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Optimal Power Flow: Closing the Loop over

Corrupted Data

André Teixeira, Henrik Sandberg, György Dán, and Karl H. Johansson

Abstract—Recently the power system state estimator was
shown to be vulnerable to malicious deception attacks on the
measurements, resulting in biased estimates. In this work we
analyze the behavior of the Optimal Power Flow (OPF) algorithm
in the presence of such maliciously biased estimates and the
resulting consequences to the system operator. In particular, we
characterize the set of attacks that may lead the operator to
apply the erroneous OPF recommendation. Such characterization
is used to improve a previously proposed security index by
also considering the attack impact, which may be used for
allocation and prioritization of protective measures. Additionally,
we propose an analytical expression for the optimal solution of a
simplified OPF problem with corrupted measurements. A small
analytical example is discussed to illustrate and motivate our
contributions.

Index Terms—Power Systems, Optimal Power Flow, Data
Corruption, Security

I. INTRODUCTION

Common IT systems widely used in control application

are the Supervisory Control and Data Acquisition (SCADA)

systems. In power networks, the SCADA system is combined

with application specific components gathered in the so-

called Energy Management System. Modern SCADA/EMS

systems collect large amounts of measurement data and,

using a State Estimator (SE) with detailed models of the

network and Bad Data Detection (BDD) schemes, provide the

human operator estimates of the current network state. The

estimated state information is then used by optimization tools

to compute optimal supervisory control actions minimizing the

network operation costs while ensuring safety and reliability

requirements are met. These control actions are obtained by

solving the Optimal Power Flow (OPF) problem and the safety

requirements are evaluated by the Contingency Analysis (CA)

component. Fig. 1 shows the power network’s control loop.

The technological development enabled the implementation

of more advanced and fast acting controllers, leading to an

increasing need for timely exchange of large amounts of

measurement and actuator data. This resulted in having the

data transmitted through unencrypted communication chan-

nels, making the data and all the components in the control

loop vulnerable to cyber attacks, see [1], [2]. In fact, several
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Fig. 1. The state estimator under a cyber attack. We denote the data corruption
by a.

cyber attacks on SCADA/EMS systems operating power net-

works have already been reported, see [3], [4], and [5] for a

recent example that received considerable media attention.

In this paper, we analyze the consequences of data attacks

on the power network’s control loop, namely the OPF algo-

rithm and the human operator. Recent work has characterized

a class of data corruption attacks that are undetectable by

conventional BDD schemes, assuming both the BDD and

the attacker know exactly a simplified linear network model,

see [6], [7], [8], [9]. In [10] data attack experiments on a

SCADA/EMS testbed were carried out, showing that current

SE and BDD implementations with the full nonlinear network

model available are also vulnerable to data attacks based on

the simplified linear model.

Several countermeasures to these attacks were proposed,

from the allocation of encryption [11] and additional protected

measuring devices [9], to the implementation of improved

BDD schemes, see [8], [12]. Methods to efficiently rank the

measurements in terms of their vulnerability and finding sparse

attacks requiring the corruption of a low number of measure-

ments were also proposed in [7], [11], [13], [9]. However,

these methods only considered the existence of sparse attacks,

neglecting their impact on the control loop and the network.

The economic impact of data corruption attacks has been

investigated recently for electricity market applications in [14],

[15]. These approaches considered the linearized version of

the DC-OPF or Economic Dispatch and provided several

attack heuristics to tamper with the electricity markets while

remaining undetected by conventional BDD schemes. Recently

the impact of a more restricted class of data attacks corrupting

only load and flow measurements was also analyzed for a

linear Security-Constrained Economic Dispatch problem under

a game-theoretic perspective in [16]. In these approaches the

presence of a human operator was neglected, hence the com-



promised control actions were always applied to the system.

Here we analyze the behavior of the DC-OPF, formulated as

a Quadratic Programming problem, under corrupted estimates

resulting from undetectable attacks. No market application is

considered, instead we focus on how the corrupted estimates

may affect the operator’s decisions and the possible economic

consequences. We further consider that the operator makes a

binary decision of either closing the loop over the DC-OPF

recommendation or not taking any control action.

