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Abstract—Restructuring of the electric power industry along
with mandates to integrate renewable energy sources is intro-
ducing new challenges for the electric power system. Intermittent
power sources in particular, require mitigation strategies in order
to maintain consistent power on the electric grid. We investigate
distributed energy storage as one such strategy. Our model for
optimal power flow with storage augments the usual formulation
by adding simple charge/discharge dynamics for energy storage
collocated with load and/or generation buses cast as a finite-time
optimal control problem. We first propose a solution strategy that
uses a convex optimization based relaxation to solve the optimal
control problem. We then use this framework to illustrate the
effects of various levels of energy storage using the topology
of the IEEE 14 bus benchmark system along with both time-
invariant and demand-based cost functions. The addition of
energy storage and demand-based cost functions significantly
reduces the generation costs and flattens the generation profiles.

Index Terms—Distributed power generation; electric power
dispatch; energy storage; optimization methods; power system
analysis; power system control.

I. INTRODUCTION

Electric power systems and the power grid are currently

undergoing a restructuring due to a number of factors such as

increasing demand, additional uncertainty caused by the inte-

gration of intermittent renewable energy sources and further

deregulation of the industry [2], [9], [11]. The integration of

renewables in particular is being accelerated by government

mandates, e.g., see [35] which details these directives for 30

US states. The operational challenges associated with these

trends can be alleviated by effectively utilizing grid-integrated

distributed energy storage [6]. The potential benefits of grid-

integrated storage technologies include decreasing the need

for new transmission or generation capacity, improving load

following, providing spinning reserve, correcting frequency,

voltage, and power factors, as well as the indirect environ-

mental advantages gained through facilitating an increased

penetration of renewable energy sources [30].

The promise of effective grid-integrated energy storage

schemes is widely accepted and this has led to a great deal

of research activity [16]. We give a brief overview of some

of the past work as it ties to the problem studied here (a

thorough survey is beyond the scope of this paper). The role

of storage in power regulation and peak-shaving was studied

through simulation as early as 1981 [38]. More recently, the

utility of energy storage in mitigating the effects of integration

of renewable resources has been investigated in both traditional
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[3], [15], [17] and micro-grid [32] settings. Reference [6] used

a probabilistic model to predict the feasibility of increased

renewable penetration given different types, sizes, and time

scales of storage technologies. The effect of energy storage

on various performance metrics, such as, the probability of

load-shedding, has also been investigated through the use of

different combinations of hybrid generation (i.e., a combina-

tion of wind, solar and fossil fuel based generation systems)

versus storage capacities. See [37] and the references therein

for the special case of an isolated system, e.g., a power

system for an island with no mainland connection. Economic

questions, such as, how to increase the value of storage

device ownership [36] and how to efficiently allocate energy

storage to minimize curtailed wind energy (in a system with

a high penetration of wind generation) [4], have also been

studied. However, there are still many questions that need to

be addressed to understand the full potential and limitations

of large-scale energy storage. In particular, the appropriate

storage technology along with the required capacity and rates

of charge/discharge are the subject of continuing research [29].

The present work uses an optimal power flow formulation

that includes storage charge/discharge dynamics to investigate

how different storage capacities affect peak-shaving and other

performance metrics using a case study based on the IEEE 14

benchmark system [34].

The optimal power flow (OPF) problem [13], [14], [18],

[26] optimizes a cost function, e.g., generation cost and/or user

utilities, over variables such as real and reactive power outputs,

voltages, and phase angles at a number of buses subject

to capacity and network constraints. It has been extensively

studied since the pioneering work of Carpentier [10]. The

surveys in [19], [27], [28] provide a historical overview of spe-

cial instances of the problem and various solution strategies.

More recent work has focused on potentially restrictive yet

computationally more tractable instances and reformulations

of the problem. For example, references [20], [21] considered

radial distribution systems as conic programming problems.

The problem was first formulated as a semi-definite program

(SDP) in [5]. This idea was further refined and extensively

analyzed in [22]–[24], where a sufficient condition under

which there is an equivalent convex relaxation that provides an

exact solution to the OPF problem was provided and proved.

The formulation in this paper extends the OPF problem

formulation in [23], [24] to integrate simple charge/discharge

dynamics for energy storage distributed over the network. The

inclusion of these storage dynamics leads to a finite-horizon

optimal control problem that enables optimization of power

allocation over time in addition to static allocation over the

network. The current formulation augments the ideas presented

in [12] through elimination of the small-angle assumption and

the addition of power rate limits on the energy storage. The



expanded problem setting allows us to evaluate how changes

in storage capacity, power rating, and distribution over the

network affect performance metrics such as cost and peak

generation.

