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Abstract: Optimal power flow (OPF) is one of the most significant electric power network control and
management issues. Adding unreliable and intermittent renewable energy sources to the electrical
grid increase and complicates the OPF issue, which calls for using modern optimization techniques to
solve this issue. This work presents the optimal location and size of some FACTS devices in a hybrid
power system containing stochastic wind and traditional thermal power plants considering OPF. The
FACTS devices used are thyristor-controlled series compensator (TCSC), thyristor-controlled phase
shifter (TCPS), and static var compensator (SVC). This optimal location and size of FACTS devices
was determined by introducing a multi-objective function containing reserve costs for overestimation
and penalty costs for underestimating intermittent renewable sources besides active power losses.
The uncertainty in the wind power output is predicted using Weibull probability density functions.
This multi-objective function is optimized using a hybrid technique, gradient-based optimizer (GBO),
and moth–flame optimization algorithm (MFO).

Keywords: optimal power flow; wind power; FACTS devices; transmission line; hybrid technique;
gradient-based optimizer and moth–flame optimization algorithm

1. Introduction

Electrical utilities always strive to find the best solutions for scheduling generation
to lower the cost of production and satisfy safe and reliable operating restrictions and
power transmission restrictions. Optimal Power Flow (OPF) is a non-linear, complicated
optimization technique. The main objective of the OPF problem is to reach the best
scheduling of control variables to decrease power losses and fuel cost, taking into account
the achievement of the permissible limits in the system [1–3]. The OPF issue was developed
utilizing a multi-objective function subject to set of constraints. The goal of OPF issue is
to piecewise optimize a function with one or several objectives, such as gasoline cost, fuel
cost reduction due to the valve-point impact, voltage profile enhancement, decrease of
emissions, and stability of voltage, while taking limitations on equality and inequality into
account. Controls variables in the OPF issue are transformer tap ratios, active or reactive
power of generators, and bus voltages, whereas state variables are reactive power of the
output generator and voltage of the load bus [4,5]. In optimization problems, different
methods were created to solve OPF. Initially, a variety of mathematical methodologies were
used, including interior point [6], linear programming [7], and Newton Raphson [8], to
address the OPF problem. However, the results of these approaches were far from ideal,
particularly for complex and large systems, and high-dimensional problems are tough

Mathematics 2022, 10, 361. https://doi.org/10.3390/math10030361 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030361
https://doi.org/10.3390/math10030361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9505-5386
https://orcid.org/0000-0003-1754-4883
https://orcid.org/0000-0002-6531-5455
https://orcid.org/0000-0001-7354-1367
https://doi.org/10.3390/math10030361
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030361?type=check_update&version=3


Mathematics 2022, 10, 361 2 of 31

to solve. These approaches have some drawbacks, such as a tendency to converge to
local optimums and a lengthy computation time. Furthermore, because of their non-linear
properties, these approaches are ineffective for issues involving valve-point effects. As a
result, heuristic techniques have largely superseded traditional mathematical methods for
solving electric power system issues. Heuristic methods for issue resolution can deliver
more effective and fast answers when compared to traditional techniques. Heuristic
approaches are frequently influenced by natural laws, biological characteristics, or observed
collective behavior. Various heuristic methods have recently been developed, such as krill
herd algorithm (KHA) [9], moth swarm algorithm (MSA) [10], grey wolf optimization
with pattern search (GWO-PS) [11], salp swarm optimizer (SSO) [12], modified rao-2
algorithm [13], a joint self-adaptive particle swarm optimization (SPSO), and differential
evolution algorithms [14], and employed in the OPF problem’s solution. In 2002 [15],
the author employed the PSO to minimize overall cost, voltage enhancement, as well
as voltage stability in IEEE 30-bus system. In 2003 [16], the author used the simulated
annealing (SA) approach to reduce fuel costs in IEEE 30-bus systems. In 2004, the GA [17]
was used to reduce the cost of gasoline in an IEEE 30-bus system. In 2012, the author
used the GSA to minimize fuel cost, voltage profile improvement, and voltage stability
in IEEE 30- and 57-bus systems. In 2015 [18], the author used the chaotic krill swarm
algorithm (CKSA), while in 2017, different objectives were decreased, such as fuel cost,
power loss, and emissions, using moth swarm algorithm (MSA) [10]. Fossil fuels utilized
for the production of electricity in electric power networks have now reached the end of
their useful life. Furthermore, hydrocarbons are to blame in order to reduce greenhouse gas
emissions, which are created by CO2, NO2, and SO2, which contribute to global warming
issues. A global majority has agreed to reduce emissions because of rising environmental
consciousness and economic concerns [19]. Wind energy is a popular renewable energy
source because it is long-lasting, ecologically benign, and cost-effective [20,21]. It has
significant benefits in terms of lowering fuel costs and reducing pollutants. However,
in this analysis, noise pollution and investment expenses were not taken into account.
Wind power has now been included in the answer to the OPF problem by researchers.
In 2015 [22], the authors solved the OPF challenge by employing the modified bacteria
foraging algorithm (MBFA) to combine wind and fossil fuel generation units [20], while
in 2016 [23], the author integrated wind units into an IEEE 14-bus system, and the OPF
issues were handled using quadratic programming. Despite all of this development, the
wind speed is unpredictably variable is a major issue. The weibull probability distribution
function (PDF) is widely employed in long-term distribution problems for wind speed
calculation [19]. In the operation of electric power systems, a lack of reactive power
produces issues, such as voltage drop, variations in voltage, and voltage collapse, and
voltage instability in severe circumstances. There are numerous options for dealing with
the aforementioned situations; to mention a few, employing reactive power compensation
and load shedding is used, which is less compatible than reactive power injection methods.
Furthermore, generators and capacitor banks generate reactive power that is extremely
sluggish to adjust to unexpected variations in load level. FACTS devices technology may
be an appropriate option in this case. FACTS devices can help electric networks in a variety
of ways, including lowering power losses, voltage stability enhancement, and improving
the security of the network [24,25]. FACTS devices are extremely beneficial to a power grid;
including them in OPF issues increases the difficulty of finding a good solution. To this
purpose, the majority of methodologies in the papers to resolve the OPF issue using FACTS
devices are based on heuristic and metaheuristic algorithms [26,27], with a quick overview
of this set of algorithms given below: hybrid particle swarm optimization, particle swarm
optimization (PSO) and adaptive GSA [28], krill herd algorithm (KHA) [29], fuzzy harmony
search algorithm (FHSA) [30], bAT search algorithm [31], self-adaptive DE (SADE) [32],
and symbiotic organisms search (SOS) algorithm [33]. Many attempts have been made
in recent decades to identify effective techniques due to the significant nonlinearity of
optimum power flow (OPF), and the inclusion of unpredictable and intermittent renewable
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sources into the electrical network increases the problem’s complexity; in this paper, the
authors suggest machine learning (ML), improved salp swarm algorithm (ISSA), deep
belief network (DBN), and combining chaotic particle swarm optimizer and gravitational
search algorithm to solve the OPF problem [34–37], respectively. In practice, power plants
face a number of practical limits, two of which include the valve-point impact and various
fuels option; however, in order to arrive at a more realistic solution, certain constraints
must be considered, and each is discussed further below [38]:

1. To begin, power plants can be powered by a number of fuels, including fossil, natural
gas, and so on. As a result, it is possible to utilize various cost coefficients for different
fuels.