Our first contribution builds on the KarushKuhnTucker

(KKT) conditions and provides an analytical characterization

of the perturbed DC-OPF solution given that the corrupted

estimates satisfy certain conditions. Using these expressions,

we discuss under what conditions a human operator has the

incentive to consider and apply the compromised DC-OPF

recommendation. The discussion follows by analyzing the eco-

nomic impact on the network operation if the operator decides

to close the control loop over the corrupted measurements. A

small analytical example is discussed, illustrating the concepts

of the first contribution and motivating our second one.

In our second contribution, we use the novel analytical

expressions to improve the security index proposed in [7].

Some computational issues of this index and connections

to previous results are briefly discussed. We envision this

contribution to be useful to system security designers, namely

for secure sensor allocation, as discussed in [8] and [11].

The outline of the paper is as follows. In Section II, the

basic formulation of the DC network model is introduced and

the DC-OPF problem described and solved. In Section III,

the effect of corrupted estimates on the DC-OPF is studied

for attacks satisfying mild assumptions. The consequences

of applying the compromised DC-OPF recommendation and

conditions under which it may happen are also discussed.

In Section IV, an illustrative example is considered, and in

Section V an impact-aware security index taking in account

the attack sparsity and corresponding impact is proposed. A

summary of the contributions and conclusions are presented

in Section VI.

II. SIMPLIFIED OPTIMAL POWER FLOW

We consider a simplified OPF problem, namely the DC-

OPF. In this formulation, the network model is simplified

by neglecting the losses, the reactive power, and assuming

the voltage magnitudes to be constant, usually called the DC

network model.

Let N , Ng , and Nb be the number of buses, generator buses,

and transmission lines in the power network, respectively. The

variables considered in the DC-OPF problem are:

• P d ∈ R
N : the active power demand;

• P g ∈ R
Ng : the active power generation;

• θ ∈ R
N−1: the phase-angle at each bus, except the

reference bus, for which θ1 = 0;

• P f ∈ R
Nb : the active power flow on each transmission

line.

The active power demand P d ≤ 0 is supplied to the DC-

OPF as a known parameter, while the power generated at all

generator buses, P g , are the decision variables constrained by

P g ≥ P g ≥ 0. In the DC network model the power balance

equations provide a linear relation between the phase-angles

and the power demand, generation, and flows:
[

CgP
g + P d

P f

]

=

[

Hi

Hf

]

θ = Hθ, (1)

where Cg ∈ R
N×Ng is the bus to generator incidence matrix,

mapping the generators to the respective buses and H ∈
R

(N+Nb)×(N−1) represents the network model, containing

information regarding the network topology and model param-

eters [17]. To mantain the power balance, a given generator

bus can be selected as the slack bus and the corresponding

generated power is determined so that the demand is met,

namely

1
⊤P g + 1

⊤P d = 0 (2)

in the lossless case.

Assuming the power network is connected, by removing

the row corresponding to the chosen slack bus from Hi we

obtain an invertible matrix H̄i = ΠsHi, where Πs is the matrix

representing the row removal operation. We can then obtain θ

as a function of P g and P d with θ = H̄−1
i Πs(CgP

g + P d)
and the power flows can be written as

P f = Hf (ΠsHi)
−1Πs(CgP

g + P d) = GgP
g +GdP

d. (3)

Thermal limitations on the transmission lines introduce

operation limits on the power flows, |P f | ≤ P f , where

P f ∈ R
Nb contains the power flow limits for each transmis-

sion line and | · | is an element-wise operation. At the same

time, there is an operation cost associated to each generator

k, ck(P
g
k ) = ck2(P

g
k )

