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Abstract—Power flow routing is an emerging control paradigm
for the dynamic control of electric power flows. In this paper,
we propose a generic model of a power flow router (PFR) and
incorporate it into the optimal power flow (OPF) problem. First,
a generic PFR architecture is proposed to encapsulate the desired
functions of PFRs. Then, the load flow model of PFRs is developed
and incorporated into the OPF framework. To pursue global
optimality of the non-convex PFR-incorporated OPF (PFR-
OPF) problem, we develop a semidefinite programming (SDP)
relaxation of PFR-OPF. By introducing the regularization terms
that favor a low-rank solution and tuning the penalty coefficients,
a rank-1 solution can be obtained and used for recovering an
optimal or near-optimal solution of the PFR-OPF and the results
are verified in numerical tests. The efficacy of the PFR-OPF
framework allows us to investigate the impact of PFR integration.
With the system loadability as an example, the numerical results
show that remarkable enhancement can be achieved by installing
PFRs at certain critical buses of the network.

Index Terms—power flow routers, optimal power flow, convex
relaxation, semidefinite programming.

NOMENCLATURE

Sets

N Index set of buses.

E Index set of transmission lines.

Ωi Index set of one-hop neighbors of Bus i.

X Set of decision variables of the non-convex

PFR-OPF problem.

X̂ Set of decision variables of the relaxed PFR-

OPF problem.

Jm The mth bag of tree decomposition.

Im Set of matrix variable W’s diagonal entries

that correspond to the branch terminal voltages

of the buses/PFRs in bag Jm.

Ls Index set of transmission lines selected for

penalization.

Parameters

yik Transmission line admittance of Branch (i, k).
gik Line conductance of Branch (i, k).
bik Line susceptance of Branch (i, k).
cik Shunt capacitance of Branch (i, k).
Ui,min Lower bound of bus voltage Vi.

Ui,max Upper bound of bus voltage Vi.
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Tik,min Lower bound of transformer ratio Tik of PFR

i in Branch (i, k).
Tik,max Upper bound of transformer ratio Tik of PFR

i in Branch (i, k).
βik,min Lower bound of phase shift βik of PFR i in

Branch (i, k).
βik,max Upper bound of phase shift βik of PFR i in

Branch (i, k).
γik,max Upper bound of series voltage tap ratio γik of

PFR i in Branch (i, k).
QCik,min Lower bound of reactive power compensation

QCik of PFR i in Branch (i, k).
QCik,max Upper bound of reactive power compensation

QCik of PFR i in Branch (i, k).
Sik,max Upper bound of the magnitude of complex

power flow of Branch (i, k).
εr Penalty coefficient for regularization.

εs Penalty coefficient for apparent power losses.

Variables

Vi Voltage of Bus i or voltage of common bus of

PFR i.

Vik Branch terminal voltage of PFR i in Branch

(i, k).
Tik Transformer ratio of PFR i in Branch (i, k).
βik Phase shift of PFR i in Branch (i, k).
γik Tap ratio of series voltage injection of PFR i

in Branch (i, k).
QCik Reactive power compensation of PFR i in

Branch (i, k).
Si Complex power of aggregate local power in-

jection of Bus/PFR i.

Sik Complex power flow from Bus/PFR i to

Bus/PFR k.

V Column vector obtained by stacking all the

branch terminal voltage variables.

W Auxiliary matrix variable corresponding to

vector of branch terminal voltage V.

Wik Diagonal entry of matrix variable W corre-

sponding to branch terminal voltage Vik .

Wiklm Off-diagonal entry of matrix variable W cor-

responding to branch terminal voltages Vik and

Vlm .

Wi Auxiliary variable corresponding to bus volt-

age Vi.

Πik Auxiliary variable corresponding to trans-

former ratio Tik .

Γik Auxiliary variable corresponding to series

voltage tap ratio γik .



hr Regularization function.

Lik Apparent power loss over the series impedance

of Branch (i, k).
λ Loading factor.

I. INTRODUCTION

The increase in energy demand and the integration of renew-

able energy sources (RESs) are stressing the grid, prompting

system operators to take active control measures for managing

the power flow more efficiently and intelligently. Traditional

power flow controls may no longer be suitable for the future

power system operation because of their limited control range

and slow dynamic response [1]. Due to the development of

power electronics over the past two decades [1]–[3], power

flow routing [2], [4], [5], an emerging control paradigm for the

dynamic and responsive control of power flows, is a promising

solution for power flow control.

Power flow controllers (PFCs) and power flow routers

(PFRs) are the building blocks of power flow routing. In this

paper, we propose a generic model of PFRs and an optimal

power flow (OPF) framework for the analytical study of power

flow routing. We will explain our motivation and identify the

research gap by reviewing the state-of-the-art.

The need for a smarter and more resilient grid has led to

continuous innovations on PFCs [1]–[3] and PFRs [4], [6],

[7], but the literature does not usually make a clear distinction

between PFCs and PFRs. To avoid ambiguity, we use PFR

to refer to a control device that is able to manage multiple

incoming/outgoing power flows, while PFC refers to a device

that can only actively adjust the power flow through one

transmission line or appliance. Hence, a PFC is part of a

PFR. In general, PFCs [1]–[3] control the branch power flow

by modifying the parameters of a transmission line, such

as series injection of the voltage source and/or resistance,

and shunt reactive power compensation. PFRs are useful for

interconnecting multiple transmission lines and interfacing

appliances at different power levels [4], [6], [7]. The energy

router [6] and the solid-state transformer (SST) [7] only focus

on interfacing various types of local power injections, but they

are not designed for controlling branch power flows.

We can see that most existing research efforts on PFCs and

PFRs have been devoted to the hardware implementation [1]–

[3], [6], [7], whereas [4] does focus on the generic model of

a PFR. However, the PFR model proposed in [4] is just a

simple combination of a computational unit and several PFCs,

and it is only applicable to the distribution network. The lack

of a generic functional model of PFRs has hindered network-

level research on power flow routing. To overcome this, we

propose a generic PFR model that covers the necessary and

desired functions of a PFR so as to facilitate a theoretical study

of power flow routing in the power network.

We focus on the modelling of PFRs for power system

optimization. Although the research on load flow models of

PFCs is rich [3], [5], [8], [9], existing work on the modelling

of PFRs is rather limited. Flexible AC transmission system

(FACTS) devices [3], the best known PFCs, have been studied

extensively for improving asset utilization [5], [8], [9]. A

sensitivity method has been employed in [5] to analyze the

impact of PFCs on corrective power flow control. However,

due to the inherent complexity of the method, reactive power

is not considered in [5]. In general, a PFC adjusts the power

flow by its series and/or shunt sources injected over the

transmission line [3]. The change of power flow induced by the

series source of the PFC is usually converted to and modelled

as power injections to both buses of the branch [5], [8], [9],

since the approach preserves the symmetry of the admittance

matrix and the structure of the Jacobian matrix. Different

from the literature, we develop the load flow model of a

PFR characterized by “branch terminal voltages,” the terminal

voltages of the PFR, which is a more intuitive approach to

formulate the power flow according to the PFR’s operating

principle.