2. In thermal power plants, a large number of valves are employed to regulate steam
flow and unit output power. It is worth noting that opening the steam-admission
valves can cause rapid variations in active power losses. In addition, it adds additional
ripples to the cost function of generators as a result of the abrupt increase in active
power losses.

However, we can summarize the main contribution of the paper as follows:

• Presenting and employing a novel proposed meta-heuristic methodologies for a trans-
mission system with unexpected wind power and FACTS devices.

• Thermal power and wind power cost models are presented in this paper in detail.
• The models of three facts devices (TCSC, TCPS, and SVC) are presented in this paper

in detail.
• This paper proposes a meta-heuristic optimization technique known as hybrid gradient-

based optimizer and moth-flame optimization algorithm (GBO-MFO) technique to
minimize the generation cost, reduce the power losses, minimize the cost and power
losses, and compare with three other techniques (GBO, MFO, SMA, and CFA).

• Four cases are studied in this paper with the following aims: minimizing the generation
cost, reducing the power losses, minimizing the cost and power losses, and minimizing
the cost and power losses with uncertain load demand.

• Three facts devices are incorporated in the IEEE 30-bus (TCSC, TCPS, and SVC), and
the location and rating of three types of FACTS devices are optimized in case studies
with objectives of minimizing cost and system real power loss.

In this paper, our study explores an appropriate model of wind power and optimizes
the placement of different FACTS devices (SVC, TCSC, and TCPS). The rating and position
of these devices are adjusted to reduce the cost of production in addition to minimizing the
active power loss. hybrid gradient-based optimizer (GBO) and moth-flame optimization
algorithm (MFO) technique are used to carry out the optimization.

The remainder of the paper is laid out as follows: Section 2 includes cost models for
both thermal and wind generation. The problem of the placement of the FACTS devices in a
wind-powered network is formulated in Section 3. Meanwhile, in Section 4, the objective of
the optimization is studied. The proposed GBO-MFO algorithms are introduced in Section 5.
Case studies, simulation results, and detailed comparisons are given in Section 6. Section 7
shows the discussion of the results. Finally, the conclusion of this study is presented in
Section 8.

2. Thermal Unit Fuel or Generating Costs

For fossil-fuel-burning thermal units, a quadratic cost model is typically used. The
thermal unit’s generation cost in dollars per hour ($/h) is presented as follows:

CT1j=(PTGj)
= aj+ bjPTGj + Cj PTGj

2 (1)

where the cost coefficients aj; bj and Cj refer to the thermal generator that produces PTGj,
which is provided in Table 1. Several nozzle groups control the steam, which is pumped
into the turbines of thermal power plants, and a substantial increase in fuel costs is noticed
due to the influence of wire pulling. This is explained by adding ripples to the cost curve,
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taking into account the valve-point loading effect; the generation cost of thermal power
plants is:

CT2j
(

PTGj
)
= aj+ bjPTGj + Cj PTGj

2 +
∣∣∣dj × Sin

(
ej ×

(
PTGj

Min − PTGj

))∣∣∣ (2)

where the coefficients dj and ej account for valve point loading as shown in Table 1. The
Weibull probability density function (PDF) is used to simulate the wind speed (v in m/s),
and it can be defined as follows:

f (v) =
(

∂

∅

) (
v
∅

)(∂−1)
e−(−v/∅) (3)

where ∅ and ∂ represent the scale and shape parameter of PDF, respectively.
Note that the rating of the turbine is 3 MW. Bus 5 transports the production of a

wind farm with 25 turbines, whereas bus 11 transports the amount of energy produced by
20 windmills. The output power of the turbine is calculated as follows:

Pwind =


0

Pr

(
v−vin
vr−vin

)
Pr


f or v < vin and v >vout

f or vin ≤ v < vr
f or vr ≤ v < vout

(4)

where vin represents the turbine’s cut-in wind speed, which is evaluated as 3 m/s; vr
represents the rated wind speed, which is evaluated as 16 m/s; and vout represents the
turbine’s cut-out wind speed, which is evaluated at 25 m/s, and Pr is wind turbine’s rated
output power. A wind turbine’s output power is discontinuous at specific wind speeds, as
shown by (4) [39,40], which calculates the probability of wind power in discrete zones:

fw(Pwind){(Pwind = 0} = 1− exp

[
−
(

vin
∅

)(∂)
]
+ exp

[
−
(

vout

∅

)(∂)
]

(5)

fw(Pwind){(Pwind = Pr} = exp

[
−
(

vr

∅

)(∂)
]
− exp

[
−
(

vout

∅

)(∂)
]

(6)

Table 1. Thermal power unit cost coefficients [41].

Generator Location a ($/h) b ($/MWh) c ($/MW2h) d ($/h) e (rad/MW)

(TG1) 1 0 2 0.00375 18 0.0375

(TG2) 2 0 1.75 0.0175 16 0.038

(TG8) 8 0 3.25 0.00834 12 0.045

(TG13) 13 0 3 0.025 13.5 0.041

In addition, [39,40] calculates the likelihood for the continuous zone between vr and
vin as follow:

fw(Pwind) =
∂(vr−vin)
∅∂∗Pr

[
vin +

Pwind
Pr

(vr − vin)
]∂−1

∗exp

[
−
(

vin+
Pwind

Pr (vr−vin)

∅

)∂
]

(7)

2.1. Wind Energy Cost Estimation
2.1.1. Wind Energy’s Direct Cost

There is no need for fuel in wind turbines. A wind farm is usually operated by a
personal company that sells a certain quantity of energy to the grid operator, often known
as the independent system operator (ISO). As a result, if the ISO owns a wind farm, it is
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possible that there is no direct cost element unless it wants to inflict some punishment for
the first configuration, that is, alternatively. This might be classified as a cost of upkeep [40].
If, on the other hand, the wind farm is owned by a private entity, ISO pays a fixed fee that
is in relation jointly agreed upon by the ISO and the wind farm owner to the amount of
planned power. Therefore, wind energy’s direct costs can be written as

Cdi(Pwsci) = gwi(Psci) (8)

where gwi is the coefficient for a wind farm.

2.1.2. Cost Analysis of Unreliable Wind Power

Due to the unpredictable nature of wind power, the real power generated by wind
farms can vary. The actual power may be lower than expected. For example, when the
potential of wind energy is overstated, to alleviate the requirement, the ISO must maintain a
reserve. The expense of setting aside money in case of overvalued wind energy is classified
as a reserve expense [39,40]; the reserve cost can be estimated as

CRewi(Pwsci − Pwavi) = MRewi(Pwsci − Pwavi)

= MRewi
∫ Pwsci

0 (Pwsci − Pwind)fwindi(Pwind)dpwind
(9)

where MRewi is assigned to the coefficient of reserve cost, and Pwavi is assigned to real
power generated from the plant. The reserve cost, r.h.s., of the previous equation can be
increased as follows:

MRewi
∫ Pwsci

0

{
(Pwsci − Pwind)

∂(vr−vin)
∅∂∗Pri

[
vin + Pwind

Pri
(vr − vin)

]∂−1

∗ exp

−( vin+
Pwind

Pri
(vr−vin)

∅

)∂
dpwind

+MRewi(Pwsci − 0)∗fwindi(Pwind){(Pwind = 0}

(10)

where Pri is the rated power of the plan. Quite the opposite of overvalued, there are
possibilities when the electricity output of wind farms is measured as greater than the
legally agreed-upon scheduled power. If the energy cannot be used by decreasing the
output power of the thermal generators, it is squandered. The ISO pays a penalty for excess
energy.

