Optimal Power-Down Strategies

John Augustine*
jea@ics.uci.edu
School of Information and Computer Science
Univ. of Californiaat Irvine, Irvine, CA 92697

Sandy Irani* Chaitanya Swamy’
irani@ics.uci.edu cswamy@ist.caltech.edu
School of Information and Computer Science Center for the Mathematics of Information
Univ. of Californiaat Irvine, Irvine, CA 92697 Caltech, Pasadena, CA 91125.
Abstract

We consider the problem of selecting threshold times to transition a device to low-power sleep states
during an idle period. The two-state case in which there is a single active and a single sleep state is
a continuous version of the ski-rental problem. We consider a generalized version in which there is
more than one sleep state, each with its own power consumption rate and transition costs. We give an
algorithm that, given a system, produces a deterministic strategy whose competitive ratio is arbitrarily
close to optimal. We also give an algorithm to produce the optimal online strategy given a system and a
probability distributionthat generates the length of the idle period. We also give a simple algorithm that
achieves a competitive ratio of 3 + 2/2 & 5.828 for any system.

1 Introduction

Suppose you are about to go skiing for the first time in your life. Naturally, you ask yourself whether to
rent skis or to buy them. Renting skis costs, say, $30, whereas buying skis costs $300. If you knew how
many times you would go skiing in the future (ignoring complicating factors such asinflation, and changing
models of skis), then your choice would be clear. If you knew you would go at least 10 times, you would be
financially better off by buying skisright from the beginning, whereas if you knew you would go less than
10 times, you would be better off renting skis every time. Alas, the future is unclear, and you must make a
decision nonetheless.

Although the Ski-Rental problem is a very simple abstraction, this basic paradigm arises in many ap-
plicationsin computer systems. In these situations, there is a system that can reside in either a low-cost or
a high-cost state. Occasionally, it is forced to be in the high-cost state (usually to perform some task). A
period between any two such pointsin timeiscalled an idle period.

The system pays a per time unit cost to reside in the high-cost state. Alternatively, it can transition to
the low-cost state at a fixed one-time cost. If theidle period is long, it is advantageous to transition to the
low cost state immediately; if the idle period is short, it is better to stay in the high-cost state. An online
algorithm which does not know the length of the idle period must balance these two possibilities.

This problem has been studied in the context of shared memory multiprocessors in which a thread is
waitingfor alocked piece of dataand must decidewhether to spinor block [9, 11]. Researchersinvestigating

*Research supported partially by NSF grants CCR-0105498 and CCF-0514082 and by ONR Award N00014-00-1-0617.
TWork done while the author was a student at the Department of Computer Science, Cornell University, Ithaca, NY 14853.
Research supported partialy by NSF grant CCR-9912422.

the interface between IP networks and connection-oriented networks have discovered this same underlying
problem in deciding whether to keep a connection open between bursts of packets that must be sent along
the connection [12]. Karlin, Kenyon and Randall study the TCP acknowledgment problem and the related
Bahncard problem both of which are at heart ski-rental problems [10]. The problem aso arises in cache
coherency in deciding whether to update or invalidate data that has been changed in a processor’s local
cache[6, 2].

Animportant application of the ski-rental problem isin minimizing the power consumed by devicesthat
cantransitionto alow power sleep state whenidle. The sleep state consumes|ess power; however, oneincurs
a fixed start-up cost in making the transition to the high-power active state in order to begin work when a
new job arrives. At the architectural level, the technique of eliminating power to a functional component
is called clock/power gating. At a higher level, the powered-down component might be a disk drive or
even the whole system (e.g., a laptop that hibernates). The embedded systems community has invested a
great deal of effort into devising policiesgoverning the selection of power states during idle periods (termed
Dynamic Power Management in their literature); see, for example, [4] for a survey. These techniques have
been critical to maximizing battery use in mobile systems. While power is already afirst-class parameter in
system design, it will become increasingly important in the future since battery capacities are increasing at
amuch slower rate than power requirements.

Most of the previous work on this problem has been concerned with two-state systems which have an
active state and a single sleep state. This paper focuses on finding power-down thresholds for systems that
have more than one low-power state. An example of such asystem isthe Advanced Configuration and Power
Interface (ACPI) included in the BIOS on most newer computers, which has five power states, including a
hibernation state and three levels of standby [1].

2 Previouswork and new results

For the two-state problem, an onlineal gorithm consistsof asinglethreshold 7" after which time thealgorithm
will transition from the active to the sleep state. The input to the problem isthe length of the idle period and
the cost of an algorithm is the total amount of energy it consumes over asingleidle period. Typicaly, an
online algorithmis evaluated in terms of its competitive ratio — theratio of the cost of the online algorithm
to the cost of the optimal offline agorithm, maximized over al inputs. When randomized algorithms are
considered where the threshold 7" is chosen at random, we look at the ratio of the expected cost of the online
algorithmto the cost of the offline algorithm. Previouswork has al so addressed the two-state problem when
the idle period is generated by a known probability distribution. In this case, the online agorithm will
choose a threshold which minimizesits expected cost, where the expectation here is taken over the random
choice of theidle period. We call such algorithms probability-based algorithms.

The best deterministic online algorithm will stay in the high power state until the total energy spent
is equal to the cost to power up from the low power state. It is known that this algorithm achieves the
optimal (deterministic) competitive ratio of 2 [9]. When one considers randomized online algorithms, the
best competitive ratio achievable improves to ¢/(e — 1) [9]. If the idle period is generated by a known
probability distribution, then the algorithm that chooses 7' so as to minimize the expected cost is always
withinafactor of ¢/(e — 1) of optimal. Furthermore, thisbound istight since there is a distribution over the
idle period lengths which will force any online algorithm to incur an expected cost that isa factor e/ (e — 1)
times larger than that incurred by the optimal offline algorithm [9].

Notethat in the context of power-down systems, it may not be the case that the power usage in the sleep
state is zero or even that the start-up cost in the active state is zero. In these cases, both the online and the
offline algorithm will incur an identical additional cost. Thus, the ratio of the online to the offline cost will
decrease and the optimal competitiveratio will be strictly less than two. However, these additional costs do

not change the optimal online or offline strategy in either the deterministic or the probability-based case, and
the optimal competitive ratio that can be achieved for such systems can easily be determined as a function
of al the parameters of the system.