We further incorporate the PFR model into the OPF frame-

work. The OPF problem determines the optimal operating

points for a power system in terms of a global objective

function, subject to the network physics, such as Kirchhoff’s

circuit laws, as well as the engineering limits of the state and

control variables of the system, such as inequality constraints

on transmission line flows, power generations, and configura-

tions of control devices [10], [11]. In the proposed PFR model,

the voltage of a conventional bus is augmented and evolves

into multiple branch terminal voltages to reduce the coupling

among corresponding power flows. As a result, the size of the

PFR-incorporated OPF (PFR-OPF) problem is proportional to

the number of branches, and comparable to the conventional

OPF problem whose size is proportional to the number of

buses since the power network is in general a sparse graph.

Hence, existing nonlinear programming (NLP) solvers, such

as interior point methods used in our numerical tests, are still

able to obtain a local optimal solution of the non-convex PFR-

OPF problem. Although the existing power injection method

[5], [8], [9] and the model proposed in this paper are not

essentially different since they both aim to model the control

abilities of PFCs and PFRs, the proposed PFR model is more

amenable for applying the convex relaxation to the PFR-OPF

problem. In the power injection method, the series injected

source of PFC introduces nonlinear terms which are not easy

to relax, especially for those characterizing the phase-shifting

effect.

In general, the alternating-current (AC) OPF problem is

challenging due to its non-convexity and usually very large

problem size [10]. The non-convexity stems from the nonlinear

power flow equation due to Kirchhoff’s laws, as well as

the nonlinear or even discrete characteristics of some control

variables, such as tap-changing transformers [10], [12]. The

problem size can be very large in the real-world industrial

application not only because of the scale of the power system,

but also more significantly due to the number (tens of thou-

sands or more) of postulated contingencies [10], [12]. In the

literature, various approaches have been proposed to tackle

those respective challenges [10], [13]. Many nonlinear pro-

gramming (NLP) approaches, such as quadratic programming,

Lagrangian relaxation, heuristic algorithms, and interior-point

methods, have been proposed to cope with the non-convexity

[10], [13]. In order to solve the security-constrained OPF



(SCOPF) with a large number of contingencies efficiently,

various classes of approaches, including iterative contingency

selection schemes, decomposition methods, and network com-

pression, have been developed [12], [14]. Some of them are

mature and capable of finding at least the local optimum of

large-scale SCOPF problems with up to 3000 buses [14] or

even 9000 buses and 12000 contingencies [12].

In this research, we only consider the basic and continuous

scenarios of the AC OPF problem, and do not include con-

tingencies and discrete variables. With such simplifications,

this paper aims to address the non-convexity introduced by

Kirchhoff’s laws as well as PFCs and PFRs, and pursues

global optimality of the PFR-OPF problem through convex

relaxation. However, it is worth pointing out that the compu-

tational challenges induced by the security constraints and the

discrete variables can be formidable as both the numbers of

contingencies and discrete variables can be huge, thousands or

more in the real-world industrial OPF problems. Therefore, in

the industrial practice, given the stringent time constraint to

provide a solution, achieving global optimality of the OPF

solution is often not the primary concern since it can be

too time-consuming [14]. Although the solution method for

the OPF problem proposed in this paper is not designed to

address the large-scale SCOPF problem, we expect that the

proposed PFR-OPF framework is extensible to incorporate

the security constraints. In fact, due to their fast-response

capability, PFCs and PFRs can be very powerful resources to

perform post-contingency corrective control [5]. The flexible

SCOPF framework proposed in [5] incorporates PFCs into the

corrective SCOPF problem, while the ability to handle a large

contingency set is not discussed. When the PFCs and PFRs are

treated as re-dispatchable resources in the corrective SCOPF

problem, the coupling effect among their post-contingency

decision variables would be a new challenge due to the

nonlinear control regions of PFCs and PFRs, especially for

the phase shifting effect. Hence, existing methods for the

large-scale SCOPF problem, such as contingency selection and

decomposition [12], [14], may not be applicable directly. It is

an important problem and will be our future work.

In recent years, there have been extensive research efforts to

develop convex relaxation methods for the conventional OPF

problems in pursuit of the global optimality [15]–[23]. The

main focus of these convex relaxation methods in [15]–[23],

similar to our work, is to tackle the non-convexity due to

Kirchhoff’s laws, and thus they do not consider discrete vari-

ables. Among these proposals, only [18] studies the SCOPF

problem but it does not account for a large contingency set.

While the local solution techniques usually find the global

optimal solutions in practice [14], they may fail to converge

or converge to a local optimum [13], [24]. Moreover, they are

unable to guarantee global optimality of the solutions. The

second-order cone programming (SOCP) relaxation is able to

globally solve the OPF problems for the radial networks that

satisfy certain technical conditions [17], [23]. The semidefinite

programming (SDP) relaxation has received much research

attention [15], [18], [19], [21] since it is able to obtain the

global optimal or near-optimal solutions for a broad class of

meshed networks. Voltage phasors can be recovered success-

fully from the solution if the rank of its matrix variable is equal

one. While the structure of feasible region and the existence

of local optima may render the SDP relaxation unable to

produce a physically meaningful solution [24], penalization

[18], [19] and Laplacian-based [21] approaches have been

proposed to encourage a rank-1 solution so that a feasible

and globally near-optimal solution to the original non-convex

OPF problem can be obtained for many test cases, including

some large networks with up to 3000 buses. Recently, the

SDP relaxation have been generalized to a family of “moment

relaxation” [16], [20], [22] which is essentially a polynomial

optimization approach and seeks to attain tighter relaxation

by gradually increasing the order of relaxation if the lower-

order relaxations fail. While higher-order moment relaxations

are able to globally solve a broader class of OPF problems

comparing to the first-order relaxation, i.e., the SDP relaxation,

the computational cost grows very quickly as the relaxation

order increases [16]. Therefore, sparsity-exploiting technique

[20] has been proposed to reduce the computational burden.

And penalization approach [22] has also been adopted to

improve numerical performance when a near-optimal solution

is obtained.

To pursue global optimality of the PFR-OPF problem, we

derive an SDP relaxation of the original problem. While there

is much research on the convex relaxation of the conventional

OPF problem [15]–[23] as discussed, we found no existing

work that applies it to an OPF problem with PFCs or PFRs.

The convex relaxation for the PFR-OPF poses a new chal-

lenge that has not been studied before. Since the relationship

among the terminal voltages of a PFR is highly nonlinear

and non-convex due to the enhanced voltage controllability,

it is difficult to construct a relaxation that preserves such

coupling and leads to an exact solution for successful recovery

of voltage phasors. While it has been shown that the SDP

relaxation is able to handle variable real transformer ratios

and shunt elements [15], the exact relaxation for the series

injected source of PFC and PFR, such as the phase shifter,

has not been tackled yet. In fact, existing research on the

SOCP relaxation [17] assumes that phase shifters possess

unlimited phase-shifting capabilities or their capabilities would

not be the binding constraints so as to avoid incorporating

the nonlinear phase-shifting effect into the OPF problem.

However, this ideal assumption may not always hold. In this

research, we account for the capability of phase shifters and

model the phase-shifting effect explicitly in PFR-OPF problem

as well as its SDP relaxation. It is achieved by relaxing part

of the coupling constraints and incorporating the regularization

terms that favor an exact solution into the objective function.

