
Optimal Power-Down Strategies

John Augustine�

jea@ics.uci.edu
School of Information and Computer Science

Univ. of California at Irvine, Irvine, CA 92697

Sandy Irani�

irani@ics.uci.edu
School of Information and Computer Science

Univ. of California at Irvine, Irvine, CA 92697

Chaitanya Swamyy

cswamy@ist.caltech.edu
Center for the Mathematics of Information

Caltech, Pasadena, CA 91125.

Abstract

We consider the problem of selecting threshold times to transition a device to low-power sleep states
during an idle period. The two-state case in which there is a single active and a single sleep state is
a continuous version of the ski-rental problem. We consider a generalized version in which there is
more than one sleep state, each with its own power consumption rate and transition costs. We give an
algorithm that, given a system, produces a deterministic strategy whose competitive ratio is arbitrarily
close to optimal. We also give an algorithm to produce the optimal online strategy given a system and a
probability distribution that generates the length of the idle period. We also give a simple algorithm that
achieves a competitive ratio of � � �

p
� � ����� for any system.

1 Introduction

Suppose you are about to go skiing for the first time in your life. Naturally, you ask yourself whether to
rent skis or to buy them. Renting skis costs, say, $30, whereas buying skis costs $300. If you knew how
many times you would go skiing in the future (ignoring complicating factors such as inflation, and changing
models of skis), then your choice would be clear. If you knew you would go at least 10 times, you would be
financially better off by buying skis right from the beginning, whereas if you knew you would go less than
10 times, you would be better off renting skis every time. Alas, the future is unclear, and you must make a
decision nonetheless.

Although the Ski-Rental problem is a very simple abstraction, this basic paradigm arises in many ap-
plications in computer systems. In these situations, there is a system that can reside in either a low-cost or
a high-cost state. Occasionally, it is forced to be in the high-cost state (usually to perform some task). A
period between any two such points in time is called an idle period.

The system pays a per time unit cost to reside in the high-cost state. Alternatively, it can transition to
the low-cost state at a fixed one-time cost. If the idle period is long, it is advantageous to transition to the
low cost state immediately; if the idle period is short, it is better to stay in the high-cost state. An online
algorithm which does not know the length of the idle period must balance these two possibilities.

This problem has been studied in the context of shared memory multiprocessors in which a thread is
waiting for a locked piece of data and must decide whether to spin or block [9, 11]. Researchers investigating

�Research supported partially by NSF grants CCR-0105498 and CCF-0514082 and by ONR Award N00014-00-1-0617.
yWork done while the author was a student at the Department of Computer Science, Cornell University, Ithaca, NY 14853.

Research supported partially by NSF grant CCR-9912422.



the interface between IP networks and connection-oriented networks have discovered this same underlying
problem in deciding whether to keep a connection open between bursts of packets that must be sent along
the connection [12]. Karlin, Kenyon and Randall study the TCP acknowledgment problem and the related
Bahncard problem both of which are at heart ski-rental problems [10]. The problem also arises in cache
coherency in deciding whether to update or invalidate data that has been changed in a processor’s local
cache [6, 2].

An important application of the ski-rental problem is in minimizing the power consumed by devices that
can transition to a low power sleep state when idle. The sleep state consumes less power; however, one incurs
a fixed start-up cost in making the transition to the high-power active state in order to begin work when a
new job arrives. At the architectural level, the technique of eliminating power to a functional component
is called clock/power gating. At a higher level, the powered-down component might be a disk drive or
even the whole system (e.g., a laptop that hibernates). The embedded systems community has invested a
great deal of effort into devising policies governing the selection of power states during idle periods (termed
Dynamic Power Management in their literature); see, for example, [4] for a survey. These techniques have
been critical to maximizing battery use in mobile systems. While power is already a first-class parameter in
system design, it will become increasingly important in the future since battery capacities are increasing at
a much slower rate than power requirements.

Most of the previous work on this problem has been concerned with two-state systems which have an
active state and a single sleep state. This paper focuses on finding power-down thresholds for systems that
have more than one low-power state. An example of such a system is the Advanced Configuration and Power
Interface (ACPI) included in the BIOS on most newer computers, which has five power states, including a
hibernation state and three levels of standby [1].

2 Previous work and new results

For the two-stateproblem, an online algorithm consists of a single thresholdT after which time the algorithm
will transition from the active to the sleep state. The input to the problem is the length of the idle period and
the cost of an algorithm is the total amount of energy it consumes over a single idle period. Typically, an
online algorithm is evaluated in terms of its competitive ratio — the ratio of the cost of the online algorithm
to the cost of the optimal offline algorithm, maximized over all inputs. When randomized algorithms are
considered where the threshold T is chosen at random, we look at the ratio of the expected cost of the online
algorithm to the cost of the offline algorithm. Previous work has also addressed the two-state problem when
the idle period is generated by a known probability distribution. In this case, the online algorithm will
choose a threshold which minimizes its expected cost, where the expectation here is taken over the random
choice of the idle period. We call such algorithms probability-based algorithms.

The best deterministic online algorithm will stay in the high power state until the total energy spent
is equal to the cost to power up from the low power state. It is known that this algorithm achieves the
optimal (deterministic) competitive ratio of 2 [9]. When one considers randomized online algorithms, the
best competitive ratio achievable improves to e��e � �� [9]. If the idle period is generated by a known
probability distribution, then the algorithm that chooses T so as to minimize the expected cost is always
within a factor of e��e� �� of optimal. Furthermore, this bound is tight since there is a distribution over the
idle period lengths which will force any online algorithm to incur an expected cost that is a factor e��e� ��
times larger than that incurred by the optimal offline algorithm [9].

Note that in the context of power-down systems, it may not be the case that the power usage in the sleep
state is zero or even that the start-up cost in the active state is zero. In these cases, both the online and the
offline algorithm will incur an identical additional cost. Thus, the ratio of the online to the offline cost will
decrease and the optimal competitive ratio will be strictly less than two. However, these additional costs do

2



not change the optimal online or offline strategy in either the deterministic or the probability-based case, and
the optimal competitive ratio that can be achieved for such systems can easily be determined as a function
of all the parameters of the system.