The penalty cost element for underestimating wind energy is calculated as follows [40]:

CPewi(Pwavi − Pwsci) = MPewi(Pwavi − Pwsci)

= MPewi
∫ Pri

Pwsci
(Pwind − Pwsci) fwindi(Pwind)dpwind

(11)

where MRewi is assigned as the coefficient of reserve cost; the penalty cost, r.h.s., of the
previous equation can be increased as follows:

MPewi
∫ Pri

Pwsci

(Pwind − Pwsci)
∂(vr−vin)
∅∂∗Pri

[
vin + Pwind

Pri
(vr − vin)

]∂−1
× exp

−( vin+
Pwind

Pri
(vr−vin)

∅

)∂
dpwind

+MRewi(Pri − Pwsci)× fwindi(Pwind){(Pwind = Pri}

(12)

3. Modeling of FACTS Devices

In this paper, we use three FACTS devices, including shunts and series; the series
compensation devices are the TCSC and TCPS, and they are utilized to improve the line’s
loading capacity, whereas the shunt compensation device is SVC, which supplies reactive
power to the network.
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3.1. Model of Thyristor-Controlled Series Compensator Phase Shifter (TCSC)

TCSC is one of the most effective and extensively utilized FACTS devices. In compari-
son to standard control devices, this device is mounted in series with a transmission line
and provides smooth and flexible line-impedance control with significantly faster response;
it has shown to be a good method for managing power flow particularly across lengthy
transmission lines, where power angle control at either end is limited. Furthermore, the
TCSC can be used to improve the electric network’s transient stability. Figure 1 depicts the
TCSC’s basic circuit structure; it comprises of a thyristor-controlled reactor (XL) in parallel
with a fixed series capacitor (XC). The TCSC is treated as a variable capacitive reactance by
taking into account the reactance XC < XL. Controlling the firing angle (γ) of the thyristors
can change the inductive reactance. As a result, the effective reactance of TCSC can be
stated as follows:

XTCSC(γ) =
XCXL(γ)

XL(γ)− XC
(13)
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Figure 2 depicts the TCSC static model fitted between buses a and b after adding
TCSC. The transmission line’s modified reactance (Xeq) is written as follows:

Xeq = Xab − XTCSC = (1− τ)Xab (14)
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The degree of series compensation is referred to as follows:

τ =
XTCSC

Xab
(15)

where Xab is the line-inductive reactance. The power flow equations for the transmission
line that includes TCSC are expressed as follows:

Pab = V2
aGab −VaVbGabCos(θa − θb)−VaVbGabSin(θa − θb) (16)

Qab = −V2
aBab −VaVbBabSin(θa − θb) + VaVbBabCos(θa − θb) (17)

Pba = V2
bGab −VaVbGabCos(θa − θb) + VaVbGabSin(θa − θb) (18)

Qba = −V2
bBab + VaVbBabSin(θa − θb) + VaVbBabCos(θa − θb) (19)
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Gab =
Rab

R2
ab + [(1− τ)Xmn]

2 (20)

Bab =
(1− τ)Xab

R2
ab + [(1− τ)Xmn]

2 (21)

3.2. Model of Thyristor-Controlled Phase Shifter (TCPS)

Figure 3 shows the TCPS model fitted between the transmission lines that connect
buses a and b, and the equations for the line’s power flow are as follows:

Pab =
V2

aGab

Cos2
α

− VaVb
Cosα

[GabCos(σa − σb + α) + BabSin(σa − σb + α)] (22)

Qab = −V2
aBab

Cos2
α

− VaVb
Cosα

[Gab Sin (σa − σb + α) + BabCos (σa − σb + α)] (23)

Pba = −V2
bGab −

VaVb
Cosα

[Gab Cos (σa − σb + α) + BabSin (σa − σb + α)] (24)

Qba = −V2
bBab −

VaVb
Cosα

[Gab Sin (σa − σb + α) + Bab Cos (σa − σb + α)] (25)
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At bus a and bus b, TCPS injects actual and reactive power, expressed as follows:

Pas = −GabV2
b Tan2α−VaVbTan α [Gab Sin (σa − σb)− Bab Cos (σa − σb)] (26)

Qas = BabV2
b Tan2α+ VaVbTan α [Gab Cos (σa − σb) + Bab Sin (σa − σb)] (27)

Pbs = −VaVbTan α [Gab Sin (σa − σb) + Bab Cos (σa − σb)] (28)

Qbs = −VaVbTan α [Gab Cos (σa − σb)− Bab Sin (σa − σb)] (29)

3.3. The Model of Static var Compensator (SVC)

In electric power systems, SVC is utilized to provide quick operational reactive power
control; they control electric variables affecting the power grid quickly using a mix of
capacitors and reactors for a variety of reasons. They are used in electric power systems,
and one of the most important is quick voltage management at network weak points. SVC
is coupled in a thyristor-controlled reactor (XLcereectivelyd in a Thyristor− = ωC) with fixed
capacitor XCcereectivelyd in a Thyristor− = 1

ωC
(TCR-FC). Set up in its most basic version, SVC

can be used for inductive as well as capacitive correction. Figures 4 and 5 depict the TCR-FC
standard diagram and equivalent circuit, respectively.
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The equivalent susceptibility is determined by the following formula:

BSVC = BC + BL(γ) (30)

where

BC = wC and BL(γ) =
1

wL

(
1− 2γ

π
− Sin2γ

π

)
(31)

SVC provides reactive power, which may be represented as follows in terms of power
flow:

QSVC = −V2
m ∗ BSVC (32)

4. Objective of Optimization

In this paper, the researcher proposed the modified electric network IEEE 30-bus as a
test case that contains 30 bus; 41 branches [42]; 4 thermal generators at buses 1, 2, 8, and 13;
and the 2 thermal generators at buses 5 and 11 are replaced by wind generator. Moreover,
three FACTS devices are preferred and placed at an optimal location with appropriate
ratings, namely SVC, TCSC, and TCPS.
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• Total costs of generation

The fundamental goal of optimum power flow is to be formulated containing all the
costs in the modified system, which is illustrated as follows:

CTot(g) =
NT

∑
j=1

CT2j
(

PTGj
)
+

Nw

∑
i
[Cdi(Pwsci) + CRewi(Pwsci − Pwavi) + CPewi(Pwavi − Pwsci)] (33)

where NT is the thermal generation number, and Nw is the wind generation number.

• Active power losses

In the OPF issue, the network parameters, such as voltage deviation and active power
loss in the transmission line of the system, are very important. The network active power
loss is estimated as

PL =
Nb

∑
d=1

Gd(ab)

[
V2

a + V2
b − 2VaVb Cos(σab)

]
(34)

where σab = σa − σb is the difference in voltage angles between buses a and b, and σab is
transferred conductance of the line between a and b; Nb is the number of transmission lines.

• Voltage deviation

In addition, by decreasing the voltage deviation of all load buses, we improve the
voltages at all load busses by considering the constraint control, which will help to make
the network more stable and reliable. The voltage deviation is estimated mathematically as
follows:

VD =
NL

∑
a=1

(|VLa − 1|) (35)

where NL is the number of loaded buses.