As verified in our numerical tests, such regularization helps

improve the quality of the solution significantly while it only

has a negligible effect on the optimal value of the original

objective. In addition, we show excellent compatibility of the

proposed PFR model in the sense that existing techniques for

improving the performance of the SDP relaxation, such as the

penalization method to solicit a low-rank solution [18], [19],

and the graph-theoretic decomposition method to reduce the

computational complexity [18], can naturally be adapted to

our PFR-OPF framework. Although the SDP relaxation may



fail to find a physically meaningful solution for a few power

networks with certain configurations as studied in [20], [22],

[24], the remedial approaches [18], [19] adopted are able to

improve its quality of solutions significantly and broaden its

range of applicable cases, such as the network with up to

3000 buses as evaluated in our numerical study in Section

V. The generalization of the SDP relaxation for the PFR-

OPF problem into the higher-order moment relaxation is an

ongoing research and remains challenging since the phase-

shifting effect would render the rectangular representation of

voltage variables in the moment relaxation [16], [20], [22]

nonlinear and hence difficult to relax as the relaxation order

goes above one. Nonetheless, we consider that this research

may serve as the initial efforts to apply convex relaxation to

the OPF problem with a set of nonlinear control variables for

voltages.

To summarize, we propose a generic PFR model and an OPF

framework incorporating PFRs. Our contributions are listed as

follows:

• The proposed PFR model encapsulates the desired fea-

tures of PFRs, and is amenable for implementation and

for the theoretical study of power flow routing.

• The load flow model of PFRs is developed and incor-

porated successfully into the OPF framework for power

flow analysis and grid optimization.

• We derive a computationally efficient SDP relaxation

of the PFR-OPF problem and design the regularization

method to facilitate a rank-1 solution. The benefit of PFRs

in enhancing the system loadability is evaluated by the

proposed framework.

This paper extends our prior work [25] with substantial

differences and improvements as follows:

• This paper improves the PFR model by designing a

generic formulation of the branch terminal voltages so as

to adapt the model to various grid components including

conventional buses and PFCs.

• This paper solves the PFR-OPF problem through an

SDP relaxation, which is more realistic than the SOCP

relaxation in [25], which requires a sufficient number of

ideal phase shifters to ensure exact relaxation.

• This paper compares the results of the non-convex and

relaxed PFR-OPF problems, and analyzes the quality of

the SDP solution by varying the penalty coefficients.

The remainder of this paper is structured as follows. In

Section II, the generic architecture of the PFR model is

proposed. In Section III, the load flow model of PFRs is

developed and incorporated into the OPF framework. Then,

the PFR-OPF problem is relaxed and solved through the SDP

relaxation in Section IV. Case studies are presented and the

numerical results are analyzed in Section V. Finally, Section

VI draws the conclusions.

II. GENERIC MODEL OF POWER FLOW ROUTERS

A PFR can manage all of its incoming/outgoing power flows

intelligently, and coordinate with other grid components to

maintain the system stability. In general, a PFR should achieve

the following functions:

Fig. 1. Proposed architecture of a power flow router.

Fig. 2. Functional schematic of a line power flow controller.

• interconnection and coordination of multiple bidirectional

branch power flows at different voltage levels;

• autonomous control of individual branch power flows;

• independent control of the active and reactive power flows

for each branch;

• supporting various types of interfaces for local power

injections at different voltage and power levels;

• voltage regulation and reactive power compensation; and

• power buffering and energy storage.

Based on the above design objectives, we propose a generic

architecture of PFR as shown in Fig. 1. Existing designs of

PFR [4], [6], [7] can be viewed as some particular embodi-

ments of the proposed architecture. Two major types of power

flows, namely, branch power flows from/to other PFRs/buses,

and local power injections, are injected to a PFR. Within

the PFR, all power flows share a “common bus,” which is

analogous to the conventional bus, after passing through the

respective PFCs or interfaces. The control capabilities of PFCs

enable the autonomous control of the corresponding power

flows.

The “line PFC,” whose functional schematic is shown in

Fig. 2, connects the external transmission line to the common

bus of the PFR, and controls the corresponding branch flow.

The line PFC consists of a controllable transformer and a

series-injected voltage source. The transformer is used to

adjust the voltage of the branch power flow to the same level

as that of the common bus. Primary control of the power flow

is achieved by controlling the series-injected voltage source,

similar to the control mechanism of some existing PFCs, such

as the unified power flow controller (UPFC) [3].

The local power injections are categorized into five types,

namely, energy storage, dispatchable generation, intermittent

RES, critical load, and elastic load. Energy storage acts

as an energy buffer. The RES power is interfaced by the

“RES PFC” which regulates the RES power, such as reactive



power compensation and voltage regulation. Local demand is

classified into the critical load and the elastic load. The former

has to be met in real time while the latter may be a deferrable

load or a non-critical load managed by the “load PFC”. The

“load PFC” that interconnects the common bus and the elastic

load can be an electric spring [26] to regulate the common

bus voltage and absorb the fluctuations of the RES power.

The energy storage, dispatchable generator, and critical load

would be connected to the common bus through respective

interfaces.

The operations of the PFCs and interfaces are coordinated

by a central processing unit (CPU) which is the central con-

troller of the PFR. PFRs can also communicate and coordinate

with each other via some other controllers in the network.

It should be noted that the architecture given in Fig. 1 is

an ideal configuration. A practical PFR may sacrifice certain

power flow control capability to strike a balance between the

control capacity and the cost of the device.

III. LOAD FLOW MODEL AND OPTIMAL POWER FLOW

A. Load Flow Model of Power Flow Router

The load flow model of a PFR is developed based on the

PFR model discussed in Section II. Consider a power network

with N buses modelled as a connected undirected graph,

denoted by G = (N , E) with the bus set N := {1, 2, . . . , N}
and the set of transmission lines or branches E ⊆ N × N .

A branch (i, k) ∈ E with its two terminal buses i, k ∈ N is

modelled by the equivalent π circuit with the line admittance

yik = gik + jbik, where gik ≥ 0 and bik ≤ 0 denote the

conductance and susceptance of branch (i, k), respectively,

and the shunt capacitance cik = cki ≥ 0 as illustrated in

Fig. 3. Denote the set of one-hop neighbors of each bus i ∈ N
as Ωi ⊆ N . Note that Branch (i, k) and Branch (k, i) are

regarded as the same branch since G is undirected.

By abuse of notation, we denote the PFR installed at Bus

i ∈ N as PFR i. The branch power flows and the local power

injections of Bus i are interfaced to PFR i. The common bus

of PFR i is characterized by the voltage Vi ∈ C analogous to

that of a conventional bus, with the operation range given as:

Ui,min ≤ |Vi| ≤ Ui,max (1)

where the operator |·| takes the magnitude.

For each one-hop connected Bus/PFR k ∈ Ωi of PFR i,

we define a “branch terminal voltage” Vik ∈ C, indicating

the terminal voltage of PFR i for Branch (i, k). According to

Fig. 2, the relationship between the common bus voltage Vi

and the branch terminal voltage Vik can be modelled by:

Vik = Tike
jβik (1 + γik)Vi, (2)

where βik ∈ R is the phase shift of the transformer, and

Tik ∈ R represents the transformer ratio. Moreover, as a

common practice for the series voltage compensation [1], [3],

we assume that the series voltage that the line PFC can inject

is a fraction γik ∈ C of the voltage Tike
jβikVi, which is

equal to the grid-side voltage of the line PFC when the series

voltage compensation is zero. In addition, the line PFC, as a

power electronic device, of PFR i in branch (i, k) may possess

Fig. 3. Notations for a branch (i, k).

certain extra capability of reactive power compensation which

is modelled by the reactive power injection QCik ∈ R. The

controllable ranges of Tik , βik , γik , and QCik are constrained

by respective upper and lower bounds as follows:

Tik,min ≤ Tik ≤ Tik,max (3)

βik,min ≤ βik ≤ βik,max (4)

0 ≤ |γik | ≤ γik,max (5)

QCik,min ≤ QCik ≤ QCik,max (6)

where γik,max ∈ [0, 1] characterizes the capability of the series

voltage injection.