We denote the problem that invol ves powering down through & sleep states PD (k). A formal description
of the problem isasfollows: we are given asequence of k + 1 states S = (sq, ..., s;). Thereisalso avector
of power-consumption rates K = (ko, ..., xx), Where x; is the power consumption rate of the system in
state s;. We assume as a convention that the states are ordered sothat «; > «; for 0 <i < 7 < k. Sos¢ is
the active state, and the system must transitionto s (i.e., power up) at theend of theidleperiod. Thereisan
associated transition cost d; ; to move from state s; to s;. A systemis described by a pair (K, d). Note that
there can be costs to move from high-power states to low-power states and vice versa. However, the only
power-up costs that are of interest are the costs to transition from a particular state s; to the active state sq
sincethe only reason to transition to a higher power state iswhen a new task arrives. A schedule or strategy
A = (S84, Ta) consists of asequence of n 4 + 1 states S 4 that is a subsequence of .S, and a sequence of
transitiontimes 7 4. Where obvious, wewill omit the subscript .A. Werequirethat S(0) = sq and7'(0) = 0.
We use A(t) to denote the cost of the schedule produced by strategy .A for an idle period of length ¢. We
also consider a generalization of PD (k) that we call PD(k, m) wherein we require that n 4 < m, where
0 < m < k issome limiting integer constant. This generalization would be especially useful for engineers
who have alarge number of sleep state options available in the design phase, but are required to implement
at most afixed number of statesin the product that rolls out into the market.

Theonly previouswork that examines the multiple-state problem PD (k) (from the perspective of worst-
case guarantees) is [7] which considers the specia case where the cost to power-down is zero and the
algorithm only pays to move from low power states to higher power states. Note that this also includesthe
case where the transition costs are additive (d; ; + d; . = d; 5 for i < j < k) since the coststo power down
can then be folded into the costs to power up. [7] gives natural generalizations of the algorithms for the
two-state case both for the case when theidle period length isunknown and when it is generated by aknown
probability distribution. It is shown that when the transition costs are additive, the generalized deterministic
agorithm is 2-competitive and the probability-based algorithmise/(e — 1)-competitive, thus matching the
guaranteesin the two-state case.

There are two important directions left open by this work. The first is based on the observation that
systems, in general, do not have additive transition costs. In many scenarios, additional energy is spent in
transitioning to lower power states. Furthermore, there could be overhead in stopping at intermediate states,
resulting in non-additive transition costs (see [4] for an example). The second point is that the known upper
bounds are typically not optimal for the system under consideration. That is, whileit istrue that there exist
systems for which the optimal competitive ratio that can be achieved by any deterministic algorithm is 2
(and e/(e — 1) by any randomized algorithm), it is possible to achieve a better competitive ratio for many
systems. For multi-state systems, the optimal competitive ratio that can be achieved will, in general, be a
complicated function of all the parameters of the system (the power consumption rates as well astransition
costs). For probability-based algorithms, the optimal competitive ratio will also depend on the probability
distribution generating the length of the idle period. While it may not be feasible to express the optimal
competitive ratio as a function of al these parameters, a system designer would, in general, like to design
a power-down strategy that obtains the best possible competitive ratio given the constraints of his or her
particular system.

This paper establishesthe following results.

¢ We givean algorithm that takes asinput an instance of PD (k) that isdescribed by (K, d), and an error
parameter ¢, and produces a power-down strategy A = (S, 74) whose competitive ratio is within
an additive ¢ of the best competitive ratio that can be achieved for that system. The algorithm runsin
time O (k*(log k) log(1/¢)), where k + 1 is the number of statesin the system, and also outputs the

competitiveratio of .A. The algorithm works via a decision procedure which determines for a system
and a constant p if there is a p-competitive strategy for that system. This decision procedure also
allows us to obtain lower bounds on the competitive ratio achievable by deterministic algorithms for
specific systems, which in turn provides a lower bound on the competitive ratio achievable by deter-
ministic algorithmsin genera. In particular, we obtain alower bound of 2.45 on the competitive ratio
for deterministic algorithms. Thisisthefirst lower bound known that isgreater than 2. Independently,
Damaschke has given alower bound of 3.618 [5].

e Theabove approach can be modified to solvethe more general version where abound of m isspecified
on the number of states allowed in final strategy. We show how to extend the decision procedure to
answer if there is a p-competitive strategy for the system that uses at most m power states.

e Experimental results show that there are significant performance gains to be made by estimating the
distribution governing the length of an idle period based on recent history and using this estimate
to drive a probability-based strategy [8]. We give an algorithm that takes as input a description of
a system and a probability distribution generating the idle period length and produces the optimal
power-down strategy. Naturally, the running time of the algorithm will depend on the representation
of the distribution. In practice, this is most likely to be a histogram. Our agorithm runs in time
O(k*(log k + B)) where B isthe number of binsin the histogram and % + 1 isthe number of states.
One outcome of the proof is that it also establishes the optimality of the strategy given in [7] for
additive systems. We then generalize this to find the best online algorithm subject to the restriction
that at most m states are used, at the expense of an extra factor of m in the running time.

e We give a simple deterministic strategy that achieves a competitive ratio of 3 + 2v/2 a~ 5.8284 for
all systems. This result gives a bound on the competitive ratio achieved by the optimal strategies
generated by our algorithms. Note that 3 + 2+/2 also serves as a bound on the ratio of the expected
costs of the online and offline algorithms when the input is probabilistically generated.

In the remainder of this paper, we use the terms schedule or strategy interchangeably to refer to the
choices of states and threshold times for powering down. The term algorithmwill refer to a procedure that
produces a schedule or strategy based on a particular system.

Azar et al. in[3] consider arelated problem which they refer to as Capital Investment. This problemis
adifferent generalization of the ski rental problem than the power-down problem considered here. However,
a specia case of their problem coincides with a specia case of our problem. Specificaly, they give a
(4 + 2+/2)-competitive deterministic algorithm for the special case of the power-down problem in which
the cost to transition to each state is the same, regardless of the state from which one is transitioning.
Later Damaschke in [5] improves the upper bound on the competitive ratio for this special case (also in
the context of Capital Investment) to 4 for deterministic algorithms and 2.88 for ranomized algorithms. In
addition, Damaschke gives a 3.618 lower bound for any deterministic algorithm which subsumes the lower
bound of 2.45 given here.

3 Preiminaries

First we will establish that we can assume without loss of generality that the power-up transition costs are
zero. If thisis not the case for some system (K, d), we can define a new system such that for any ¢ < 7, the
cost to transitionfrom s; to s; isd; ; + d; o — d; o and the cost to go from s; to s; is0. Since there is never
any reason to transition to a higher power state unless the system is transitioning to the active state at the
arrival of a new task, any set of actions in the original system will incur the same cost in the new system.
Thus, in the sequel we assume that d; o = 0 for all i.

