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Abstract— Restructuring of the electric power industry along
with mandates to integrate renewable energy sources is in-
troducing new challenges for electric power systems and the
power grid. Intermittent power sources in particular require
mitigation strategies in order to maintain consistent power
on the electric grid. We investigate distributed energy storage
as one such strategy. Our model for optimal power flow
consists of simple charge/discharge dynamics for energy storage
collocated with load and/or generation buses cast as a finite-
time optimal control problem. We illustrate the effects of
energy storage using a modified version of the IEEE 14 bus
benchmark example along with time-varying demand profiles.
We use both time-invariant and demand based cost functions.
The addition of energy storage along with demand based cost
functions significantly reduces the generation costs and flattens
the generation profiles.

I. INTRODUCTION

Electric power systems and the power grid are currently
undergoing a restructuring due to a number of factors such
as; increasing demand, increasing uncertainty caused by
the integration of intermittent renewable energy sources,
and further deregulation of the industry [1], [2], [3]. The
integration of renewables in particular is being accelerated
by government mandates, e.g., see [4] which details these
directives for 30 US states. The operational challenges as-
sociated with these trends can be alleviated by effectively
utilizing grid-integrated distributed energy storage [5]. The
potential benefits of grid-integrated storage technologies in-
clude decreasing the need for new transmission or generation
capacity, improving load following, providing spinning re-
serve, correcting frequency, voltage, and power factors, as
well as the indirect environmental benefits of facilitating
the integration of nonpolluting, renewable energy sources
[6]. Although the benefits of such storage schemes are
widely accepted, the appropriate storage technology along
with the required capacity and rates of charge/discharge are a
continuing research topic [7]. Criteria for an effective storage
strategy include (i) dispatchability – response to fluctuations
in electricity demand; (ii) interruptibility – reaction to the
intermittency in energy supplies like wind and solar; and
(iii) efficiency – recovering energy that is otherwise wasted
[8].

The promise of effective grid-integrated energy storage
has led to considerable research activity. The role of storage
in power regulation and peak-shaving was studied through
simulation as early as 1981 [9]. More recently, the utility
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of energy storage in mitigating the effects of integrating
renewable resources into the power grid has been investi-
gated in both the traditional [10], [11] and micro-grid [12]
settings. Efficiency of energy storage allocation in terms
of minimizing curtailed wind energy (in a system with a
high penetration of wind generation) was addressed by the
authors of [13]. The question of interruptibility (probability
of load-shedding) has also been investigated through the
use of different combinations of hybrid generation (i.e., a
combination of wind, solar and fossil fuel based generation
systems) versus storage capacities, in the special case of an
isolated system [14].

The optimal power flow (OPF) problem [15], [16], [17],
[18] optimizes some cost function, e.g., generation cost
and/or user utilities, over variables such as; real and reactive
power outputs, voltages, and phase angles at a number of
buses subject to, capacity and network constraints. It has
been extensively studied since the work of Carpentier [19].
The surveys in [20], [21], [22] provide a historical overview
of special instances of the problem and various solution
strategies. More recent work attempted to reformulate the
problem into more tractable realizations. For example, ref-
erences [23], [24] considered radial distribution systems as
conic programming problems and [25] proposed a convex
relaxation that is equivalent to the OPF problem under certain
conditions (discussed later in this paper).

The formulation in this paper extends the OPF problem
formulation in [25] to integrate simple charge/discharge
dynamics of energy storage distributed over the network. The
inclusion of these energy storage dynamics leads to a finite-
horizon optimal control problem that enables optimization
of (dynamic) power allocation over time in addition to the
static allocation over the network. The current formulation
augments the ideas presented in [26] through elimination of
the small-angle assumption and the addition of power rate
limits on the energy storage. The expanded problem setting
allows us to evaluate the effects storage given changes in
capacity, power rating, and distribution over the network
using performance metrics such as cost and peak generation.