Denote the complex power flow from PFR i to Bus/PFR

k ∈ Ωi as Sik = Pik + jQik which satisfies Ohm’s law as:

Sik = Vik(Vik − Vki
)∗y∗ik − j |Vik |

2
cik (7)

where * denotes the conjugate operator of a complex number.

Symmetrically, the branch terminal voltage Vki
on the other

end of Branch (i, k) and the complex power flow Ski are

modelled as:

Vki
= Tki

ejβki (1 + γki
)Vk (8)

Ski = Vki
(Vki

− Vik)
∗y∗ik − j |Vki

|2 cki (9)

Let Si = Pi + jQi denote the complex power of the aggre-

gate local power injection of PFR i. Then, if the conversion

losses of the line PFCs are neglected, the power balance

equation for PFR i is formulated as:

Si =
∑

k∈Ωi

Sik. (10)

From (7) and (9), the branch power flows Sik and Ski

are controlled by the terminal voltages Vik and Vki
of the

two buses/PFRs on both ends. According to (2), for a fixed

common bus voltage Vi, each terminal voltage {Vik |k ∈ Ωi}
of PFR i can be controlled autonomously by the corresponding

line PFC. On the other hand, the PFR is more than a simple

aggregation of a number of PFCs since the terminal voltages

of the PFCs in a PFR are not completely independent and

are actually coupled weakly by the common bus voltage.

This feature is characterized by the proposed PFR model.

PFRs enable larger controllable ranges of the branch terminal

voltages than the voltages of the conventional buses. Hence,

the achievable region of branch power flows of PFRs is greater

than those of conventional buses. The enlarged control regions

contribute to reduction of transmission losses, relief of grid

congestion, and improvement of power transfer capability.

Since the focus of this study is on the modelling and

optimization of branch power flows, we do not go into details

on the load flow models of the local power injections. In this

paper, we only consider the simple power injection models

of conventional generators and critical loads as formulated



in Section V-A. Nonetheless, existing sophisticated power

injection models, such as the smart load model [27], can be

incorporated directly into the PFR model.

The load flow model of PFR given in (1)–(10) is versatile

and applicable to various types of grid components, including

conventional buses and PFCs, by setting proper lower and

upper bounds of the parameters in (3)–(6).

B. PFR-Incorporated Optimal Power Flow

The load flow model of PFR developed in Section III-A will

be incorporated into the OPF problem. The OPF with PFRs is

different from the conventional OPF since the bus voltage has

evolved into several branch terminal voltages when the PFR

is attached to the bus. Define the set of the variables as:

X :={(Si, Vi)|i ∈ N} ∪ {(Sik, Ski, Vik , Vki
, Tik , Tki

,

βik , βki
, γik , γki

, QCik , QCki
)|(i, k) ∈ E}. (11)

We minimize a global objective function f of the power net-

work, subject to the power balance constraints at PFRs/buses,

the constraints for the control regions of PFRs, and the

constraints for branch power flows. The general form of the

PFR-incorporated OPF (PFR-OPF) is formulated as follows:

min
X

f (12a)

subject to

|Sik| , |Ski| ≤ Sik,max, ∀(i, k) ∈ E (12b)

(1), (10), ∀i ∈ N (12c)

(2)–(7), ∀i ∈ N , k ∈ Ωi (12d)

The constraint in (12b) specifies the upper limits of the

branch flow magnitude to protect transmission lines. Can-

didates for the scalar function f can be any economic or

operational evaluation of the system, such as the generation

cost or the system loadability which will be studied in Section

V.

The PFR-OPF problem in (12) extends the conventional

OPF problem by augmenting the controllable ranges of the

conventional buses. Therefore, the PFR-OPF problem is non-

convex and non-deterministic polynomial-time hard (NP-hard)

like the conventional OPF [15] due to the non-convex feasible

region of power flows determined by (7) and (10). Moreover,

the PFR-OPF problem entails a higher computational com-

plexity than the conventional OPF problem because of the

increase in the problem size and the nonlinear relation between

the common bus voltage and the branch terminal voltage as

indicated in (2). Nonetheless, since the power network in

general is sparse with a small edge-to-vertex ratio, the increase

in the problem size from the order of the number of buses to

that of the number of branches is almost linear.

IV. CONVEX RELAXATION

A. Semidefinite Programming Relaxation

Inspired by the methods proposed in [15], [18], [19] for

convexifying the conventional OPF problem, we propose a

method to relax the PFR-OPF problem in (12) into an SDP

problem to seek the global optimal solution.

We introduce the auxiliary matrix variable W ∈ C
2E×2E

corresponding to the branch terminal voltages as:

W := VV
∗ (13)

where V ∈ C
2E is defined as a column vector obtained by

stacking the paired voltages Vik and Vki
for every branch

(i, k) ∈ E . If W replaces V in the PFR-OPF problem in (12),

there are at least two additional constraints to be included in

the formulation so that V can later be recovered from W.

The first constraint is W � 0, which means W is positive

semidefinite. The second one is rank{W} = 1, which means

the rank of W is equal to one. Without this rank constraint,

the original non-convex power flow region determined by (7)

and (10) is relaxed into a convex region. However, different

from the existing studies [15], [18], [19] on the SDP relaxation

for the conventional OPF problem, such relaxation does not

suffice to render the PFR-OPF problem convex due to the

highly nonlinear relationship between the common bus voltage

and the branch terminal voltage of a PFR modelled in (2).

To tackle this issue, we develop a relaxation method which

can not only preserve the coupling between the terminal

voltages of the PFR but also produce a rank-1 solution Wopt

for successful recovery of the voltage phasors. For ease of

presentation, we label the diagonal entries of W as:

Wik := |Vik |
2
, ∀i ∈ N , k ∈ Ωi, (14)

and the off-diagonal entries of W as:

Wiklm := VikV
∗
lm
, ∀i, l ∈ N , k ∈ Ωi,m ∈ Ωl (15)

Then, taking the magnitude squared of (2), we get:

Wik = ΠikΓikWi (16)

where Wi, Πik , and Γik are defined as:

Wi := |Vi|
2
, ∀i ∈ N (17)

Πik := T 2
ik
, ∀i ∈ N , k ∈ Ωi (18)

Γik := |1 + γik |
2
, ∀i ∈ N , k ∈ Ωi (19)

Note that the angle variable βik in (2) disappears after we

determine its magnitude. According to (3) and (5), the feasible

regions of Πik and Γik are convex. Hence, (3), (5), and (16)

can be combined into one constraint as follows:

T 2
ik,min(1− γik,max)

2Wi ≤ Wik

≤ T 2
ik,max(1 + γik,max)

2Wi, ∀i ∈ N , k ∈ Ωi

(20)

Constraint (20) is convex since the feasible region of Wi is

linear according to (1) and (17).

