

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 37, No. 5, pp. 1499–1516

OPTIMAL POWER-DOWN STRATEGIES∗

JOHN AUGUSTINE† , SANDY IRANI‡ , AND CHAITANYA SWAMY§

Abstract. We consider the problem of selecting threshold times to transition a device to low-
power sleep states during an idle period. The two-state case, in which there is a single active and
a single sleep state, is a continuous version of the ski-rental problem. We consider a generalized
version in which there is more than one sleep state, each with its own power-consumption rate and
transition costs. We give an algorithm that, given a system, produces a deterministic strategy whose
competitive ratio is arbitrarily close to optimal. We also give an algorithm to produce the optimal
online strategy given a system and a probability distribution that generates the length of the idle
period. We also give a simple algorithm that achieves a competitive ratio of 3+2

√
2 ≈ 5.828 for any

system.

Key words. online algorithms, power-aware computation, dynamic power management

AMS subject classifications. 68M07, 49N30, 68M20, 68W40, 68W25

DOI. 10.1137/05063787X

1. Introduction. Suppose you are about to go skiing for the first time in your
life. Naturally, you ask yourself whether to rent skis or to buy them. Renting skis
costs, say, $30, whereas buying skis costs $300. If you knew how many times you
would go skiing in the future (ignoring complicating factors such as inflation and
changing models of skis), then your choice would be clear. If you knew you would go
at least 10 times, you would be financially better off by buying skis right from the
beginning, whereas if you knew you would go less than 10 times, you would be better
off renting skis every time. Alas, the future is unclear, and you must make a decision
nonetheless.

Although the ski-rental problem is a very simple abstraction, this basic paradigm
arises in many applications in computer systems. In these situations, there is a system
that can reside in either a low-cost or a high-cost state. Occasionally, it is forced to
be in the high-cost state (usually to perform some task). A period between any two
such points in time is called an idle period.

The system pays a per time unit cost to reside in the high-cost state. Alternatively,
it can transition to the low-cost state at a fixed one-time cost. If the idle period is
long, it is advantageous to transition to the low-cost state immediately; if the idle
period is short, it is better to stay in the high-cost state. An online algorithm which
does not know the length of the idle period must balance these two possibilities.

∗Received by the editors August 10, 2005; accepted for publication (in revised form) October 10,
2007; published electronically January 30, 2008.

http://www.siam.org/journals/sicomp/37-5/63787.html
†School of Information and Computer Science, University of California at Irvine, Irvine, CA

92697. Current address: Tata Research Development and Design Center, Pune 411 013, India (john.
augustine@tcs.com). This author’s research was supported partially by NSF grants CCR-0105498
and CCF-0514082 and by ONR Award N00014-00-1-0617.

‡School of Information and Computer Science, University of California at Irvine, Irvine, CA 92697
(irani@ics.uci.edu). This author’s research was supported partially by NSF grants CCR-0105498 and
CCF-0514082 and by ONR Award N00014-00-1-0617.

§Center for the Mathematics of Information, Caltech, Pasadena, CA 91125. Current address:
Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo,
Waterloo, ON N2L 3G1, Canada (cswamy@math.uwaterloo.ca). This work was done while this
author was a student at the Department of Computer Science, Cornell University, Ithaca, NY 14853.
This author’s research was supported partially by NSF grant CCR-9912422.

1499

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1500 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

This problem has been studied in the context of shared memory multiprocessors
in which a thread is waiting for a locked piece of data and must decide whether to
spin or block [8, 10]. Researchers investigating the interface between IP networks
and connection-oriented networks have discovered this same underlying problem in
deciding whether to keep a connection open between bursts of packets that must be
sent along the connection [11]. Karlin, Kenyon, and Randall study the transmission
control protocol (TCP) acknowledgment problem and the related Bahncard problem,
both of which are at heart ski-rental problems [9]. The problem also arises in cache
coherency in deciding whether to update or invalidate data that has been changed in
a processor’s local cache [5, 1].

An important application of the ski-rental problem is in minimizing the power
consumed by devices that can transition to a low-power sleep state when idle. The
sleep state consumes less power; however, one incurs a fixed start-up cost in making
the transition to the high-power active state in order to begin work when a new job
arrives. At the architectural level, the technique of eliminating power to a functional
component is called clock/power gating. At a higher level, the powered-down compo-
nent might be a disk drive or even the whole system (e.g., a laptop that hibernates).
The embedded systems community has invested a great deal of effort in devising poli-
cies governing the selection of power states during idle periods (termed dynamic power
management in their literature); see, for example, [3] for a survey. These techniques
have been critical to maximizing battery use in mobile systems. While power is al-
ready a first-class parameter in system design, it will become increasingly important
in the future since battery capacities are increasing at a much slower rate than power
requirements.

Most of the previous work on this problem has been concerned with two-state
systems, which have an active state and a single sleep state. This paper focuses on
finding power-down thresholds for systems that have more than one low-power state.

2. Previous work and new results. For the two-state problem, an online
algorithm consists of a single threshold T after which time the algorithm will transition
from the active to the sleep state. The input to the problem is the length of the
idle period, and the cost of an algorithm is the total amount of energy it consumes
over a single idle period. Typically, an online algorithm is evaluated in terms of its
competitive ratio—the ratio of the cost of the online algorithm to the cost of the
optimal offline algorithm, maximized over all inputs. When randomized algorithms
are considered where the threshold T is chosen at random, we look at the ratio of the
expected cost of the online algorithm to the cost of the offline algorithm. Previous
work has also addressed the two-state problem when the idle period is generated
by a known probability distribution. In this case, the online algorithm will choose
a threshold which minimizes its expected cost, where the expectation here is taken
over the random choice of the idle period. We call such algorithms probability-based
algorithms.

The best deterministic online algorithm will stay in the high-power state until
the total energy spent is equal to the cost to power up from the low-power state. It
is known that this algorithm achieves the optimal (deterministic) competitive ratio
of 2 [8]. When one considers randomized online algorithms, the best competitive
ratio achievable improves to e/(e− 1) [8]. If the idle period is generated by a known
probability distribution, then the algorithm that chooses T so as to minimize the
expected cost is always within a factor of e/(e − 1) of optimal. Furthermore, this
bound is tight since there is a distribution over the idle period lengths which will

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMAL POWER-DOWN STRATEGIES 1501

force any online algorithm to incur an expected cost that is a factor e/(e − 1) times
larger than that incurred by the optimal offline algorithm [8].

Note that in the context of power-down systems, it may not be the case that the
power usage in the sleep state is zero or even that the start-up cost in the active state
is zero. In these cases, both the online and the offline algorithms will incur an identical
additional cost. Thus, the ratio of the online to the offline costs will decrease, and
the optimal competitive ratio will be strictly less than two. However, these additional
costs do not change the optimal online or offline strategy in either the deterministic
or the probability-based case, and the optimal competitive ratio that can be achieved
for such systems can easily be determined as a function of all the parameters of the
system.