We extend the solution strategy described in [25] to
an OPF problem formulation with simple storage dynam-
ics. The procedure is based on solving a convex semi-
definite program obtained as the Lagrangian dual to the
rank relaxation of an equivalent reformulation for the OPF
problem with storage dynamics. We show that under certain
conditions, similar to those in [25], there is no duality gap
between this reformulation and its Lagrangian dual. We then
construct a solution for the reformulation (consequently for
the OPF problem with storage dynamics) from that of the
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dual problem. As an initial step, we study a case where
uncertainties due to fluctuations in demand or intermittency
in generation are neglected and focus on the effects of storage
on the generation costs and peak-shaving using the IEEE
benchmark networks described in [27] as examples.

II. PROBLEM SETUP

Consider a power network with n buses and m ≤ n
generators. Define N := {1, . . . , n} and G := {1, . . . ,m}
as the set of indices of all buses and generator nodes,
respectively. Let Y ∈ Cn×n be the admittance matrix
defining the underlying network topology as described in
[15], [28]. In the following, we extend an optimal power flow
problem formulation from [15] to include simple dynamics
for storage units located at each of the buses.

At generation buses l ∈ G and time t = 1, . . . , T,
the active power generation P gl (t) and the reactive power
generation Qgl (t) are bounded as

Pminl ≤ P gl (t) ≤ Pmaxl , (1a)
Qminl ≤ Qgl (t) ≤ Qmaxl . (1b)

The magnitude of voltage Vk(t) at bus k ∈ N at time t =
1, . . . , T is bounded as

V mink ≤ |Vk(t)| ≤ V maxk . (2)

At bus k ∈ N , let bk(t) denote the amount of energy
storage at time t = 1, . . . , T and rk(t) denote the rate of
charge/discharge of energy at time t = 1, . . . , T − 1. The
amount of storage at bus k ∈ N at time t = 1, . . . , T follows
the first order difference equation1

bk(t+ 1) = bk(t) + rk(t), for t = 1, . . . , T − 1, (3)

with the initial condition

bk(1) = gk. (4)

At each bus k ∈ N , the amount bk(t) of storage and the rate
rk(t) of charge/discharge are bounded as

0 ≤ bk(t) ≤ Bmaxk , for t = 1, . . . , T, (5a)
Rmink ≤ rk(t) ≤ Rmaxk , for t = 1, . . . , T − 1. (5b)

The network constraints at each k ∈ N and time t =
1, . . . , T, can be expressed as

Vk(t)I∗k(t) = P gk (t)− P dk (t)− rk(t)
+
[
Qgk(t)−Qdk(t)− sk(t)

]
i.

(6)

In (6), sk(t), the reactive part of the power flow in or out of
the storage at bus k ∈ N and time t = 1, . . . , T, is limited
by

Smink ≤ sk(t) ≤ Smaxk . (7)

We use the convention that P gk (t) = 0 and Qgk(t) = 0 for
k ∈ N\G and t = 1, . . . , T and rk(T ) = 0 and sk(T ) = 0

1With some abuse of notation rk(t) denotes the energy
charged/discharged at storage at bus k over the period [t, t + 1].

TABLE I
DECISION VARIABLES IN OPTIMIZATION (8)

P g
k (t) and Qg

k(t) Real and reactive power generation
at bus k and time t

Vk(t) Complex voltage at bus k and time t
bk(t) Amount of storage at bus k and time t
rk(t) Real part of charge/discharge rate of storage

at bus k and time t
sk(t) Imaginary part of charge/discharge rate

of storage at bus k and time t

TABLE II
PARAMETERS IN OPTIMIZATION (8)

P d
k (t) and Qd

k(t) Real and reactive power demand
at bus k and time t

P max
l , P min

l , Upper and lower bounds on real and reactive
Qmax

l , Qmin
l power generation at the generation bus l

V max
k , V min

k Upper and lower bounds on voltage magnitude
at bus k

Bmax
k Storage capacity at bus k
gk Initial storage at bus k ∈ N

Rmax
k , Rmin

k Upper and lower bounds on real rate of
storage charge/discharge at bus k

Smax
k , Smin

k Upper and lower bounds on reactive rate of
storage charge/discharge at bus k

Y ∈ Cn×n Admittance matrix

for k ∈ N . Then, given the parameters in Table II, an optimal
power flow problem with storage dynamics is written as