To account for the phase-shifting angle variable βik in (2)

and Constraint (4) while ensuring convexity, we propose to

limit the angular difference between any two branch terminal

voltages of the same bus/PFR by:

θikil,min ≤ ∠Wikil ≤ θikil,max, ∀i ∈ N , k 6= l ∈ Ωi, (21)

where θikil,min and θikil,max are the lower and upper bounds,

respectively, of the angular difference ∠Wikil between Vik and

Vil . Due to the stability concern, a large phase shift between

the two branch terminal voltages should be avoided. Hence, we

assume that ∠Wikil ∈ [−π
2 ,

π
2 ], which also makes Constraint



(21) convex. Then, we can derive the values of θikil,min and

θikil,max based on (2)–(5) as follows:

θikil,min := max{βik,min − βil,max − arcsin γik,max

− arcsin γil,max,−
π

2
}, ∀i ∈ N , k 6= l ∈ Ωi.

(22)

θikil,max := min{βik,max − βil,min + arcsin γik,max

+ arcsin γil,max,
π

2
}, ∀i ∈ N , k 6= l ∈ Ωi.

(23)

From (21)–(23), we have Re{Wikil} ≥ 0, where Re{·} is

the operator for getting the real part. Thus, Constraint (21) can

be explicitly expressed in the convex form as follows:

Re{Wikil} tan θikil,min ≤ Im{Wikil}

≤ Re{Wikil} tan θikil,max, ∀i ∈ N , k 6= l ∈ Ωi, (24)

where Im{·} is the operator for getting the imaginary part.

Then, we derive a constraint to account for the coupling

between Wi and Wikil . According to (21)–(23), we have:

cos∠Wikil ≥ cos(max{|θikil,min| , |θikil,max|}) (25)

According to (2)–(5), we can obtain:

|Wikil | ≥ WiTik,minTil,min (1− γik,max) (1− γil,max) (26)

Note that cos∠Wikil =
Re{Wikil

}

|Wikil
|

. Hence, from (25) and

(26), we can obtain the relationship between Wi and Wikil as:

Re{Wikil} ≥ WiTik,minTil,min (1− γik,max) (1− γil,max)

cos(max{|θikil,min| , |θikil,max|}), ∀i ∈ N , k 6= l ∈ Ωi (27)

We have developed the convex constraints (20), (24), and

(27) to relax the non-convex constraint (2) and to account for

the operation range of the PFR specified in (3)–(5). However,

they are still not sufficient to make the optimal solution Wopt

of the relaxed problem to be rank-1, since PFR enlarges the

controllable ranges of its branch terminal voltages. Thus the

off-diagonal entries Wikil , ∀i ∈ N , k 6= l ∈ Ωi, related to

PFR i are only coupled weakly with the diagonal entries of

W. Under such circumstance, most numerical algorithms tend

to result in the highest-rank SDP solution, even though a

rank-1 solution may exist. To address this issue, we introduce

a regularization term hr that favors a low-rank solution to

the original objective function f . As discussed in [18] and

[28], a penalty function that minimizes a weighted sum of the

diagonal entries as well as maximizes a weighted sum of the

off-diagonal entries Wikil , ∀i ∈ N , k 6= l ∈ Ωi, can serve this

purpose. Therefore, we formulate the regularization function

hr as follows:

hr :=
∑

i∈N

∑

k<l∈Ωi

(Wik +Wil −Wikil −Wilik) (28)

We summarize the SDP relaxation for the PFR-OPF prob-

lem. Define the penalty coefficient for the regularization hr as

εr ≥ 0. We also define the set of the variables of the relaxed

PFR-OPF problem as:

X̂ :={W} ∪ {(Si,Wi)|i ∈ N} ∪ {(Sik, Ski,

QCik , QCki
)|(i, k) ∈ E}. (29)

The relaxed PFR-OPF problem is formulated as follows:

min
X̂

f + εrhr (30a)

subject to

Si =
∑

k∈Ωi

(Sik + jQCik) , ∀i ∈ N (30b)

Sik = (Wik −Wikki
)y∗ik − jWikcik, ∀i ∈ N , k ∈ Ωi(30c)

U2
i,min ≤ Wi ≤ U2

i,max, ∀i ∈ N (30d)

QCik,min ≤ QCik ≤ QCik,max, ∀i ∈ N , k ∈ Ωi (30e)

|Sik| , |Ski| ≤ Sik,max, ∀(i, k) ∈ E (30f)

W � 0 (30g)

and (20), (24), (27) (30h)

Note that for a conventional bus i without a PFR or PFC,

the corresponding penalty in (28), (Wik + Wil − Wikil −
Wilik), ∀i < l ∈ Ωi, is kept constant by Constraints (20),

(24), and (27). In fact, the regularization εrhr has a negligible

effect on the optimal value of the original objective while it is

very effective in yielding a rank-1 Wopt. This will be verified

by our numerical tests in Section V.

B. Adapted Techniques for Performance Improvement

While the SDP relaxation for the OPF problem can facilitate

the search of the global optimum, the number of scalar

variables of its semidefinite matrix variable, such as W, grows

quadratically with the size of the power network. Besides

the issue of high dimensionality, the SDP relaxation may

not always result in a rank-1 matrix solution depending on

the problem formulation [18], [19] and the values of line

admittances [15]. While the relaxed PFR-OPF problem in

(30) will also experience these issues, we show that the

graph-theoretic decomposition method proposed in [18] for

reducing the computational complexity and the penalization

method in [18], [19] for soliciting a low-rank solution can be

adapted naturally to our PFR-OPF framework to ameliorate

the situation.

As discussed in [18], the semidefinite constraint on the

square matrix variable related to the bus voltages can be

replaced by a set of semidefinite constraints on some prin-

cipal submatrices of the matrix variable without affecting the

optimality of the relaxed problem according to the chordal

theorem [29]. The dimensions of those principal submatrices,

which are constructed from a tree decomposition of the power

network, are much lower than the full matrix variable due to

the sparsity of the network [18]. The interested readers may

refer to [18] and the references therein for information about

the tree decomposition and its algorithm. By adopting the

definition and notation of the tree decomposition in [18], we

denote the bags of a tree decomposition of the power network

as J1,J2, . . . ,JM ⊆ N , where M is the number of bags.

Note that each bag Jm,m = 1, . . . ,M , is a subset of the bus

set N . Construct the set Im := {Wik |i ∈ Jm, k ∈ Ωi}, which

consists of W’s diagonal entries that correspond to the branch

terminal voltages of the buses/PFRs in Jm,m = 1, . . . ,M .

Let W{Im} be the principal submatrix of W formed by the

intersected rows and columns containing the elements in Im.



Theorem 1: The optimal objective value of the relaxed PFR-

OPF problem in (30) does not change if its constraint W � 0
is replaced by the constraints as follows:

W{Im} � 0, ∀m ∈ {1, 2, . . . ,M}. (31)

Proof: This theorem is a direct variant of Part 2 of

Theorem 1 in [18] to fit into our PFR-OPF framework. Since

the bus voltage has evolved into several branch terminal

voltages in the PFR model, we replace the bus-related variables

in Part 2 of Theorem 1 in [18] by the branch-related variables

in Theorem 1 in this paper. Constraint (31) preserves the

structural information of the tree decomposition of the power

network. Therefore, the rest of the proof follows from Part 2

of Theorem 1 in [18] and the chordal theorem in [29].