2 + ck1P
g
k + ck0 with ck2 > 0. Defining

c̄i = [c1i · · · cNgi]
⊤ for i ∈ {0, 1, 2}, the corresponding

total generation cost is given by

c(P g) =

Ng
∑

k=1

ck(P
g
k ) =

1

2
P g⊤QP g +R⊤P g + C0, (4)

with Q = diag(2c̄2), R = c̄1, and C0 = 1
⊤c̄0. The

purpose of DC-OPF is then to minimize the total generation

cost subject to the operation limits of the transmission lines

and generators, which can be formulated as the following

optimization problem

min
P g

c(P g)

s.t. h(P g, P d) = 1
⊤P g + 1

⊤P d = 0

f(P g, P d) = FgP
g + FdP

d + F0 ≤ 0,

(5)

with

Fg =









Gg

−Gg

I

−I









, Fd =









Gd

−Gd

0
0









, F0 =









−P f

−P f

−P g

0









.

The Lagrangian function for this problem can be written as

L(P g, ν, λ) = c(P g) + ν(1⊤P g + 1
⊤P d)

+ λ⊤(FgP
g + FdP

d + F0),



where ν and λ ≥ 0 are the dual variables. In the following,

we assume the DC-OPF problem is always feasible.

A. Optimal Solution

The DC-OPF problem (5) is a strictly convex problem, since

the constraints form a convex set and the objective function is

quadratic with Q being positive definite given that ck2 > 0 ∀k.

Therefore, for given P d, the DC-OPF admits a unique optimal

solution which we denote by

P g∗ = Ω(P d), (6)

having the associated nominal optimal cost c∗ = c(P g∗) and

optimal power flows P f∗ = GgP
g∗ + GdP

d. Given that the

DC-OPF is a convex problem, a feasible optimal solution

satisfies the the KKT conditions:

0 = ∇c(P g∗) +∇h(P g∗, P d)⊤ν∗

+∇f(P g∗, P d)⊤λ∗

0 = h(P g∗, P d)

0 = λ∗

i fi(P
g∗, P d), ∀i = 1, . . . , Nf

0 ≤ λ∗,

where Nf = 2(Nb + Ng) is the number of inequality

contraints.

According to the KKT conditions [18], only the dual

variables associated with active constraints are nonzero in

the optimal solution. We denote the number of active and

inactive inequality constraints as N1 and N0 = Nf − N1,

respectively. Considering the total generation cost (4) and

denoting H1 ∈ R
N1×Nf and H0 ∈ R

N0×Nf as the ”selector

matrices” selecting the active and inactive constraints at the

optimal solution, respectively, the KKT conditions become









Q F⊤
g 1

1
⊤ 0 0

H1Fg 0 0
0 H0 0













P g∗

λ∗

ν∗



 =









−R
−1⊤(P d)

H1(−FdP
d − F0)

0









,

which we rewrite as

K





P g∗

λ∗

ν∗



 =









−R
−1⊤P d

H1(−FdP
d − F0)

0









. (7)

Proposition 1: For any feasible optimal solution P g∗ =
Ω(P d), λ∗, and ν∗, the corresponding matrix K ∈
R

(Ng+Nf+1)×(Ng+Nf+1) is invertible.

Proof: Since the DC-OPF is a strictly convex optimization

problem, there exists a unique optimal solution. Furthermore,

since all inequality constraints are linear, strong duality holds

and the KKT conditions (7) are necessary and sufficient for

any feasible solution to be optimal. Hence (7) has a single

solution, which requires K to be invertible.

B. Nominal Optimal Operation

In general the full state of the power network is not directly

available to the operator. Instead, the network state is estimated

based on a large amount of measurements and a known

measurement model, as explained in [17].

Denoting P̂ g , P̂ d, and P̂ f as the estimated power genera-

tion, demand, and flows, the current estimated operation cost

is

ĉ = c(P̂ g) (8)

and the OPF problem solved is in fact

min
P g

c(P g)

s.t. 1
⊤P g + 1

⊤P̂ d = 0

FgP
g + FdP̂

d + F0 ≤ 0.

Let us consider a system in which the estimated demand

equals the true demand P̂ d = P d (i.e., measurements are

accurate). Applying P g∗ = Ω(P̂ d) to the system would then

result in P̂ g = P g∗ and P̂ f = P f∗. We refer to this system

as the system in nominal optimal operation.