Let D(¢) denote dy ;. Then OPT(t) = min;(D(2) + x;t). Let S(¢) denote the state which attains the
minimum — the optimal state. The optimal strategy is to transition to state .S(¢) at time 0, and stay there
through time ¢. We assume that the optimal strategy will actually “use” every state, i.e., range(S(t)) =
{s0,...,sr}. None of the online strategies we present will make use of a state that is never used by the
optimal offline strategy for any time.

State 0 Statel gtgte2

Energy State 3

by by b3 Time

Figure 1: Energy consumed by the optimal strategy as a function of idle period length.

Notethat O PT'(t) ispiecewiselinear and S (¢) is non-decreasing with t — astheidle period length gets
longer, it becomes more worthwhileto pay the extra cost to transition to a lower power state. Let b; denote
thefirst timeinstant at which state s; becomes the optimal state, so b(0) = 0 and D(i—1)+x;_1b; = D(i)+
Kib; = b; % We have 5(0) < b(1) < ...b(k). Figure 1 shows the total energy consumed
by OPT as afunction of the length of theidle period. Thereisaline for each state. The y-intercept isthe
transition cost to move to that state from the active state and the slope is the power consumption rate. The
energy consumed by the optimal strategy is the lower envelope of these lines since it will pick the single

state which minimizes the cost for a given idle period length. Thusfor ¢ € [b;, bi+1],
OPT(t) = D(i) + rit = Z k(b1 — bi) + wi(t — b)) (1)

We compare our online strategy with OPT'(¢) and want to get a strategy .A which minimizes the com-
petitiveratio, c4 = sup; 5 P(Tz 5 where A(t) denotesthe total power consumption of A by timet.

4 A simple (3 + 2v/2)-competitive strategy

First we establish that we can assume that for all ¢ < j, d; ; < do ;. Recall that we are really using d; ; to
denoted; ; + d; o — d; o and dy ; to denote dy ; 4 d; . Thus, the assumptionthat d; ; < dy ; really amounts
toassumingthat d; ; < d; o+ dp, ;. If thiswere not the case, we could just transition from state s; to state s
by first going to s and then downto s;.

Let us for the moment assume that for some~y > 1, D(i) > yD(i — 1) foradli = 1,... k. Thisisa
non-trivial assumption that we will haveto handlelater. Consider the strategy, .4, which alwaysstaysin state
S(t), thesamestateas OPT, at every timet. Theoptimal strategy which knowsthelength of the idle period
in advance will just transition to the optimal state. Strategy .4 however must "follow” the optimal strategy,
making each transition to a new state as the idle period gets longer. This is the strategy proposed in [7]
and shown to be 2-competitive for additive systems. Note that this strategy isthe same as the 2-competitive
bal ance strategy for the two-state case.

Fort € [b;, b;11] theonlinecost is, A(t) = Z;;B(mj(bﬁl —b;) 4+ d; j41) + ki(t — b;). In comparing
this cost to the optimal cost in equation (1), observe that both terms have an additive s ; (¢ — b;) which means
that theratio %7% will be maximized at ¢ = b;. To bound the cost of A intermsof OFP1', we usethe fact

that OPT(b;) < D(i) and OPT(b;) = z;’;}) x;(b;j+1 — b;) both of which come from equation (1).

1—1

Abi) = Z(Hj(bm —bj) + dm+1)

i=0

i—1 7
<Y kilbisr = b))+ Y D()
7=0 7=1
< OPT(b)+ D(i)Y 4~
7=1
< (1+ 2 Norrey = =L o1y ©
= P)/ _ 1 k3 - P)/ _ 1 1/

Thisholdsfor any ¢ implying a competitive ratio of 2]%11

Now supposethe assumption D(i) > v D(i— 1) doesnot hold. We consider anew offlinestrategy OPT"’
that only uses a subset of states.S’ for which the property does hold, and isa~-approximationof OPT, i.e.,
OPT'(t) < v - OPT(t). We now view our problem as specified by just the states in S’, and execute
strategy A as specified above, emulating OP7” instead of OPT'. We get that A’(t) < 2=LOPT'(1) <

%OPT@). Settingy = 1 + % we get a competitiveratio of 3 + 2v/2 a2 5.8284.

We determine OPT" asfollows. Let S’ = {s;} initialy. Consider the statesin S in reverse order. Let
s; bethelast state added to S’. We find the largest 7, 0 < j < ist. D(j) < D(¢)/v. Weadd s; to S’ and
continue until no such j exists. Note that s, € S’ since D(0) = 0. OPT" will execute the optimal offline
strategy assuming that only the statesin S are available. Consider i, j st. s;,s; € 5" and no s, isin .S’ for
i << j. Wehave OPT'(t) = OPT(t)fort € [b;,biry) andt € [b;,bj41). For £ st. i < ¢ < jand
timet € [by,bog1). OPT'(t) = min(D(i) + kit, D(j) + £;t) and OPT(t) = D(() + ,t. j waschosen to
be the largest value less than i such that D(j) < D()/~ which meansthat D(¢) > D(z)/~. Furthermore,
since x; < k¢, We have that

OPT'(t) < D(i) + kit < v(D(€) + ret) = yOPT(t),
and OPT' isa~-approximationto OPT.

Theorem 1 Thereisa (3 + 2v/2)-competitive strategy for any system.

5 A near-optimal deterministicalgorithm

In thissection, we turn our attention to obtaining a near optimal schedule for a particular system. More pre-
cisely, givenasystem (K, d) with state sequence S for which the optimal online schedule has competitive ra-
tio p*, we give an algorithm that returnsa (p* + ¢)-competitive online schedulein time O (k2 log k log (1/¢)).
The agorithm is based on a decision procedure which determines whether a p-competitive schedule exists
for agiven value of p. Theorem 1 establishes an upper bound of 3 + 2+/2 on the optimal competitive ratio,
so we perform a bisection search in the range [1, 3 + 2v/2] to find the smallest p such that there exists a
p-competitive schedule. We al so output the resulting schedule.

6

Energy Energy

t Time t! Time

Figure 2: Energy consumed by the online and optimal strategy as a function of idle period length. The solid
lineisp - OPT(t). The dashed lineisthe online cost. ¢ isthefirst transition time that is not eager. ¢’ shows
the transformed strategy which now has an eager transition.