Theorem 1 allows us to reduce the computational complex-

ity of the SDP relaxation remarkably. Take the IEEE 118-bus

system [30] as an example. There are 186 branches in the

system, and thus W is a 372 × 372 matrix. However, the

submatrix with the largest size among all of the M = 117
submatrices in (31) according to the tree decomposition results

is merely a 28 × 28 matrix which is less than 0.57% of the

size of W.

Furthermore, to pursue a rank-1 solution of the SDP re-

laxation, [19] proposes to penalize the total reactive power

generation, and [18] further proposes to penalize the apparent

power loss over the series impedance of the transmission

lines. While both methods can be incorporated into the PFR-

OPF problem easily, we use the latter in this paper since

it is formulated by the entries of W explicitly and allows

flexibility to adjust the total penalty by modifying the set of

the penalized transmission lines. Similar to [18], define the

apparent power loss over the series impedance of Branch (i, k)
without incorporating the shunt capacitance as:

Lik := |Sik + jWikcik + Ski + jWki
cki|

= |Wik +Wki
−Wikki

−Wkiik | |y
∗
ik| (32)

Denote the set of branches that are selected for the penalty

as Ls ⊆ E . A convenient and safe choice of Ls is to

make it equal to the branch set E of the network. [18] also

proposes a heuristic method for designing Ls. Define the

penalty coefficient for apparent power losses as εs ≥ 0.

We summarize the two adapted techniques for improving the

performance of the SDP relaxation and formulate the improved

relaxed PFR-OPF problem as follows:

min
X̂

f + εrhr + εs
∑

(i,k)∈Ls

Lik (33)

subject to (30b)–(30f), (30h), and (31).

The improved relaxed PFR-OPF problem in (33) is modified

from the relaxed problem in (30) by adding the penalization

term of apparent power losses to the objective function, and

replacing the original SDP constraint in (30g) by a set of SDP

constraints in (31) according to the tree decomposition results

of the power network.

V. CASE STUDY

A. Problem Specification and Performance Metric

We investigate the impact of PFR integration on system

loadability. According to [31], the loadability can be assessed

by increasing all of the loads by a loading factor λ ≥ 0 until

the system reaches the critical state. Therefore, as a specific

implementation of the PFR-OPF problem, the local power in-

jections are categorized into the reactive power compensation

of the PFRs, the critical loads, the dispatchable generators with

the operation ranges as follows:

Si = (PGi − PLi) + j(QGi −QLi +
∑

k∈Ωi

QCik), ∀i ∈ N (34)

PLi + jQLi = λ(PLi0 + jQLi0), ∀i ∈ N (35)

PGi,min ≤ PGi ≤ PGi,max, ∀i ∈ N (36)

QGi,min ≤ QGi ≤ QGi,max, ∀i ∈ N (37)

where PGi and QGi denote the active and reactive generations,

respectively, of the generator at Bus/PFR i, i = 1, . . . ,N .

Their controllable ranges are specified in (36) and (37),

respectively. PLi and QLi denote the active and reactive loads,

respectively, at Bus/PFR i. PLi0 ≥ 0 and QLi0 ∈ R are the

base active and reactive loads, respectively, at Bus/PFR i.

To evaluate the loadability, each of the three versions of the

PFR-OPF problems in (12), (30), and (33) is extended by con-

sidering λ, PGi, QGi, PLi, QLi, i = 1, . . . ,N , and Constraints

(34)–(37). Finally, the objective function f is set as:

f = −
∑

i∈N

PLi (38)

We will assess and compare the loadabilities of the power

network under various penetrations and allocations of PFRs

and UPFCs [3]. The reason for choosing UPFCs for com-

parison with PFRs is that the UPFC has similar power flow

control capability as the PFR. The UPFC is one of the most

versatile PFCs and is able to regulate the bus voltage and

control the active and reactive power flow independently [3].

While UPFCs are deployed far less commonly in the real-

world power systems compared to some other FACTS devices,

such as static shunt compensators (SVCs) [3], due to the

currently high costs of UPFCs, existing academic research has

explored and demonstrated the benefits of UPFCs in various

aspects, such as the enhancement of system stability [32] and

reliability [33].

Denote the optimal loading factor as λopt obtained by

solving the PFR-OPF problems for loadability assessment.

λopt will serve as the performance metric.

B. General Setup

In Sections V-D and V-E, numerical tests are performed

on the standard IEEE benchmark systems with 30, 57, and

118 buses. The parameter specifications of the three tested

systems follow the standard settings archived at [30], except

for the branch flow limits of the 57-bus and 118-bus systems

which are not given in [30]. Without loss of generality, we

set the flow limits of all branches of the test systems with

57 and 118 buses to be 300 MW and 600 MW, respectively,



based on the nominal settings. This set of tests is to investigate

the effect of the penalty coefficients εr and εs of the relaxed

problem in (33) on the quality of solutions, and to evaluate the

enhancement of loadability with various penetrations of PFCs

and PFRs.

Furthermore, in Section V-F, we investigate the tractability

of the PFR-OPF problem of large power networks with up to

3000 buses. The test systems are seven models of the Polish

power systems included in MATPOWER [34]. The parameter

specifications of the test systems in the simulations follow the

MATPOWER data sets [34].

In this paper, we follow the standard specifications as much

as possible in the numerical tests rather than look for special

test cases by varying the parameters, because we would like

to focus on the modelling of PFRs and its impact on system

loadability, and do not discuss the existence of multiple local

optima of the PFR-OPF problem. Nonetheless, it would be of

importance and part of the future work to study the influence of

PFCs and PFRs on the optimality and the structure of feasible

region. In fact, there is no general method to produce a test

case with multiple local optima since such locality is sensitive

to the parameter specifications and the objective function of

the OPF problem [22], [24].

For ease of analysis, we assume that, for every PFR and

UPFC, the capability of the series voltage injection γik,max =
0.05, the limits of the branch reactive power compensation

QCik,max = −QCik,min = 0.05 p.u., and the transformer

ratios Tik ’s are equal to their respective nominal settings. For

every phase shifter, the capability of phase shift is set as

βik,max = −βik,min = 5◦. The per-unit base is 100 MVA.

The original non-convex PFR-OPF problem in (12) is solved

by the interior point method supported by the NLP solver

IPOPT [35]. For each test case, the power flow solution of

its nominal setting is fed in as the initial solution of the NLP

solver. The test codes are programmed in the Julia language

and its optimization packages [36].

The relaxed PFR-OPF problem in (33) is solved by the SDP

solver of the Mosek toolbox for MATLAB [37]. The test codes

are implemented by CVX [38] in MATLAB.

All the numerical tests were performed in a computer with

a quad-core 3.30 GHz processor and 16 GB of RAM.

C. Allocation Scheme for PFCs and PFRs

In our prior work [25], a greedy algorithm for allocating

PFRs to enhance the loadability is proposed. We apply the

placement algorithm, namely, Algorithm 1, in [25] to de-

termine the locations of the PFCs and PFRs in this study.