We denote the problem that involves powering down through k sleep states PD(k).
A formal description of the problem is as follows: we are given a sequence of k+1 states
S = 〈s0, . . . , sk〉. There is also a vector of power-consumption rates K = 〈κ0, . . . , κk〉,
where κi is the power-consumption rate of the system in state si. We assume as a
convention that the states are ordered so that κi > κj for 0 ≤ i < j ≤ k. So s0 is
the active state, and the system must transition to s0 (i.e., power up) at the end of
the idle period. There is an associated transition cost di,j to move from state si to
sj . A system is described by a pair (K, d). Note that there can be costs to move from
high-power states to low-power states and vice versa. However, the only power-up
costs that are of interest are the costs to transition from a particular state si to the
active state s0 since the only reason to transition to a higher-power state is when a
new task arrives. A schedule or strategy A = (SA, TA) consists of a sequence of nA+1
states SA, which is a subsequence of S, and a sequence of transition times TA. Where
obvious, we will omit the subscript A. We require that S(0) = s0 and T (0) = 0.
We use A(t) to denote the cost of the schedule produced by strategy A for an idle
period of length t. We also consider a generalization of PD(k) that we call PD(k,m)
wherein we require that nA ≤ m, where 0 < m ≤ k is some limiting integer constant.
This generalization would be especially useful for engineers who have a large number
of sleep state options available in the design phase but are required to implement at
most a fixed number of states in the product that rolls out into the market.

The only previous work that examines the multiple-state problem PD(k) (from
the perspective of worst-case guarantees) is [6], which considers the special case where
the cost to power down is zero and the algorithm pays only to move from low-power
states to higher-power states. Note that this also includes the case where the transi-
tion costs are additive (di,j + dj,k = di,k for i < j < k) since the costs to power down
can then be folded into the costs to power up. [6] gives natural generalizations of the
algorithms for the two-state case, both for the case when the idle period length is
unknown and the case when it is generated by a known probability distribution. It is
shown that when the transition costs are additive, the generalized deterministic algo-
rithm is 2-competitive and the probability-based algorithm is e/(e − 1)-competitive,
thus matching the guarantees in the two-state case.

There are two important directions left open by this work. The first is based
on the observation that systems, in general, do not have additive transition costs.
In many scenarios, additional energy is spent in transitioning to lower-power states.
Furthermore, there could be overhead in stopping at intermediate states, resulting in
nonadditive transition costs (see [3] for an example). The second point is that the
known upper bounds are typically not optimal for the system under consideration.
That is, while it is true that there exist systems for which the optimal competitive
ratio that can be achieved by any deterministic algorithm is 2 (and e/(e− 1) by any

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1502 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

randomized algorithm), it is possible to achieve a better competitive ratio for many
systems. For multistate systems, the optimal competitive ratio that can be achieved
will, in general, be a complicated function of all the parameters of the system (the
power-consumption rates as well as transition costs). For probability-based algo-
rithms, the optimal competitive ratio will also depend on the probability distribution
generating the length of the idle period. While it may not be feasible to express the
optimal competitive ratio as a function of all these parameters, a system designer
would, in general, like to design a power-down strategy that obtains the best possible
competitive ratio given the constraints of his or her particular system.

This paper establishes the following results.
• We give an algorithm that takes as input an instance of PD(k) that is de-

scribed by (K, d), and an error parameter ε, and produces a power-down
strategy A = (SA, TA) whose competitive ratio is within an additive ε of the
best competitive ratio that can be achieved for that system. The algorithm
runs in time O(k2(log k) log(1/ε)), where k + 1 is the number of states in the
system, and also outputs the competitive ratio of A. The algorithm works via
a decision procedure which determines for a system and a constant ρ if there is
a ρ-competitive strategy for that system. This decision procedure also allows
us to obtain lower bounds on the competitive ratio achievable by determin-
istic algorithms for specific systems, which in turn provides a lower bound
on the competitive ratio achievable by deterministic algorithms in general.
In particular, we obtain a lower bound of 2.45 on the competitive ratio for
deterministic algorithms. This is the first lower bound known that is greater
than 2. Independently, Damaschke has given a lower bound of 3.618 [4].

• The above approach can be modified to solve the more general version where
a bound of m is specified on the number of states allowed in final strategy.
We show how to extend the decision procedure to answer if there is a ρ-
competitive strategy for the system that uses at most m power states.

• Experimental results show that there are significant performance gains to be
made by estimating the distribution governing the length of an idle period
based on recent history and using this estimate to drive a probability-based
strategy [7]. We give an algorithm that takes as input a description of a
system and a probability distribution generating the idle period length and
produces the optimal power-down strategy. Naturally, the running time of the
algorithm will depend on the representation of the distribution. In practice,
this is most likely to be a histogram. Our algorithm runs in time O(k2(log k+
B)), where B is the number of bins in the histogram and k+1 is the number
of states. One outcome of the proof is that it also establishes the optimality
of the strategy given in [6] for additive systems. We then generalize this to
find the best online algorithm subject to the restriction that at most m states
are used, at the expense of an extra factor of m in the running time.

• We give a simple deterministic strategy that achieves a competitive ratio of
3+2

√
2 ≈ 5.8284 for all systems. This result gives a bound on the competitive

ratio achieved by the optimal strategies generated by our algorithms. Note
that 3 + 2

√
2 also serves as a bound on the ratio of the expected costs of the

online and offline algorithms when the input is probabilistically generated.
In the remainder of this paper, we use the terms schedule or strategy interchange-

ably to refer to the choices of states and threshold times for powering down. The
term algorithm will refer to a procedure that produces a schedule or strategy based
on a particular system.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMAL POWER-DOWN STRATEGIES 1503

Azar et al. in [2] consider a related problem which they refer to as capital in-
vestment. This problem is a different generalization of the ski-rental problem than
the power-down problem considered here. However, a special case of their problem
coincides with a special case of our problem. Specifically, they give a (4 + 2

√
2)-

competitive deterministic algorithm for the special case of the power-down problem
in which the cost to transition to each state is the same, regardless of the state from
which one is transitioning. Later, Damaschke in [4] improves the upper bound on the
competitive ratio for this special case (also in the context of capital investment) to
4 for deterministic algorithms and 2.88 for ranomized algorithms. In addition, Dam-
aschke gives a 3.618 lower bound for any deterministic algorithm which subsumes the
lower bound of 2.45 given here.

3. Preliminaries. First we will establish that we can assume without loss of
generality that the power-up transition costs are zero. If this is not the case for
some system (K, d), we can define a new system such that for any i < j, the cost to
transition from si to sj is di,j + dj,0 − di,0 and the cost to go from sj to si is 0. Since
there is never any reason to transition to a higher-power state unless the system is
transitioning to the active state at the arrival of a new task, any set of actions in the
original system will incur the same cost in the new system. Thus, in what follows we
assume that di,0 = 0 for all i.

