimizing the total rate revenue ~µ · R subject to a

total power constraint P̄ , for arbitrary choice of ~µ. A problem which is of more interest

in some applications is in some sense “dual” to this one:

What is the minimum total power required to support a given target rate vector R̃?

That is:

min P subject to R̃ ∈ C(P ). (16)

By convexity of the set S = {(R, P ) : R ∈ C(P )}, this problem is equivalent to:

min
(R,P )

P − ~µ ·R subject to R ∈ C(P ) (17)

where ~µ are the Lagrange multipliers chosen such that the target rate vector R̃ is met.

But we have already solved the optimization problem (17): setting λ = 1 in Theorem 3.2,

we get the optimal solution
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R
(
i~µ) =

∫ ∞

0





∑

{k:u
(k)
i (z)=[maxj u

(k)
j (z)]+}

1

2(n
(k)
i + z)





dz (18)

P (~µ) =
K∑

k=1

[
max

i

(
µi − n

(k)
i

)]+

(19)

where

u
(k)
i (z) =

µi

2(n
(k)
i + z)

− 1.

Thus, to solve the minimum power problem (16), we have to find a solution ~µ = µ̃ to

the system of equations R(~µ) = R̃, and then the minimum power to achieve the rates

R̃ is P (µ̃). Another view of this is that we are searching for a set of rate rewards ~µ and

power P such that R̃ maximizes ~µ ·R subject to R ∈ C(P ). Note that we do not require

that the solution for µ̃ is unique; any one solution will do.

We now present a simple iterative algorithm to solve for µ̃.

Algorithm 3.4. Start the iteration at ~µ(0) = 0. Given the nth iterate ~µ(n), the n + 1th

iterate ~µ(n + 1) is given by the following: for each i, µi(n + 1) is a rate reward for the ith

user such that Ri(~µ) = R̃i, when the rate rewards of the other users remain fixed at ~µ(n)

while the reward for the ith user is adjusted.

Proposition 3.5. Each iteration in the above algorithm is well defined, and ~µ(n) con-

verges to a solution µ̃ of the system R(~µ) = R̃.

The key to the proof of this result is the following monotonicity lemma:

Lemma 3.6. For all i, if the ith component of ~µ is increased and the other components

are held fixed, the rate Ri(λ) remains the same or increases while Rj(µ) decreases for

j 6= i.

This lemma can be easily seen to be true by direct inspection of the expression for

R(~µ) in eqn. (18).

Proof. (Proposition 3.5) If we fix all components of ~µ except ~µi and increase ~µi from 0

to ∞, then we see that the marginal utility function u
(k)
i (·) increases without bound for

every component channel k. This implies that Ri(~µ) monotonically increases from 0 to

∞. Hence, at each step of the iteration in the algorithm, one can always find for each
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user a valid µi(n + 1) such that its rate equals the target R̃i, when the rate rewards of

other users remain fixed. Moreover, this can be done by a binary search.

To show convergence of the algorithm, it helps to define the mapping representing

each iteration:

T : <M
+ → <M

+

λ(n) 7→ λ(n + 1)

We observe that any fixed point ~µ of T is a solution of the system R(~µ) = R̃ that we

seek.

It follows from the monotonicity lemma 3.6 that the mapping T is order preserving,

i.e.

~µ(1) ≤ ~µ(2) ⇒ T (~µ(1)) ≤ T (~µ(2))

(where the inequality refers to component-wise.) Starting with ~µ(0) = 0, ~µ(1) is non-

negative. Hence ~µ(1) = T (~µ(0)) ≥ ~µ(0). Applying the monotonic mapping T , we see

that ~µ(n + 1) = T (~µ(n)) ≥ ~µ(n). If ~µ∗ is a fixed point of T , then since ~µ(0) ≤ ~µ∗, it

follows that for all n, ~µ(n) = T n(~µ(0)) ≤ T n(~µ∗) = ~µ∗. Hence, {~µ(n)} is a monotonically

increasing sequence bounded from above, and must converge to a limit. The limit must

be a fixed point of T by continuity of T , and hence a solution to the system R(~µ) = R̃.

This completes the proof.

3.5 Auxiliary Power Constraints

In some problems, there may also be constraints on the amount of power allocated to

each of the component broadcast channels in addition to the total power constraint P̄ .