The numerical results reported in Sections V-D and V-E

show that this algorithm can achieve very good results. Since

the allocation of PFCs and PFRs is not the focus of the

present paper, the details of the placement algorithm are

omitted. Interested readers can refer to [25]. There is also

other allocation schemes, such as FACTS devices allocation

in [31], available in the literature. We expect that our PFR-

OPF framework can be extended and incorporated into the

existing methods, such as the one in [31]. In this paper, we do

not discuss the cost models of PFRs and UPFCs because our

TABLE I
ALLOCATION RESULTS OF PFRS AND UPFCS TO OBTAIN 99.5% OF THE

MAXIMUM ACHIEVABLE LOADABILITY

Test System Scenario Allocation Result

30-Bus System
2 PFRs Buses 8, 28

4 UPFCs Branches (6,8), (6,28), (8,28), (10,22)

57-Bus System

3 PFRs Buses 1, 36, 38

6 UPFCs
Branches (1,15), (13,49), (14,46),

(24,25), (37, 38), (44,45)

118-Bus System

5 PFRs Buses 26, 37, 64, 65, 77

Branches (24,70), (25,26), (26,30),

13 UPFCs (30,38), (49,66), (59,63), (63,64), (65,68),

(68,69), (69,77), (75,118), (83,85), (89,92)

focus is on the modelling of power flow routing from an OPF

approach. While the cost model of PFRs is not available in the

literature, some existing works, such as [39], have analyzed the

cost and benefit of PFCs and showed that net financial benefits

can be achieved by optimizing the investment and placement

of PFCs.

In Sections V-D and V-E, we focus on three scenarios of

the system loadability for each of the three IEEE test systems

as follows:

• Maximum achievable loadability: It is achieved by in-

stalling PFRs at all buses of the system. This scenario

will be referred to as “full PFRs.”

• 99.5% of the maximum loadability: PFRs or UPFCs are

added to the system until the loadability reaches 99.5% of

the maximum achievable loadability. This set of scenarios

will be referred to as “KR PFRs” and “KC UPFCs,”

where KR and KC are the numbers of PFRs and UPFCs,

respectively, allocated in the network. Table I summarizes

their allocation results of the IEEE systems with 30, 57,

and 118 buses applied in the simulations.

• Baseline loadability: No PFR or UPFC is allocated in the

system. This scenario will be referred to as “baseline.”

Hence, for each of the three test systems, we will compare

and report the results of four scenarios regarding the penetra-

tions of PFRs and UPFCs, namely, “Full PFRs,” “KR PFRs,”

“KC UPFCs,” and “Baseline,” in Sections V-D and V-E.

D. Selection of Penalty Coefficients

We investigate the effects of the penalty coefficients εr
and εs of the relaxed problem in (33) on the rank of the

optimal solution Wopt and the original objective value which

is equivalently evaluated by the loadability λopt. Since the

regularization εrhr is not required for the conventional OPF

problem, we search for an appropriate value of εs for the

conventional OPF problem first, and then apply the chosen εs
to find an appropriate εr for a rank-1 Wopt under a specific

placement of PFRs or UPFCs. Without loss of generality, we

make Ls equal to E which is most likely to lead to a rank-1

solution according to [18].

Fig. 4 presents the optimal loading factor λopt and the rank

of Wopt under various values of εs for apparent power losses

with given values of εr for regularization. For the results of the

IEEE 118-bus system shown in Fig. 4(c), the two curves of “5

PFRs” and “13 UPFCs” almost overlap. As εs increases and



(a) IEEE 30-bus system, εr = 0.1 (b) IEEE 57-bus system, εr = 1 (c) IEEE 118-bus system, εr = 1

Fig. 4. Effects of the values of the penalty coefficient εs for apparent power losses on the optimal loading factor λopt and the rank of the optimal solution
Wopt in the three test systems with given values of the penalty coefficient εr for regularization.

(a) IEEE 30-bus system (b) IEEE 57-bus system (c) IEEE 118-bus system

Fig. 5. Effects of the values of the penalty coefficient εr for regularization on the optimal loading factor λopt and the rank of the optimal solution Wopt

in the three test systems with given values of the penalty coefficient εs for apparent power losses.

(a) IEEE 30-bus system (b) IEEE 57-bus system (c) IEEE 118-bus system

Fig. 6. Loadability enhancement as the number of allocated PFRs or UPFCs increases. For each of the test systems, PFRs or UPFCs are added to the system
until the loadability reaches 99.5% of the maximum achievable loadability.

reaches a certain threshold, Wopt becomes rank-1 while the

obtained λopt experiences non-negligible decrease if εs keeps

growing. Therefore, the value of εs should be chosen carefully

to avoid excessive penalization. Furthermore, the greater the

penetration rate of PFRs or UPFCs, the less the threshold of

εs for a rank-1 Wopt. The reason is that the voltage control

capabilities of the PFRs alleviate the coupling of the cycles

of the meshed network and thus make them “easier” for the

SDP relaxation to attain a rank-1 solution [19].

Fig. 5 presents the solution λopt and the rank of Wopt under

various values of εr for regularization with given values of εs
for apparent power losses. For each of the three test systems,

the two curves of “KR PFRs” and “KC UPFCs” almost

overlap. The results show that as long as εr surpasses a small

threshold which is no greater than one for each of the scenarios

reported in Fig. 5, the rank of Wopt stays at one. As εr grows

from 0.01 to 100, λopt decreases very slowly. In particular, for

the IEEE 57-bus system, λopt remains almost the same when

εr varies as shown in Fig. 5(b). This suggests that the proposed

regularization εrhr in (33) has almost a negligible effect on

the original objective value, and is very efficient in achieving

a rank-1 Wopt. Moreover, the greater the penetration rates of

PFRs or UPFCs, the greater the threshold of εr for a rank-1

Wopt. This corresponds to our analysis in Section IV-A that

the weak coupling among the branch terminal voltages of the

line PFCs of a PFR entails the regularization.

E. Loadability Enhancement

The solutions of the original non-convex PFR-OPF problem

in (12) and its convex relaxation in (33) are compared and

summarized in Table II. Based on the findings in Section

V-D, εs and εr are set to obtain a rank-1 Wopt for the SDP

relaxation. The solution λopt obtained by the original PFR-

OPF in (12) is referred to as “λopt by NLP” because it is

solved by the NLP solver. Correspondingly, the solution λopt

obtained by the SDP relaxation is referred to as “λopt by SDP.”

“Accuracy” in Table II represents the accuracy of the SDP

relaxation, evaluated by “λopt by SDP” as a percentage of

“λopt by NLP.” “Enhancement” represents the percentage im-

provements of loadability compared to the baseline scenarios

where no PFR or UPFC is available.