The contributions of this paper are twofold. First, it proposes

a formulation for OPF with storage dynamics along with a

strategy to relatively efficiently (i.e., with provably polynomial

complexity) compute its optimal solution. The procedure and

solution method, both described in Section III, extend the SDP

relaxations described in [5], [23], [24] to allow the inclusion

of simple storage dynamics. Second, this computational pro-

cedure is used to investigate the effects of different energy

storage capacities on generation costs and peak-shaving using

an IEEE benchmark network [34] as an example. As an initial

step, we neglect uncertainties due to fluctuations in demand

and/or intermittency in generation.

II. PROBLEM SETUP

Consider a power network with n buses and m ≤ n

generators. Define N := {1, . . . , n} and G := {1, . . . ,m}
as the set of indices of all buses and the generator buses,

respectively. Let Y ∈ C
n×n be the admittance matrix defining

the underlying network topology as described in [26], [39]. In

the following, we extend an OPF problem formulation from

[26] to include simple dynamics for storage units located at

each of the buses. See Figure 1 for a sample network structure

augmented with storage units, which is also used in Section

IV. Note that the terms bus and node are used interchangeably

throughout the remainder of this paper.

Fig. 1. Topology of the IEEE 14 bus test case with energy storage units
(depicted as batteries in the figure) at each node. This figure is a modified
version of the figure provided in [34].

The active and reactive power generation P
g
l (t) and Q

g
l (t)

at generation buses l ∈ G for times t ∈ T := {1, . . . , T} are

respectively bounded as

Pmin
l ≤ P

g
l (t) ≤ Pmax

l , (1a)

Qmin
l ≤ Q

g
l (t) ≤ Qmax

l . (1b)

The voltage magnitude Vk(t) at bus k ∈ N and time t ∈ T is

bounded as

V min
k ≤ |Vk(t)| ≤ V max

k . (2)

At bus k ∈ N , let bk(t) denote the amount of energy storage

at time t ∈ T and rk(t) denote the rate of charge/discharge

of energy at time t = 1, . . . , T − 1. The amount of storage

at bus k ∈ N is modeled to follow the first-order difference

equation

bk(t+ 1) = bk(t) + rk(t)∆t, for t = 1, . . . , T − 1, (3)

where ∆t denotes the time interval [t, t + 1] and the initial

condition is given by

bk(1) = gk. (4)

The amount of storage bk(t) and its rate rk(t) of

charge/discharge, at each bus k ∈ N , are bounded as

0 ≤ bk(t) ≤ Bmax
k , for t ∈ T (5a)

Rmin
k ≤ rk(t) ≤ Rmax

k , for t = 1, . . . , T − 1. (5b)

The network constraints at each k ∈ N and time t ∈ T , are

Vk(t)I
∗
k(t) = P

g
k (t)− P d

k (t)− rk(t)
+
[

Q
g
k(t)−Qd

k(t)− sk(t)
]

i,
(6)

where sk(t) is the reactive storage power inflow/outflow at bus

k ∈ N and time t ∈ T , which is bounded as

Smin
k ≤ sk(t) ≤ Smax

k . (7)

We use the convention that P
g
k (t) = Q

g
k(t) = 0 for k ∈ N\G

and t ∈ T and rk(T ) = 0 and sk(T ) = 0 for k ∈ N .

Combining the above expressions results in the following OPF

problem with storage dynamics.

φ∗ := min
T
∑

t=1

∑

l∈G

cl2(t) (P
g
l (t))

2
+ cl1(t)P

g
l (t)

subject to

(1), (2), (3), (4), (5), (6), and (7)

(8)

over the decision variables Vk(t), P
g
k (t), Q

g
k(t), bk(t), rk(t),

and sk(t) (with the respective bus and time indices k and t

running over the sets specified above).

The conventional OPF problem has no correlation across

time; therefore, the corresponding optimization is static and

can be solved independently at each time. The addition of

storage charge/discharge dynamics allows optimization across

time, i.e., the ability to charge when the cost of generation

is low and discharge when it is high. The admittance matrix

induces optimization across the network in both formulations.

III. SOLUTION STRATEGY

The nonconvexity of the constraint (2) and the bilinearity

in the equality constraint in (6) make the general problem in

(8) nonconvex. In this section we propose a convex relaxation

of (8) following a procedure similar to that discussed in [23],

[24] and show that the addition of storage dynamics does not

change the overall structure of the dual problem. Therefore,

the same assumptions that are presented in those works allow

a solution for (8) to be constructed from the Lagrangian

dual of the relaxation. Section III-B provides a procedure

for constructing a solution for the OPF problem with storage

dynamics from that of the dual problem.