We denote the problem that involves powering down through k sleep statesPD�k�. A formal description
of the problem is as follows: we are given a sequence of k�� states S � hs�� ���� ski. There is also a vector
of power-consumption rates K � h��� � � � � �ki, where �i is the power consumption rate of the system in
state si. We assume as a convention that the states are ordered so that �i � �j for � � i � j � k. So s� is
the active state, and the system must transition to s� (i.e., power up) at the end of the idle period. There is an
associated transition cost di�j to move from state si to sj . A system is described by a pair �K� d�. Note that
there can be costs to move from high-power states to low-power states and vice versa. However, the only
power-up costs that are of interest are the costs to transition from a particular state si to the active state s�
since the only reason to transition to a higher power state is when a new task arrives. A schedule or strategy
A � �SA� TA� consists of a sequence of nA � � states SA that is a subsequence of S, and a sequence of
transition times TA. Where obvious, we will omit the subscriptA. We require that S��� � s� and T ��� � �.
We use A�t� to denote the cost of the schedule produced by strategy A for an idle period of length t. We
also consider a generalization of PD�k� that we call PD�k�m� wherein we require that nA � m, where
� � m � k is some limiting integer constant. This generalization would be especially useful for engineers
who have a large number of sleep state options available in the design phase, but are required to implement
at most a fixed number of states in the product that rolls out into the market.

The only previous work that examines the multiple-state problemPD�k� (from the perspective of worst-
case guarantees) is [7] which considers the special case where the cost to power-down is zero and the
algorithm only pays to move from low power states to higher power states. Note that this also includes the
case where the transition costs are additive (di�j � dj�k � di�k for i � j � k) since the costs to power down
can then be folded into the costs to power up. [7] gives natural generalizations of the algorithms for the
two-state case both for the case when the idle period length is unknown and when it is generated by a known
probability distribution. It is shown that when the transition costs are additive, the generalized deterministic
algorithm is �-competitive and the probability-based algorithm is e��e� ��-competitive, thus matching the
guarantees in the two-state case.

There are two important directions left open by this work. The first is based on the observation that
systems, in general, do not have additive transition costs. In many scenarios, additional energy is spent in
transitioning to lower power states. Furthermore, there could be overhead in stopping at intermediate states,
resulting in non-additive transition costs (see [4] for an example). The second point is that the known upper
bounds are typically not optimal for the system under consideration. That is, while it is true that there exist
systems for which the optimal competitive ratio that can be achieved by any deterministic algorithm is 2
(and e��e � �� by any randomized algorithm), it is possible to achieve a better competitive ratio for many
systems. For multi-state systems, the optimal competitive ratio that can be achieved will, in general, be a
complicated function of all the parameters of the system (the power consumption rates as well as transition
costs). For probability-based algorithms, the optimal competitive ratio will also depend on the probability
distribution generating the length of the idle period. While it may not be feasible to express the optimal
competitive ratio as a function of all these parameters, a system designer would, in general, like to design
a power-down strategy that obtains the best possible competitive ratio given the constraints of his or her
particular system.

This paper establishes the following results.

� We give an algorithm that takes as input an instance of PD�k� that is described by �K� d�, and an error
parameter �, and produces a power-down strategy A � �SA� TA� whose competitive ratio is within
an additive � of the best competitive ratio that can be achieved for that system. The algorithm runs in
time O�k��log k� log������, where k � � is the number of states in the system, and also outputs the

3



competitive ratio of A. The algorithm works via a decision procedure which determines for a system
and a constant � if there is a �-competitive strategy for that system. This decision procedure also
allows us to obtain lower bounds on the competitive ratio achievable by deterministic algorithms for
specific systems, which in turn provides a lower bound on the competitive ratio achievable by deter-
ministic algorithms in general. In particular, we obtain a lower bound of ���� on the competitive ratio
for deterministic algorithms. This is the first lower bound known that is greater than �. Independently,
Damaschke has given a lower bound of 	�
�� [5].

� The above approach can be modified to solve the more general version where a bound ofm is specified
on the number of states allowed in final strategy. We show how to extend the decision procedure to
answer if there is a �-competitive strategy for the system that uses at most m power states.

� Experimental results show that there are significant performance gains to be made by estimating the
distribution governing the length of an idle period based on recent history and using this estimate
to drive a probability-based strategy [8]. We give an algorithm that takes as input a description of
a system and a probability distribution generating the idle period length and produces the optimal
power-down strategy. Naturally, the running time of the algorithm will depend on the representation
of the distribution. In practice, this is most likely to be a histogram. Our algorithm runs in time
O�k��log k � B�� where B is the number of bins in the histogram and k � � is the number of states.
One outcome of the proof is that it also establishes the optimality of the strategy given in [7] for
additive systems. We then generalize this to find the best online algorithm subject to the restriction
that at most m states are used, at the expense of an extra factor of m in the running time.

� We give a simple deterministic strategy that achieves a competitive ratio of 	 � �
p
� � ������ for

all systems. This result gives a bound on the competitive ratio achieved by the optimal strategies
generated by our algorithms. Note that 	 � �

p
� also serves as a bound on the ratio of the expected

costs of the online and offline algorithms when the input is probabilistically generated.

In the remainder of this paper, we use the terms schedule or strategy interchangeably to refer to the
choices of states and threshold times for powering down. The term algorithm will refer to a procedure that
produces a schedule or strategy based on a particular system.

Azar et al. in [3] consider a related problem which they refer to as Capital Investment. This problem is
a different generalization of the ski rental problem than the power-down problem considered here. However,
a special case of their problem coincides with a special case of our problem. Specifically, they give a
�� � �

p
��-competitive deterministic algorithm for the special case of the power-down problem in which

the cost to transition to each state is the same, regardless of the state from which one is transitioning.
Later Damaschke in [5] improves the upper bound on the competitive ratio for this special case (also in
the context of Capital Investment) to � for deterministic algorithms and ���� for ranomized algorithms. In
addition, Damaschke gives a 	�
�� lower bound for any deterministic algorithm which subsumes the lower
bound of ���� given here.

3 Preliminaries

First we will establish that we can assume without loss of generality that the power-up transition costs are
zero. If this is not the case for some system �K� d�, we can define a new system such that for any i � j, the
cost to transition from si to sj is di�j � dj�� � di�� and the cost to go from sj to si is �. Since there is never
any reason to transition to a higher power state unless the system is transitioning to the active state at the
arrival of a new task, any set of actions in the original system will incur the same cost in the new system.
Thus, in the sequel we assume that di�� � � for all i.