4.1. Equality and Inequality Constraints
4.1.1. Operational Equality Constraints

Equality constraints are the power balance equations where the generated active and
reactive power in the electrical system is equal to the loads, and power losses in cases
without FACTS devices in the network can be defined as follows:

Pga − Pda −Va

Nb

∑
N=1

VbγabCos(∂ab + σa − σb) = 0 (36)

Qga −Qda −Va

Nb

∑
N=1

VbγabSin(∂ab + σa − σb) = 0 (37)

where Nb is the number of busses, Pga and Qga are the generated active and reactive power,
while Pda and Qda are the active and reactive load at bus a, and ∂ab is the difference in the
angle of the admittance matrix.

In addition, the power balance in case of integrating FACTS devices can be defined as

Pga + Pas − Pda −Va

Nb

∑
N=1

VbγabCos(∂ab + σa − σb) = 0 (38)

Qga + Qas −Qda −QSVCa −Va

Nb

∑
N=1

VbγabSin(∂ab + σa − σb) = 0 (39)

where Pas is the generated real power, Qas is the reactive power incorporated by the TCPS,
and QSVCa is the reactive power incorporated by SVC.
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4.1.2. Operational Inequality Constraints

The inequality constraints include the three restrictions listed below:

• Generator constraints:

Active, reactive, and voltage of the generator lay between upper and lower boundaries
as follows:

Pgj
min ≤ Pgj ≤ Pgj

max ∀ j ∈ N(gen) (40)

Qgj
min ≤ Qgj ≤ Qgj

max ∀ j ∈ N(gen) (41)

Vgj
min ≤ Vgj ≤ Vgj

max ∀ j ∈ N(gen) (42)

• Transformer tap setting constraints:

Transformer tap setting (T) must be between lower and upper boundaries as shown
below:

Ts
min ≤ Ts ≤ Ts

max ∀ s ∈ N(Tr) (43)

where N(Tr) is the number of transformers.

• FACTS devices constraints:

TCSC : τTCSCa
min ≤ τTCSCa ≤ τTCSCa

max ∀ a ∈ N(TCSC) (44)

TCPS : τTCPSa
min ≤ τTCPSa ≤ τTCPSa

max ∀ a ∈ N(TCPS) (45)

SVC : QSVCi
min ≤ QSVCi ≤ QSVCi

max ∀ i ∈ N(SVC) (46)

where N(TCSC),N(TCPS), and N(SVC) are the numbers of FACTS devices.

5. Modified Moth–Flame Optimization and Gradient-Based Optimizer (GBO-MFO)
5.1. Moth–Flame Optimization (MFO) Algorithm

MFO was suggested by Mirjalili in [43]. MFO begins by producing moths at random
in the solution space, as shown in the flow chart in Figure 6, and then estimating each
moth’s fitness values and labeling the optimal position with flame; the moths’ positions
are then updated using a spiral movement function to improve the flame-marked spots
and to update the new best individual places and continuing the preceding procedures
(the locations of the moths are being updated, and new ones are being created) until the
termination requirements are reached.

There are three steps in the MFO technique corresponding to the measurements to
take, which are as follows below.
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5.1.1. Creating the Initial Moth Population

Each moth, according to Mirjalili in [43], can fly in one of four dimensions; moths can
be expressed as a group as follows:

S =


S1,1 S1,2
S2,1 S22

· · · S1,m
· · · S2,m

...
...

Sn,1 Sn,2

. . .
...

. . . Sn,m

 (47)

where n denotes the number of moths in the search space, and m denotes the number of
dimensions. In addition, all moth fitness values are memorized as

OS =


OS1
OS2

...
OSn

 (48)
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Flames make up the remaining components of the MFO algorithm. In three-dimensional
space, the flames along with their fitness function vector are shown in the following matrix
below:

A =


A1,1 A1,2
A2,1 A22

· · · A1,m
· · · A2,m

...
...

An,1 An,2

. . .
...

. . . An,m

 (49)

OA =


OA1
OA2

...
OAn

 (50)

5.1.2. Positions of the Moths Are Being Updated

To find the global best solution for the optimization issues, MFO uses three separate
functions. The following are the definitions for these functions:

MFO = (I, P, T) (51)

where I denotes the moths’ initial random locations, P denotes the moths’ mobility in the
search space, and T denotes the end of the search process. The I function, which is utilized
to implement the random distribution, is represented by using the following formula:

S(i, j) = (UP(i)− LP(j) ∗ rand(i)) ∗+LP(i) (52)

where the lower and upper boundaries of variables are denoted by UP and LP, respectively.
The moths use a transverse orientation to fly through the search space, as previously

stated. When working with a logarithmic spiral, there are three things to keep in mind:

A. The moth should be the initial point on the spiral.
B. The flame’s location should be the spiral’s termination point.
C. The range of the spiral should not fluctuate beyond the search space.

As a result, the MFO algorithm’s logarithmic spiral is

W
(
Si, Aj

)
= Ci ∗ ebt ∗ Cos(2πt) + Aj (53)

Ci denotes the distance between the i-th moth and the j-th flame, b provides a fix to
determine the logarithmic spiral’s shape, and t is a random number between (−1,1). The
spiral motion of the moth towards the flame in the search zone in MFO ensures a balance
between exploitation and exploration.

5.1.3. Updating the Number of Flames

This section focuses on enhancing the exploitation of the MFO method (for example,
updating the moths’ positions in n distinct locations in the search space may minimize the
risk of exploiting the most promising solutions). As a result, reducing the number of flames
aids in the resolution of this problem as shown by the equation below:

No. f lame = round
(

N − l ∗ N − l
T

)
(54)

where N represents the maximum number of flames, l represents the current number of
iterations, and T represents the maximum number of iterations.

5.2. Gradient-Based Optimizer (GBO)

The suggested GBO [44] combines gradient and population-based approaches, and
it utilizes the Newton’s technique, which specifies the search direction to investigate the
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search domain with the use of a collection of vectors and two primary operators, namely
gradient search rule and local escaping operators.

5.2.1. Initialization Process

β = βmin + (βmax − βmin) ∗
(

1− (
h
H
)

3
)2

(55)

A set of choice variables, restrictions, and a goal-oriented function are all part of an
optimization issue, and the probability rate and the parameters for transition between
exploration and exploitation are among the GBO’s control parameters. Each person of
the population is known as a “vector” in the suggested algorithm. As a result, in a D-
dimensional search space, the GBO contains NB vectors. As a result, a vector may be
written in the following way:

Km,d = [Km,1, Km,2, . . . Km,D] m = 1, 2, . . . N d = 1, 2, . . . D (56)

Km = Kmin + rand(0, 1) ∗ (Kmax −Kmin) (57)

where Kmax, Kmin are the decision variable K limits, while rand (0, 1) is a random number
in the range (0, 1).