A. Lagrangian relaxation for the OPF problem with storage

In order to define the Lagrangian relaxation of the optimiza-

tion of the OPF with storage we first reformulate the problem

following the procedure described in [23], [24] and partially

adopt their notation. Let U(t) := [Re(V (t)), Im(V (t))]
T

,

W (t) := U(t)U(t)T and Yk := eke
∗
kY , where ek ∈ R

n, k =
1, . . . , n, is the standard basis vectors for R

n and Re(·) and

Im(·) denote the real and imaginary parts of their arguments,

respectively. Define

Mk :=

[

eke
∗
k 0

0 eke
∗
k

]

,

Yk : =
1

2

[

Re
{

Yk + Y T
k

}

Im
{

Y T
k − Yk

}

Im
{

Yk − Y T
k

}

Re
{

Yk + Y T
k

}

]

, and

Yk : = −
1

2

[

Im
{

Yk + Y T
k

}

Re
{

Yk − Y T
k

}

Re
{

Y T
k − Yk

}

Im
{

Yk + Y T
k

}

]

.

Then the optimization in (8) can be shown to be equivalent

to

φ∗ := min
W (t),α(t),b(t),r(t),s(t)

T
∑

t=1

∑

l∈G

αl(t) (9)

subject to

Pmin
k − P d

k (t) ≤ tr {YkW (t)}+ rk(t)

≤ Pmax
k − P d

k (t), (10a)

Qmin
k −Qd

k(t) ≤ tr
{

YkW (t)
}

+ sk(t)

≤ Qmax
k −Qd

k(t), (10b)
(

V min
k

)2
≤ tr {MkW (t)} ≤ (V max

k )
2
, (10c)

0 ≤ bk(t) ≤ Bmax
k , (10d)

Rmin
k ≤ rk(t) ≤ Rmax

k , (10e)

Smin
k ≤ sk(t) ≤ Smax

k , (10f)

bk(t+ 1) = rk(t) + bk(t), (10g)

bk(1) = gk, (10h)
[

al0(t) al1(t)
al1(t) −1

]

≼ 0, (10i)

W (t) ≽ 0, (10j)

rank(W (t)) = 1, (10k)

where

al0(t) := cl1(t)
[

tr {YlW (t)}+ rl(t) + P d
l (t)

]

− αl(t),

al1(t) :=
√

cl2(t)
[

tr {YlW (t)}+ rl(t) + P d
l (t)

]

,

l ∈ G, k ∈ N and t ∈ T for all equations except (10g) where

t runs over {1, . . . , T − 1}. Also, P
g
k (t) = 0 and Q

g
k(t) = 0

for k ∈ N\G and t ∈ T with rk(T ) = 0 and sk(T ) = 0 for

k ∈ N . For a symmetric matrix X , X ≽ 0 (X ≼ 0) means that

X is positive (negative) semi-definite. The equivalence of (10i)

and cl2(t) (P
g
l (t))

2
+ cl1(t)P

g
l (t) ≤ αl(t) can be shown using

the Schur complement formula [8]. The change of variables

that transforms (8) into (9)-(10) follows from the fact that a

symmetric matrix X ∈ R
n×n is positive semi-definite and of

rank 1 if and only if there exists x ∈ R
n such that X = xxT .

Finally, note that (9)-(10) has a linear cost function and convex

constraints (linear equality and inequality constraints in (10a)-

(10h) and linear matrix inequalities in (10i)-(10j)), except for

the nonconvex constraint (10k).

Remark 1: Constraints such as power flow and thermal line

limits can easily be added to this formulation using a procedure

similar to that in [24]. This will not change the essence of the

modeling framework or problem solving techniques but does

require a great deal of additional notation, hence it is omitted

here for clarity of exposition.

The Lagrangian dual for optimization (9)-(10) excluding the

nonconvex rank constraint (10k) can now be stated as

ψ∗ := max
x≽0,z,σ,β

h(x, z, σ, β) (11)

subject to
∑

k∈N

[

Λk(t)Yk +Hk(t)Yk +Υk(t)Mk

]

≽ 0, (12a)

Hk(t) + ξmax
k (t)− ξmin

k (t) = 0, (12b)

Λk(t) + ρmax
k (t)− ρmin

k (t) + σk(t+ 1) = 0, (12c)

σk(t+ 1)− σk(t) + γmax
k (t)− γmin

k (t) = 0, (12d)

σk(2) + γmax
k (1)− γmin

k (1) + βk = 0, (12e)

−σk(T ) + γmax
k (T )− γmin

k (T ) = 0, (12f)
[

1 zl1(t)
zl1(t) zl2(t)

]

≽ 0, (12g)

with k ∈ N and l ∈ G. For (12a), (12b) and (12g) t ∈ T ,

whereas time runs over t = 1, . . . , T − 1 in (12c) and t =
2, . . . , T − 1 in (12c)-(12d). The optimization variables are

defined as

zl(t) :=[zl0(t), zl1(t), zl2(t)]
T , l ∈ G, t ∈ T , and

x(t) :=
[

λmin(t)T , λmax(t)T , ηmin(t)T , ηmax(t)T ,

µmin(t)T , µmax(t)T , γmin(t)T , γmax(t)T ,

ρmin(t)T , ρmax(t)T , ξmin(t)T , ξmax(t)T
]T
.