4



Let D�i� denote d��i. Then OPT�t� � mini�D�i� � �it�. Let S�t� denote the state which attains the
minimum — the optimal state. The optimal strategy is to transition to state S�t� at time 0, and stay there
through time t. We assume that the optimal strategy will actually “use” every state, i.e., range�S�t�� �
fs�� � � � � skg. None of the online strategies we present will make use of a state that is never used by the
optimal offline strategy for any time t.

b� b�

Energy

State 0 State 1 State 2

State 3

b� Time

Figure 1: Energy consumed by the optimal strategy as a function of idle period length.

Note thatOPT �t� is piecewise linear and S�t� is non-decreasing with t — as the idle period length gets
longer, it becomes more worthwhile to pay the extra cost to transition to a lower power state. Let b i denote
the first time instant at which state si becomes the optimal state, so b��� � � and D�i�����i��bi � D�i��

�ibi � bi �
D�i��D�i���

�i����i
. We have b��� � b��� � � � � b�k�. Figure 1 shows the total energy consumed

by OPT as a function of the length of the idle period. There is a line for each state. The y-intercept is the
transition cost to move to that state from the active state and the slope is the power consumption rate. The
energy consumed by the optimal strategy is the lower envelope of these lines since it will pick the single
state which minimizes the cost for a given idle period length. Thus for t � �b i� bi��
,

OPT �t� � D�i� � �it �
i��X
j��

�j�bj�� � bj� � �i�t� bi� (1)

We compare our online strategy with OPT�t� and want to get a strategy A which minimizes the com-
petitive ratio, cA � supt

A�t�
OPT �t� where A�t� denotes the total power consumption of A by time t.

4 A simple �� � �
p
��-competitive strategy

First we establish that we can assume that for all i � j, di�j � d��j. Recall that we are really using di�j to
denote di�j � dj��� di�� and d��j to denote d��j � dj��. Thus, the assumption that di�j � d��j really amounts
to assuming that di�j � di��� d��j. If this were not the case, we could just transition from state si to state sj
by first going to s� and then down to sj .

Let us for the moment assume that for some � � �, D�i� � �D�i� �� for all i � �� � � � � k. This is a
non-trivial assumption that we will have to handle later. Consider the strategy,A, which always stays in state
S�t�, the same state asOPT , at every time t. The optimal strategy which knows the length of the idle period
in advance will just transition to the optimal state. Strategy A however must ”follow” the optimal strategy,
making each transition to a new state as the idle period gets longer. This is the strategy proposed in [7]
and shown to be �-competitive for additive systems. Note that this strategy is the same as the �-competitive
balance strategy for the two-state case.

5



For t � �bi� bi��
 the online cost is, A�t� � Pi��
j��

�
�j�bj�� � bj� � dj�j��

�
� �i�t� bi�. In comparing

this cost to the optimal cost in equation (1), observe that both terms have an additive � i�t� bi� which means
that the ratio A�t�

OPT�t� will be maximized at t � bi. To bound the cost of A in terms of OPT , we use the fact

that OPT�bi� � D�i� and OPT�bi� �
Pi��

j�� �j�bj�� � bj� both of which come from equation (1).

A�bi� �
i��X
j��

�
�j�bj�� � bj� � dj�j��

�

�
i��X
j��

�j�bj�� � bj� �
iX

j��

D�j�

� OPT�bi� �D�i�
iX

j��

���i�j�

�
�
� �

�

� � �

�
OPT�bi� �

�� � �

� � �
�OPT�bi�� (2)

This holds for any t implying a competitive ratio of ����
��� .

Now suppose the assumptionD�i� � �D�i��� does not hold. We consider a new offline strategyOPT �

that only uses a subset of states S � for which the property does hold, and is a �-approximation of OPT , i.e.,
OPT ��t� � � � OPT�t�. We now view our problem as specified by just the states in S �, and execute
strategy A as specified above, emulating OPT � instead of OPT . We get that A��t� � ����

��� OPT
��t� �

�������
��� OPT �t�. Setting � � � � �p

�
, we get a competitive ratio of 	 � �

p
� � ������.

We determine OPT � as follows. Let S � � fskg initially. Consider the states in S in reverse order. Let
si be the last state added to S �. We find the largest j� � � j � i s.t. D�j� � D�i���. We add sj to S � and
continue until no such j exists. Note that s� � S� since D��� � �. OPT � will execute the optimal offline
strategy assuming that only the states in S � are available. Consider i� j s.t. si� sj � S� and no s� is in S � for
i � 	 � j. We have OPT ��t� � OPT �t� for t � �bi� bi��� and t � �bj � bj���. For 	 s.t. i � 	 � j and
time t � �b�� b����. OPT ��t� � min�D�i� � �it� D�j�� �jt� and OPT�t� � D�	� � ��t. j was chosen to
be the largest value less than i such that D�j� � D�i��� which means that D�	� � D�i���. Furthermore,
since �i � ��, we have that

OPT ��t� � D�i� � �it � �
�
D�	� � ��t

�
� �OPT �t��

and OPT � is a �-approximation to OPT .

Theorem 1 There is a �	 � �
p
��-competitive strategy for any system.

5 A near-optimal deterministic algorithm

In this section, we turn our attention to obtaining a near optimal schedule for a particular system. More pre-
cisely, given a system �K� d�with state sequence S for which the optimal online schedule has competitive ra-
tio ��, we give an algorithm that returns a ������-competitive online schedule in timeO�k� log k log������.
The algorithm is based on a decision procedure which determines whether a �-competitive schedule exists
for a given value of �. Theorem 1 establishes an upper bound of 	 � �

p
� on the optimal competitive ratio,

so we perform a bisection search in the range ��� 	 � �
p
�
 to find the smallest � such that there exists a

�-competitive schedule. We also output the resulting schedule.

6



t t
� TimeTime

Energy Energy

Figure 2: Energy consumed by the online and optimal strategy as a function of idle period length. The solid
line is � �OPT�t�. The dashed line is the online cost. t is the first transition time that is not eager. t � shows
the transformed strategy which now has an eager transition.