The following lemma shows that the online strategy must eventually get to a sufficiently low-power
state. Lemma 3 allowsusto limit our concern to just the transition pointsin any online schedule.

Lemma?2 If A= (S§,7) isap-competitivestrategy and s, isthelast statein &, then s, < p - k.

Proof : For the sake of contradiction, assumethat <, > p - ki. For A to be p-competitive, the function A(¢)
must lieentirely below p - OPT'(t). However thelast lineof p - OPT(t) hasslopep - r, and will therefore
intersect thelast line of .A(¢) which hasalarger slope «, after which time A(t) will exceed pOPT'(t). This
isacontradiction. m

Lemma 3 If a schedule A has finite competitive ratio, then the earliest time ¢ > 0 at which %T% is
maximized isa transition point in the strategy A.

Proof : Let p = maxsso %tht). Consider the functions A(t) and pOPT'(t). The function .A(¢) never
exceeds pOPT(t), and t isthe earliest point at which these two functions have the same value, not consid-
ering the origin. For the sake of contradiction, assume that ¢ is not a transition point in .A. So we can find
some small ¢ > 0 such that .A(¢) islinear in (¢ — ¢,¢ + ¢). Since A(t) isstrictly lessthan pOPT'(t) inthe
interval (¢ — ¢,1) and A(t) = pOPT(t), it must be the case that the slope of .A(¢) islarger than the slope of
pOPT(t) inthisinterval. Thisgives acontradiction, because .A(¢) has constant slopeover (¢ —¢, ¢+ ¢), and
pOPT(t) isacontinuous function with decreasing slope, which meansthat A(t) > pOPT(t)fort > t. m

We now explore ways to restrict the space of schedules we need to consider in searching for a p-
competitive schedule. For a strategy A = (S, 7), we say that atransition at time ¢ € 7 is p-eager (or
just eager if p is clear from the context) if A(t) = pOPT(t). We say that A is a p-eager strategy if
A(t) = pOPT(t) for every t € 7. Note that by Lemmas 2 and 3, a p-eager strategy that ends at state s
suchthat k; < p - ki IS p-competitive.

Lemmad4 If A = (S, 7) isa p-competitive strategy, then there exists an eager strategy A’ = (S, 7”) that
isalso p-competitive.

Proof : Figure 2 shows a schematic of the proof. The jumps in the online cost (the dashed line) are
transition costs. The solid lineis pOPT'(t). The figure shows a transition time ¢ at which the online cost
islessthan pOPT(t). Theideais that we can slide such a transition time earlier until it hits the function
pOPT(t) .

Consider the earliest transitiontime 7" which isnot eager. Supposethat .A transitionsfrom state s; to state
s; attimeT. Let T’ < T bethetime of the immediately preceding transition; if there is no such transition
time, then set 7" = 0. Thefunction pOPT'(¢) — A(t) iscontinuousin theinterval (7", T') since A does not
have any transitionsin this open interval, and pOPT(t) — A(t) is0 at time 7" and is strictly greater than
d; ; atimeT — ¢ for asmall enough e. Let T be the earliest time after 7" suchthat pOPT'(t) — A(t) = d; ;,
soT <T.

Consider the strategy .A’ that is identical to .A except that the transition from s; to s; is moved earlier
from 7 to T. we need to argue that A’ is p-competitive. Clearly A’(t) = A(t) fort € [T, T) and A(T) =
pOPT(T). Also A'(T) < A(T) since A’ transitions earlier to the low power state s; and hence uses less
total energy, and since the strategies behave the same after time 7', A" will continue to have alower cost at
al timest > T. Toseethat A’(t) < pOPT(t) over theinterval (T, T), note that A’(t) islinear over this
interval since A’ remainsin state s;. Also pOP1T'(t) isapiecewise-linear concave function sinceitsslopeis
non-increasing over time. Thus, since the points (7, A’(T)) and (T, .A'(T)) both lie on or below thiscurve,
the straight line connecting them lies under the curve p OPT'(t).

The procedure above can be repeated until all the transitions are eager. [

Lemma5 Suppose a strategy makes a p-eager transition to state s; at time¢; and next makes a transition
to state s;. Using the function pOPT'(t), one can compute the earliest p-eager transitiontime ¢ to state s;
intimeO(log k).

Proof : Definethelinel(t) = r;t + pOPT(t;) — kit; + d; ;. t isthesmallestt > ¢; suchthat pOPT(t) =
[(t). If thereisno such ¢, then a p-eager transition from s; to s; does not exist. Since pOPT'(t) is concave
we havethat if [(t) < pOPT(t),orif [(t) > pOPT(t) andtheslopeof pOPT(t) islessthanor equal to x;,
thent < t; otherwiset > ¢. These inequalities allow one to do a binary search using the line segments of
pOPT(t) to determinet if it exists. Let s, be the optimal state (i.e., state of OPT'(t)) at timet;. Consider
the line segments of pOPT'(t) corresponding to states s, and s;. Recall that b, and b, are respectively the
left end-points of these segments — these are the first time instants at which s, and s;. become the optimal
states respectively. Using the above inequalities, if we determine that ¢ > by, then ¢ is simply the point of
intersection (if it exists) of /(¢) with the segment (of pOPT'(t)) corresponding to s ;. Otherwise we have
a“low” segment with end-point b,, and a “high” segment with end-point &;. Now we repeatedly consider
the left end-point of the segment that is in the middle of the low and high segments, and use the above
inequalitiesto update the low or high segment and the corresponding end-point accordingly, until the end-
points of the low and high segments correspond respectively to the left and right end-points of a segment of
pOPT(t). When this happens we can compute ¢ by finding the intersection point (if it exists) of /() and
this segment. The binary search can be implemented in time log k, where £ is the number of segments (i.e.,
number of states). [

Lemma 4 immediately gives an algorithm that is exponential in &, the number of states, and determines
whether a p-competitive strategy exists for the system. This algorithm enumerates all subseguences of
states, and determines the p-eager strategy for that subsequence by finding the eager transition to each state
based on the eager transitionsto the previous states, as described in the proof of Lemma5. A p-competitive
strategy for the system exists if and only if one of these p-eager strategiesis p-competitive (i.e., ends at a
state s with k., < p-k;). Theremainder of this section presentsaway to remove the exponential dependence
on k.