Assumption 1: The system operates in optimality, that is,

P̂ g = P g∗ and P̂ f = P f∗ for the given P̂ d = P d.

III. SIMPLIFIED OPF UNDER A DATA ATTACK

As mentioned in the previous section, the input parameters

to the DC-OPF are obtained either from direct measurement

or through state estimation and are therefore vulnerable to

malicious data corruption of the measurement data.

Now consider the case where the data attack illustrated in

Fig. 1 has been performed such that the corrupted estimates

become

P̂ g
a = P g∗ + ag = P̂ g + ag (9)

P̂ f
a = P f∗ + af = P̂ f + af (10)

P̂ d
a = P d + ad = P̂ d + ad (11)

where ag , ad, and af are the corrupted data added to the

measurements so that they fulfill (1) for some θ. That is, the

attack is undetectable using standard bad-data detection based

on the DC network model, see [6], [7], [8], [9].

Remark 1: Given the corrupted estimate P̂ g
a , the operator

believes that the power network is operating at the estimated

operation cost c(P̂ g
a ).

After receiving the corrupted measurements and comput-

ing the state estimates P̂ d
a , the operator solves the DC-

OPF problem and obtains the corresponding optimal solution

P̂ g∗
a = Ω(P̂ d

a ). Before characterizing the DC-OPF solution

given the corrupted measurements, we make the following

assumption.

Assumption 2: The data corruptions ag , ad, and af are such

that the active constraints for P g∗ = Ω(P d) remain the same

for P̂ g∗
a = Ω(P̂ d

a ).
Conditions enforcing the above assumption to hold may be

found in the Appendix.

In the remainder of this section we discuss the consequences

of the data corruption attack. First we characterize the data



attack impact on the DC-OPF solution and under what condi-

tions the operator may decide to apply the generation profile

recommended by the DC-OPF under data attack. Assuming the

operator accepts the DC-OPF recommendation, the discussion

then proceeds by examining the true economical losses of that

decision.

A. Consequences on the DC-OPF solution

The DC-OPF solution given P̂ d
a can be computed using the

KKT conditions in (7). Furthermore, based on Assumption 2,

the difference in the optimal solutions P̂ g∗
a = Ω(P̂ d

a ) and

P g∗ = Ω(P d) is given by





P̂ g∗
a − P g∗

λ̂∗
a − λ∗

ν̂∗a − ν∗



 = K−1









0
−1⊤

−H1Fd

0









ad =





Tg

Tλ

Tν



 ad, (12)

and so we can write

P̂ g∗
a − P g∗ = Tgad. (13)

At this point, the operator believes the power network can

be operated at the estimated optimal operation cost c(P̂ g∗
a ) if

the DC-OPF recommendation is applied.

Given the corrupted power generation estimates P̂ g
a , the

current estimated operation cost computed by the operator is

c(P̂ g
a ). Running the DC-OPF based on the corrupted load esti-

mates P̂ d
a will provide the operator with the estimated optimal

operation cost c(P̂ g∗
a ). The difference between the estimated

operation cost c(P̂ g
a ) and the estimated optimal operation cost

c(P̂ g∗
a ) corresponds to the estimated re-dispatching profit if the

power generation is re-dispatched according to the DC-OPF,

which we now define using (9) and (13).

Definition 1 (Estimated Re-Dispatching Profit): The

estimated re-dispatching profit is defined as

P̂a , c(P̂ g
a )− c(P̂ g∗

a ). (14)

Since the DC-OPF active and inactive constraints at op-

timality remain the same after the data corruptions given

Assumption 2, from the optimality principle we conclude that

P̂a ≥ 0. A large value of P̂a can make the operator update

the generator set-points, as there seems to be an incentive to

do so. Note however that both these cost might be fictitious,

since the estimates have been corrupted.