We also need to establish that we can assume that for all i < j, di,j < d0,j .
Recall that we are really using di,j to denote di,j + dj,0 − di,0 and d0,j to denote
d0,j + dj,0. Thus, the assumption that di,j < d0,j really amounts to assuming that
di,j < di,0 + d0,j . If this were not the case, we could just transition from state si to
state sj by first going to s0 and then going down to sj .

Let D(i) denote d0,i. Then OPT (t) = mini(D(i)+κit). Let S(t) denote the state
which attains the minimum—the optimal state. The optimal strategy is to transition
to state S(t) at time 0 and stay there through time t. We assume that, for every
state, there is some idle period length for which the optimal strategy will use that
state, i.e., range(S(t)) = {s0, . . . , sk}. None of the online strategies we present will
make use of a state that is never used by the optimal offline strategy for any time t.

Note that OPT (t) is piecewise-linear and S(t) is nondecreasing with t—as the
idle period length gets longer, it becomes more worthwhile to pay the extra cost to
transition to a lower-power state. Let bi denote the first time instant at which state
si becomes the optimal state, so b(0) = 0 and D(i − 1) + κi−1bi = D(i) + κibi ⇒
bi = D(i)−D(i−1)

κi−1−κi
. We have b(0) < b(1) < . . . b(k). Figure 1 shows the total energy

consumed by OPT as a function of the length of the idle period. There is a line
for each state. The y-intercept is the transition cost to move to that state from the
active state and the slope is the power-consumption rate. The energy consumed by
the optimal strategy is the lower envelope of these lines since it will pick the single
state which minimizes the cost for a given idle period length. Thus for t ∈ [bi, bi+1],

(1) OPT (t) = D(i) + κit =

i−1∑
j=0

κj(bj+1 − bj) + κi(t− bi).

We compare our online strategy with OPT (t) and want to get a strategy A which

minimizes the competitive ratio, cA = supt
A(t)

OPT(t) , where A(t) denotes the total

power consumption of A by time t.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1504 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

b1 b2

Energy

State 0 State 1 State 2

State 3

b3 Time

Fig. 1. Energy consumed by the optimal strategy as a function of idle period length.

4. A simple (3+2
√

2)-competitive strategy. Let us for the moment assume
that for some γ > 1, D(i) ≥ γD(i−1) for all i = 1, . . . , k. This is a nontrivial assump-
tion that we will have to handle later. Consider the strategy, A, which always stays
in state S(t), the same state as OPT , at every time t. The optimal strategy which
knows the length of the idle period in advance will just transition to the optimal state.
Strategy A, however, must “follow” the optimal strategy, making each transition to
a new state as the idle period gets longer. This is the strategy proposed in [6] and
shown to be 2-competitive for additive systems. Note that this strategy is the same
as the 2-competitive balance strategy for the two-state case.

For t ∈ [bi, bi+1] the online cost is A(t) =
∑i−1

j=0

(
κj(bj+1−bj)+dj,j+1

)
+κi(t−bi).

In comparing this cost to the optimal cost in (1), observe that both terms have an

additive κi(t − bi), which means that the ratio A(t)
OPT(t) will be maximized at t = bi.

To bound the cost of A in terms of OPT , we use the fact that OPT (bi) ≥ D(i) and

OPT (bi) =
∑i−1

j=0 κj(bj+1 − bj), both of which come from (1). This last equation is
used in line three of the equations below as is the fact that D(i) ≥ γD(i − 1) for all
i = 1, . . . , k:

A(bi) =

i−1∑
j=0

(
κj(bj+1 − bj) + dj,j+1

)

≤
i−1∑
j=0

κj(bj+1 − bj) +

i∑
j=1

D(j)

≤ OPT (bi) + D(i)

i∑
j=1

γ−(i−j)

≤
(

1 +
γ

γ − 1

)
OPT (bi) =

2γ − 1

γ − 1
· OPT (bi).(2)

This holds for any t, implying a competitive ratio of 2γ−1
γ−1 .

Now suppose the assumption D(i) ≥ γD(i−1) does not hold. We consider a new
offline strategy OPT ′ that uses only a subset of states S′ for which the property does
hold and is a γ-approximation of OPT ; i.e., OPT ′(t) ≤ γ · OPT (t). We now view
our problem as specified by just the states in S′, and we execute strategy A as spec-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMAL POWER-DOWN STRATEGIES 1505

ified above, emulating OPT ′ instead of OPT . We get that A′(t) ≤ 2γ−1
γ−1 OPT ′(t) ≤

γ(2γ−1)
γ−1 OPT (t). Setting γ = 1 + 1√

2
, we get a competitive ratio of 3 + 2

√
2 ≈ 5.8284.

We determine OPT ′ as follows. Let S′ = {sk} initially. Consider the states in S
in reverse order. Let si be the last state added to S′. We find the largest j, 0 ≤ j < i,
such that D(j) ≤ D(i)/γ. We add sj to S′ and continue until no such j exists. Note
that s0 ∈ S′ since D(0) = 0. OPT ′ will execute the optimal offline strategy assuming
that only the states in S′ are available. Consider i, j such that si, sj ∈ S′ and no s�
is in S′ for i < � < j. We have OPT ′(t) = OPT (t) for t ∈ [bi, bi+1) and t ∈ [bj , bj+1).
For � such that i < � < j and time t ∈ [b�, b�+1), OPT ′(t) = min(D(i)+κit,D(j)+κjt)
and OPT (t) = D(�) + κ�t. j was chosen to be the largest value less than i such that
D(j) ≤ D(i)/γ, which means that D(�) > D(i)/γ. Furthermore, since κi ≤ κ�, we
have that

OPT ′(t) ≤ D(i) + κit ≤ γ
(
D(�) + κ�t

)
= γOPT (t),

and OPT ′ is a γ-approximation to OPT .
Theorem 1. There is a (3 + 2

√
2)-competitive strategy for any system.

5. A near-optimal deterministic algorithm. In this section, we turn our
attention to obtaining a near-optimal schedule for a particular system. More precisely,
given a system (K, d) with state sequence S for which the optimal online schedule has
competitive ratio ρ∗, we give an algorithm that returns a (ρ∗ + ε)-competitive online
schedule in time O(k2 log k log(1/ε)). The algorithm is based on a decision procedure
which determines whether a ρ-competitive schedule exists for a given value of ρ.
Theorem 1 establishes an upper bound of 3 + 2

√
2 on the optimal competitive ratio,

so we perform a bisection search in the range [1, 3 + 2
√

2] to find the smallest ρ such
that there exists a ρ-competitive schedule. We also output the resulting schedule.

The following lemma shows that the online strategy must eventually get to a
sufficiently low-power state. Lemma 3 allows us to limit our concern to just the
transition points in any online schedule.

Lemma 2. If A = (S, T) is a ρ-competitive strategy and s� is the last state in S,
then κ� ≤ ρ · κk.