5.2.2. Gradient Search Rule (GSR) Process

A significant factor called δ is used in the GBO algorithm to achieve a well-balanced
search of a large area while yet attaining near-optimal and global results. The following is
how the δ is used:

δ1 = 2∗rand ∗ α− α (58)

α =

∣∣∣∣β ∗ Sin
(

2π
2

+ sin
(
β∗2π

2

))∣∣∣∣ (59)

where βmin is a constant of 0.2, and βmax is a constant of 1.2; h is the current iteration
number, and H is the total number of iterations; the δ1 parameter is in charge of balancing
exploration and exploitation. Within a specific range, the parameter value rises via defined
iterations. This broadens the range of possible answers and allows the algorithm to
investigate different options. The GSR can be determined in the following way:

GSR = rand m ∗ δ1 ∗
2∆k ∗ km

(kworst − kbest + σ)
(60)

In Equation (60), the random offset is defined as the distinction between the best and
second-best solution (kbest) and a randomly chosen solution (kt

s1). The variable’s meaning
changes as it is iterated ∆k, as seen by the Equation below (63). A second random number
(rand n) is also given to enable further research as follows:

∆K = rand(1 : N) ∗ |step| (61)

step =

(
kbest − kt

s1
)
+ ϑ

2
(62)

ϑ = 2 ∗ rand ∗
(∣∣∣∣kt

s1 + kt
s2 + kt

s3 + kt
s4

4
− kt

m

∣∣∣∣) (63)

where rand(1: N) is a random vector of N elements in the range of (0, 1). The four integers
chosen at random are s1, s2, s3, and s4 such that s1 6= s2 6= s3 6= s4 6= m step represents a
phase scale, which is represented by kbest and kt

s1. The term DM is calculated by taking
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given a set of potential vectors, the optimal vector, and transferring the current vector (km)
in the direction of the best vector (kbest − km) as follows:

km+1 = km −GSR (64)

DM = rand ∗ δ2(kbest − km) (65)

δ2 is a random parameter that is used to change the size of each vector agent’s phase,
and it can be calculated as follows:

δ2 = 2 ∗ rand ∗ α− α (66)

Finally, DM and GSR can be modified as

K1t
m = k1t

m −GSR + DM (67)

where K1t
m denotes the modified vector as a result of changing K1t

m, and the transformation
K1t

m can be known as follows according to Equations (55) and (65):

K1t
m = kt

m − rand m ∗ δ1 ∗
2∆k ∗ kt

m

(yPt
m − yPt

m + σ)
+ rand ∗ δ2 ∗

(
kbest − kt

m
)

(68)

where yPt
m, yPt

m are identical to yn + ∆k, and is equal to the average of two elements,
Am+1, km.

Am+1 = km − rand m∗ 2∆k ∗ km

(kworst − kbest + σ)
(69)

Despite the fact that km represents the current solution, we get the present solution
element K2t

m by using the preceding procedure and replacing the present solution element
kt

mn with the new solution element kbest.

K2t
m = kbest − rand m ∗ δ1 ∗

2∆k ∗ kt
m

(yPt
m − yPt

m + σ)
+ rand ∗ δ2 ∗

(
kt

s1 − kt
s2
)

(70)

Using Equation (68), the GBO method seeks to increase discovery and exploitation by
making them more transportable than the last Equation (70), which is utilized to aid the
local search’s exploitation phase. Finally, a revised version of the response available has
been discovered, which is as follows:

kt+1
m = s1 ∗

(
s2 ∗ K1t

m + (1− s2) ∗ K2t
m
)
+ (1− s1) ∗ K3t

m) (71)

where s1 and s2 are random numbers, and K3t
m is presented as

K3t
m = kt+1

m − δ1 ∗ (K2t
m −K1t

m

)
(72)

5.2.3. The Local Escaping Operator (LEO) Process

The LEO is a tool that may be used to improve an optimization’s performance method
by assisting in the solution of complex engineering issues. The LEO operator aids the
algorithm’s convergence by allowing it to easily move out of local optima positions. The
LEO operator sets out to create a new solution that is a more efficient solution (Kt

LEO) by
different solutions (kbest); K1t

m solutions are chosen randomly selected from the population,
and kt

s1, kt
s2 solutions are created at random. It efficiently upgrades current solutions and

follows the following procedure:
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If rand < P,

kt
LEO



kt+1
m + f1

(
h1kbest − h2Kt

e
)

+f2δ1(h3(K2t
m −K1t

m))
h3
(
kt

s1 − kt
s2
)
/2 if rand < 0.5

kt+1
m + f1

(
h1kbest − h2Kt

e
)

+f2δ1(h3(K2t
m −K1t

m))
+h3

(
kt

s1 − kt
s2
)
/2, otherwise

(73)

P is the value of probability, and P = 0.5 and h1, h2, and h3 are random created values
as follows:

h1 =

{
2 ∗ rand ifω1 < 0.5
1 otherwise

(74)

h2 =

{
rand ifω1 < 0.5

1 otherwise
(75)

h3 =

{
rand ifω1 < 0.5

1 otherwise
(76)

where rand is random number between (0, 1). The above values of h1, h2, and h3 can be
reorganized as

h1 = D1 ∗ 2∗rand + (1−D1) (77)

h2 = D1∗rand + (1−D1) (78)

h3 = D1∗rand + (1−D1) (79)

where D1 is a binary vector takes a value of (0, 1); as an example, if parameterω < 0:5, then,
the value is D1; otherwise, D1 = 0, where the answer kt

e is created as follows:

kt
e =

{
krand ifω2 = 0.5
kt

P otherwise
(80)

Km is a random answer that is created using the formula below:

Km = Kmin + rand(0, 1) ∗ (Kmax −Kmin) (81)

5.3. Proposed GBO-MFO Algorithm

The original GBO algorithm suffers from the local optima when handling non-linear
objective functions. Additionally, the convergence speed and precision are low because
of the randomness. To overcome all these drawbacks and improve the solution efficiency
as well as the rate of convergence, we proposed the GBO-MFO technique [45]. Figure 7
presents the flowchart of the suggested GBO-MFO algorithm. As shown in this Figure,
the GBO is represented as the fundamental algorithm in the suggested hybrid algorithm.
The GSR and LEO are used to update the place in the search space regarding the optimal
solution in the original GBO. On the other hand, the original MFO takes use of the spiral
movement ability to achieve the exploitation more than exploring the solution space [46].
The proposed algorithm is the hybridization of the GBO and MFO that owns the advantage
of both algorithms.
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6. Simulation Results and Discussion of the IEEE 30-Bus Test Network

As an example, the IEEE 30-bus electric network was utilized. The modified single-
line diagram of IEEE 30-bus is presented in Figure 8. It has four thermal generators,
two wind generators, and 24 load nodes. The major data and operational conditions of
the test system are investigated in [42]. The electric network consists of four thermal
generators at buses 1, 2, 8, and 13; two wind generators at buses 5 and 11; and four
tap-changing transformers in branches 11, 12, 15, and 36. The voltage values of the PV
nodes are within the boundaries of (0.95–1.1 p.u.). The tap transformers settings are
considered within the range of (0.9–1.1 p.u.). In order to verify the strength of the proposed
algorithm, GBO-MFO was implemented to solve the OPF issue with TCSC, SCPS, and
SVC and practical limitations. The proposed technique is advanced in MATLAB 2014
programming circumference, and all sections of simulations have been coded in a PC
with 2.40 GHZ frequency and the installed memory (RAM) is 4.0 GB. In this paper, the
power flow is estimated by MATPOWER version 7 [47]. The electrical network loads are
283.4 MW and 126.2 MVar, and the main simulation results are presented in this section
as shown in Table 2. The obtained results of the proposed hybrid GBO-MFO algorithm
are compared with the results of four recent algorithms, including the gradient-based
optimizer (GBO) [44], moth–flame optimization algorithm [43], slime mould algorithm
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(SMA) [48], and coulomb–franklin’s algorithm (CFA) [49]. The contol parameters of the
proposed and others algorithms are illustrated in details in Table 3. This comparison with
other modern meta-heuristic techniques is presented in Table 4. In the our optimization
technique, the number of control variables are 27 as defined in detail in Table 4, which
includs the locations and rating for each FACTS device, and while integrating the FACTS
devices, some criteria must be considered, such as (1) only one FACTS device is put in the
location, (2) SVC is not added on the PV bus, and (3) in case of line having tap transformer,
TCSC and TCPS are not integrated into this lines. TCSC can compensate up to 50% of
the branch reactance where it is placed, while SVC can provide or absorb up to 10 MVAr
of reactive power. Phase shifter’s angle (TCPS) can be changed from −5 and 5. The case
studies carried out under this section assume that the electric network is fully loaded; for
the given full-loaded situation, three case studies are carried out, which are illustrated as
follows:

• Case A: Minimizing the cost generation.
• Case B: Minimizing power losses.
• Case C: Minimizing cost and power losses.
• Case D: Load demand uncertainty
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Table 2. The results of GBO-MFO with fixed loads for the modified IEEE 30-bus system.

Control Variable Minimum Maximum Case A Case B Case C

PTG 2(MW) 20 80 40.36711 25.17703 39.96882

PWG 5(MW) 0 75 49.60228 74.99606 74.99998

PTG 8(MW) 10 35 10.00001 34.99992 34.99953

PWG 11(MW) 0 60 42.08583 59.99999 60

PTG 13(MW 12 40 12.00002 39.99076 25.3085

V1(p.u) 0.95 1.10 1.077394 1.055951 1.05933

V2(p.u) 0.95 1.10 1.062138 1.050173 1.054368

V5(p.u) 0.95 1.10 1.039988 1.039544 1.045164

V11(p.u) 0.95 1.10 1.040376 1.045106 1.0472

V12(p.u) 0.95 1.10 1.094419 1.095728 1.096266

V13(p.u) 0.95 1.10 1.054076 1.080656 1.068085

T11(p.u) 0.90 1.10 0.998881 1.02985 1.010771

T12(p.u) 0.90 1.10 0.974578 0.942647 0.989468

T15(p.u) 0.90 1.10 0.970168 1.011504 1.006795

T36(p.u) 0.90 1.10 0.98209 0.978315 0.987358

FACTS ratings

τTCSC1(%) 0 50% 0.261798 0.499378 0.260031

τTCSC2(%) 0 50% 0.256903 0.180707 0.499985

∅TCSC1(deg) −5 5 2.891543 4.606817 2.906457

∅TCSC2(deg) −5 5 −0.07969 −2.38928 −0.99951

QSVC1(MVAr) −10 10 9.998593 5.468421 9.441854

QSVC2(MVAr) −10 10 9.967787 9.980042 9.999946

FACTS locations

TCSC1 Branch 1 40 5 34 2

TCSC2 Branch 1 41 2 41 9

TCPS1 Branch 1 40 14 35 33

TCPS2 Branch 1 41 39 14 5

SVC1 Bus 3 29 7 19 24

SVC2 Bus 3 30 24 24 21

Parameters

PTG 1(MW) 50 200 134.9094224 50.0016021 49.9999977

QTG 1(MVAr) 20 - 150 5.7579908 −3.37055433 −2.3974411

QTG 2(MVAr) 20 - 60 19.0386182 9.216845035 9.67332152

QWG 5(MVAr) 30 - 35 19.5321975 21.38442996 22.2010301

QTG 8(MVAr) −15 48.7 34.73924937 31.42417937 31.0560877

QWG 11(MVAr) −25 30 24.97840417 27.42443353 27.6472454

QTG 13(MVAr) −15 44.7 9.24650880 25.99634823 17.2964094

Objective function

Cgen($/h) 807.120060 939.3285458 916.651707

Ploss(Mw) 5.56466263 1.76537072 1.87682289

Cgross($/h) 1363.586323 1115.86561 1104.33400

VD(p.u.) 0.6622278 0.862291816 0.83473561

Emission 0.213568466 0.141615940 0.14196922
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Table 3. The control parameters of the proposed and other techniques.

Algorithms The Control Parameter

Common parameters

Number of population size = 200

Iterations number = 500

Dimensions number = 27

Number of runs = 20

GBO-MFO b = 1 and a decreases linearly from −1 to −2 (Default), pr = 0.5

MFO b = 1 and a decreases linearly from −1 to −2 (Default)

GBO pr = 0.5

CFA Pc and the value equal to 0.5

SMA
(vb) is a parameter with a range of (−a, a) and gradually approaches zero as the iterations

increase. The value of
→
vc oscillates between (−1, 1) and tends to zero eventually.

Table 4. Simple comparison between the proposed and other techniques for the modified IEEE 30-bus
system.

Technique SMA CFA GBO-MFO GBO MFO

Case A

Cgen($/h) 807.277 807.4699193 807.12006 807.2502 807.4733

Ploss(Mw) 5.5798 5.628556222 5.56466263 5.6002 5.6304

Cgross($/h) 1.370 × 103 1370.325541 1363.586323 1367.3 1.370 × 103

VD(p.u.) 0.8747 0.75741542 0.6622278 0.8514 0.6534

Emission 0.2136 0.21360518 0.213568466 0.2136 0.2136

Case B

Cgen($/h) 936.6358 939.30095 939.3285458 938.649 1.120 × 103

Ploss(Mw) 1.8149 1.796401 1.76537072 1.7717 1.8102

Cgross($/h) 1.120 × 103 1118.941 1115.86561 1115.8 1.120 × 103

VD(p.u.) 0.8391 0.82594 0.862291816 0.8927 0.8551

Emission 0.1414 0.14157 0.141615939 0.1416 0.1416

Case C

Cgen($/h) 918.7776 916.62101 916.651707 918.4229 918.0247

Ploss(Mw) 1.8602 1.90008 1.876822891 1.8608 1.9179

Cgross($/h) 1104.8 1106.65064 1104.334003 1104.5 1109.8

VD(p.u.) 0.9109 0.85175 0.834735606 0.9166 0.8610

Emission 0.1416 0.1416933 0.141969216 0.1417 0.1418

Case study findings using the GBO-MFO method are given in this part along with
explanations. In each case study of optimization, each scenario was performed 30 times to
determine the goal function’s most optimal value and the accompanying control variable
settings.

• Case A: Minimizing the Cost Generation

In Case A, it was observed that the electrical network total generation cost is greatly
decreased to 807.12 ($/h) using GBO-MFO technique, which is less than the generation
cost in Case B and Case C. Additionally, in this case, the minimum value of the voltage
deviation was obtained. Because wind generators are less expensive, their scheduled power
outputs are frequently higher than those of thermal units. However, because adequate
wind energy is not available, a wind units’ output cannot be used to its most tremendous
potential, as this will increase the reserve cost to provide scheduled power for extended
periods of time.



Mathematics 2022, 10, 361 20 of 31

The placements of FACTS devices as well as their ratings were adjusted in this article
to reduce generating costs. In a genuine system or a variant of a well-known system, FACTS
devices are installed without any research, which may result in wasteful and ineffective
electric system resource consumption. In this case, buses 7 and 24 are considered to be the
best sites for the SVCs, and TCSC was installed in branch 5 and branch 2, and TCPS was
installed in branch 14 and branch 39.