The following lemma shows that the online strategy must eventually get to a sufficiently low-power
state. Lemma 3 allows us to limit our concern to just the transition points in any online schedule.

Lemma 2 If A � �S� T � is a �-competitive strategy and s� is the last state in S, then �� � � � �k.

Proof : For the sake of contradiction, assume that �� � � ��k. ForA to be �-competitive, the functionA�t�
must lie entirely below � �OPT�t�. However the last line of � �OPT�t� has slope � � �k and will therefore
intersect the last line of A�t� which has a larger slope ��, after which timeA�t� will exceed �OPT�t�. This
is a contradiction.

Lemma 3 If a schedule A has finite competitive ratio, then the earliest time �t � � at which A�t�
OPT�t� is

maximized is a transition point in the strategy A.

Proof : Let � � maxt��
A�t�

OPT�t� . Consider the functions A�t� and �OPT�t�. The function A�t� never
exceeds �OPT�t�, and �t is the earliest point at which these two functions have the same value, not consid-
ering the origin. For the sake of contradiction, assume that �t is not a transition point in A. So we can find
some small � � � such that A�t� is linear in ��t � �� �t� ��. Since A�t� is strictly less than �OPT�t� in the
interval ��t� �� �t� and A��t� � �OPT��t�, it must be the case that the slope of A�t� is larger than the slope of
�OPT�t� in this interval. This gives a contradiction, becauseA�t� has constant slope over � �t� �� �t� ��, and
�OPT�t� is a continuous function with decreasing slope, which means that A�t� � �OPT�t� for t � �t.

We now explore ways to restrict the space of schedules we need to consider in searching for a �-
competitive schedule. For a strategy A � �S� T �, we say that a transition at time t � T is �-eager (or
just eager if � is clear from the context) if A�t� � �OPT�t�. We say that A is a �-eager strategy if
A�t� � �OPT�t� for every t � T . Note that by Lemmas 2 and 3, a �-eager strategy that ends at state s
such that �s � � � �k is �-competitive.

Lemma 4 If A � �S� T � is a �-competitive strategy, then there exists an eager strategy A � � �S� T �� that
is also �-competitive.

7



Proof : Figure 2 shows a schematic of the proof. The jumps in the online cost (the dashed line) are
transition costs. The solid line is �OPT�t�. The figure shows a transition time t at which the online cost
is less than �OPT�t�. The idea is that we can slide such a transition time earlier until it hits the function
�OPT�t� .

Consider the earliest transition time T which is not eager. Suppose thatA transitions from state s i to state
sj at time T . Let T � � T be the time of the immediately preceding transition; if there is no such transition
time, then set T � � �. The function �OPT�t��A�t� is continuous in the interval �T �� T � since A does not
have any transitions in this open interval, and �OPT�t� � A�t� is � at time T � and is strictly greater than
di�j at time T � � for a small enough �. Let T be the earliest time after T � such that �OPT�t��A�t� � di�j ,
so T � T .

Consider the strategy A� that is identical to A except that the transition from s i to sj is moved earlier
from T to T . we need to argue that A� is �-competitive. Clearly A��t� � A�t� for t � �T� T� and A�T� �
�OPT�T�. Also A��T � � A�T � since A� transitions earlier to the low power state sj and hence uses less
total energy, and since the strategies behave the same after time T , A� will continue to have a lower cost at
all times t � T . To see that A��t� � �OPT�t� over the interval �T� T �, note that A��t� is linear over this
interval sinceA� remains in state sj . Also �OPT�t� is a piecewise-linear concave function since its slope is
non-increasing over time. Thus, since the points �T�A��T�� and �T�A��T �� both lie on or below this curve,
the straight line connecting them lies under the curve �OPT�t�.

The procedure above can be repeated until all the transitions are eager.

Lemma 5 Suppose a strategy makes a �-eager transition to state s i at time ti and next makes a transition
to state sj . Using the function �OPT�t�, one can compute the earliest �-eager transition time �t to state sj
in time O�log k�.

Proof : Define the line l�t� � �it� �OPT�ti�� �iti � di�j . �t is the smallest t � ti such that �OPT�t� �
l�t�. If there is no such t, then a �-eager transition from si to sj does not exist. Since �OPT�t� is concave
we have that if l�t� � �OPT�t�, or if l�t� � �OPT�t� and the slope of �OPT�t� is less than or equal to �i,
then �t � t; otherwise �t � t. These inequalities allow one to do a binary search using the line segments of
�OPT�t� to determine �t if it exists. Let s� be the optimal state (i.e., state of OPT�t�) at time ti. Consider
the line segments of �OPT�t� corresponding to states s� and sk . Recall that b� and bk are respectively the
left end-points of these segments — these are the first time instants at which s� and sk become the optimal
states respectively. Using the above inequalities, if we determine that �t � bk, then �t is simply the point of
intersection (if it exists) of l�t� with the segment (of �OPT�t�) corresponding to sk . Otherwise we have
a “low” segment with end-point b�, and a “high” segment with end-point bk. Now we repeatedly consider
the left end-point of the segment that is in the middle of the low and high segments, and use the above
inequalities to update the low or high segment and the corresponding end-point accordingly, until the end-
points of the low and high segments correspond respectively to the left and right end-points of a segment of
�OPT�t�. When this happens we can compute �t by finding the intersection point (if it exists) of l�t� and
this segment. The binary search can be implemented in time log k, where k is the number of segments (i.e.,
number of states).

Lemma 4 immediately gives an algorithm that is exponential in k, the number of states, and determines
whether a �-competitive strategy exists for the system. This algorithm enumerates all subsequences of
states, and determines the �-eager strategy for that subsequence by finding the eager transition to each state
based on the eager transitions to the previous states, as described in the proof of Lemma 5. A �-competitive
strategy for the system exists if and only if one of these �-eager strategies is �-competitive (i.e., ends at a
state s with �s � � ��k). The remainder of this section presents a way to remove the exponential dependence
on k.