B. Consequences on the physical network

Consider that the operator decides to apply the generation

profile P̂ g∗
a = Ω(P̂ d

a ) recommended by the DC-OPF under

attack. In reality, the power demand may be different from

the respective estimate, i.e. P d 6= P̂ d. This occurs for any

data corruption attack with ad 6= 0. Therefore there might

exist a mismatch between the demand and generation, which

has to be compensated by the slack generator so that the power

balance equation (2) is satisfied. Choosing generator 1 as the

G G
1 3 2

Fig. 2. Three bus network with two transmission lines. The generations are
P

g
1
, P

g
2
≥ 0 and the loads are P d

1
, P d

2
, P d

3
≤ 0.

slack, the power generated by this bus is then a function of

the power imbalance

P
g∗
a,1 = −

Ng
∑

i=2

P̂
g∗
a,i − 1⊤P d. (15)

Hence the real generation profile after attack is P g∗
a =

[P g∗
a,1 P̂

g∗
a,2 · · · P̂

g∗
a,Ng

]⊤, yielding a true operation cost c(P g∗
a ).

Assuming the operator applies the DC-OPF recommenda-

tion, the true re-dispatching profit due to the data corruption

attack is defined as follows.

Definition 2 (True Re-Dispatching Profit): The true re-

dispatching profit is defined as

Pa , c(P g∗)− c(P g∗
a ). (16)

Recalling that there is no actual change on the power

demand P d, P g is the true unique optimal solution of the DC-

OPF problem. Therefore any other feasible solution yields a

higher true operation cost and results in a negative Pa. How-

ever, note that the true generation profile P g∗
a is determined

in open-loop by the slack generator, which could drive the

power network out of the feasible region and into an unsafe

state. The reduced safety in this case would lead to a lower

operation cost, resulting in a positive Pa. Hence any non-zero

true re-dispatch profit Pa may indicate negative consequences

to the power network operation.

The true power generation difference P g∗
a − P g∗ is of

interest to assess both Pa and the true power network state,

which can be computed using (2), (13), and (15)

P g∗
a − P g∗ = MTgad (17)

with

M =

[

0 −1⊤

0Ng−1×1 INg−1

]

.

Note that M is associated with the type of slack generation in

the power network and therefore it may differ, for instance, if

a type of distributed slack is considered.

In the next section we consider a simple analytical example

to illustrate the discussion in the current section.

IV. ANALYTICAL EXAMPLE

In this section we illustrate the effects of attacks on the DC-

OPF problem (5) for the power network in Fig. 2 assuming a

scenario where there are no saturated tie lines or generators,

namely |P f∗| < P f and 0 < P g∗ < P g .



Applying the KKT conditions (7) to this case, we obtain

the following optimal generation profile

P
g∗
1 =

−c11 + c21 − 2c22(P
d
1 + P d

2 + P d
3 )

2(c12 + c22)

P
g∗
2 =

c11 − c21 − 2c12(P
d
1 + P d

2 + P d
3 )

2(c12 + c22)

where we see the generated power depends on the generation

costs. We now analyze the consequences of data corruption

for this nominal operation scenario under Assumption 2.

Let us now consider that the measurements are corrupted as

in (9)–(11). The optimal generation profile, given the corrupted

load estimates P̂ d
a , is obtained by solving (7). For this scenario

the solution is

P̂
g∗
a,1 =

−c11 + c21 − 2c22(P̂
d
a,1 + P̂ d

a,2 + P̂ d
a,3)

2(c12 + c22)

P̂
g∗
a,2 =

c11 − c21 − 2c12(P̂
d
a,1 + P̂ d

a,2 + P̂ d
a,3)

2(c12 + c22)

and the difference to the previous optimal generation profile

P g∗ is

P̂ g∗
a − P g∗ = Tad =

−1

(c12 + c22)

[

c22
c12

]

1
⊤ad. (18)

To illustrate the previous discussion, we now present two

particular data attack scenarios based on the example network

in Fig. 2.