In this paper, in all cases, we ran the technique multiple times after adjusting the
optimal places to improve ratings while reducing costs. Due to the system’s heavy inductive
load, SVC’s reactive power correction was nearly at its maximum. FACTS devices were
placed in networks with the goal of improving loading capacity. The electrical network’s
actual power loss was kept as low as possible in such a way as to optimize the capacity of
the system’s loads. Furthermore, the suggested algorithm’s capacity was used to keep bus
voltage amplitudes within a reasonable range. The state variables in the IEEE 30-bus test
system ere kept within the allowed limits.

• Case B: Minimizing power losses

The major goal of Case B was to lower active power loss to the absolute minimum.
Many transmission lines in power networks result in significant active power loss. As a
result, for large-scale systems, minimizing active power loss is critical. The GBO-MFO in
Case B had the lowest active power loss.

In this case, the power losses achieved a minimal loss of 1.7467 MW using the control
variables listed in Table 2. This value of power losses is better than Case A and Case C,
and also the voltage deviation obtained in this case was 0.8622, and the emissions from
traditional thermal power plants reached to 0.1416159. In this case, the SVCs were placed at
buses 19 and 24, while the TCSC were placed at branches 34 and 41, and the two TCPS were
installed at branches 35 and 14 given that reactive power in power networks is constantly
distributed based on voltage magnitude differences between buses, resulting in a rise in
power loss. This is a critical achievement, and it is also where the suggested algorithm’s
effect is scrutinized. As an example, one of the most visible aims of the OPF issue is to
keep the numerical value of voltage values of the buses between their borders and around
typical operating circumstances.

Constraints on load bus voltage are particularly important in the OPF issue since the
voltages at which load buses operate are frequently found to be near to their limitations,
which must be kept between 0.95 and 1.05 p.u. in our investigation. Furthermore, the limits
on reactive power of generators are also met in all situations.

• Case C: Minimizing cost and power losses

Through the comparison presented in Table 2, we found that the cost of generation in
Case A is less than the cost of generation in Case B, while the reduction in power losses
in Case B is better than in Case A. This statistic emphasizes the need to have a goal that
includes both of them, which forced us to resort to the use of Case C. Developing a cost
model in which the loss is translated into an equal price of energy is a straightforward
method to account for both objectives. The cost of electricity used in this research is
$0.10 per kWh. The cost of power was $0.10 per kWh in this research as presented in
Equation (82).

CGross = CTot(g) + PL ∗ 103 ∗ 0.10) (82)

In Case C, the technique’s minimal goal value is 1104.0771 $/h, and the active power
loss is 1.87682 MW, total generation cost is 916.65170 $/h, voltage deviation is 0.8347 p.u.,
and the emission is 0.14196. The two SVCs were installed at busses 24 and 21 and the two
TCSC at branches 2 and 9, while the two TCPS WERE placed at branches 33 and 5. In this
case, the best cost and loss values WERE determined by the coefficient of price chosen for
generators, including thermal and wind. However, taking into account both goals results
in the lowest total cost.

• Case D: Load demand uncertainty
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In OPF research studies, determination of FACTS devices placement and rating con-
sidering uncertainties in load demands is a well-developed research topic. The research
scenario discussed in this section considers a genuine incident of changing load. The
probability density function (PDF) [45] WAS used to depict the unpredictablity of demands.
It Is worth noting that this technique also optimizes the placement of the FACTS, and also
changing the placement of FACTS during various loading circumstances is not possible
as a result, so the FACTS were carefully located for a particular scenario with the greatest
chance of occurring. The probability of Scenario 3 and Scenario 4 occurring is the greatest.
We improved the positions of the FACTS devices for Scenario 3, and its same optimal
placement was used to optimize the FACTS for other scenarios. In addition, the values of
the FACTS devices used were adjusted to account for various system scenarios; the research
is useful since it optimizes a variety of electrical system aims by executing OPF at regular
intervals. The normal distribution with mean µd and standard deviation αd is commonly
used to model the load demand uncertainty and are 70 and 10, respectively. In this work,
all loads are assumed to obtain the same PF, mean, and standard deviation. As a result,
rather than using a normal distribution to every load separately, ∆S,j shows the probability
of each load level that is computed by Equation (83); Equation (84) can also be used to
calculate the related value of every load level, which is indicated by Pd,i.

These formulas [50] are used to compute the mean load and probability of an event
for a given case.

∆S,j =

PMax
d,j∫

PMin
d,j

1
αd
√2π

exp [− (Pd − µd)
2

2αd2
]dPd (83)

where PMax
d,j and PMin

d,j are the maximum and minimum boundaries of ith scenarios of
loading, and the mean of ith scenarios of load demand is

Pd,i =
1

∆S,j

PMax
d,j∫

PMin
d,j

(
Pd ∗

1
αd
√

2π
exp

[
− (Pd − µd)

2

2αd2

]
dPd

)
(84)

Additionally, for the premeditated medians and probability for any and all possible
load-carry situations, the percent load in a situation means that the nodes needs are
multiplied by the % of that scenario. As a result, the technique optimized the performance
index of gross cost as written in (82) under various conditions, and the active power
generated from all generators was used at full capacity in every scenario.

The variable’ limits, such as the limits presented in Tables 2 and 4, present effective
system parameters for the four scenarios, which show the best amplitude of gross cost. For
all scenarios, the expected gross cost is determined as follows:

EGRC =
NOSC

∑
SC=1

∆SC ∗ Cgross,sc (85)

where NOSC is the scenario’s number. ∆SC is the scenario’s probability, which is estimated
in Table 5. EGC is the expected generation cost, and EPL is expected power loss, which is
estimated in [51] and computed by

EGC =
NOSC

∑
SC=1

∆SC ∗ CGen,sc (86)

EPL =
NOSC

∑
SC=1

∆SC ∗ PLoss,sc (87)
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Table 5. Scenarios for loading and probabilities of each.

Loading Scenario % Loading, Pd,i Scenario Probability, ∆SC

SCA 54.749 0.15866

SCB 0.15866 0.34134

SCC 74.599 0.34134

SCD 85.251 0.15866

7. Discussion

The numerical results show that, when compared to previous techniques in the liter-
ature, such as GBO, MFO, SMA, and CFA, the suggested methodology provides a better
and more acceptable solution for handling various versions of the OPF issue while taking
into account realistic limitations and FACTS devices. The proposed technique GBO-MFO
became stuck in local optima quite fast, and it may converge to a superior solution in less
iterations as presented in Figure 9 for Case A, Figure 10 for Case B, and Figure 11 for Case C,
unlike the other techniques investigated in this study. For more knowledge, consider Case 1,
a well-known case study in the field of OPF problem-solving. The most talented generation
cost achieved by the suggested method when FACTS devices are taken into account is
807.12 ($/h). These numbers are lower than those of the other techniques evaluated and
those found in the paper, which are 807.2502 ($/h) in GBO and 807.469 in CFA, 807.277
in SMA, and 807.4733 in MFO. It is worth noting that a successful optimization method
not only converges to a reduced total generation cost while solving the OPF issue, but it
also reduces active power losses. Additionally, the power loss is 5.56 MW in the proposed
method, which is better than 5.60, 5.62, 5.57, and 5.6304 in GBO, CFA, SMA, and MFO,
respectively.
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Figure 12 shows a bar chart depicting the breakdown of different costs; because of the
tiny cost coefficient for penalties, the cost of not using obtainable wind energy is minimal in
all circumstances. Generator units linked to buses 5, 8, and 11 are necessary in Cases B and
C to decrease power losses because system loading in the area is extremely high; therefore,
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it should run at or near its rated capacity. The reserve cost in Cases B and C increases as
the planned power from the wind turbines increases. Because the direct cost is related to
its anticipated output, it rises as the scheduled power grows. As a result of the reduced
scheduled power of the thermal units, the cost of these units decreases in Cases B and C
compared to Case A. The cost of loss is calculated using the energy unit cost. When the
power loss is included as a goal in the optimization, the cost is properly reduced.