Proof. For the sake of contradiction, assume that κ� > ρ · κk. For A to be ρ-
competitive, the function A(t) must lie entirely below ρ · OPT (t). However, the last
line of ρ · OPT (t) has slope ρ · κk and will therefore intersect the last line of A(t),
which has a larger slope κ�, after which time A(t) will exceed ρOPT (t). This is a
contradiction.

Lemma 3. If a schedule A has finite competitive ratio, then the earliest time

t̄ > 0 at which A(t)
OPT(t) is maximized is a transition point in the strategy A.

Proof. Let ρ = maxt>0
A(t)

OPT(t) . Consider the functions A(t) and ρOPT (t). The

function A(t) never exceeds ρOPT (t), and t̄ is the earliest point at which these two
functions have the same value, not considering the origin. For the sake of contradic-
tion, assume that t̄ is not a transition point in A. So we can find some small ε > 0
such that A(t) is linear in (t̄− ε, t̄+ ε). Since A(t) is strictly less than ρOPT (t) in the
interval (t̄ − ε, t̄) and A(t̄) = ρOPT (t̄), it must be the case that the slope of A(t) is
larger than the slope of ρOPT (t) in this interval. This results in a contradiction, be-
cause A(t) has constant slope over (t̄− ε, t̄+ ε), and ρOPT (t) is a continuous function
with decreasing slope, which means that A(t) > ρOPT (t) for t > t̄.

We now explore ways to restrict the space of schedules we need to consider in
searching for a ρ-competitive schedule. For a strategy A = (S, T), we say that a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1506 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

t t′ TimeTime

Energy Energy

Fig. 2. Energy consumed by the online and optimal strategies as a function of idle period
length. The solid line is ρ ·OPT (t). The dashed line is the online cost. t is the first transition time
that is not eager. t′ shows the transformed strategy which now has an eager transition.

transition at time t ∈ T is ρ-eager (or just eager if ρ is clear from the context) if
A(t) = ρOPT (t). We say that A is a ρ-eager strategy if A(t) = ρOPT (t) for every
t ∈ T . Note that by Lemmas 2 and 3, a ρ-eager strategy that ends at state s such
that κs ≤ ρ · κk is ρ-competitive.

Lemma 4. If A = (S, T) is a ρ-competitive strategy, then there exists an eager
strategy A′ = (S, T ′) that is also ρ-competitive.

Proof. Figure 2 shows a schematic of the proof. The jumps in the online cost
(the dashed line) are transition costs. The solid line is ρOPT (t). The figure shows a
transition time t at which the online cost is less than ρOPT (t). The idea is that we
can slide such a transition time earlier until it hits the function ρOPT (t) .

Consider the earliest transition time T which is not eager. Suppose that A tran-
sitions from state si to state sj at time T . Let T ′ < T be the time of the immediately
preceding transition; if there is no such transition time, then set T ′ = 0. The func-
tion ρOPT (t) −A(t) is continuous in the interval (T ′, T) since A does not have any
transitions in this open interval, and ρOPT (t) − A(t) is 0 at time T ′ and is strictly
greater than di,j at time T − ε for a small enough ε. Let T be the earliest time after
T ′ such that ρOPT (t) −A(t) = di,j , so T < T .

Consider the strategy A′ that is identical to A except that the transition from
si to sj is moved earlier from T to T . We need to argue that A′ is ρ-competitive.
Clearly A′(t) = A(t) for t ∈ [T, T) and A(T) = ρOPT (T). Also A′(T) < A(T) since
A′ transitions earlier to the low-power state sj and hence uses less total energy, and
since the strategies behave the same after time T , A′ will continue to have a lower
cost at all times t > T . To see that A′(t) ≤ ρOPT (t) over the interval (T , T), note
that A′(t) is linear over this interval since A′ remains in state sj . Also ρOPT (t) is
a piecewise-linear concave function since its slope is nonincreasing over time. Thus,
since the points (T ,A′(T)) and (T,A′(T)) both lie on or below this curve, the straight
line connecting them lies under the curve ρOPT (t).

The procedure above can be repeated until all the transitions are eager.
Lemma 5. Suppose a strategy makes a ρ-eager transition to state si at time ti and

next makes a transition to state sj. Using the function ρOPT (t), one can compute
the earliest ρ-eager transition time t̄ to state sj in time O(log k).

Proof. Define the line l(t) = κit + ρOPT (ti) − κiti + di,j . t̄ is the smallest t > ti
such that ρOPT (t) = l(t). If there is no such t, then a ρ-eager transition from si

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMAL POWER-DOWN STRATEGIES 1507

to sj does not exist. Since ρOPT (t) is concave, we have that if l(t) < ρOPT (t), or
if l(t) ≥ ρOPT (t) and the slope of ρOPT (t) is less than or equal to κi, then t̄ ≤ t;
otherwise t̄ ≥ t. These inequalities allow one to do a binary search using the line
segments of ρOPT (t) to determine t̄ if it exists. Let s� be the optimal state (i.e.,
state of OPT (t)) at time ti. Consider the line segments of ρOPT (t) corresponding
to states s� and sk. Recall that b� and bk are, respectively, the left endpoints of these
segments—these are the first time instants at which s� and sk become the optimal
states, respectively. Using the above inequalities, if we determine that t̄ ≥ bk, then t̄
is simply the point of intersection (if it exists) of l(t) with the segment (of ρOPT (t))
corresponding to sk. Otherwise we have a “low” segment with endpoint b� and a
“high” segment with endpoint bk. Now we repeatedly consider the left endpoint of
the segment that is in the middle of the low and high segments, and we use the
above inequalities to update the low or high segment and the corresponding endpoint
accordingly, until the endpoints of the low and high segments correspond, respectively,
to the left and right endpoints of a segment of ρOPT (t). When this happens we can
compute t̄ by finding the intersection point (if it exists) of l(t) and this segment. The
binary search can be implemented in time log k, where k is the number of segments
(i.e., number of states).

Lemma 4 immediately gives an algorithm that is exponential in k, the number
of states, and determines whether a ρ-competitive strategy exists for the system.
This algorithm enumerates all subsequences of states and determines the ρ-eager
strategy for that subsequence by finding the eager transition to each state based on
the eager transitions to the previous states as described in the proof of Lemma 5.
A ρ-competitive strategy for the system exists if and only if one of these ρ-eager
strategies is ρ-competitive (i.e., ends at a state s with κs ≤ ρ · κk). The remainder of
this section presents a way to remove the exponential dependence on k.

Let S = 〈s0, s1, . . . , sk〉 be a sequence of states that form a system. Define Ssi→sj

to be the contiguous subsequence 〈si, . . . , sj〉, where si and sj are elements of S such
that i < j. Let Ψs be the set of subsequences of Ss0→s that include s0 and s such that
for each ψ ∈ Ψs, one can find transition times for the state sequence ψ so that in the
resulting schedule, each transition up to and including the transition to state s is a
ρ-eager transition. For a state q ∈ ψ, we will use tψ,q to denote this ρ-eager transition
time to q for the sequence ψ. (Note that ψ uniquely determines the transition times
tψ,q.)