ϕ∗ := min
T∑
t=1

∑
l∈G

cl2(t) (P gl (t))2 + cl1(t)P gl (t)

subject to
(1), (2), (3), (4), (5), (6), and (7)

(8)

over decision variables Vj(t), P
g
j (t), Qgj (t), bj(t), rj(t), and

sj(t) (with index j running over the sets indicated above).
Note that, in the conventional OPF formulation without

storage, there is no correlation across time; therefore, the
corresponding optimization is static and can be solved in-
dependently at each time. The admittance matrix indices
optimization across the different generators. Storage allows
optimization across time, i.e., charge when the cost of
generation is low and discharge when it is high.

III. SOLUTION STRATEGY

The problem in (8) is non-convex in general. We now
propose a convex relaxation of (8) and show that, under
certain conditions, a solution to (8) can be constructed from
that for this relaxation. To this end, we follow a similar
procedure discussed in [25] and partly adopt their notation.

A. Reformulation of the OPF problem with storage

Let ek ∈ Rn, k = 1, . . . , n, be the standard basis vectors
for Rn and define

Mk =: diag(eke∗k, eke
∗
k),

Yk := eke
∗
kY,
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Yk : =
1
2

[
Re
{
Yk + Y Tk

}
Im
{
Y Tk − Yk

}
Im
{
Yk − Y Tk

}
Re
{
Yk + Y Tk

} ] ,
Yk : = −1

2

[
Im
{
Yk + Y Tk

}
Re
{
Yk − Y Tk

}
Im
{
Y Tk − Yk

}
Im
{
Yk + Y Tk

} ] ,
U(t) :=

[
Re V (t)T Im V (t)T

]T
.

Note that

Re{Vk(t)I∗k(t)} = tr
{
YkU(t)UT (t)

}
, (9a)

Im{Vk(t)I∗k(t)} = tr
{
YkU(t)UT (t)

}
, (9b)

|Vk(t)|2 = tr
{
MkU(t)UT (t)

}
. (9c)

By substituting

P gk (t) = Re{Vk(t)I∗k(t)}+ P dk (t) + rk(t) (10a)

Qgk(t) = Im{Vk(t)I∗k(t)}+Qdk(t) + sk(t) (10b)

for P gk (t), Qgk(t) and then defining W (t) := U(t)U(t)T ,
one can show that the problem in (8) is equivalent to the
following optimization;

ϕ∗ = min
W (t),α(t),b(t),r(t),s(t)

T∑
t=1

∑
l∈G

αl(t) (11)

subject to

Pmink − P dk (t) ≤ tr {YkW (t)}+ rk(t)
≤ Pmaxk − P dk (t), (12a)

Qmink −Qdk(t) ≤ tr
{
YkW (t)

}
+ sk(t)

≤ Qmaxk −Qdk(t), (12b)(
V mink

)2 ≤ tr {MkW (t)} ≤ (V maxk )2 , (12c)
0 ≤ bk(t) ≤ Bmaxk , (12d)

Rmink ≤ rk(t) ≤ Rmaxk , (12e)
Smink ≤ sk(t) ≤ Smaxk , (12f)

bk(t+ 1) = rk(t) + bk(t), (12g)
bk(1) = gk, (12h)[
al0(t) al1(t)
al1(t) −1

]
� 0, (12i)

W (t) � 0, (12j)
rank(W (t)) = 1, (12k)

where

al0(t) := cl1(t)
[
tr {YlW (t)}+ rl(t) + P dl (t)

]
− αl(t),

al1(t) :=
√
cl2(t)

[
tr {YlW (t)}+ rl(t) + P dl (t)

]
.