The cost function is

h(x, z, σ, β) := −

∑

t∈T

∑

l∈G

zl2(t)−
∑

k∈N

βkgk

+
∑

t∈T

∑

k∈N

{

Λk(t)P
d

k (t) +Hk(t)Q
d

k(t) + λ
min

k (t)Pmin

k

− λ
max

k (t)Pmax

k + η
min

k (t)Qmin

k − η
max

k (t)Qmax

k

+ µ
min

k (t)
(

V
min

k

)

2

− µ
max

k (t) (V max

k )2 + ρ
min

k (t)Rmin

k

− ρ
max

k (t)Rmax

k + ξ
min

k (t)Smin

k − ξ
max

k (t)Smax

k − γ
max

k (t)Bmax

k

}

,

where, for t ∈ T ,

Λk(t) :=











λmax
k (t)− λmin

k (t)

+ck1(t) + 2
√

ck2(t)zk1(t), k ∈ G,

λmax
k (t)− λmin

k (t), k ∈ N\G,

Hk(t) := ηmax
k (t)− ηmin

k (t), k ∈ N ,

Υk(t) := µmax
k (t)− µmin

k (t), k ∈ N .

Theorem 1: Optimization (11)-(12) is a Lagrangian dual of

optimization (9)-(10) excluding the rank constraint (10k) and

strong duality holds.



Proof: Introduce the following correspondence between the

constraints in (10) (all constraints on reals written as f(y) ≤ 0
with f : Rν → R and all constraints on symmetric matrices

written as f(y) ≼ 0 with f : Rν → R
ω×ω) and the decision

variables in (11)-(12).

λmax
k (t), λmin

k (t) ≥ 0 for (10a),

ηmax
k (t), ηmin

k (t) ≥ 0 for (10b),

µmax
k (t), µmin

k (t) ≥ 0 for (10c),

γmax
k (t), γmin

k (t) ≥ 0 for (10d),

ρmax
k (t), ρmin

k (t) ≥ 0 for (10e),

ξmax
k (t), ξmin

k (t) ≥ 0 for (10f),

where, variables with the superscript “max” (“min”) corre-

spond to the upper (lower) bounds and the indices k and t run

over the sets indicated in (10). For k ∈ N and t = 1, . . . , T−1,
σk(t+1) corresponds to the equality constraint (10g), and βk
corresponds to that in (10h). Finally, let

[

zl0(t) zl1(t)
zl1(t) zl2(t)

]

≽ 0

correspond to (10i) and Ω(t) ≽ 0 correspond to (10j).

Minimization of the Lagrangian with respect to αl(t) leads to

zl0(t) = 1. Then, through elimination of Ω(t) and standard

manipulations on the Lagrangian of optimization (9)-(10)

(with the dual variables defined above), one can show that

optimization (11)-(12) is a Lagrangian dual of optimization

(9)-(10) excluding the rank constraint (10k). To show that

strong duality holds, note that both optimization problems

(11)-(12) and (9)-(10) excluding the rank constraint in (10k)

are convex. A strictly feasible solution can be constructed as

λmin
k (t) :=

{

ck1(t) + 1, for k ∈ G

1, for k ∈ N\G

and λmax
k (t) = 1, ηmax

k (t) = ηmin
k (t) = 1, µmax

k (t) = 2,
µmin
k (t) = 1, ρmax

k (t) = ρmin
k (t) = 1, γmax

k (t) = γmin
k (t) =

1 ξmax
k (t) = ξmin

k (t) = 1, and βk = 0, for k ∈ N , t ∈ T
along with zl0(t) = 0, zl1(t) = 1 for l ∈ G and t ∈ T and

σk(t + 1) = 0 for k ∈ N and t ∈ {0, . . . , T − 1}. Hence,

strong duality holds by Slater’s theorem [8].

Remark 2: Equation (12) shows that adding affine

charge/discharge dynamics to the OPF problem does not

change the structure of the dual variable that provides the

basis for the main result in [23], [24]. This fact is the key to

the constructing a solution to (8) from that of (11)-(12) using

the procedure detailed in Section III-B. It should, however, be

noted that the time dependence of each term in (12a) implies

that the condition must hold at every t ∈ T .