Mathematics 2022, 9, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 11. Convergence properties of different meta heuristics with proposed technique for Case C. 

 
Figure 12. A bar chart depicting the breakdown of different costs for the three cases. Figure 12. A bar chart depicting the breakdown of different costs for the three cases.

Likewise, in the Cases B and C, the ideal settings of the generator units’ active power
are shown below in Figure 13 for Cases A to C. Figure 14 shows the voltage of load buses
of the case studies for the modified system when it is fully loaded. For Cases A to C, the
best settings of voltages on the generator bus are presented in Figure 15, and Figure 16 also
explains the setting of the transformer tap ratio for Case A to Case C This demonstrates
the effectiveness of the suggested approach, which is capable of achieving the best global
value with fewer rounds.
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Table 6 contains the obtained results of using the Wilcoxon signed rank test. The
proposed GBO-MFO algorithm is compared with four well-known algorithms in the
literature, including GBO, MFO, CFA, SMA, respectively, for the Cases A, B, and C.

Table 6. Wilcoxon signed rank test results.

Algortihms
Case 1 Case 2 Case 3

R+ R− p-Value H0 R+ R− p-Value H0 R+ R− p-Value H0

GBO-MFO vs. GBO 141 69 1.79 × 10−1 Yes 74 136 2.47 × 10−1 Yes 133 77 2.96 × 10−1 Yes
GBO-MFO vs. MFO 179 31 5.73 × 10−3 No 190 20 1.51 × 10−3 No 206 4 1.63 × 10−4 No
GBO-MFO vs. CFA 166 44 2.28 × 10−2 No 159 51 4.38 × 10−2 No 183 27 3.59 × 10−3 No
GBO-MFO vs. SMA 186 24 2.49 × 10−3 No 183 27 3.59 × 10−3 No 92 118 6.27 × 10−1 Yes

In case of loading scenarios, the system costs and active power losses are significantly
reduced, as presented in Table 7, because of their permanent placements, which are opti-
mized depending on Scenario 3, the FACTS compensate in a major way across all scenarios.
In addition, as shown in Case C, the optimal planned power in buses 5, 8, and 11 rise as
system loading rises. Furthermore, with the variation in loads, the power of generator units
is nearly unaffected. The requirement to reduce to reduce system active power loss is the
primary reason behind this. Figure 17 presents the convergence characteristics for different
loading scenarios in Case D, and Figure 18 depicts the voltages for each scenario and the
upper and lower limits.
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Table 7. The results of MFO-GBO with different scenarios of loads in Case D.

Control Variable Scenario A Scenario B Scenario C Scenario D

PTG 2 (MW) 20 20 20.22 22.756

PWG 5 (MW) 36.9422 52.126 62.24 73.61

PTG 8 (MW) 10 10.9434 20.83 28.769

PWG 11 (MW) 27.19 41.31 47.29 52.04

PTG 13 (MW) 12 12 12 15.81

V1 (p. u) 1.057 1.056 1.0594 1.058

V2 (p. u) 1.052 1.0507 1.0539 1.053

V5 (p. u) 1.044 1.044 1.0470 1.047

V11 (p. u) 1.045 1.042 1.0473 1.047

V12 (p. u) 1.0629 1.07 1.0641 1.095

V13 (p. u) 1.061168 1.062836 1.065 1.067

T11 (p. u) 1.042204 0.990643 1.0085 1.055

T12 (p. u) 0.949792 0.969312 0.9837 0.908

T15 (p. u) 0.992094 1.000278 1.0099 0.9944

T36 (p. u) 0.987191 0.984462 0.98495 0.986

FACTS ratings

τTCSC1(%) 0.219086 0.219927 0.136841 0.844894

τTCSC2(%) 0.063736 0.222954 0.446708 2.262013

∅TCSC1(deg) 1.174577 1.763584 2.946295 0.132565

∅TCSC2(deg) −4.85577 1.061893 0.170417 0.485028

QSVC1(MVAr) 2.837804 7.110695 9.916534 7.510003

QSVC2(MVAr) 8.046143 6.707114 6.721043 9.988798

FACTS locations

TCSC1 Branch 14 14 14 11

TCSC2 Branch 23 23 23 33

TCPS1 Branch 24 24 24 22

TCPS2 Branch 41 41 41 39

SVC1 Bus 21 21 21 7

SVC2 Bus 24 24 24 24

Parameters

PTG 1 (MW) 50 50 50 50

QTG 1 (MVAr) −2.57 −2.04 −1.66 −2.04

QTG 2 (MVAr) 2.76 5.51 7.38 5.65

QWG 5 (MVAr) 10.76 11.40 15.95 15.52

QTG 8 (MVAr) 14.22 19.46 25.62 24.52

QWG 11 (MVAr) 12.68 12.56 9.34 29.89

QTG 13 (MVAr) 8.56 11.96 12.37 14.62

Objective function

Cgen($/h) 418.1275 520.6703 624.6884 749.3056

Ploss(Mw) 0.9748 1.0649 1.1673 1.3674

Cgross($/h) 515.6028 627.1640 741.4172 886.0478
886.0478

VD(p. u.) 1.0190 0.9441 0.9822 0.9400

Emission 0.1547 0.1
544 0.1525 0.1491
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8. Conclusions

This study provides a technique to achieve optimal power flow. In the IEEE 30-
bus network, there is an issue involving stochastic wind and FACTS devices (OPF), and
the suggested MFO-GBO was successfully applied to solve the OPF problem in electric
power network. In the three case studies, the placement and rating of the FACTS devices
(SVC, TCSC, and TCPS) were optimized with the goal of decreasing generation cost and
active power loss in the electric network system. The necessity of considering both factors
together demonstrated a composite target that includes generation cost and active power
loss. The electric network power loss is translated to an energy cost as well as the expense of
production. The MFO-GBO was proven to provide a rapid, accurate, and optimal solution
to the OPF issue. The MFO-GBO was contrasted and analyzed for calculating the best set
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of control variables on IEEE 30-bus to examine the efficacy and superiority of the proposed
algorithms to keep generation costs down, decrease power losses to minimum value, and
enhance the voltage profile. In addition, MFO-GBO was provided to solve the OPF issue
considering uncertain load demand. The collected findings demonstrate the proposed
approach’s advantage in obtaining the best solution with the shortest time to convergence.
These findings support its efficacy in resolving large-scale OPF issues. The suggested
technique outperforms existing in terms of well-known optimization techniques computing
performance.

9. Future Recommendation

For future OPF study, the authors recommend incorporating tiny hydro-generators
and storage in the form of battery or hydro power in a large system. FACTS devices can be
used to create a realistic model of doubly-fed induction generators for wind generators.
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