The greedy solution described in Section 3.2 can be extended naturally to handle these

types of problem. More concretely, suppose there is a power constraint P̂ on the power

allocated to each of the channels. Then the associated optimization problem for each of

the channels is:

max
R,P

~µ ·R− λP s.t. R ∈ Cb(n, P ) and P ≤ P̂ (20)

with λ chosen such that the total power constraint is satisfied. By a simple extension

of a proof similar to that of Theorem 6, it can be shown that the optimal power and

rate allocations can be obtained just as the greedy procedure described, but this time

allocating power at most up to the maximum limit of P̂ . (See Fig. 2.)
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  utility

u1(z)

u2(z)

u3(z)

z

ui(z) = µi

2(ni+z)
− λ

α∗1P̂ P̂

Figure 2: Greedy power allocation under individual power constraint P̂ on each of the
parallel channel. User 1 gets power α∗1P̂ and user 2 gets power (1− α∗1)P̂ , such that the
total power allocated to this parallel channel mets the auxiliary power constraint P̂ on
each of the parallel channels. As before, user 3 gets no power.
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4 Application to a Fading Channel

Consider a discrete-time broadcast fading channel for modeling the downlink of a cell:

Yi(n) =
√

Hi(n)X(n) + Zi(n) i = 1, . . . , M

where (H1(n), . . . , HM(n)) is the joint fading process, assumed to be stationary and er-

godic with users fading independently. The noise Zi(n) are i.i.d. Gaussian with zero mean

and unit variance. It can be shown that the capacity region when the transmitter can

track the fading state of the channel perfectly is given by :

⋃

{P:EH̃[P(H)]≤P̄}
EH̃[C(H,P(H))]

where P̄ is the average total power constraint, P is a power allocation as a function of

the fading state, and C(h, P ) is the capacity of a broadcast channel with fixed path gains

h and total average power constraint P . The expectation is taken with respect to the

stationary distribution of the fading processes. Thus, the fading channel can be viewed

as a family of parallel broadcast Gaussian channels, one for each fading state. Using

similar arguments as in the last section, we can characterize the optimal power and rate

allocation as a function of the fading state h; it is given by Lemma (3), with n
(k)
i replaced

by 1
hi

. Also, we can compute the boundary of the region, as in Theorem 3.3, with the

sums over the parallel channels replaced by expectations over the stationary distribution

of the fading state. The strategy that maximizes the total throughput is one which at

any time only broadcasts the information of the user with the strongest reception. This

can be thought of as the broadcast “dual” of the optimal strategy proposed by Knopp

and Humblet for the multi-access fading channel [7].

If some users have statistically poorer channels than others, the above strategy, al-

though maximizing the total throughput, can lead to unfairness among users. By assign-

ing different rate reward µi to users, this unfairness can be compensated for. In fact,

for applications in which each user has a target rate Ri to meet, and the goal is to min-

imize the total power consumption, Algorithm 3.4 can be used to iteratively compute

the appropriate rate rewards µi’s. When applied in real time, this can thought of as a

two-time-scale adaptive resource allocation procedure. At a slower time-scale, the rate

rewards are continuously updated by Algorithm 3.4 to adapt to change in the fading

statistics of the users. At a faster time-scale when the rate rewards can be assumed to be

fixed, the greedy procedure computes the optimal rate and power allocation for a given

fading state.
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Under the optimal strategy, the total transmit power will fluctuate depending on the

fading state. In some situations, it may be more desirable to have a constraint P̂ on

the transmit power at all fading states, in addition to or in lieu of a long term average

power constraint. This is especially relevant on the downlink since, unlike the mobiles in

the uplink, the broadcast base-station is usually not battery power limited. Rather, the

constraint aims to limit the interference caused in the adjacent cells. A power constraint

at all fading states may better reflect that objective. The greedy solution described in

Section 3.5 can readily applied to this problem. In the case when there is no average power

constraint at all, the power price λ is simply set to be zero. In this case, the strategy that

maximizes the total throughput is simply to allocate power P̂ to the user with the best

channel.

In [8], some of the results described here are used to study the fading channel in greater

depth, comparing the performance of the optimal strategy with sub-optimal schemes such

as TDMA and FDMA.
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