We define the earliest transition time E(s, ρ) of state s for the given system as
E(s, ρ) = minψ∈Ψs tψ,s; that is, E(s, ρ) is the earliest time at which any online strategy
can transition to state s while remaining ρ-eager over all its transitions up to (and
including) the transition to state s. Observe that if there is ρ-competitive strategy
that uses state s, then by Lemma 4, there is such a ρ-eager strategy, so Ψs �= φ and
E(s, ρ) is well defined. We call a transition to state s ρ-early (or simply early) if it
happens at time E(s, ρ). A strategy that consists entirely of early transitions is called
a ρ-early strategy.

Lemma 6. If there is a ρ-competitive strategy A = (S, T), then there is an eager
and early ρ-competitive strategy.

Proof. Let s be the last state in S. Consider the sequence ψ ∈ Ψs such that
tψ,s = E(s, ρ) and the strategy π uses only the states in ψ, transitioning to state
q ∈ ψ at time tψ,q, i.e., π =

(
ψ, {tψ,q}q∈ψ

)
. Since A is ρ-competitive, it must be that

κs ≤ ρκk and since π by definition has all ρ-eager transitions and ends in state s, it
is also ρ-competitive. We now argue that π is an early strategy. Note that π was
chosen so that the transition to state s is ρ-early. We have to show that the remaining

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1508 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

transitions of π are also ρ-early.

Suppose not. Consider the latest transition that is not ρ-early. Suppose this
happens for state r (�= s), so T = tψ,r > E(r, ρ). Let r′ be the state just after r
in sequence ψ. Let ψ′ ∈ Ψr be the sequence for which tψ′,r = E(r, ρ) = T ′. T ′ is
the earliest time that a ρ-eager schedule can transition to state r and the sequence of
states in this schedule is given by ψ′. Consider the hybrid strategy π′ that uses the
states in ψ′ followed by the states in ψ that appear after r, with the transition times
being tψ′,q for q ∈ ψ′ and tψ,q for q ∈ ψr′→s. Strategy π transitions to state r at time
T and strategy π′ transitions to state r at time T ′ < T . Both of these transitions are
eager transitions. Both strategies are in state r at time T and make the same state
transitions thereafter. Thus, for any t ≥ T , π(t)−π(T) = π′(t)−π′(T). In particular,
both strategies transition to r′ (the state after r) at time tψ,r′ = E(r′, ρ) = T ′′. Using
the equation above we have that π′(T ′′) = π(T ′′) −

(
π(T) − π′(T)

)
. We will show

that π′(T) < π(T), which implies, in particular, that π′(T ′′) < π(T ′′). So in π′ the
transition to r′ is no longer ρ-eager. Arguing as in Lemma 4 this means that we
can shift the transition to r′ to get an eager transition at an earlier time. But this
contradicts the assumption that the transition to state r′ at time T ′′ was an early
transition.

We now prove that π′(T) < π(T). This proof is illustrated in Figure 3. The
transitions to state r in schedules π and π′ are eager transitions, so both the points
(T ′, π′(T ′)) and (T, π(T)) lie on the ρOPT (t) curve. Since π(t) < ρOPT (t) for all
t, the the slope of ρOPT (t) at time T is at least κr, the slope of π(t) at time T ,
and strictly greater since the gap between ρOPT (t) and π(t) must accommodate the
transition cost from state r to r′ at time T ′′. The concavity of ρOPT (t) implies
that its slope is greater than κr over the interval [T ′, T]. So π(T) = ρOPT (T) >
ρOPT (T ′) + κr(T − T ′) = π′(T), where the last inequality follows since π′ stays in
state r in the interval [T ′, T].

p′

p

T

T ′

Fig. 3. The solid line is ρ · OPT . The dashed line is the schedule π′ from Lemma 6, and the
dashed/dotted line is π. The point labeled p is (T, π(T)), and p′ is (T ′, π′(T ′)). The idea is to show
that at time T , π′ has a lower cost than π.

From Lemma 6 we can deduce that we need only to consider a specific early and
eager schedule, the one that is determined by the E(., ρ) values, to determine if a
ρ-competitive strategy exists. We can now define a decision procedure EXISTS that
takes a system and a constant ρ and outputs YES if a ρ-competitive strategy exists

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMAL POWER-DOWN STRATEGIES 1509

for the system, and NO otherwise. The procedure can be modified to also output a
ρ-competitive strategy (if it exists). We employ a dynamic programming approach
to calculate E(si, ρ) for 0 < i ≤ k. We always start with the high-power state, and
hence E(s0, ρ) = 0. Suppose we have computed E(sj , ρ) for all j = 0, . . . , i−1. Let tj
be the earliest time at which the system ρ-eagerly transitions from sj to si given that
the transition to sj is ρ-eager and occurs at time E(sj , ρ). If such a transition is not
possible, then we assign tj = ∞. We can compute tj in O(log k) time as described in
Lemma 5. Then, E(si, ρ) = minj<i tj . Determining each E(si, ρ) requires examining
j different possibilities, so finding all the early transition times for all states takes
time O(k2 log k). By Lemma 2, we know that if E(si, ρ) is finite for some state si,
where κi ≤ ρ · κk, we know that a ρ-competitive strategy exists. One can quickly
elicit the schedule by starting from state k and retracing the states that minimized
the earliest transition time. We use the procedure EXISTS to do a bisection search
in the interval [1, 3 + 2

√
2] and find a ρ-competitive strategy where ρ ≤ ρ∗ + ε. The

total time taken is O(k2 log k log(1/ε)).
We now turn our attention to adapting this dynamic programming technique to

solve PD(k,m), where a bound of m is specified on the number of states that can
be used by the online algorithm. We introduce a new parameter b, modifying our
function to E(si, ρ, b), where 0 ≤ b ≤ min(i,m). The intuition is that function E is
now required to return the earliest time when the system can transition to state si
while staying entirely below ρOPT (t) and using at most b+1 states from 〈s0, . . . , si〉.
The base case is E(s0, ρ, b) = 0 for all b ≥ 0. Intuitively, E(si, ρ, b) is determined by
the “best” state sj prior to si such that at most b − 1 states were used to reach sj .
Notice that for any given state si and fixed ρ, E(sj , ρ, b) is nonincreasing as b increases.
Therefore, as above we can write E(si, ρ, b) = minj<i t

′
j , where t′j is the earliest time

when the system ρ-eagerly transitions from sj to si given that the transition to sj
was ρ-eager and occurred at E(sj , ρ, b− 1). The running time increases by a factor of
m now and is O(k2m(log k) log(1/ε)).