8



Let S � hs�� s�� � � � � ski be a sequence of states that form a system. Define Ssi�sj , to be the contiguous
subsequence hsi� � � � � sji, where si and sj are elements of S such that i � j. Let �s be the set of subse-
quences of Ss��s that include s� and s such that for each 
 � �s, one can find transition times for the state
sequence 
 so that in the resulting schedule, each transition up to and including the transition to state s is
a �-eager transition. For a state q � 
, we will use t��q to denote this �-eager transition time to q for the
sequence 
. (Note that 
 uniquely determines the transition times t��q.)

We define the earliest transition time E�s� �� of state s for the given system as E�s� �� � min���s t��s,
that is, E�s� �� is the earliest time at which any online strategy can transition to state s while remaining
�-eager over all its transitions up to (and including) the transition to state s. Observe that if there is �-
competitive strategy that uses state s, then by Lemma 4, there is such a �-eager strategy, so �s �� � and
E�s� �� is well defined. We call a transition to state s �-early (or simply early) if it happens at time E�s� ��.
A strategy that consists entirely of early transitions is called a �-early strategy.

Lemma 6 If there is a �-competitive strategy A � �S� T �, then there is an eager and early �-competitive
strategy.

Proof : Let s be the last state in S. Consider the sequence
 � �s such that t��s � E�s� �� and the strategy
� that uses only the states in 
, transitioning to state q � 
 at time t��q , i.e., � �

�

� ft��qgq��

�
. Since A

is �-competitive, it must be that �s � ��k and since � by definition has all �-eager transitions and ends in
state s, it is also �-competitive. We now argue that � is an early strategy. Note that � was chosen so that the
transition to state s is �-early. We have to show that the remaining transitions of � are also �-early.

Suppose not. Consider the latest transition that is not �-early. Suppose this happens for state r (�� s),
so T� � t��r � E�r� ��. Let r� be the state just after r in sequence 
. Let 
 � � �r be the sequence for
which t���r � E�r� �� � T�. T� is the earliest time that a �-eager schedule can transition to state r and
the sequence of states in this schedule is given by 
 �. Consider the hybrid strategy � � that uses the states
in 
� followed by the states in 
 that appear after r, with the transition times being t���q for q � 
� and
t��q for q � 
r��s. Strategy � transitions to state r at time T� and strategy �� transitions to state r at time
T� � T�. Both of these transitions are eager transitions. Both strategies are in state r at time T� and make
the same state transitions thereafter. Thus, for any t � T�, ��t����T�� � ���t�����T��. In particular, both
strategies transition to r � (the state after r) at time t��r� � E�r�� �� � T �. Using the equation above we have
that ���T �� � ��T �� � ���T�� � ���T��

�
. We will show that � ��T�� � ��T�� which implies, in particular,

that ���T �� � ��T ��. So in �� the transition to r � is no longer �-eager. Arguing as in Lemma 4 this means
that we can shift the transition to r � to get an eager transition at an earlier time. But this contradicts the
assumption that the transition to state r � at time T � was an early transition.

We now prove that ���T�� � ��T��. The transitions to state r in schedules � and � � are eager transitions,
so both the points �T�� ���T��� and �T�� ��T��� lie on the �OPT�t� curve. Since ��t� � �OPT�t� for all
t, the the slope of �OPT�t� at time T� is at least �r, the slope of ��t� at time T�, and strictly greater since
the gap between �OPT�t� and ��t� must accommodate the transition cost from state r to r� at time T �.
The concavity of �OPT�t� implies that its slope is greater than �r over the interval �T�� T�
. �OPT�t�. So
��T�� � �OPT�T�� � �OPT�T����r�T��T�� � ���T�� where the last inequality follows since � � stays
in state r in the interval �T�� T�
.

From Lemma 6 we can deduce that we only need to consider a specific early and eager schedule, the one
that is determined by the E��� �� values, to determine if a �-competitive strategy exists. We can now define a
decision procedure EXISTS that takes a system and a constant � and outputs YES if a �-competitive strategy
exists for the system, and NO otherwise. The procedure can be modified to also output a �-competitive
strategy (if it exists). We employ a dynamic programming approach to calculate E�si� ��, for � � i � k.
We always start with the high power state and hence E�s�� �� � �. Suppose we have computed E�sj� �� for
all j � �� � � � � i� �. Let tj be the earliest time at which the system �-eagerly transitions from sj to si given

9



p�

p

T

T �

Figure 3: The solid line is � �OPT . The dashed line is the schedule � � from Lemma 6 and the dashed/dotted
line is �. The point labeled p is �T� ��T �� and p� is �T �� ���T ���. The idea is to show that at time T , � � has a
lower cost than �.

that the transition to sj is �-eager and occurs at time E�sj� ��. If such a transition is not possible, then we
assign tj �	. We can compute tj in O�logk� time as described in Lemma 5. Then, E�si� �� � minj�i tj .
Determining each E�si� �� requires examining j different possibilities, so finding all the early transition
times for all states takes time O�k� log k�. By Lemma 2, we know that if E�si� �� is finite for some state
si where �i � � � �k , we know that a �-competitive strategy exists. One can quickly elicit the schedule
by starting from state k and retracing the states that minimized the earliest transition time. We use the
procedure EXISTS to do a bisection search in the interval ��� 	 � �

p
�
 and find a �-competitive strategy

where � � �� � �. The total time taken is O�k� log k log������.
We now turn our attention to adapting this dynamic programming technique to solve PD�k�m� where

a bound of m is specified on the number of states that can be used by the online algorithm. We introduce
a new parameter b modifying our function to E�si� �� b�, where � � b � min�i�m�. The intuition is that
functionE is now required to return the earliest time when the system can transition to state s i while staying
entirely below �OPT�t� and using at most b� � states from hs�� � � � � sii. The base case is E�s�� �� b� � �
for all b � �. Intuitively, E�si� �� b� is determined by the “best” state sj prior to si such that at most b� �
states were used to reach sj . Notice that for any given state si and fixed �, E�sj� �� b� is non-increasing as
b increases. Therefore, as above we can write E�si� �� b� � minj�i t

�
j , where t�j is the earliest time when

the system �-eagerly transitions from sj to si given that the transition to sj was �-eager and occurred at
E�sj� �� b� ��. The running time increases by a factor of m now and is O�k�m�logk� log������.