Let.S = (so, s1,- -, 5x) beasequence of statesthat form asystem. Define S, . s, to be the contiguous
subsequence (s;, ... , s;), where s; and s; are elements of S suchthat i < j. Let W, be the set of subse-
quencesof S, that include s and s such that for each ¢» € ¥, one can find transition times for the state
sequence ¢ so that in the resulting schedule, each transition up to and including the transition to state s is
a p-eager trangition. For a state ¢ € v, we will use ¢, , to denote this p-eager transition time to ¢ for the
sequence 7. (Note that «» uniquely determines the transitiontimest. ,.)

We define the earliest transitiontime (s, p) of state s for thegiven systemas £/ (s, p) = minyey, ty s,
that is, F'(s, p) isthe earliest time at which any online strategy can transition to state s while remaining
p-eager over al its transitions up to (and including) the transition to state s. Observe that if there is p-
competitive strategy that uses state s, then by Lemma 4, there is such a p-eager strategy, so ¥, # ¢ and
E(s, p) iswell defined. We call atransitionto state s p-early (or simply early) if it happensat time E'(s, p).
A strategy that consists entirely of early transitionsis called a p-early strategy.

Lemma6 If thereis a p-competitive strategy A = (S, 7), then thereis an eager and early p-competitive
strategy.

Proof : Let s bethelast statein S. Consider the sequence¢» € U, suchthatt, , = E(s, p) and the strategy
m that uses only the statesin v, transitioningto state g € + at timet 4, i.e, 7 = (¢, {ty,4}4es). Since A
is p-competitive, it must be that x; < prg and since = by definition has all p-eager transitionsand endsin
state s, it isalso p-competitive. We now argue that = isan early strategy. Note that = was chosen so that the
transition to state s is p-early. We have to show that the remaining transitionsof = are aso p-early.

Suppose not. Consider the latest transition that is not p-early. Suppose this happens for state r (# s),
so Ty = ty, > E(r,p). Let v’ be the state just after r in sequence ». Let ¢v’ € U, be the sequence for
which t, . = E(r,p) = T,. T, isthe earliest time that a p-eager schedule can transition to state » and
the sequence of states in this scheduleis given by ¢’. Consider the hybrid strategy =’ that uses the states
in ¢’ followed by the states in 1 that appear after », with the transition times being ¢+ , for ¢ € ' and
tyq for g € 1., Strategy = transitionsto state r at time 7 and strategy =’ transitionsto state - at time
Ty < Ty. Both of these transitions are eager transitions. Both strategies are in state » at time T, and make
the same state transitionsthereafter. Thus, forany ¢t > 14, = (t) — = (11) = #'(¢t) — ='(T}). In particular, both
strategiestransitionto r’ (the state after r) at timet,, ,» = E(r’, p) = T". Using the equation above we have
that ='(T") = = (T") — (= (T1) — ='(11)). We will show that ='(T1) < =(71) whichimplies, in particular,
that ='(7") < =(T"). Soin =’ thetransition to »’ isno longer p-eager. Arguing asin Lemma 4 this means
that we can shift the transition to »’ to get an eager transition at an earlier time. But this contradicts the
assumption that the transition to state r’ at time 7" was an early transition.

We now provethat 7/ (T7) < =(1}). Thetransitionsto state r in schedules = and 7’ are eager transitions,
o both the points (T3, 7'(1%)) and (11, 7 (13)) lieonthe pOPT'(t) curve. Since 7 (t) < pOPT(t) for all
t, thethe slopeof pOPT(t) attime T} isat least .., the lope of = (¢) at time 77, and strictly greater since
the gap between pOPT(t) and = () must accommodate the transition cost from state r to »’ at time 7”.
The concavity of pOPT(t) impliesthat itsslope is greater than «,. over theinterval [T, T1]. pOPT(t). SO
m(11) = pOPT (1) > pOPT(15) + k(11 —13) = 7'(11) wherethelast inequality followssince 7’ stays
in state r intheinterval [T, T1].]

From Lemma 6 we can deduce that we only need to consider a specific early and eager schedule, the one
that is determined by the E(., p) values, to determineif a p-competitive strategy exists. We can now definea
decision procedure EXISTS that takes a system and a constant p and outputs Y ES if a p-competitive strategy
exists for the system, and NO otherwise. The procedure can be modified to aso output a p-competitive
strategy (if it exists). We employ a dynamic programming approach to calculate F(s;, p), for 0 < @ < k.
We always start with the high power state and hence E(sq, p) = 0. Supposewe have computed (s, p) for
alj=0,...,:— 1. Lett; betheearliest time at which the system p-eagerly transitionsfrom s; to s; given

9

|
I
|
I
I
!
|
Tl

Figure3: Thesolidlineisp-OPT. The dashed lineisthe schedule 7’ from Lemma 6 and the dashed/dotted
lineis=. The point labeled p is (7', 7 (1)) and p’ is (1", #'(1")). Theideaisto show that at time 7", 7’ hasa
lower cost than 7.

that the transition to s ; is p-eager and occurs at time £'(s;, p). If such atransitionis not possible, then we
assignt; = oo. We can computet; in O(log k) time asdescribed in Lemma5. Then, E'(s;, p) = min;<; t;.
Determining each F(s;, p) requires examining ;j different possibilities, so finding all the early transition
times for all states takes time O (k% log k). By Lemma 2, we know that if £(s;, p) is finite for some state
s; where k; < p - ki, We know that a p-competitive strategy exists. One can quickly elicit the schedule
by starting from state & and retracing the states that minimized the earliest transition time. We use the
procedure EXISTS to do a bisection search in the interval [1, 3 4 21/2] and find a p-competitive strategy
where p < p* + ¢. Thetota timetakenis O (k* log k log(1/¢)).

We now turn our attention to adapting this dynamic programming technique to solve PD (k, m) where
a bound of m is specified on the number of states that can be used by the online algorithm. We introduce
anew parameter b modifying our functionto £ (s;, p, b), where 0 < b < min(7, m). Theintuitionis that
function £ isnow required to return the earliest time when the system can transition to state s ; while staying
entirely below pOPT'(t) and using at most b + 1 statesfrom (sq, ..., s;). Thebase caseis I/(sg, p,b) = 0
foral b > 0. Intuitively, E/(s;, p, b) is determined by the “best” state s; prior to s; such that at most b — 1
states were used to reach s;. Noticethat for any given state s; and fixed p, I/(s;, p, b) isnon-increasing as
b increases. Therefore, as above we can write E(s;, p, b) = min;<; t’;, where ¢’; isthe earliest time when
the system p-eagerly transitions from s; to s; given that the transition to s; was p-eager and occurred at
E(sj, p,b—1). Therunning timeincreases by a factor of m now and is O (k?m (log k) log(1/¢)).