6. A probability-based algorithm. Karlin et al. study the two-state case
when the length of the idle period is generated by a known probability distribution
p [8]. (Although they examined the problem in the context of the spin-block problem,
their problem is identical to our two-state case.) They observed that the expected
cost of the online strategy that makes the transition to the sleep state at time T is

(3)

∫ T

0

p(t)(κ0t)dt +

∫ ∞

T

p(t)
(
κ0T + κ1(t− T) + β

)
dt,

where κ0 is the power-consumption rate in the active state, κ1 is the power-consump-
tion rate in the sleep state, and β is the transition cost between the two states. The
online strategy then should select the transition time T that minimizes this cost.

The multistate case presents two distinct challenges. The first is to determine
the optimal sequence of states through which an online strategy should transition
throughout the course of the idle period. Then, once this sequence has been deter-
mined, the optimal transition times need to be determined. Our proof proceeds by
establishing that the only transition times that need to be considered are the optimal
transition times for two-state systems. Suppose, for example, that we are considering
a sequence of state transitions in which state si is followed by state sj . Let Ti,j denote
the optimal transition time from state si to sj if these were the only two states in
the system (that is, if si were the active state and sj were the only sleep state). Note
that Ti,j can be determined by the expression above. We establish that regardless of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1510 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

the rest of the sequence, the optimal transition point from state si to sj is Ti,j . We
call the Ti,j ’s the pairwise-optimal transition times.

Lemmas 7 and 8 establish that the pairwise-optimal transition times happen in
the right order. That is, for i < k < j, Ti,k ≤ Tk,j . If this is not the case, then any
subsequence that has si followed by sk followed by sj cannot possibly be the best
sequence of states. Note that the Ti,j ’s may not necessarily be unique. In general,
we will select the earliest transition time that minimizes the cost for the two-state
system.

Lemma 9 then shows that as long as the pairwise-optimal transition times are
in the right order, they give the globally optimal set of transition times for that
subsequence. Our algorithm then uses this fact to find the optimal sequence of states
by dynamic programming. Note that it is not necessary to exhaustively consider all
possible subsequences.

6.1. Optimal transition times. Consider a particular subsequence of l + 1
states sa0 , . . . sal

. In order to avoid the double subscripts, throughout this subsection
we will rename our subsequence q0, q1, . . . , ql. Since the strategy must start in state
s0, we can assume that q0 = s0. For i < j, define βi,j to be the cost to transition
from state qi to state qj , that is, βi,j = dai,aj . Furthermore, we will refer to the
power-consumption rate of state qi as αi, that is, αi = κai .

We will consider the strategy that transitions through the states in the subse-
quence q0, q1, . . . , ql. Suppose that we use transition time Ti to transition from state
qi−1 to state qi. It will be convenient for notation to define Tl+1 = ∞ and T0 = 0.
The cost of the strategy that uses these transition times is

cost(T1, . . . , Tl) =

l+1∑
j=1

∫ Tj

Tj−1

p(t)αj−1(t− Tj−1)dt(4)

+

l∑
j=1

∫ ∞

Tj

p(t)
(
αj−1(Tj − Tj−1) + βj−1,j

)
dt.

The goal is to pick the T1, . . . , Tl so as to minimize the above cost. This is the optimal
cost for the subsequence q0, . . . , ql.

For each i ∈ {1, . . . , l}, let γi = αi−1−αi

βi−1,i
.

Lemma 7. Suppose that there is an i < j such that γi < γj; then there is a strict
subsequence of q0, . . . , ql whose optimal cost is no greater than the optimal cost for
q0, . . . , ql.

Proof. Consider the first j such that γj−1 < γj . Let (t̄1, . . . t̄j−1, t̄j , . . . , t̄l) be the
sequence of thresholds that minimizes the cost of this sequence of states. Define the
following quantities:

Fj−1,j = cost(t̄1, . . . t̄j−2, t̄j−1, t̄j , t̄j+1 . . . , t̄l),

Fj−1,j−1 = cost(t̄1, . . . t̄j−2, t̄j−1, t̄j−1, t̄j+1 . . . , t̄l),

Fj,j = cost(t̄1, . . . t̄j−2, t̄j , t̄j , t̄j+1 . . . , t̄l).

We will show that Fj−1,j is greater than or equal to a weighted average of Fj−1,j−1

and Fj,j , which means that it must be greater than or equal to at least one of these
values. This means that the strategy that transitions from state qj−2 to state qj−1

and then immediately transitions to state qj at time either t̄j−1 or t̄j is at least as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMAL POWER-DOWN STRATEGIES 1511

good as the original strategy. Since βj−2,j ≤ βj−2,j−1 + βj−1,j , skipping state j − 1
altogether can only improve the strategy.

Below we have an expression for Fj,j − Fj−1,j which can be derived from the
definition for the cost in (4). Under Fj,j the transition from state qj−2 to state qj−1

is moved forward from time t̄j−1 to time t̄j . Any time spent in the interval [t̄j−1, t̄j]
happens at the higher-power rate of αj−2 instead of αj−1. This is accounted for in
the first two terms of the sum. However, idle times ending in the interval [t̄j−1, t̄j]
save on the transition cost, which is accounted for in the last term below:

Fj,j−Fj−1,j =

∫ t̄j

t̄j−1

p(t)(t−t̄j−1)(αj−2−αj−1)dt+

∫ ∞

t̄j

p(t)(t̄j−t̄j−1)(αj−2−αj−1)dt

−
∫ t̄j

t̄j−1

βj−2,j−1p(t)dt.

Dividing by (αj−2 − αj−1), this becomes

(5)
Fj,j − Fj−1,j

αj−2 − αj−1
=

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)dt+

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)dt−
∫ t̄j

t̄j−1

1

γj−1
p(t)dt.

Below, we use the definition of cost in (4) to get an expression for Fj−1,j − Fj−1,j−1.
Note that in Fj−1,j−1, the transition from state qj−1 to state q is moved back from
time t̄j to time t̄j−1. Thus, Fj−1,j will spend αj−1 −αj more power than Fj−1,j−1 for
any time spent in the interval [t̄j−1, t̄j]. Furthermore, Fj−1,j−1 will have an additional
transition cost of βj−1,j for those intervals that end in the period [t̄j−1, t̄j]:

Fj−1,j−Fj−1,j−1 =

∫ t̄j

t̄j−1

p(t)(t−t̄j−1)(αj−1−αj)dt+

∫ ∞

t̄j

p(t)(t̄j−t̄j−1)(αj−1−αj)dt

−
∫ t̄j

t̄j−1

βj−1,jp(t)dt.

Dividing by (αj−1 − αj), this becomes

(6)
Fj−1,j − Fj−1,j−1

αj−1 − αj
=

∫ t̄j

t̄j−1

p(t)(t−t̄j−1)dt+

∫ ∞

t̄j

p(t)(t̄j−t̄j−1)dt−
∫ t̄j

t̄j−1

1

γj
p(t)dt.