Consider P1 acts as the slack bus and recall Assumption 1,

which states that the system operates under optimality before

the data attack. Furthermore, assume no lines are saturated

and consider the data attack a =
[

a⊤g a⊤d a⊤f
]⊤

and the

corresponding attack vector on the power injection and flow

measurements ā = [a⊤i a⊤f ]
⊤, where

ā =

[

Cg I 0
0 0 I

]





ag
ad
af



 = Γa. (19)

1) Scenario 1: (c22 ≫ c12): In this scenario the marginal

cost of generator 2 is considered to be much higher than that

of generator 1, hence in optimality it would be expected that

an increase in the load demand would be compensated mainly

by generator 1. Indeed using (18) we have

P̂
g∗
a,1 − P

g∗
1 =

−c22
(c12 + c22)

1
⊤ad ≈ −1

⊤ad

P̂
g∗
a,2 − P

g∗
2 =

−c12
(c12 + c22)

1
⊤ad ≈ 0.

meaning that the DC-OPF compensates small load changes

solely through the cheapest bus, which happens to be the

slack bus. Recalling that in open-loop, i.e., without the DC-

OPF, load changes are compensated by the slack bus, a direct

consequence is that the true and estimated generator profile

after applying the DC-OPF’s recommendation are the same,

as we can see from (17) and (18):

P g∗
a − P g∗ = MTgad =

[

0 −1
0 1

] [

−1⊤

0

]

ad = 0.

Hence for all attacks Pa = 0, i.e. there is no economic impact

even if the DC-OPF solution is applied.

2) Scenario 2: (c22 ≪ c12): As opposed to the previous

scenario, here the marginal cost of generator 2 is the lowest

and hence we have

P̂
g∗
a,1 − P

g∗
1 =

−c22
(c12 + c22)

1
⊤ad ≈ 0

P̂
g∗
a,2 − P

g∗
2 =

−c12
(c12 + c22)

1
⊤ad ≈ −1

⊤ad,

indicating that small load changes are compensated by DC-

OPF through the cheapest generator, which in this case is not

the slack bus. Thus the DC-OPF and open-loop load compen-

sations differ, possibly resulting in economic incentives to use

the DC-OPF recommendation. In fact, using (9) and (13) we

can rewrite the estimated re-dispatching profit as

P̂a = c(P̂ g∗
a + ag − Tgad)− c(P̂ g∗

a ),

which indicates that

ag − Tgad =

[

ag,1
ag,2 + 1

⊤ad

]

plays an important role in the estimated re-dispatching profit

P̂a. This is further illustrated for two sparse attack examples.

Suppose that all the power flows, demand, and generation

are being measured, except for the demand in bus 3, P d
3 . It can

be shown that in this case no 1−sparse data attacks exist and

there are only two 2−sparse attack patterns, namely attacks

on measurements {ai,1, af,13} and {ai,2, af,23}, where ai,j =
ag,j + ad,j is the attack on the injection measurement of bus

j. Furthermore, given the DC power flow equations, P
f
13 =

P
g
1 + P d

1 and P
f
23 = P

g
2 + P d

2 , these attacks are constrained

by ai,1 = af,13 and ai,2 = af,23, respectively.

Consider the 2−sparse attack on {ai,1, af,13}, ā1 =
[ai,1 af,13]

⊤ with ai,1 = af,13 = ǫ, ag,1 = ǫ, and ad,1 = 0.

Noticing that P d
3 +P

f
13 +P

f
23 = 0 is also a network equation,

we then have that this data attack induces the following bias

in P̂ d
a,3: ad,3 + af,13 + af,23 = 0⇒ ad,3 = −af,13 + 0 = −ǫ.

Thus for ā1 we have

ag − Tgad =

[

ag,1
ag,2 + ad,1 + ad,3

]

=

[

ǫ

−ǫ

]

,

which results in a positive estimated re-dispatching profit,

P̂a(ā1) > 0.

Considering now the other 2−sparse attack on {ai,2, af,23},
ā2 = [ai,2 af,23]

⊤ with ai,2 = af,23 = ǫ, ag,2 = ǫ, and

ad,2 = 0. Similarly as before, this data attack induces a bias

in P̂ d
a,3: ad,3 + af,13 + af,23 = 0 ⇒ ad,3 = 0 − af,23 = −ǫ,

resulting in

ag − Tgad =

[

ag,1
ag,2 + ad,2 + ad,3

]

=

[

0
ǫ+ 0− ǫ

]

= 0.