As before, in (11)-(12), k ∈ N , l ∈ G and time index t =
1, . . . , T except for (12g) where t runs over {1, . . . , T −
1}. Also P gk (t) = 0 and Qgk(t) = 0 for k ∈ N\G and
t = 1, . . . , T with rk(T ) = 0 and sk(T ) = 0 for k ∈ N .
Note that constraint (12i) is equivalent to cl2(t) (P gl (t))2 +
cl1(t)P gl (t) ≤ αl(t) by the substitution in (10) and the Schur
complement formula. The equivalence between (8) and (11)-
(12) follows from the fact that a symmetric matrix X ∈
Rn×n is positive semidefinite and of rank 1 if and only if
there exists x ∈ Rn such that X = xxT .

B. Lagrangian relaxation for the OPF problem with storage

We now develop a Lagrangian dual for optimization (11)-
(12) excluding the rank constraints in (12k). To this end, let
us introduce

zl(t) := [zl0(t), zl1(t), zl2(t)]T , l ∈ G, t ∈ {1, . . . , T},

and

x(t) :=
[
λmin(t)T , λmax(t)T , ηmin(t)T , ηmax(t)T ,

µmin(t)T , µmax(t)T , γmin(t)T , γmax(t)T ,

ρmin(t)T , ρmax(t)T , ξmin(t)T , ξmax(t)T
]T

and define

h(x, z, σ, β) :=−
T∑
t=1

∑
l∈G

zl2(t)−
∑
kN

βkgk

+
T∑
t=1

∑
k∈N

{
Λk(t)P dk (t) +Hk(t)Qdk(t)

+ λmink (t)Pmink − λmaxk (t)Pmaxk

+ ηmink (t)Qmink − ηmaxk (t)Qmaxk

+ µmink (t)
(
V mink

)2 − µmaxk (t) (V maxk )2

+ ρmink (t)Rmink − ρmaxk (t)Rmaxk

+ γmaxk (t)Bmaxk

+ ξmink (t)Smink − ξmaxk (t)Smaxk

}
,

where

Λk(t) :=


λmaxk (t)− λmink (t)

+ck1(t) + 2
√
ck2(t)zk1(t), k ∈ G,

λmaxk (t)− λmink (t), k ∈ N\G,
Hk(t) := ηmaxk (t)− ηmink (t), k ∈ N ,
Υk(t) := µmaxk (t)− µmink (t), k ∈ N

for t ∈ {0, . . . , T}.
Consider the optimization

ψ∗ := max
x�0,z,σ,β

h(x, z, σ, β) (13)

subject to∑
k∈N

[
Λk(t)Yk +Hk(t)Yk + Υk(t)Mk

]
� 0, (14a)

Hk(t) + ξmaxk (t)− ξmink (t) = 0, (14b)

Λk(t) + ρmaxk (t)− ρmink (t) + σk(t+ 1) = 0, (14c)

σk(t+ 1)− σk(t) + γmaxk (t)− γmink (t) = 0, (14d)

σk(2) + γmaxk (1)− γmink (1) + βk = 0, (14e)

σk(T ) + γmaxk (T )− γmink (T ) = 0, (14f)[
1 zl1(t)

zl1(t) zl2(t)

]
� 0, (14g)

where the indices k run over N and l over G. The time index,
t = 1, . . . , T in (14a), (14b) and (14g), t = 1, . . . , T − 1 in
(14c), and t = 2, . . . , T − 1 in (14c) (14d).
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Theorem 1: Optimization (13)-(14) is a Lagrangian dual
of optimization (11)-(12) excluding the rank constraints in
(12k) and strong duality holds.