Comparing, (5) and (6), the expressions are almost identical except for the γ in

the last term. Since γj−1 < γj and
∫ t̄j
t̄j−1

p(t)dt ≥ 0, we have that

Fj,j − Fj−1,j

αj−2 − αj−1
≤ Fj−1,j − Fj−1,j−1

αj−1 − αj
.

Let ω1 = 1/(αj−2 − αj−1) and ω2 = 1/(αj−1 − αj). Note that both ω1 and ω2 are at
least 0. Rearranging, we get that(

ω1

ω1 + ω2

)
Fj,j +

(
ω2

ω1 + ω2

)
Fj−1,j−1 ≤ Fj−1,j .

Now suppose that we consider only the two-state system consisting of state qi−1

and state qi. We will let τi denote the optimal threshold time if these are the only
two states in the system. We have that τi is the time T that minimizes∫ T

0

p(t)αi−1tdt +

∫ ∞

T

p(t)
(
αi−1T + αi(t− T) + βi−1,i

)
dt.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1512 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

Note that the value of T that results in the minimum above may not be unique. In
this case, we take τ to be the smallest value which achieves the minimum. Also note
that, by subtracting the term

∫∞
0

p(t)αitdt (which is independent of T) and dividing
by βi−1,i in the above definition, it can be seen that τi = arg minT f(γi, T), where

f(γ, T) =

∫ T

0

p(t)γtdt +

∫ ∞

T

p(t)(γT + 1)dt.

Note that for a two-state system whose active state and sleep states have power-
consumption rates of γ and 0, respectively, and whose transition cost is 1, f(γ, T)
denotes the expected power consumed by an online strategy that transitions to the
sleep state at time T . We will show that for a particular subsequence of states, if
we minimize the cost over all choices for the thresholds, the resulting thresholds are
those obtained by the pairwise optimization above. First, however, we must establish
that the τi values have the correct ordering.

Lemma 8. If γi > γi+1, then τi ≤ τi+1.

Proof. Intuitively, γi is the ratio of the additional power cost of being in state
qi instead of state qi−1 over the transition costs between the two states. It stands to
reason that the larger this cost is, the sooner one would want to transition from state
qi−1 to state qi.

We will formalize this argument using a proof by contradiction. Suppose that we
have τi > τi+1 and γi > γi+1. The proof will make use of the definition of f(γ, T)
given above. τi is the smallest value for T which attains the minimum of f(γi, T).
Since τi+1 < τi, we know that f(γi, τi+1) > f(γi, τi). By the definition of τi+1, we
have that f(γi+1, τi) ≥ f(γi+1, τi+1). Thus, it should be the case that

(7) f(γi+1, τi) − f(γi+1, τi+1) ≥ 0 > f(γi, τi) − f(γi, τi+1).

Using the definition of f(γ, T) above, for any T1 < T2,

f(γ, T2) − f(γ, T1) = γ

[∫ T2

T1

p(t)(t− T1)dt +

∫ ∞

T2

p(t)(T2 − T1)dt

]
−
∫ T2

T1

p(t)dt.

The quantity inside the square braces above is nonnegative. This implies that the
quantity f(γ, T2)−f(γ, T1) is nondecreasing in γ. This, however, contradicts inequal-
ity (7) and the fact that γi > γi+1.

Finally, we prove the main lemma which states that the transition times are
simultaneously optimized at the pairwise-optimal transition points.

Lemma 9. For a given subsequence of states q0, . . . , ql, if τi−1 < τi for all i ∈
{1, . . . , l}, then the minimum total cost is achieved for cost(τ1, . . . , τl).

Proof. The basic idea is that we can interpret cost(T1, . . . , Tl) −
∫∞
0

p(t)αltdt as
the sum of the power consumed in l two-state systems, where the ith system (for
i = 1, . . . , l) has states whose power-consumption rates are (αi−1 − αi) and 0, and
the cost to transition between the two is βi−1,i. Note that

∫∞
0

p(t)αltdt is a constant,
independent of the choice of Ti’s. After rescaling, one can write this expression as
a linear combination of the f(γi, Ti) terms. Since τi minimizes f(γi, T), and the
τi values have the right ordering, this implies that cost(T1, . . . , Tl) is minimized by
setting Ti = τi for i = 1, . . . , l.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMAL POWER-DOWN STRATEGIES 1513

We will establish below that we can rewrite (4) as follows:

(8) cost(T1, . . . , Tl) =

∫ ∞

0

p(t)αltdt

+
l∑

i=1

[∫ Ti

0

p(t)(αi−1 − αi)tdt +

∫ ∞

Ti

p(t)
(
(αi−1 − αi)Ti + βi−1,i

)
dt

]
.

So, by rescaling, we get that

cost(T1, . . . , Tl) −
∫ ∞

0

p(t)αltdt =

l∑
i=1

βi−1,if(γi, Ti).

We want to choose T1 ≤ · · · ≤ Tl to minimize this expression. Since τ1 ≤ · · · ≤ τl and
each τi = arg minT f(γi, T) it follows that the minimum is attained by setting Ti = τi
for each i.

To complete the proof we show the equivalence of (4) and (8). It suffices to
show that (4) and (8) integrate the same expression over each interval [Ti−1, Ti) for
i = 1, . . . , l + 1. The integrand in (4) over the interval [Ti−1, Ti) is

p(t)

[
αi−1(t− Ti−1) +

i−1∑
j=1

(
αj−1(Tj − Tj−1) + βj−1,j

)]
,

and the integrand in (8) is

(9) p(t)

[i−1∑
j=1

(
(αj−1 − αj)Tj + βj−1,j

)
+
(l∑
j=i

(αj−1 − αj) + αl

)
t

]
.

The summations over the j indices in (9) telescope to show that the two expressions
are identical.

6.2. The optimal state sequence. We now present a simple polynomial time
algorithm to obtain the optimal state sequence for a given system. First, for each
pair (i, j), 0 ≤ i < j ≤ k, let Ti,j denote the optimal transition point if si and sj
were the only two states in the system. The time complexity of determining a single
Ti,j depends on the representation of the probability distribution. In practice, this is
most likely to be estimated by a finite histogram with B bins starting at time 0 and
sampled at a uniform discrete interval of δ. It follows that bin i corresponds to time
δi. It is not difficult to generalize this for variable-sized bins. We will also assume
that all transition times occur at some δi. The height of bin i is H(i), and this implies

that the probability that the idle time t equals δi is given by H(i)∑
i H(i) . In Algorithm 1,

we calculate ACC [i] and ACCT [i] values, which are
∫ iδ

0
p(t)dt, and

∫ iδ

0
tp(t)dt and we

then use them to evaluate Ti,j values. We can rewrite the expression for the cost of a
two-state system in (3) as

κi

∫ T

0

p(t)tdt + κj

∫ ∞

T

p(t)tdt +
(
(κi − κj)T + βi,j

)∫ ∞

T

p(t)dt.

We also denote
∫ Bδ

0
p(t)dt and

∫ Bδ

0
tp(t)dt as TOTAL and TOTALT , respectively.