Hence for this attack we conclude P̂a(ā2) = 0 and therefore

the attack has no impact on the power network.

From these two examples we conclude that only the data

attack ā1 may lead the operator to re-dispatch the power



generation, while ā2 will have no impact in the power network.

Therefore ā1 is more dangerous than ā2, even though they

have the same sparsity, which motivates the need for tools to

analyze the system vulnerability while evaluating the attack

impact.

V. IMPACT-AWARE SECURITY INDEX

In previous work [7], the vulnerability of each measurement

k was evaluated by studying the following problem:

Problem 1: Given a data attack targeting measurement k,

what is the minimal number of attacked sensors so that the

data attack is undetectable by the Bad Data Detection?

This problem was formulated as an optimization problem

αk := min
θ

‖Wā‖0

s.t. ā = Hθ

1 = e⊤k ā,

, (20)

where ā = Γa is defined in (19), W is a diagonal matrix

of zeros and ones that indicate whether a particular flow or

injection is measured or not, and ek is a vector of zeros with

the k−th entry set to 1. The resulting optimal value αk was

taken as a security index for measurement k. Defensive actions

to secure the state estimator using this security index were then

proposed in [11].

Note however the proposed index does not consider the

data attack impact on the power network operation. In fact,

different data attacks with the same sparsity ‖ā∗k‖0 = ‖ā∗j‖0
are considered equally dangerous, even though they might

have considerably different impacts, as seen in Section IV.

In this section we propose a modification to the security

index in (20) taking into account the impact of the data attack

on the DC-OPF. This modification addresses the following

Problem 2: Given a data attack targeting measurement k,

what is the minimal number of attacked sensors such that the

data attack is undetectable by the Bad Data Detection, the

operator decides to apply the corrupted DC-OPF recommen-

dation, and the power network operation is affected?

This problem is addressed for a given initial demand P d

and the corresponding optimal dispatch P g∗ using the results

in the previous sections. Our goal is to provide to the operator

security indices designed to quantify the vulnerability to and

impact of data attacks on the several measurements. As a

result, the measurements with the highest index would be

candidates for protection, similarly to the approach in [11].

Recalling the discussion in Section II, we have two mea-

sures of the data attack impact, namely the estimated re-

dispatch profit P̂a and the true re-dispatch profit Pa. To

address Problem 2, the following optimization problem is

proposed:

βk := min
θ

‖WΓa‖0 (21a)

s.t. Γa = Hθ (21b)

ǫ = |e⊤k Γa| (21c)

ξ̂ ≤ P̂a (21d)

ξ ≤ |Pa|. (21e)

The constraint |e⊤k Γa| = ǫ normalizes the solution and requires

the k-th measurement to be attacked. It says the attacker

is willing to add or subtract ǫ per units of power in that

measurement. The parameter ξ̂ is a threshold that quantifies

how much the estimated re-dispatch profit must be for the

operator to decide to re-dispatch the generation. The other

threshold ξ quantifies how much the true re-dispatch profit

must be for the attack to be considered harmful.

Note that ξ̂ and ξ depend on the size of the data corruption

ǫ. One could set ǫ = 1 and tune ξ̂ and ξ accordingly. Obviously

the original security index is recovered for ξ̂ = ξ = 0.

However there are other conditions under which both problems

yield the same solution, as discussed below.

A. Connections to Problem 1

Recall the original security index described in (20).

Proposition 2: Given any optimal solution to the security

index in (20) a∗k, there exists a scalar m such that ma∗k is an

optimal solution to the optimization problem (21) if and only

if P̂a(a
∗

k) 6= 0 and Pa(a
∗

k) 6= 0.

Proof: Assume that P̂a(a
∗

k) 6= 0. Then for a sufficiently

large |m|, either |m|a∗k or −|m|a∗k satisfies (21d). Regarding

the constraint (21e), note that it is not affected by the sign of

a∗k, as the constraint depends on the absolute value of Pa(a
∗

k).
Hence, assuming Pa(a

∗

k) 6= 0 holds, the scaled solution

±|m|a∗k satisfying (21d) can be scaled once more so that (21e)

holds.