B. Constructing an optimal solution for OPF with storage

Theorem 1 shows that there is no duality gap between opti-

mization (11)-(12) and a rank relaxation of the (equivalently)

reformulated OPF problem with storage (9)-(10). Now, we

show that under certain assumptions, there is no duality gap

between the optimizations in (11)-(12) and (9)-(10).

Assumptions:

1) Optimization (9)-(10) is feasible and every feasible

solution satisfies W (t) ̸= 0 for all t ∈ T .

2) There exists an optimal solution to (11)-(12) with opti-

mal values (xopt(t), zopt(t)) for (x(t), z(t)) such that

Aopt(t) :=
∑

k∈N

[

Λopt
k (t)Yk +H

opt
k (t)Yk +Υopt

k (t)Mk

]

has a zero eigenvalue of multiplicity two for t ∈ T .

Remark 3: Assumption 1 is to avoid trivial solutions and

implies that V (t) = 0 is not feasible for (9)-(10), or for the

equivalent optimization (8), for any t ∈ T .
Remark 4: Assumption 2 is critical for constructing a solu-

tion to (9)-(10) from the solution of (11)-(12) (using the KKT

condition tr(W opt(t)Aopt(t)) = 0 at each t ∈ T ). Note that

Assumption 2 can only be verified once the problem in (11)-

(12) has been solved. Moreover, it limits the instances of the

problem in (9)-(10) for which a solution can be constructed.

References [23], [24] discuss algebraic and geometric inter-

pretations of Assumption 2 under the extra condition that Y

is symmetric with nonnegative off-diagonal entries in Re(Y )
and nonpositive off-diagonal entries in Im(Y ).

Theorem 2: Under Assumptions 1 and 2, φ∗ = ψ∗ and an

optimal solution to (9)-(10) (and equivalently for (8)) can be

constructed from the solution of (11)-(12).

The proof of Theorem 2 is a straightforward extension of

Theorem 1 in [23], which is a similar result for the OPF

problem without storage dynamics.

C. Summary of the computational procedure

We now summarize how the results described above can be

used to compute a solution to (8) by solving the problem in

(11)-(12). Given a feasible solution to (11)-(12) that satisfies

Assumption 2 and some [ν1(t)
T ν2(t)

T ]T , with ν1(t), ν2(t) ∈
R

n, in the null space of Aopt(t). An optimal value V opt(t)
for V (t) can be computed as

V opt(t) = (ζ1(t) + ζ2(t)i)(ν1(t) + ν2(t)i),

where the constants ζ1(t) and ζ2(t) can be determined from

the KKT conditions µmin
k (t)((V min

k )2 − |Vk(t)|
2) = 0 and

µmax
k (t)(|Vk(t)|

2 − (V max
k )2) = 0 along with the fact that

the phase angle at the swing (reference) bus is known (e.g.,

zero). This optimal V opt(t) can then be used to compute W (t).
Finally, optimal values for P g, Qg, b, r, and s are computed

through the KKT conditions at each k ∈ N ,

λmin
k (t)

[

tr{YkW (t)}+ rk(t)− Pmin
k + P d

k (t)
]

= 0,

λmax
k (t)

[

Pmax
k − P d

k (t)− tr{YkW (t)} − rk(t)
]

= 0,

ηmin
k (t)

[

tr{YkW (t)}+ sk(t)−Qmin
k +Qd

k(t)
]

= 0,

ηmax
k (t)

[

Qmax
k −Qd

k(t)− tr{YkW (t)} − sk(t)
]

= 0,

γmin
k (t)bk(t) = 0, γmax

k (t) [Bmax
k − bk(t)] = 0,

for t ∈ T and

ρmin
k (t)

[

rk(t)−Rmin
k

]

= 0, ρmax
k (t) [Rmax

k − rk(t)] = 0,

ξmin
k (t)

[

sk(t)− Smin
k

]

= 0, ξmax
k (t) [Smax

k − sk(t)] = 0,

σk(t+ 1) [rk(t)− bk(t+ 1) + bk(t)] = 0,

for t = 1, . . . , T − 1, and βk [bk(1)− gk] = 0 along with the

reformulations of (6). Note that the KKT conditions constitute



a set of affine equality constraints on the decision variables P g,

Qg, b, r, and s.

If the optimal value of the optimization in (11)-(12) is

unbounded, the problem in (8) is infeasible (because the

rank relaxation of the equivalent reformulation in (9)-(10) is

infeasible). However, if the problem in (11)-(12) is feasible

but its solution violates Assumption 2, then the procedure is

inconclusive (i.e., an optimal solution for the optimization in

(8) cannot be guaranteed).

Remark 5: The optimization problems in this paper (e.g.,

that in (11)-(12)) are solved using the parser YALMIP [25] and

the solver SeDuMi [33] in the Matlab environment. Efficient

computations for optimization in (11)-(12) that may exploit

the structure of the constraints (e.g., recursion over time) are

subjects of ongoing research.