6 A probability-based algorithm

Karlin et al. study the two-state case when the length of theidle period is generated by a known probability
distribution p [9]. (Although they examined the problem in the context of the spin-block problem, their
problem isidentical to our two-state case.) They observed that the expected cost of the online strategy that
makes the transitionto the sleep state at time 7" is

/0 ' p(t) (kot)dt + /T o) (HOT o (t—T) + ﬁ) dt, ©)

where kg is the power consumption rate in the active state, « 1 is the power consumption rate in the sleep
state and /3 isthe transition cost between the two states. The online strategy then should select the transition
time 7" that minimizes this cost.

10

The multi-state case presents two distinct challenges. The first is to determine the optimal sequence of
states through which an online strategy should transition throughout the course of the idle period. Then once
this sequence has been determined, the optimal transition times need to be determined. Our proof proceeds
by establishing that the only transition times that need to be considered are the optimal transition times for
two-states systems. Suppose, for example, that we are considering a sequence of state transitionsin which
state s; isfollowed by state s;. Let T; ; denote the optimal transitiontime from state s; to s; if thesewerethe
only two states in the system (that is, if s; were the active state and s; were the only sleep state). Note that
T;,; can be determined by the expression above. We establish that regardless of the rest of the sequence, the
optimal transition point from state s; to s; is7; ;. We call theT; ;’s the pairwise-optimal transition times.

Lemmas 7 and 8 establish that the pairwise-optimal transition times happen in the right order. That is
fori <k < j,T;, < T}, ;. If thisisnot the case, then any subsequence that has s; followed by s;, followed
by s; can not possibly be the best sequence of states. Note that the 7'; ;’s may not necessarily be unique. In
general, we will select the earliest transition time that minimizes the cost for the two state system.

Lemma 9 then shows that as long as the pairwise-optimal transition times are in the right order, they
give the globally optimal set of transition times for that subsequence. Our algorithm then uses this fact to
find the optimal sequence of states by dynamic programming. Note that it is not necessary to exhaustively
consider all possible subsequences.

6.1 Optimal transition times

Consider aparticular subsequenceof /+1 states s, , . . . s,,. In order to avoid the doubl e subscripts, through-
out this subsection we will rename our subsequence. qo, 41, - - . , ¢;. Since the strategy must start in state s,
we can assumethat ¢o = sq. For < < j, define 3; ; to bethe cost to transition from state ¢; to state¢;, that is,
Bij = da, ., Furthermore, we will refer to the power consumption rate of state ¢; as «v;, that is, «v; = k.

We will consider the strategy that transitions through the states in the subsequence g o, g1, - - . , ¢;. Sup-
pose that we use transitiontime 7’; to transition from state ¢;_; to state ¢;. It will be convenient for notation
todefineT;11 = oo and T, = 0. The cost of the strategy that uses these transitiontimesis:

I+1

cost(Ty,...,T; Z/ thaj_1(t —]1dt+2/ 04] (T = Tj-1) + Bi- 171)
(4)

Thegoal isto pick the Ty, . .. ,T; so as to minimize the above cost. Thisisthe optimal cost for the subse-
quence qo, - - . , G-
. az 1~y
Foreachi € {1,...,{},lety;, = R
Lemma 7 Supposethatthereisan: < j suchthaty; < v;, thenthereisaastrict subsequenceof ¢o, ... , ¢
whose optimal cost is ho greater than the optimal cost for ¢, ... , g

Proof : Consider thefirst j suchthat v, < v;. Let ({1,...¢;-1,1j,... ;) bethe sequence of thresholds
that minimizesthe cost of this sequence of states. Define the following quantities:

F]‘_L]‘ = COSt(Eh .Ej_27£] 19 E t 7t1)
Fj—l,j—l = COSt(th t] 2 t —1; t —1; t]‘_|_1 e 7t1)
F; = COSt(ﬁ7 .EJ f f f . ,fl)

We will show that F;_; ; is greater than or equal to a weighted average of F;_; ;_; and F} ; which means
that it must be greater than or equal to at |east one of thesevalues. Thismeansthat the strategy that transitions

11

from state ¢;_ to state ¢;_; and then immediately transitionsto state ¢; at either timet;_; or ¢; isat least
asgood asthe origina strategy. Since 3;_2 ; < 3;_2;-1 + 3;-1,;, Kipping state ; — 1 altogether can only
improve the strategy.

Below we have an expression for F; ; — F;_; ; which can be derived from the definition for the cost in
equation (4), Under F; ; the transition from state ¢;_» to ¢;_; is moved forward from time¢;_, totimet;.
Any time spent in the interval [¢;_,, ;] happens at the higher power rate of a;_, instead of v;_;. Thisis
accounted for in the first two terms of the sum. However, idletimes ending in theinterval [¢;_1,;] save on
the transition cost which is accounted for in the last term below.

t; B o0 _ _
Fij—=Fi1; = /t POt —tj—1)(aj—2 — Oéj—l)dt+/t POt — tj—1)(@j—2 — aj_y)dl

J—1 J

f]
—/ Bi—2,j-1p(t)dt.
tj—1

J

Dividingby (a;_2 — a;_1), Thisbecomes

Fo— F ty _ o0 _ _ &
JJ =Ly / p(t)(t —t;_1)dt _|_/ p(t)(t; —t;—q)dt — /
Qg — 7 t ¢

J—1 J 7—1 P)/]_l

p(t)dt. (5)

Below, we use the definition of cost in equation (4) to get an expression for F';_; ; — F;_; ;—1. Note that
in Fj_y j_1, thetransition from state ¢, to state ¢ is moved back from time¢; totime¢;_;. Thus, F;_; ;
will spend «;_; — a; more power than F;_; ;_; for any time spent in the interval [¢;_1,¢;]. Furthermore,
F;_1 j—1 will have an additional transition cost of 3,_; ; for thoseintervalsthat end in the period [¢;_1, ¢;].

t; - o0 _ _
Fi1;—=Fi1j-1 = /t POt —tj—1) (a1 — Oéj)d“r/t POt — ti—1)(@j_1 — ay)dt

7—1 J
f]
— / Bi1p(t)dt.
1

Dividingby (a;_; — «;), Thisbecomes

Bioni = bymnjmn /j P(t)(t—tj—1)dt+/oop(t)(tj—tj—l)dt—/J Lpwd. (®)