If either P̂a(a
∗

k) = 0 or Pa(a
∗

k) = 0, then it is clearly not

possible to satisfy both (21d) and (21e).

Proposition 3: For any optimal solution a∗k to the optimiza-

tion problem (20) satisfying P̂a(a
∗

k) 6= 0 and Pa(a
∗

k) 6= 0
there exists a large enough ǫ so that a∗k is a solution to the

optimization problem (21) subject to (21b)–(21e).

Proof: Take the limit ǫ→∞ and use Proposition 2.

Proposition 3 tells us that choosing ǫ large enough will give

the same results as the security index proposed in [7]. How-

ever, note that the attack needs to be such that Assumption 2

holds, thus these indices may in fact be different. We refer to

the Appendix for conditions enforcing Assumption 2 that can

be included in the optimization problem (21). Further analysis

of the optimization problem (21) and heuristics to solve it are

subject of future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the DC-OPF-based power net-

work operation in the presence of stealthy data corruption

attacks on the measurements. Given the biased estimates

resulting from the measurement corruption, we derived an-

alytical expressions characterizing the behavior of the DC-

OPF for attacks that do not affect the system operating

constraints. Based on these expressions, we discussed under

what conditions a human operator would have the incentive

to close the loop over the corrupted measurements . The

economic impact of applying these erroneous control actions

was also discussed and analytically characterized.



The above results led to our second contribution: an impact-

aware security index for the measurements, quantifying their

vulnerability to attacks and the corresponding impact on the

network when the attacked control action is accepted and

applied by the operator. Efficient methods to compute or

approximate the proposed non-convex problem are subject of

future work.

The concepts and results in the paper are illustrated using

a three bus example, for which some motivating scenarios are

also considered.
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APPENDIX

ENFORCING ASSUMPTION 2

The analysis in Sections III–V remains valid as long as

Assumption 2 holds. To strengthen the validity of the analysis,

here we discuss on what conditions Assumption 2 holds.

Theorem 1: The necessary and sufficient conditions for

Assumption 2 to hold are
[

−H1Tλ

H0(FgTg + Fd)

]

ad <

[

H1λ
∗

H0(−FgP
g∗ − FdP

d − F0)

]

[

H0Tλ

H1(FgTg + Fd)

]

ad =

[

0
H1(−FgP

g∗ − FdP
d − F0)

]

.

Proof: Consider the set of primal and dual variables

computed based on corrupted data using (7) and (12)




P̂ g∗
a

λ̂∗
a

ν̂∗a



 =





Tg

Tλ

Tν



 ad +





P g∗

λ∗

ν∗



 .

Note that Assumption 2 is equivalent to the optimality of

the primal and dual variables
[

P̂ g∗⊤
a λ̂∗⊤

a ν̂∗⊤a
]⊤

for the

DC-OPF problem with corrupted data. Thus the necessary and

sufficient conditions for Assumption 2 to hold correspond to

the KKT optimality conditions.

By construction, all primal and dual variables computed

using (7) satisfy ∇L(P̂ g∗
a , ν̂∗a , λ̂

∗
a) = 0 and h(P̂ g∗

a , P̂ d
a ) = 0.

Thus only the inequality constraints need to be considered.

Regarding the dual variables of the inequality constraints,

the variables corresponding to active constraints are positive,

while the remaining variables are zero, yielding

H1λ̂
∗

a = H1Tλad +H1λ
∗ > 0

H0λ̂
∗

a = H0Tλad = 0.

To conclude the proof, note that the primal variables also

need to be constrained so that the active and inactive inequality

constraints remain unchanged, leading to the following condi-

tions

H1(FgTg + Fd)ad = H1(−FgP
g∗ − FdP

d − F0)

H0(FgTg + Fd)ad < H0(−FgP
g∗ − FdP

d − F0).
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