Proof: Introduce the following correspondence between
the constraints in (12) (all constraints on reals written
as f(y) ≤ 0 with f : Rν → R and all constraints
on symmetric matrices written as f(y) � 0 with f :
Rν → Rω×ω) and the decision variables in (13)-(14):
λmaxk (t), λmink (t) ≥ 0 for (12a); ηmaxk (t), ηmink (t) ≥ 0 for
(12b); µmaxk (t), µmink (t) ≥ 0 for (12c); γmaxk (t), γmink (t) ≥
0 for (12d); ρmaxk (t), ρmink (t) ≥ 0 for (12e); and
ξmaxk (t), ξmink (t) ≥ 0 for (12f) (in each case the variable
with the superscript “max” (“min”) corresponds to the upper
(lower) bounds and the indices k and t run over the sets as
indicated in (12)). For k ∈ N and t = 1, . . . , T−1, σk(t+1)
corresponds to the constraint bk(t + 1) = bk(t) + rk(t) in
(12g) and βk corresponds to that in (12h). Finally, let[

zl0(t) zl1(t)
zl1(t) zl2(t)

]
� 0

correspond to (12i) and Ω(t) � 0 correspond to (12j). Then,
by standard manipulations on the Lagrangian (with the dual
variables defined above), showing that zl0(t) = 1 (through
minimization of the Lagrangian with respect to αl(t)), and
eliminating Ω(t), optimization (13)-(14) is a Lagrangian
dual of (11)-(12) excluding the rank constraint in (12k).
Note that both optimization problems (13)-(14) and (11)-(12)
excluding the rank constraint in (12k) are convex. A strictly
feasible solution can be constructed as follows:

λmink (t) :=

{
ck1(t) + 1, for k ∈ G

1, for k ∈ N\G

and for k ∈ N , λmaxk (t) = 1, ηmaxk (t) = ηmink (t) = 1,
µmaxk (t) = 2, µmink (t) = 1, ρmaxk (t) = ρmink (t) = 1,
γmaxk (t) = γmink (t) = 1 and ξmaxk (t) = ξmink (t) = 1,
βk = 0 when time indexes take values in {0, . . . , T} along
with zl0(t) = 0, zl1(t) = 1 for l ∈ G and t ∈ {0, . . . , T},
σk(t + 1) = 0 for k ∈ N with time taking values in
{0, . . . , T − 1}.

C. Constructing an optimal solution for the OPF problem
with storage

Theorem 1 shows that there is no duality gap between opti-
mization (13)-(14) and the rank relaxation of the (equivalent)
reformulation of the OPF problem with storage in (11)-(12).
In this section, we show, under certain assumptions, that there
is no duality gap between the optimizations in (13)-(14) and
(11)-(12).

Assumptions:
1) Optimization (11)-(12) is feasible and W (t) = 0 is

infeasible for any t ∈ {1, . . . , T}.
2) There exists an optimal solution to (13)-(14) with

optimal values (xopt(t), zopt) for (x(t), z(t)) such that

Aopt(t) :=
n∑
k=1

[
Λoptk (t)Yk +Hopt

k (t)Yk + Υopt
k (t)Mk

]

has a zero eigenvalue of multiplicity two for t =
1, . . . , T.

Remark 1: Assumption (1) is to avoid trivial solutions
[25] and implies that V (t) = 0 is not feasible for (11)-(12)
and equivalently for (8) for any t.

Remark 2: See [25] for a detailed discussion of assump-
tion (2) and for its algebraic and geometric interpretations
under the extra assumption that Y is symmetric with non-
negative off-diagonal entries in Re(Y ) and nonpositive off-
diagonal entries in Im(Y ).

Theorem 2: Under the assumptions (1) and (2) above,
ϕ∗ = ψ∗ and an optimal solution to (11)-(12) (and equiva-
lently for (8)) can be constructed from that to (13)-(14).