Using the precalculated values above, the cost of transitioning from state si to state
sj at time δl is

κi · ACCT [l] + (κilδ − κj lδ + βi,j)(TOTAL − ACC [l]) + κj(TOTALT − ACCT [l]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1514 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

Algorithm 1. Evaluating Ti,j values.

ACC [0] ← H[0]
ACCT [0] ← 0
for k = 1 to B do

ACC [k] ← ACC [k − 1] + H[k]
ACCT [k] ← ACC [k − 1] + H[k] × k · δ

end for
TOTAL ← ACC [B]
TOTALT ← ACCT [B]
for all (i, j) pairs such that 0 ≤ i < j ≤ k do

min← ∞, argmin ← −1
for l = 0 to B − 1 do
val = κi · ACCT [l] + (κilδ − κj lδ + βi,j)(TOTAL − ACC [l])

+κj(TOTALT − ACCT [l])
if val < min then

min ← val
argmin ← l

end if
end for
Ti,j ← argmin · δ

end for

Once the Ti,j ’s are found, we sweep through them in nondecreasing order, keeping
a running tab of the best subschedules that we can achieve ending in each state si at
each point in time. When we encounter a Ti,j , we check to see if transitioning from si
to sj can improve the current best subschedule ending in sj , and if it does, we update
our data structure to reflect it.

A given strategy divides time into intervals, where each interval is the period
of time spent in a particular state. The expected cost for a strategy given in (4) is
obtained by summing over the expected cost incurred in each interval. The cost for
each interval is divided into two parts, which results in two separate summations in
(4). We define the function Q for the first term, which is

Q(ts, j, tf) =

∫ tf

ts

p(t)κi(t− ts)dt.

This is the expected cost of staying in state si in the interval [ts, tf) for those idle
periods whose length is also in the interval [ts, tf). Define

R(i, ts, j, tf) =

∫ ∞

tf

p(t)
(
αi(tf − ts) + βi,j

)
dt.

This is the expected cost for those intervals longer than tf of staying in state si over
the time period [ts, tf) and then transitioning to state sj . Note that Q(δli, j, δlj)
and R(i, δli, j, δlj) can both be evaluated in constant time given ACC [li], ACC [lj],
ACCT [li], and ACCT [lj] defined above.

At each transition Ti,j , we check to see if the current best schedule that ends in
state sj can be improved by transitioning to j from the current best schedule that
ends in state si. For this purpose, we maintain two arrays of size k+1: t[i] is the time

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMAL POWER-DOWN STRATEGIES 1515

at which the current best schedule that ends at state si transitions to si, and h[i] is
the cost at t[i] of that schedule. Initially, h[0] ← 0 and all other h[i] ← ∞. t[i] for all
i can be initialized to 0. In Procedure 2, we provide the pseudocode for processing at
each transition point Ti,j .

Procedure 2. Processing Ti,j in the line sweep algorithm.

Current Status: Ti,j is the transition point that is being processed
{The cost up to time Ti,j if transitioning from i to j at Ti,j}
h1 ← h[i] + Q(t[i], j, Ti,j) + R(i, t[i], j, Ti,j)
{The cost up to time Ti,j if transitioning to j at the current best time of t[j]}
h2 ← h[j] + Q(t[j], j, Ti,j) + R(j, t[j], j, Ti,j)
if h1 < h2 then
h[j] ← h1
t[j] ← Ti,j

end if

It is easy to see that each transition point takes a constant amount of processing.
The sorting takes an overhead of O(k2 log k). The initial preprocessing to calculate
the transition points takes O(k2B). Hence, the total running time is O(k2(log k+B)).

The algorithm can be easily extended to find the algorithm that minimizes the
expected cost subject to the constraint that only m states are ever reached. We
maintain t[i, b] and h[i, b] for all states si and b < min{m, i}. These are the best time
and energy required to reach state i subject to at most b states being reached. The
algorithm is given below in Procedure 3.

Procedure 3. Processing Ti,j in the line sweep algorithm with the number of states
constrained.

Current Status: Ti,j is the transition point that is being processed
for b = 1 . . . j − 1 do
h1 ← h[i, b− 1] + Q(t[i, b− 1], j, Ti,j) + R(i, t[i, b− 1], j, Ti,j)
h2 ← h[j, b] + Q(t[j, b], j, Ti,j) + R(j, t[j, b], j, Ti,j)
if h1 < h2 then
h[j, b] ← h1
t[j, b] ← Ti,j

end if
end for

REFERENCES

[1] C. Anderson and A. Karlin, Two adaptive hybrid cache coherency protocols, in Proceedings
of the Second International Symposium on High-Performance Computer Architecture, San
Jose, CA, 1996, pp. 303–313.

[2] Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Rosen, On capital
investment, Algorithmica, 25 (1999), pp. 22–36.

[3] L. Benini, A. Bogliolo, and G. De Micheli, A survey of design techniques for system-level
dynamic power management, IEEE Trans. Very Large Scale Integration (TVLSI) Systems,
8 (2000), pp. 299–316.

[4] P. Damaschke, Nearly optimal strategies for special cases of on-line capital investment, The-
oret. Comput. Sci., 302 (2003), pp. 35–44.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1516 JOHN AUGUSTINE, SANDY IRANI, AND CHAITANYA SWAMY

[5] S. J. Eggers and R. H. Katz, Evaluating the performance of four snooping cache coherency
protocols, in Proceedings of the 16th Annual International Symposium on Computer Ar-
chitecture, ACM, New York, 1989, pp. 2–15.

[6] S. Irani, R. Gupta, and S. Shukla, Competitive analysis of dynamic power management
strategies for systems with multiple power savings states, in Proceedings of the IEEE Con-
ference on Design, Automation and Test in Europe, IEEE Computer Society, Washington,
DC, 2002, p. 117.

[7] S. Irani, S. Shukla, and R. Gupta, Online strategies for dynamic power management in
systems with multiple power saving states, Trans. on Embedded Computing Sys., Special
Issue on Power Aware Embedded Computing, 8 (2003), pp. 325–346.

[8] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki, Randomized competitive algorithms
for non-uniform problems, in Proceedings of the ACM–SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 1990, pp. 301–309.

[9] A. R. Karlin, C. Kenyon, and D. Randall, Dynamic tcp acknowledgement and other sto-
ries about e/(e − 1), in Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing, ACM, New York, 2001, pp. 502–509.

[10] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki, Empirical studies of competitve spin-
ning for a shared-memory multiprocessor, in Proceedings of the 13th ACM Symposium on
Operating Systems Principles, ACM, New York, 1991, pp. 41–55.

[11] S. Keshav, C. Lund, S. Phillips, N. Reingold, and H. Saran, An empirical evaluation of
virtual circuit holding time policies in ip-over-atm networks, IEEE J. Selected Areas in
Communications, 13 (1995), pp. 1371–1382.