IV. CASE STUDIES

In this section, we illustrate the effects of energy storage

using IEEE benchmark systems [34] with different cost func-

tions of the form (8) using the solution procedure discussed

in Section III-B and III-C. The simulations discussed herein

were performed on both the IEEE 14 and 30 bus benchmark

systems. However, since there was no qualitative difference

in the trends observed, only the results from the 14 bus test

system, which represents a portion of the Midwestern US

Electric Power System as of February, 1962 [34], are reported

here. Neither of the benchmark systems include storage.

Therefore, while we use their network topology as well as

their voltage and generation bounds, (i.e., V max, V min, Pmax,

Pmin, Qmax and Qmin in (1) and (2)), appropriate values

for the storage parameters along with time-varying demand

profiles need to be estimated. Demand profiles for each bus are

created using typical hourly demands for 14 (or 30) different

2009 December days in Long Beach, CA, USA [1]. The curves

are scaled so that their peak corresponds to the static demand

values in the IEEE 14 (or 30) bus test case. Figure 2(a) shows

the demand curves for each bus for the 14 bus case. For all

of the results presented here the rate limits in (5) are set to be

between 25−33% of the maximum capacity of the storage, e.g.

0.25Bmax∆t with ∆t = 1 with units of Mega Watts (MW).

The limits Smax
k and Smin

k in (7) on the reactive power are set

to keep the rate angle between −18 deg and 48 deg. This range

was selected based on the real and reactive generation limits in

the IEEE 14 bus test case which give rise to generator angles

approximately between −17 deg and 90 deg. Unless otherwise

indicated all power values reported in the following sections

are normalized to per unit values (p.u.) as described in [26].

A. Example I: Linear cost

We first use a cost function that is the sum of the total

generation (i.e., ∥P g∥1 =
∑T

t=1

∑

l∈G P
g
l (t)) and refer to this

as a time-invariant linear cost function since the coefficients

cl1(t) = 1 and cl2(t) = 0 from (8) are constant in time for

each l ∈ G. Figure 2(b) shows that the addition of storage

(32 MWh per bus) as well as the finite-horizon optimization

produces a flatter generation curve over the time period. This

change is most evident for generators 4 and 5 (respectively

P
g
4 and P

g
5 ). For this cost function, the optimal solution did

not make use of generator 1. A constant generation profile

is desirable from an operator perspective as the efficiency of

most conventional generators are optimized for full capacity.

As a result, many operators maintain generation levels that

will accommodate the peak demand which can lead to excess

power being curtailed.

There has been a great deal of research aimed at demand-

based pricing strategies, (i.e., higher prices at peak demand

times). In order to simulate this effect we use a weighted ℓ1
norm (i.e.,

∑T

t=1

∑

l∈G cl1(t)P
g
l (t)) for the cost function in

(8). The peak normalized demand profiles provided in the top

panel of Figure 5(b) show that t = 15 is roughly the time

step where the average demand starts to increase toward peak

levels. Accordingly, we set cl1(t) = 1 for t ∈ {1, . . . 15} and

cl1(t) = 1.5 for t ∈ {16, . . . 24} for each l ∈ G and refer to the

weighted ℓ1 norm with these coefficients as the time-varying

(or demand-based) linear cost function.

Figure 2(b) shows that the time-varying linear cost function

further regulates the demand profile to an essentially constant

level for generators 4 and 5 and reduces the peak-to-trough

spread on generator 2. Generator 1 also provides a small

amount of generation during the peak period. It should be

noted that generators 2 and 3 produce power primarily to track

their own load, for both the time-invariant and time-varying

linear cost functions. One reason that the optimal solution to

this OPF with storage does flatten all of the generation profiles

is that the linear cost function (i.e., ℓ1 norm based) attempts

to minimize overall generation rather than the total energy of

the power signal.

Figure 3(a) shows results obtained using the time-varying

linear cost function at two additional storage levels. The

reduction in the generation peak begins with storage levels

as low as 6 MWh per bus, which corresponds to a storage

capacity that can handle 2% of the full daily demand or 33%
of the peak load. It should be noted that the optimal solutions

computed for all of the results based on linear cost functions

favor storage at only the non-generating nodes. Therefore, the

actual storage use represents 1.4% of the system capacity or

21% of the peak load. The reason that the storage use is

distributed in this manner and the general problem of optimal

storage placement is a topic of ongoing study [7], [31]. As

expected, the benefit of the storage increases with storage

capacity. The relationship between added storage capacity

and reductions in the overall system load is illustrated in

Figure 3(b), which shows the aggregated system demand and

generation with 6, 12 and 32 MWh of per-bus storage using

the time-varying linear cost function, that is also used in Figure

3(a). These curves correspond to 5.4%, 9.2% and 20.3% peak

reductions for respective additions of 6, 12 and 32 MWh of

per-bus storage capacity or 54, 108 and 288 MWh of respective

storage use. (As previously noted, only the capacity at the load

buses is used.) These trends provide insight into the peak-

shaving potential that can be realized through investing in

various amounts of storage capacity.