The proof of Theorem 2 is a straightforward extension of
a similar result in the case with no storage in [25, Theorem
1]. We now discuss the construction of an optimal solution to
the OPF problem with storage. Let [ν1(t)T ν2(t)T ]T be in
the null space of Aopt(t) with ν1(t), ν2(t) ∈ Rn. Then,
an optimal value V opt(t) for V (t) can be computed as
V opt(t) = (ζ1(t)+ζ2(t)i)(ν1(t)+ν2(t)i) where the constants
ζ1(t) and ζ2(t) can be determined from the KKT conditions
µmink (t)((V mink )2 − |Vk(t)|2) = 0 and µmaxk (t)(|Vk(t)|2 −
(V maxk )2) = 0 or the fact that the phase angle at the swing
(reference) bus is known (e.g., zero). An optimal value of
W (t) can be computed through W (t) = U(t)U(t)T . Then,
optimal values for P g, Qg, b, r, and s are computed through
the KKT conditions: for k ∈ N ,

λmink (t)
[
tr{YkW (t)}+ rk(t)− Pmink + P dk (t)

]
= 0,

λmaxk (t)
[
Pmaxk − P dk (t)− tr{YkW (t)} − rk(t)

]
= 0,

ηmink (t)
[
tr{YkW (t)}+ sk(t)−Qmink +Qdk(t)

]
= 0,

ηmaxk (t)
[
Qmaxk −Qdk(t)− tr{YkW (t)} − sk(t)

]
= 0,

γmink (t)bk(t) = 0, γmaxk (t) [Bmaxk − bk(t)] = 0,

for t = 1, . . . , T,

ρmink (t)
[
rk(t)−Rmink

]
= 0, ρmaxk (t) [Rmaxk − rk(t)] = 0,

ξmink (t)
[
sk(t)− Smink

]
= 0, ξmaxk (t) [Smaxk − sk(t)] = 0,

σk(t+ 1) [rk(t)− bk(t+ 1) + bk(t)] = 0,

for t = 1, . . . , T − 1, and βk [bk(1)− gk] = 0 and the
conditions in (10).

IV. EXAMPLES

In this section, we illustrate the effect of energy storage
using the IEEE 14 bus benchmark example [27] with differ-
ent cost functions of the form (8). This benchmark system,
which represents a portion of the Midwestern US Electric
Power System as of February, 1962 [27], does not include
storage. Therefore, while we use its network topology as well
as its voltage and generation bounds, (i.e., V max, V min,
Pmax, Pmin, Qmax and Qmin in (2) and (1)), we need
to add appropriate values for the storage parameters as
well as time-varying demand profiles. We created demand
profiles for each bus using typical hourly demands for 14
different 2009 December days in Long Beach, CA, USA
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[29]. The curves are scaled so that their peak corresponds
to the static demand values in the IEEE 14 bus test case.
Figure 1 shows the demand curves for each bus. For all of
the results presented here the rate limits in (5) are set to
Rmaxk = 8 and Rmink = −8 Mega Watts (MW) for each
bus. The reactive rate limits (Smaxk and Smink in (7)) are
set to keep the rate angle between −18 deg and 48 deg.
This range was selected based on the real and reactive
generation limits in the IEEE 14 bus test case which give
rise to generator angles approximately between −17 deg and
90 deg. Unless otherwise indicated all power values reported
in the following sections are normalized to per unit values
(p.u.) as described in [15].
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Fig. 1. Hourly demands peak scaled to match the demands in IEEE 14
bus benchmark case. The load profiles represent demands for 14 different
typical days in December 2009 in Long Beach, CA, USA.

A. Example I: Linear cost

We first use a cost function that is the sum of the total
generation (i.e., ‖P g‖1 =

∑T
t=1

∑
l∈G P

g
l (t)) and refer

to this as a time-invariant linear cost function since the
coefficients cl1(t) = 1 and cl2(t) = 0 from (8) are constant
in time for each l ∈ G. Figure 2 shows that the addition
of storage (32 MWh per bus) as well as the finite-time
optimization horizon produces a flatter generation curve over
the time period. This change is most evident for generators
4 and 5 (respectively P g4 and P g5 ). For this cost function
generator 1 is not used. A constant generation profile is
desirable from an operator perspective as the efficiency of
most of the conventional generators are optimized for full
capacity. As a result, many operators maintain generation
levels that will accommodate the peak demand which can
lead to excess power being curtailed.