6 A probability-based algorithm

Karlin et al. study the two-state case when the length of the idle period is generated by a known probability
distribution p [9]. (Although they examined the problem in the context of the spin-block problem, their
problem is identical to our two-state case.) They observed that the expected cost of the online strategy that
makes the transition to the sleep state at time T is

Z T

�
p�t����t�dt�

Z �

T

p�t�
�
��T � ���t� T � � 


�
dt� (3)

where �� is the power consumption rate in the active state, �� is the power consumption rate in the sleep
state and 
 is the transition cost between the two states. The online strategy then should select the transition
time T that minimizes this cost.

10



The multi-state case presents two distinct challenges. The first is to determine the optimal sequence of
states through which an online strategy should transition throughout the course of the idle period. Then once
this sequence has been determined, the optimal transition times need to be determined. Our proof proceeds
by establishing that the only transition times that need to be considered are the optimal transition times for
two-states systems. Suppose, for example, that we are considering a sequence of state transitions in which
state si is followed by state sj . Let Ti�j denote the optimal transition time from state si to sj if these were the
only two states in the system (that is, if s i were the active state and sj were the only sleep state). Note that
Ti�j can be determined by the expression above. We establish that regardless of the rest of the sequence, the
optimal transition point from state si to sj is Ti�j. We call the Ti�j’s the pairwise-optimal transition times.

Lemmas 7 and 8 establish that the pairwise-optimal transition times happen in the right order. That is
for i � k � j, Ti�k � Tk�j . If this is not the case, then any subsequence that has si followed by sk followed
by sj can not possibly be the best sequence of states. Note that the T i�j’s may not necessarily be unique. In
general, we will select the earliest transition time that minimizes the cost for the two state system.

Lemma 9 then shows that as long as the pairwise-optimal transition times are in the right order, they
give the globally optimal set of transition times for that subsequence. Our algorithm then uses this fact to
find the optimal sequence of states by dynamic programming. Note that it is not necessary to exhaustively
consider all possible subsequences.

6.1 Optimal transition times

Consider a particular subsequence of l�� states sa� � � � �sal . In order to avoid the double subscripts, through-
out this subsection we will rename our subsequence. q�� q�� � � � � ql. Since the strategy must start in state s�,
we can assume that q� � s�. For i � j, define 
i�j to be the cost to transition from state qi to state qj , that is,

i�j � dai�aj . Furthermore, we will refer to the power consumption rate of state qi as �i, that is, �i � �ai .

We will consider the strategy that transitions through the states in the subsequence q �� q�� � � � � ql. Sup-
pose that we use transition time Ti to transition from state qi�� to state qi. It will be convenient for notation
to define Tl�� �	 and T� � �. The cost of the strategy that uses these transition times is:

cost�T�� � � � � Tl� �
l��X
j��

Z Tj

Tj��

p�t��j���t� Tj���dt�
lX

j��

Z �

Tj

p�t�
�
�j���Tj � Tj��� � 
j���j

�
dt�

(4)

The goal is to pick the T�� � � � � Tl so as to minimize the above cost. This is the optimal cost for the subse-
quence q�� � � � � ql.

For each i � f�� � � � � lg, let �i �
�i����i

�i���i
�

Lemma 7 Suppose that there is an i � j such that � i � �j, then there is a a strict subsequence of q�� � � � � ql
whose optimal cost is no greater than the optimal cost for q �� � � � � ql.

Proof : Consider the first j such that �j�� � �j . Let ��t�� � � ��tj��� �tj� � � � � �tl� be the sequence of thresholds
that minimizes the cost of this sequence of states. Define the following quantities:

Fj���j � cost��t�� � � ��tj��� �tj��� �tj � �tj�� � � � � �tl�
Fj���j�� � cost��t�� � � ��tj��� �tj��� �tj��� �tj�� � � � � �tl�

Fj�j � cost��t�� � � ��tj��� �tj � �tj � �tj�� � � � � �tl�

We will show that Fj���j is greater than or equal to a weighted average of Fj���j�� and Fj�j which means
that it must be greater than or equal to at least one of these values. This means that the strategy that transitions

11



from state qj�� to state qj�� and then immediately transitions to state qj at either time �tj�� or �tj is at least
as good as the original strategy. Since 
j���j � 
j���j�� � 
j���j , skipping state j � � altogether can only
improve the strategy.

Below we have an expression for Fj�j � Fj���j which can be derived from the definition for the cost in
equation (4), Under Fj�j the transition from state qj�� to qj�� is moved forward from time �tj�� to time �tj .
Any time spent in the interval ��tj��� �tj 
 happens at the higher power rate of �j�� instead of �j��. This is
accounted for in the first two terms of the sum. However, idle times ending in the interval ��tj��� �tj
 save on
the transition cost which is accounted for in the last term below.

Fj�j � Fj���j �

Z �tj

�tj��

p�t��t� �tj�����j�� � �j���dt�
Z �

�tj

p�t���tj � �tj�����j�� � �j���dt

�
Z �tj

�tj��


j���j��p�t�dt�

Dividing by ��j�� � �j���, This becomes

Fj�j � Fj���j
�j�� � �j��

�

Z �tj

�tj��

p�t��t� �tj���dt�
Z �

�tj

p�t���tj � �tj���dt�
Z �tj

�tj��

�

�j��
p�t�dt� (5)

Below, we use the definition of cost in equation (4) to get an expression for Fj���j � Fj���j��. Note that
in Fj���j��, the transition from state qj�� to state q is moved back from time �tj to time �tj��. Thus, Fj���j
will spend �j�� � �j more power than Fj���j�� for any time spent in the interval ��tj��� �tj
. Furthermore,
Fj���j�� will have an additional transition cost of 
 j���j for those intervals that end in the period ��tj��� �tj 
.

Fj���j � Fj���j�� �

Z �tj

�tj��

p�t��t� �tj�����j�� � �j�dt�

Z �

�tj

p�t���tj � �tj�����j�� � �j�dt

�
Z �tj

�tj��


j���jp�t�dt�

Dividing by ��j�� � �j�, This becomes

Fj���j � Fj���j��
�j�� � �j

�

Z �tj

�tj��

p�t��t� �tj���dt�
Z �

�tj

p�t���tj � �tj���dt�
Z �tj

�tj��

�

�j
p�t�dt� (6)

Comparing, equations (5) and (6), the expressions are almost identical except for the � in the last term.