Figure 4(a) shows how the optimal cost function value

changes with per-bus storage capacity Bmax
k in MWh for the

linear cost function with both time-invariant and time-varying
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Fig. 2. (a) Hourly demand curves for the 14 bus case that are peak scaled to match the static demands from the IEEE 14 bus benchmark system. The load
profiles represent demands for 14 different typical 2009 December days in Long Beach, CA, USA. (b) Hourly generation for each l ∈ G. The addition of 32
MWh storage at each bus as well as optimization over time results in flatter generation profiles, especially when a demand-based time-varying cost function
is used. This smoothing of the generation curve is most evident for generators 4 and 5. Generators 2 and 3 produce power primarily to track their own load
when the cost function is linear.
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Fig. 3. (a) Hourly generation for each l ∈ G given a time-varying (demand-based) linear cost function over a range of per-bus storage levels. (b) Aggregated
hourly generation as a function of per-bus storage compared with the total demand. There is a clear trade-off between the amount of peak load the generators
need to supply and the required per-bus storage capacity. As expected, increasing the level of per-bus storage decreases the generation peaks but even low
levels of storage effectively lower the peak. Note that the benefits gained by increasing per-bus storage capacity does not continue indefinitely as is shown
through the saturation in Figure 4(a). For all storage levels this smoothing of the generation curve is most evident for generators 4 and 5, whereas generators
2 and 3 produce power primarily to track their own load.

coefficients with the values normalized so that each P
g
l (t) for

l ∈ G and t ∈ T is a p.u. value. For the time-independent

cost function the storage reduces the cost (in this case, total

generation) by only a small amount. While, the addition of

a simple demand-based cost structure increases the storage’s

cost benefit by about 0.8% for every additional 8 MWh of

per-bus storage capacity.

B. Example II: Quadratic cost

In this subsection, we repeat the computations described

in Section IV-A for both time-invariant and time-varying

quadratic cost functions. Again, we use higher cost function

coefficients for t ≥ 15 to reflect a demand-based pricing

scheme. For all cases the second-order coefficients are those

of the IEEE 14 bus test case [34], which are c12(t) = 0.043,
c22(t) = 0.250, cl2 = 0.01 for l = 3, 4, 5 all over time

steps t = 1, . . . , 24. The linear coefficients were selected to

maintain the ratio of costs between the generators in the test

case. This led to time-invariant linear coefficients of cl1(t) = 2
for l = 1, 2, and cl1(t) = 4 for l = 3, 4, 5 over time

steps t = 1, . . . , 24 and time-varying first-order coefficients

of cl1(t) = 2 for l = 1, 2 and cl1(t) = 4 for l = 3, 4, 5 over

times t = 1, . . . , 15, and cl1(t) = 4 for l = 1, 2 and cl1(t) = 8
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Fig. 4. Cost versus per-bus storage capacity (Bmax

k
in MWh). (a) Linear cost function. (b) Quadratic cost function. In all cases, the cost decreases with

increased storage capacity and this decrease is roughly linear (as a function of per-bus storage capacity) for the cost functions with time-varying coefficients.

for l = 3, 4, 5 when t = 16, . . . , 24.

Figure 4(b) indicates that the addition of storage visibly

reduces the quadratic cost function value even when the

coefficients are tim independent. The reduction is roughly

0.3% for the first 8 MWh of per-bus storage capacity and then

the added savings with increasing amounts of storage drops off

rapidly especially at per-bus storage capacities greater than 32
MWh. As with the linear cost function, the value for the time-

varying case decreases approximately linearly with increasing

storage. However, the slope is significantly steeper with each

additional 8 MWh of per-bus storage capacity reducing the

cost function value by roughly 2% until we reach a limit

beyond which additional storage no longer affects the cost

function value (at approximately 64 MWh of per-bus capacity).

Figure 5(a) shows that a quadratic time-varying cost func-

tion further flattens the generation profiles and this effect

increases as the per-bus storage capacity is increased. For

the quadratic time-varying costs, generators 1 and 2 provide

all of the required power. In the following, we refer to the

remaining 12 nodes (i.e., including those with generators that

are not used) as non-generating nodes. Clearly, the form of

the cost function favors the use of the first two generators.