There has been a great deal of research aimed at demand
based pricing strategies, (i.e., higher prices at peak demand
times). The thick black line on the top panel of Figure 4
shows that the average demand begins to increase around t =
15. In order to simulate this affect we use a weighed `1 norm
(i.e.,

∑T
t=1

∑
l∈G cl1(t)P gl (t)) for the cost function in (8)

where for each generator l ∈ G the parameter cl1(t) = 1 for
t ∈ {1, . . . 15} and cl1(t) = 1.5 for t ∈ {16, . . . 24} and refer
to this case as the time-varying cost function. Figure 2 shows
that this time-varying cost function further regulates the
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Fig. 2. Hourly generation for each l ∈ G. The addition of 32 MWh storage
at each bus as well as optimization over time results in flatter generation
profiles, especially when a demand based time-varying cost function is used.
This smoothing of the generation curve is most evident for generators 4 and
5. Generators 2 and 3 produce power primarily to track their own load.

demand profile to an essentially constant level for generators
4 and 5 and reduces the peak-to-trough spread on generator
2. Some of the demand is also satisfied by requiring a
small amount of generation from generator 1 during the peak
period. It should be noted that generators 2 and 3 produce
power primarily to track their own load, for both the time-
invariant and time-varying linear cost functions. One reason
that the finite-time horizon optimization with storage does
not flatten all of the generation profiles is because the linear
cost function (i.e., `1 norm based) only attempts to minimize
overall generation rather than the total energy of the power
signal.

The left panel of Figure 3 shows how the value of both
time-invariant and time-varying cost functions (normalized
such that each P gl (t) for l ∈ G and t ∈ {0, . . . T} is a p.u.
value) change with the amount of per bus storage capacity
Bmax in MWh. For time-independent costs, the storage
reduces the cost (which is equivalent to total generation)
by a small percent. However, a simple demand based cost
structure increases the cost benefit by about 2% for a
doubling of storage capacity.

B. Example II: Quadratic cost

In this subsection, we repeat the computations described
in section IV-A for both time-invariant and time-varying
quadratic cost functions. Again, we use the peak normalized
demand profiles shown in the top panel of Figure 4 to
determine that t = 15 is the time step where the average
demand starts to increase toward peak levels. The higher cost
function coefficients for t ≥ 15 are thus meant to reflect a
demand based pricing scheme. We obtain the second order
coefficients directly from the IEEE 14 bus test case. The
linear coefficients were selected to maintain the ratio of costs
between the generators in the test case. For the time-invariant
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Fig. 3. Cost versus per bus storage capacity (Bmax in MWh) at each
bus. The left panel is for a linear cost function and the right panel for a
quadratic cost function. The cost always decreases with increased storage
capacity. For time-varying coefficients the decrease in cost is roughly linear
as a function of per bus storage capacity for both cost functions.

case the coefficients for t = 1, . . . , 24, are; c12(t) = 0.043,
c22(t) = 0.250, cl2 = 0.01 for l = 3, 4, 5, cl1(t) = 2 for
l = 1, 2, and cl1(t) = 4 and cl2(t) = 0.010 for l = 3, 4, 5.
For the time-varying case the quadratic term coefficients,
cl2(t) for l ∈ {1, . . . , 5} and for all t, are the same as
in the time-independent case. The first order coefficients
cl1(t) = 2 for l = 1, 2 and cl1(t) = 4 for l = 3, 4, 5 for
t = 1, . . . , 15, and cl1(t) = 4 for l = 1, 2 and cl1(t) = 8
for l = 3, 4, 5 for t = 16, . . . , 24,. The right panel in Figure
3 indicates that, as with the linear cost function, the cost
decreases approximately linearly with storage but the slope
is significantly steeper with roughly a 4% decrease with a
doubling of per bus storage capacity until we reach a limit
beyond which additional storage no longer affects the cost.