Qj—1 — @ tj—1 iy ty—1 i

Comparing, equations (5) and (6), the expressions are almost identical except for they in the last term.
Sincey;-1 < v; and fgj_l p(t)dt > 0, We have that

Fijg —Hi-1i o Py — Fj-1j-1
O — Q1 a1 — O

Letw; = 1/(aj_2 — aj_y) andwy = 1/(aj_; — ;). Notethat both w; and w, are at least 0. Rearranging,

we get that
Wi W2
- - F = F,_ - <F_ .
(w1-|-w2) 5t (w1-|-w2) J=ly-1 > 4t;-1;

Now suppose that we consider only the two-state system consisting of state ¢;_; and state ¢;. We will
let 7; denote the optimal threshold time if these are the only two states in the system. We have that 7; isthe
time T that minimizes

/OTp(t)Oti—ﬁdt + /Oop(t) (Oéi—1T +a;i(t—T)+ ﬁi—l,i) di.

T

12

Note that the value of T that results in the minimum above may not be unique. In this case, we
take 7 to be the smallest value which achieves the minimum. Also note that by subtracting the term
Jo© p(t)agtdt (which is independent of 7") and dividing by ;_;,; in the above definition, it can be seen
that 7, = arg miny f(v;,T") where

T 00
f(%T):/0 p(t)'ytdt—l—/ p(t)(yT + 1)dt.

T

Note that for a two-state system whose active state and sleep states has power consumption rates of
v and O respectively and whose transition cost is 1, f(v,7’) denotes the expected power consumed by an
online strategy that transitionsto the sleep state at time T". We will show that for a particular subsequence of
states, if we minimize the cost over all choicesfor the thresholds, the resulting threshol ds are those obtained
by the pair-wise optimization above. First, however, we must establish that the 7; values have the correct
ordering.

Lemma8 Ify; > 41, thenr;, < 744.

Proof : Intuitively, ; istheratio of the additional power cost of being in state ¢, instead of state ¢;_; over
the transition costs between the two states. It standsto reason that the larger this cost, the sooner one would
want to transition from state ¢, _; to state ¢,.

We will formalize this argument using a proof by contradiction. Suppose that we have ; > 7,4; and
vi > 7i+1. The proof will make use of the definition of f(~,T") given above. 7; isthe smallest value for
T which attains the minimum of f(v;, 7). Since ;41 < 7, we know that f(v;, 7i+1) > f(vi, 7i). By the
definition of 7,11, we havethat f(vit+1,7) > f(Vi+1, 7it1). Thus, it should be the case that

f(7i+17 Ti) - f(7i+17 Ti-l—l) 2 0 > f(P)/M Ti) - f(P)/M Ti-l—l)- (7)
Using the definition of f(+,7") above, for any 71 < T3,

F.T) ~ fr.Th) = 4 [/T2p(t)(t—Tl)dt—l—/oop(t)(Tg —Tl)dt] - /T2p(t)dt.

T T, T
The quantity inside the square braces above is non-negative. This implies that the quantity f(v,73) —
f(v,T1) isnon-decreasing in . This, however, contradicts Inequality 7 and the fact that v; > ~;41. [

Finally, we prove the main lemmawhich states that the transition times are simultaneously optimized at
the pairwise-optimal transition points.

Lemma9 For a given subsequence of states q¢q, ..., q, if .y < 7 foral ¢ € {1,...,[}, then the
minimumtotal cost is achieved for cost(ry, ..., 7).

Proof : The basic ideaisthat we can interpret cost (T4, ..., T;) — [, p(t)atdt asthe sum of the power
consumed in / two-state systems, wherethe i** system, (fori = 1, ... , [), has states whose power consump-
tionratesare («;—1 — «;) and O and the cost to transition between thetwois 3;_; ;. Note that fooo p(t)oytdt
is a constant, independent of the choice of T);’s. After rescaling, one can write this expression as a linear
combination of the f(v;,7;) terms. Since r; minimizes f(~;, T"), and the 7; values have the right ordering,
thisimpliesthat cost (775, ...,1;) isminimized by setting7; = r; fori = 1,... ,[.

We will establish below that we can rewrite (4) asfollows:

cost(Ty,...,T)) = / p(t)oytdt
0

T;

+ i[v et [0 (0 - ot sl @

13

So by rescaling, we get that

cost(TI, ce 7/‘T[) - / altdt Zﬁz 1 zf Yi, T Z
0

We want to choose 7y < --- < T; to minimize this expression. Since 7y < --- < 1y and each 7; =
argming f(v;,T') it followsthat the minimum is attained by setting?’; = 7; for each ¢.

To complete the proof we show the equivalence of (4) and (8). It suffices to show that (4) and (8)
integrate the same expression over each interval [1;_1,7;), fori = 1,...,l+ 1. Theintegrand in (4) over
theinterval [1;_1,7;) is

1—1

p(t) [%’-1 (t—Ti—1) + Z(Oej—1(Tj —Tj_1) + ﬂj—m)] ;

7=1
and theintegrandin (8) is

1—1

p(t) [Z((%‘—l — ;)T + ﬁj—m) + (zl:(%‘—l —aj) + a,)t]. (%)

=1 =t

The summations over the j indicesin (9) telescope to show that the two expressionsare identical. [

6.2 The optimal state sequence

We now present a simple polynomial time algorithm to obtain the optimal state sequence for a given system.
First, for each pair (¢, 7),0 < i < j < k, let T; ; denotethe optimal transitionpoint if s; and s; werethe only
two statesin the system. The time complexity of determining asingle7’; ; depends on the representation of
the probability distribution. In practice, thisis most likely to be estimated by a finite histogram with B bins
starting at time 0 and sampled at a uniform discrete interval of §. It followsthat bin ¢ corresponds to time
de. Itisnot difficult to generalize this for variable sized bins. We will also assume that all transition times
occur at some . The height of bin: is H (¢) and thisimplies that the probability that the idletimet equals

diisgiven by s 1(11)(5 In Algorithm 1, we calculate A C'C[i] and AC'CTT:¢] values, which aref t)dt and

fo p(t)dt and we then use them to evaluate 7; ; values. We can re-write the expression for the cost of a
two state system in equation (3) as

o0

m/OTp(t)th@ /Toop(t)tdt—l— ((Hi—@)TJrﬂi,j)/T p(t)dt.