Since �j�� � �j and
R �tj
�tj��

p�t�dt � �, We have that

Fj�j � Fj���j
�j�� � �j��

� Fj���j � Fj���j��
�j�� � �j

�

Let �� � ����j�� � �j��� and �� � ����j�� � �j�. Note that both �� and �� are at least �. Rearranging,
we get that �

��
�� � ��

�
Fj�j �

�
��

�� � ��

�
Fj���j�� � Fj���j �

Now suppose that we consider only the two-state system consisting of state q i�� and state qi. We will
let �i denote the optimal threshold time if these are the only two states in the system. We have that � i is the
time T that minimizesZ T

�
p�t��i��tdt �

Z �

T

p�t�
�
�i��T � �i�t� T � � 
i���i

�
dt�

12



Note that the value of T that results in the minimum above may not be unique. In this case, we
take � to be the smallest value which achieves the minimum. Also note that by subtracting the termR�
� p�t��itdt (which is independent of T ) and dividing by 
 i���i in the above definition, it can be seen

that �i � argminT f��i� T � where

f��� T � �

Z T

�
p�t��tdt�

Z �

T

p�t���T � ��dt�

Note that for a two-state system whose active state and sleep states has power consumption rates of
� and 0 respectively and whose transition cost is 1, f��� T � denotes the expected power consumed by an
online strategy that transitions to the sleep state at time T . We will show that for a particular subsequence of
states, if we minimize the cost over all choices for the thresholds, the resulting thresholds are those obtained
by the pair-wise optimization above. First, however, we must establish that the �i values have the correct
ordering.

Lemma 8 If �i � �i��, then �i � �i��.

Proof : Intuitively, �i is the ratio of the additional power cost of being in state q i instead of state qi�� over
the transition costs between the two states. It stands to reason that the larger this cost, the sooner one would
want to transition from state qi�� to state qi.

We will formalize this argument using a proof by contradiction. Suppose that we have �i � �i�� and
�i � �i��. The proof will make use of the definition of f��� T � given above. �i is the smallest value for
T which attains the minimum of f��i� T �. Since �i�� � �i, we know that f��i� �i��� � f��i� �i�. By the
definition of �i��, we have that f��i��� �i� � f��i��� �i���. Thus, it should be the case that

f��i��� �i�� f��i��� �i��� � � � f��i� �i�� f��i� �i���� (7)

Using the definition of f��� T � above, for any T� � T�,

f��� T��� f��� T�� � �

�Z T�

T�

p�t��t� T��dt�

Z �

T�

p�t��T� � T��dt

�
�
Z T�

T�

p�t�dt�

The quantity inside the square braces above is non-negative. This implies that the quantity f��� T �� �
f��� T�� is non-decreasing in �. This, however, contradicts Inequality 7 and the fact that �i � �i��.

Finally, we prove the main lemma which states that the transition times are simultaneously optimized at
the pairwise-optimal transition points.

Lemma 9 For a given subsequence of states q�� � � � � ql, if �i�� � �i for all i � f�� � � � � lg, then the
minimum total cost is achieved for cost���� � � � � �l�.

Proof : The basic idea is that we can interpret cost�T�� � � � � Tl� �
R�
� p�t��ltdt as the sum of the power

consumed in l two-state systems, where the ith system, (for i � �� � � � � l), has states whose power consump-
tion rates are ��i�� � �i� and 0 and the cost to transition between the two is 
 i���i. Note that

R�
� p�t��ltdt

is a constant, independent of the choice of Ti’s. After rescaling, one can write this expression as a linear
combination of the f��i� Ti� terms. Since �i minimizes f��i� T �, and the �i values have the right ordering,
this implies that cost�T�� � � � � Tl� is minimized by setting Ti � �i for i � �� � � � � l.

We will establish below that we can rewrite (4) as follows:

cost�T�� � � � � Tl� �

Z �

�
p�t��ltdt

�
lX

i��

�Z Ti

�
p�t���i�� � �i�tdt�

Z �

Ti

p�t�
�
��i�� � �i�Ti � 
i���i

�
dt

�
� (8)

13



So by rescaling, we get that

cost�T�� � � � � Tl��
Z �

�
p�t��ltdt �

lX
i��


i���if��i� Ti��

We want to choose T� � � � � � Tl to minimize this expression. Since �� � � � � � �l and each �i �
argminT f��i� T � it follows that the minimum is attained by setting T i � �i for each i.

To complete the proof we show the equivalence of (4) and (8). It suffices to show that (4) and (8)
integrate the same expression over each interval �Ti��� Ti�, for i � �� � � � � l � �. The integrand in (4) over
the interval �Ti��� Ti� is

p�t�

�
�i���t� Ti��� �

i��X
j��

�
�j���Tj � Tj��� � 
j���j

��
�

and the integrand in (8) is

p�t�

� i��X
j��

�
��j�� � �j�Tj � 
j���j

�
�
� lX
j�i

��j�� � �j� � �l

�
t

�
� (9)

The summations over the j indices in (9) telescope to show that the two expressions are identical.

6.2 The optimal state sequence

We now present a simple polynomial time algorithm to obtain the optimal state sequence for a given system.
First, for each pair �i� j�, � � i � j � k, let Ti�j denote the optimal transition point if s i and sj were the only
two states in the system. The time complexity of determining a single T i�j depends on the representation of
the probability distribution. In practice, this is most likely to be estimated by a finite histogram with B bins
starting at time � and sampled at a uniform discrete interval of �. It follows that bin i corresponds to time
�i. It is not difficult to generalize this for variable sized bins. We will also assume that all transition times
occur at some �i. The height of bin i is H�i� and this implies that the probability that the idle time t equals
�i is given by H�i�P

i H�i� . In Algorithm 1, we calculate ACC �i
 and ACCT �i
 values, which are
R i	
� p�t�dt andR i	

� tp�t�dt and we then use them to evaluate Ti�j values. We can re-write the expression for the cost of a
two state system in equation (3) as

�i

Z T

�
p�t�tdt� �j

Z �

T

p�t�tdt�
�
��i � �j�T � 
i�j

� Z �

T

p�t�dt�

We also denote
R B	

� p�t�dt and
R B	

� tp�t�dt asTOTALandTOTALT respectively. Using the pre-calculated
values above, the cost of transitioning from state si to state sj at time �l is

�i �ACCT �l
 � ��il� � �jl� � 
i�j��TOTAL� ACC �l
� � �j�TOTALT �ACCT �l
��

Once the Ti�j’s are found, we sweep through them in non-decreasing order, keeping a running tab of the
best sub-schedules that we can achieve ending in each state si at each point in time. When we encounter a
Ti�j , we check to see if transitioning from si to sj can improve the current best sub-schedule ending in sj ,
and if it does, update our data structure to reflect it.