Figure 4 shows the relationship between storage use and
demand for the time-varying quadratic cost function. The
top panel reflects peak normalized demand at each bus. The
average per bus demand (excluding buses with no demand)
is superimposed on the rest of the curves with a thick black
line. The center and lower panels reflect the storage use
with two different per bus capacity constraints (respectively,
Bmax = 32 MWh and Bmax = 72 MWh). As the demand
increases the storage is charged until the time increment
before the first local peak (at t = 8), then the storage is used
to reduce the generation load until the demand stabilizes.
Finally the storage is recharged until the peak load and then
discharged until the end of the day. For the higher storage
capacity constraint (Bmax = 72 MWh) the storage is never
fully charged. The maximum usage occurs at approximately
64 MWh, which explains why the cost function value does
not change for the last two points (per bus Bmax levels) on
the right panel of Figure 3.

Figure 5 shows that a quadratic time-varying cost function
along with storage further flattens the generation profiles.
For the quadratic time-varying costs generators 1 and 2
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Fig. 4. The top panel shows the peak normalized demand. At t = 15
the average demand (shown as the thick line and excluding buses with
no demand) starts to increase toward peak levels, this defines the point
where the cost function coefficients are increased to reflect a demand based
pricing scheme. The center and lower panels respectively show the storage
use for the time-varying quadratic cost function based on per bus capacity
constraints of 32 and 72 MWh respectively. For the higher storage capacity
the full capacity is never used.

provide all of the required power. Clearly, the form of the
cost function favors the use of the first two generators. The
addition of storage and an optimization over time produces
almost constant levels of generation for generator 1 over
the 24 hour period when compared to the no storage case.
For generator 2, the range is reduced from [0.24, 0.71] to
[0.30, 0.54].

Remark 3: It was observed in [25] that Assumption (2)
in section III-C is satisfied in many of the IEEE benchmark
systems when a small amount of resistance (e.g., of the
order of 10−5 per unit) was added to each transformer. In
the numerical examples in this paper, we implement this
modification. This modification essentially renders the graph
induced by Re(Y ) strongly connected.

V. SUMMARY AND POTENTIAL EXTENSIONS

We formulated an optimal power flow problem with simple
charge/discharge dynamics for energy storage collocated
with load and/or generation buses as a finite-time optimal
control problem. The resulting optimization problem, under
certain conditions (discussed in the previous sections), was
solved using a procedure based on a convex semi-definite
program obtained as a Lagrangian dual to the rank relaxation
of an equivalent formulations for the OPF problem with
storage dynamics. We investigated effects of storage capacity
and power rating on generation costs and peak reductions
using a modified version of the IEEE 14 benchmark system
which represents a portion of the Midwestern U.S. Electric
Power System.

As discussed in the earlier sections, the motivation of the
current work is to assess the utility of grid-integrated storage
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Fig. 5. Generation comparison for storage (Bmax = 32 MWh per bus)
and no storage with quadratic time-varying cost functions. Generators 3–5
do not generate power for either scenario.

in mitigating issues associated with integration of intermit-
tent renewable energy resources into the electric power grid.
As a step toward this goal, the current paper focused on a
case with no uncertainties. Integration of uncertainties due to
either intermittency in generation or fluctuations in demand
is a subject of ongoing study. Another natural extension is
assessing effects of the distribution of energy storage systems
in the power grid to minimize losses and defer the expansion
requirements of transmission capacities.

The role of energy storage is to provide flexibility to
the power systems for dealing with a number of concerns
including power quality, stability, load following, peak reduc-
tion, and reliability. A promising direction is assessing the
suitability of hybrid storage technologies (e.g., a combina-
tion of pumped-hydro, thermal, and batteries) in addressing
these issues. Additionally, similar flexibility can be acquired
through spinning reserves and/or conventional generators
with high ramp rates. An interesting design issue is deciding
on an appropriate balance between the storage and ancillary
generation capacities.
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