We also denote f t)dt and f t)dt as TOTALand TOTALT respectively. Using the pre-calcul ated
values above, the cost of transitioni ng from state s; to state s; at time d/ is

ki » ACCT(l) + (13l — 116 + B ;) (TOTAL — ACC[l]) + k,;(TOTALT — ACCTIl)).

OncetheT; ;’sare found, we sweep through them in non-decreasing order, keeping arunning tab of the
best sub-schedulesthat we can achieve ending in each state s; at each point in time. When we encounter a
T; ;, we check to see if transitioning from s; to s; can improve the current best sub-schedule endingin s;,
and if it does, update our data structure to reflect it.

A given strategy dividestimeinto intervalswhere each interval isthe period of time spent in a particular

state. The expected cost for a strategy given in equation (4) is obtained by summing over the expected cost

14

Algorithm 1 Evaluating T’ ; values
ACC0] « HI0]
ACCT[0] + 0
for k=1to B do
ACC[k] + ACC[k — 1]+ Hk]
ACCTk] + ACClk - 1]+ H[k] x k-6
end for
TOTAL + ACC[B]
TOTALT + ACCT|B]
for dl (¢, j) pairssuchthat 0 < i < j < kdo
min < oo, argmin — —1
fori=0toB —1do
val = k; - ACCTl] + (k16 — k16 + 3; ;) (TOTAL — ACCTL])
+r;(TOTALT — ACCTTL))
if val < min then
min «— val
argmin + |
end if
end for
T; ; +— argman -6
end for

incurred in each interval. The cost for each interval is divided into two parts which resultsin two separate
summationsin equation (4). We define the function ¢ for the first term whichis

Q(t57j7tf):/tfp(t)/ii(t—ts)dt.

Thisisthe expected cost of staying in state s; in the interval [¢, ¢ ;) for those idle periods whose length is
asointheinterval [t,,¢s). Define

R(its, j,ty) = /t p(t) (042' (ty —ts) + ﬂm) dt.
f

Thisis the expected cost for those intervalslonger than ¢ ; of stayingin state s; over the time period [¢;,)

and then transitioning to state s;. Note that ¢)(é/;, j,6(;) and R(:, 8l;, j,él;) can both be evaluated in

constant time given ACC[l;], ACCTl;], ACCT[l;] and ACCTTl;] defined above.

At each transition7; ;, we check to see if the current best schedule that endsin state s ; can be improved
by transitioning to j from the current best schedule that ends in state s;. For this purpose, we maintain two
arrays of size k + 1: t[¢] isthe time at which the current best schedule that ends at state s; transitionsto s;
and h[7] isthe cost at ¢[i] of that schedule. Initialy, A[0] + 0 and al other h[i] + oc. t[i], for al i can be
initialized to 0. In Procedure 2, we provide the pseudocode for processing at each transition point 7; ;.

It is easy to see that each transition point takes a constant amount of processing. The sorting takes an
overhead of O(k?log k). Theinitial preprocessing to calculate the transition points takes O (k2 B). Hence,
thetotal running timeis O (k?(log k + B)).

The agorithm can be easily extended to find the algorithm that minimizes the expected cost subject
to the constraint that only m states are ever reached. We maintain ¢[i, b] and [, b] for al states s; and
b < min{m, ¢}. These are the best time and energy required to reach state i subject to at most b states being
reached. The algorithm is given below in Procedure 3.

15

Procedure 2 Processing 7; ; in the line sweep algorithm
Current Status: 7 ; isthe transition point that is being processed
{Thecost uptotime1; ; if transitioningfrom: to j at 7; ; }
hl < hlil+ Q(t[e], 7,15 ;) + R(e, t[7], 5, 15 ;)
{The cost up totime TZ ; if transitioningto j at the current best time of ¢[;]}
h2 « h[j]+Q(tj], 5, Ti) + R(, tlj], 4, T 5)
if h1 < h2then
hlj] < hl
] < Ti;
end if

Procedure 3 Processing 7; ; in the line sweep algorithm with the number of states constrained
Current Status: 7 ; isthe transition point that is being processed
forb=1...57—1do
hl « hli,b— 1]+ Q(t [b—1),7.1; ;) + R(i, t[t,b— 1], 5, T3 ;)
h2 ¢ hlj, 0]+ Q(t[).B], 4. Tv)) + R(j, 1), 0], 5. Tt)
if h1 < h2then
hlj,b] < hl
t[3 b] — Ti,j
end if
end for

References

[1] http://www.microsoft.com/windows2000/techenthusiast/features/
standbyl127%.asp.

[2] C Anderson and A Karlin. Two adaptive hybrid cache coherency protocols. In Proceedings of the
Second International Symposiumon High-Performance Computer Architecture, pages 303—-313, 1996.

[3] Y.Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Rosen. On capital investment. Algorith-
mica, 25:22-36, 1999.

[4] L. Benini, A Bogliolo, and G. De Micheli. A survey of design techniques for system-level dynamic
power management. |EEE Transactionson Very Large Scale Integration (TVLS) Systems, 8(3):299—
316, 2000.

[5] Peter Damaschke. Nearly optimal strategiesfor special casesof on-line capital investment. Theoretical
Computer Science, 302:35-44, 2003.

[6] S.J. Eggersand R. H. Katz. Evaluating the performance of four snooping cache coherency protocols.
In Proceedings of the 16th annual international symposium on Computer architecture, pages 2-15.
ACM Press, 1989.

[7] S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dynamic power management strategies for
systems with multiple power savings states. In |EEE Conference on Design, Automation and Test in
Europe, 2002.

16

[8] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies for dynamic power management in
systems with multiple power saving states. Trans. on Embedded Computing Sys., 2003. Specia Issue
on Power Aware Embedded Computing.

[9] A Karlin, M. Manasse, L. McGeoch, and S. Owicki. Randomized competitive algorithms for non-
uniform problems. In ACM-S AM Symposium on Discrete Algorithms, pages 301-309, 1990.

[10] AnnaR. Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement and other stories
about e/(e-1). In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 502-509, 2001.

[11] AnnaR. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical studiesof competitve spinning
for a shared-memory multiprocessor. In Proceedings of the thirteenth ACM symposium on Operating
systems principles, pages 41-55. ACM Press, 1991.

[12] S Keshav, C Lund, S Phillips, N Reingold, and H Saran. An empirical evaluation of virtual circuit
holding time policiesin ip-over-atm networks. |EEE Journal on Selected Areas in Communications,
13(8):1371-1382, 1995.

17