The addition of storage and an optimization over time produce

almost constant levels of generation for generator 1 over the

24 hour period when compared to the no-storage case. At the

highest storage capacity (32 MWh per bus) the power range

for generator 2 is reduced from [0.24, 0.71] to [0.30, 0.54].

Figure 5(b) shows the relationship between storage use

and demand for the demand-based quadratic cost function.

The top panel reflects peak normalized demand at each bus

with the average per-bus demand (excluding buses with no

demand) superimposed with a thick dashed-line. The center

and lower panels reflect the storage use with two different per-

bus capacity constraints (respectively, Bmax
k = 32 MWh and

Bmax
k = 72 MWh). As the demand increases, the storage is

charged until the time increment before the first local peak (at

t = 8), then the storage is used to reduce the generation load

until the demand stabilizes. Finally, the storage is recharged

until the peak load (at t = 18), and then discharged until

the end of the day. For the higher storage capacity constraint

(Bmax
k = 72 MWh) the storage is never fully charged. The

maximum per-bus usage is approximately 64 MWh, which

explains why the cost function value does not change for the

last two points (per-bus Bmax levels) on Figure 4(b).

As discussed in Section IV-A the optimal solution corre-

sponds to storage use only at the non-generating nodes, i.e.,

some of the capacity is not being used. This fact is illustrated

using Figure 6, which shows the aggregate system storage for

both the linear and quadratic cost function when Bmax
k = 12

MWh for k ∈ N with the full system, non-generating and

load-only node aggregate capacities indicated. Similar results

hold for all of the storage capacities that were studied and this

phenomena is being investigated as part of a larger ongoing

study related to optimal storage placement, see e.g. [7], [31].

Remark 6: It was observed in [23] that Assumption 2 in

Section III-B is satisfied in many of the IEEE benchmark

systems when a small amount of resistance (e.g., of the

order of 10−5 per unit) was added to each transformer. In

the numerical examples in this paper, we implement this

modification. This modification essentially renders the graph

induced by Re(Y ) strongly connected.

V. SUMMARY AND POTENTIAL EXTENSIONS

We investigated the effects of storage capacity and power

rating on generation costs and peak reductions using a modi-

fied version of the IEEE 14 and 30 bus benchmark systems. In

order to carry out these investigations we formulated an OPF

problem with simple charge/discharge dynamics for energy

storage as a finite-time optimal control problem. The resulting

optimization problem, under certain conditions (discussed in

the previous sections), was solved using a procedure based

on a convex SDP obtained as a Lagrangian dual to the rank

relaxation of an equivalent formulation for the OPF problem

with storage dynamics.

As discussed in the earlier sections, the motivation of the

current work is to assess the utility of grid-integrated storage

in mitigating issues associated with integrating intermittent

renewable energy resources into the electric power grid. As
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Fig. 5. (a) Generation comparison for B
max

= 12 and B
max

= 32

MWh of per-bus storage versus no storage with a quadratic time-varying
cost function. Generators 3–5 do not generate power in any scenario. (b)
The top panel shows the peak normalized demand. At t = 15, the average
demand excluding buses with no demand (shown as the thick dashed-line)
starts to increase toward peak levels, this defines the point where the cost
function coefficients are increased to reflect a demand-based pricing scheme.
The center and lower panels respectively show the storage use for the same
cost function as in (a) based on per-bus capacity constraints of 32 and 72

MWh respectively. For the higher storage capacity, the full capacity is not
used at any of the nodes.

a step toward this goal, the current paper investigated only the

impact of large scale integration of energy storage. Adding

uncertainties due to either intermittency in generation or

fluctuations in demand is a subject of ongoing study (with

preliminary work reported in [31]). Another natural extension

is assessing the use of energy storage systems to minimize

grid level losses and reduce the need for transmission capacity

expansion.

Energy storage can provide the power system with flexibility

for dealing with a number of concerns including power quality,
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Fig. 6. An illustration of total system storage use for simulations with both
linear and quadratic cost functions versus storage capacity for the full system
with B

max
= 12 MWh at each bus. The dashed line at 1.44 p.u. represents

the total storage capacity over the 12 nodes where there is no generation
and the dotted line at 1.08 p.u. represents the total generation at all load
only buses. As illustrated in Figure 5(a) only 2 of the 5 generators actually
provide power when a quadratic cost function is used therefore we denote the
remaining 12 nodes as non-generating nodes.

stability, load following, peak reduction, and reliability. A

promising direction for future work is assessing the suitability

of hybrid storage technologies (e.g., a combination of pumped-

hydro, thermal, and batteries) in addressing these issues.

Spinning reserves and/or conventional generators with high

ramp rates can provide similar services, thus an interesting

design issue is determining the appropriate balance between

storage and ancillary generation capacities.
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