A given strategy divides time into intervals where each interval is the period of time spent in a particular
state. The expected cost for a strategy given in equation (4) is obtained by summing over the expected cost

14



Algorithm 1 Evaluating Ti�j values

ACC ��

 H ��

ACCT ��

 �
for k � � to B do
ACC �k

 ACC �k� �
 �H �k

ACCT �k

 ACC �k � �
 �H �k
� k � �

end for
TOTAL
 ACC �B

TOTALT 
 ACCT �B

for all �i� j� pairs such that � � i � j � k do
min
	, argmin
 ��
for l � � to B � � do
val � �i �ACCT �l
 � ��il� � �jl� � 
i�j��TOTAL�ACC �l
�

��j�TOTALT � ACCT �l
�
if val � min then
min
 val
argmin
 l

end if
end for
Ti�j 
 argmin � �

end for

incurred in each interval. The cost for each interval is divided into two parts which results in two separate
summations in equation (4). We define the function Q for the first term which is

Q�ts� j� tf� �

Z tf

ts

p�t��i�t � ts�dt�

This is the expected cost of staying in state s i in the interval �ts� tf � for those idle periods whose length is
also in the interval �ts� tf�. Define

R�i� ts� j� tf� �

Z �

tf

p�t�
�
�i�tf � ts� � 
i�j

�
dt�

This is the expected cost for those intervals longer than tf of staying in state si over the time period �ts� tf�
and then transitioning to state sj . Note that Q��li� j� �lj� and R�i� �li� j� �lj� can both be evaluated in
constant time given ACC �li
, ACC �lj
, ACCT �li
 and ACCT �lj 
 defined above.

At each transitionTi�j , we check to see if the current best schedule that ends in state sj can be improved
by transitioning to j from the current best schedule that ends in state s i. For this purpose, we maintain two
arrays of size k � �: t�i
 is the time at which the current best schedule that ends at state si transitions to si
and h�i
 is the cost at t�i
 of that schedule. Initially, h��
 
 � and all other h�i
 
 	. t�i
, for all i can be
initialized to �. In Procedure 2, we provide the pseudocode for processing at each transition point T i�j .

It is easy to see that each transition point takes a constant amount of processing. The sorting takes an
overhead of O�k� log k�. The initial preprocessing to calculate the transition points takes O�k �B�. Hence,
the total running time is O�k��log k � B��.

The algorithm can be easily extended to find the algorithm that minimizes the expected cost subject
to the constraint that only m states are ever reached. We maintain t�i� b
 and h�i� b
 for all states si and
b � minfm� ig. These are the best time and energy required to reach state i subject to at most b states being
reached. The algorithm is given below in Procedure 3.

15



Procedure 2 Processing Ti�j in the line sweep algorithm
Current Status: Ti�j is the transition point that is being processed
fThe cost up to time Ti�j if transitioning from i to j at Ti�jg
h�
 h�i
 � Q�t�i
� j� Ti�j� � R�i� t�i
� j� Ti�j�
fThe cost up to time Ti�j if transitioning to j at the current best time of t�j
g
h�
 h�j
 �Q�t�j
� j� Ti�j� �R�j� t�j
� j� Ti�j�
if h� � h� then
h�j

 h�
t�j

 Ti�j

end if

Procedure 3 Processing Ti�j in the line sweep algorithm with the number of states constrained
Current Status: Ti�j is the transition point that is being processed
for b � � � � � j � � do
h�
 h�i� b� �
 �Q�t�i� b� �
� j� Ti�j� �R�i� t�i� b� �
� j� Ti�j�
h�
 h�j� b
 �Q�t�j� b
� j� Ti�j� � R�j� t�j� b
� j� Ti�j�
if h� � h� then
h�j� b

 h�
t�j� b

 Ti�j

end if
end for

References

[1] http://www.microsoft.com/windows2000/techenthusiast/features/
standby1127%.asp.

[2] C Anderson and A Karlin. Two adaptive hybrid cache coherency protocols. In Proceedings of the
Second International Symposium on High-Performance Computer Architecture, pages 303–313, 1996.

[3] Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Rosen. On capital investment. Algorith-
mica, 25:22–36, 1999.

[4] L. Benini, A Bogliolo, and G. De Micheli. A survey of design techniques for system-level dynamic
power management. IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, 8(3):299–
316, 2000.

[5] Peter Damaschke. Nearly optimal strategies for special cases of on-line capital investment. Theoretical
Computer Science, 302:35–44, 2003.

[6] S. J. Eggers and R. H. Katz. Evaluating the performance of four snooping cache coherency protocols.
In Proceedings of the 16th annual international symposium on Computer architecture, pages 2–15.
ACM Press, 1989.

[7] S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dynamic power management strategies for
systems with multiple power savings states. In IEEE Conference on Design, Automation and Test in
Europe, 2002.

16



[8] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies for dynamic power management in
systems with multiple power saving states. Trans. on Embedded Computing Sys., 2003. Special Issue
on Power Aware Embedded Computing.

[9] A Karlin, M. Manasse, L. McGeoch, and S. Owicki. Randomized competitive algorithms for non-
uniform problems. In ACM-SIAM Symposium on Discrete Algorithms, pages 301–309, 1990.

[10] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement and other stories
about e/(e-1). In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 502–509, 2001.

[11] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical studies of competitve spinning
for a shared-memory multiprocessor. In Proceedings of the thirteenth ACM symposium on Operating
systems principles, pages 41–55. ACM Press, 1991.

[12] S Keshav, C Lund, S Phillips, N Reingold, and H Saran. An empirical evaluation of virtual circuit
holding time policies in ip-over-atm networks. IEEE Journal on Selected Areas in Communications,
13(8):1371–1382, 1995.

17