As shown in Table II, the optimal loading factor λopt

obtained by the SDP relaxation is almost the same as the



TABLE II
SOLUTIONS OF THE NON-CONVEX PFR-OPF AND ITS SDP RELAXATION FOR THE THREE IEEE TEST SYSTEMS

Solution & IEEE 30-Bus System IEEE 57-Bus System IEEE 118-Bus System

Performance Baseline 4 UPFCs 2 PFRs Full PFRs Baseline 6 UPFCs 3 PFRs Full PFRs Baseline 13 UPFCs 5 PFRs Full PFRs

εr 0 0.1 0.1 0.1 0 1 0.1 0.1 0 0.1 0.1 0.1

εs 0.1 0.1 0.1 0.1 1.2 0.1 0.1 0.1 0.1 0.02 0.01 0

λopt by SDP 1.034 1.650 1.656 1.658 1.076 1.538 1.539 1.546 2.036 2.286 2.291 2.302

λopt by NLP 1.034 1.650 1.656 1.658 1.077 1.539 1.539 1.546 2.037 2.291 2.291 2.302

Accuracy 100% 100% 100% 100% 99.9% 99.9% 100% 100% 99.9% 99.8% 100% 100%

Enhancement - 59.6% 60.2% 60.3% - 42.9% 42.9% 43.5% - 12.5% 12.5% 13.0%

TABLE III
SOLUTIONS OF THE NON-CONVEX PFR-OPF AND ITS SDP RELAXATION FOR THE SEVEN MODELS OF THE POLISH SYSTEMS

System

Baseline Some PFRs Full PFRs

λopt by
Accuracy

λopt by
Accuracy Penetration Enhancement

λopt by
Accuracy Enhancement

SDP NLP SDP NLP SDP NLP

PL-2383wp 1.014 1.015 99.9% 1.025 1.026 99.9% 4.11% 1.1% 1.030 1.030 100% 1.5%

PL-2736sp 1.095 1.098 99.7% 1.431 1.431 100% 4.27% 30.3% 1.501 1.501 100% 36.7%

PL-2737sop 1.275 1.276 99.9% 1.894 1.894 100% 4.60% 48.4% 1.987 1.987 100% 55.7%

PL-2746wop 1.289 1.292 99.8% 1.486 1.488 99.9% 1.97% 15.2% 1.554 1.557 99.8% 20.5%

PL-2746wp 1.111 1.111 100% 1.250 1.250 100% 1.97% 12.5% 1.270 1.272 99.8% 14.5%

PL-3012wp 1.080 1.083 99.7% 1.149 1.149 100% 1.99% 6.1% 1.161 1.161 100% 7.2%

PL-3120sp 1.117 1.117 100% 1.228 1.228 100% 5.22% 9.9% 1.253 1.253 100% 12.2%

λopt by the non-convex PFR-OPF problem for each of the

scenarios. This suggests that the proposed SDP relaxation can

obtain nearly optimal results of the PFR-OPF problem. While

the penalization techniques are applied to pursue a rank-1

solution, the SDP relaxation can still obtain solutions which

are nearly optimal. In addition, it does not need a careful

choice of the initial solution, which is necessary for the NLP

method, to yield a good solution of the non-convex PFR-OPF

problem.

Fig. 6 demonstrates the evolution of the system loadability

as the number of PFRs or UPFCs allocated in the network

increases. The results indicate that with just a very small

proportion of the buses or branches installed with PFRs or

UPFCs, the power network can already benefit from a sub-

stantial improvement of loadability. Meanwhile, the marginal

enhancement of loadability by adding a PFR or UPFC to the

network decreases quickly as the number of PFRs and UPFCs

available in the network increases. While the observation on

the UPFC allocation matches with the existing findings on the

allocation problem of FACTS devices [31], our study further

reveals that the allocation of PFRs also possesses a similar

pattern. Furthermore, when we revisit the allocation results in

Fig. 6, Tables I and II together, we can see that the locations

of the UPFCs involves more buses than that of the PFRs

to achieve similar loadability enhancement. Hence, the labor

cost for installation of the PFRs may be lower than that of

the UPFCs. Nonetheless, a comprehensive evaluation model

is necessary to make the most cost-effective decision.

F. Tractability for Large Systems

In this section, we investigate the numerical performance

of the SDP relaxation and the penalization techniques in the

large power networks with up to 3000 buses. Tables III and

IV summarize the results of the seven models of the Polish

power systems [34]. In Tables III and IV, the abbreviations

TABLE IV
COMPUTATION TIMES (SOLVER TIME IN SECONDS) OF THE NON-CONVEX

PFR-OPF AND ITS SDP RELAXATION

System
Baseline Some PFRs Full PFRs

SDP NLP SDP NLP SDP NLP

PL-2383wp 62.6 24.1 68.3 82.9 95.7 101.3

PL-2736sp 120.4 46.3 111.6 136.9 171.9 118.0

PL-2737sop 113.9 38.0 102.6 99.6 161.2 129.1

PL-2746wop 77.8 45.5 97.6 114.6 157.9 148.7

PL-2746wp 129.1 59.2 128.6 107.9 197.5 155.1

PL-3012wp 93.5 62.9 72.9 128.1 170.1 141.9

PL-3120sp 100.3 42.9 74.8 126.0 158.3 176.5

“PL,” “s,” “w,” “op,” and “p” stand for “Polish,” “summer,”

“winter,” “off-peak,” and “peak,” respectively. The scenario of

the system with “some PFRs” is obtained by adding PFRs

to the system so that the loadability is at least 95% of

the maximum reachable loadability, which is similar to the

scenario definition in Section V-C. “Penetration” represents

the number of PFRs added to the system in that scenario to

the number of buses. Other terms in Tables III and IV have the

same meanings as those in Table II. To focus on the scalability

of the algorithm, the results with PFC placement are not

presented. For each of the test cases, we apply the procedure

for determining the penalty coefficients εr and εs presented

in Section V-D to obtain a rank-1 solution to the relaxed

PFR-OPF problem in (33) so that the results are physically

meaningful.

As shown in Table III, the proposed SDP relaxation can

obtain optimal or near-optimal solutions for all of the seven

large networks. Both the NLP and the SDP approaches can

scale well. Each of the seven networks, except the PL-2383wp

system, is able to benefit from significant loadability enhance-

ment ranging from 7.2% to 20% by installing PFRs at only

a small proportion of the buses in the network. Considering

the diversities of the seven test systems in terms of network



sizes, loading conditions, i.e., off-peak and peak, and seasons,

i.e., summer and winter time, the results indicate that the

PFR integration is able to bring remarkable improvement of

loadability in most practical scenarios. Furthermore, while the

SDP relaxation alone may not be adequate to obtain practical

solutions to the PFR-OPF problem, some remedial approaches,

such as the penalization techniques adopted in this work,

can be developed to improve the quality of the solutions

and solve the problem to global or near-global optimality.

Therefore, the convex relaxation approach can serve as a

good alternative to the NLP approach and certify global

optimality of the solutions. As an important future work, we

will work on more sophisticated approaches, such as high-

order moment relaxation, to further improve the exactness and

numerical performance of the convex relaxation of the PFR-

OPF problem.

The corresponding computation times of the NLP and the

SDP approaches are reported in Table IV. Both approaches

converge within two hundred seconds in all the test cases.

It can be observed that, except for the baseline scenario,

the computation times of the two approaches in each test

case do not have a big difference in general. As for the

baseline scenario, the NLP approach requires less time than

the SDP approach in each test case. However, as PFRs are

added to the OPF problem, the NLP approach exhibits an

obvious and consistent increase in the computation times for

each test system due to the increase in problem size and

nonlinearity brought by the control variables of PFRs. On

the other hand, since the dominant computational complexity

of the SDP approach comes from the SDP constraints [18],

the introduction of PFRs has a less significant effect on the

computation time for the SDP approach than for the NLP

approach. For each of the seven networks, the computation

time of the ”full-PFRs” scenario is higher than those of the

baseline and ”some-PFRs” scenarios. This agrees with the

intuition because the PFR-OPF problem in the ”full-PFRs”

scenario has the highest computational complexity among

various penetrations of PFRs.

VI. CONCLUSIONS

An OPF framework incorporated with PFRs is proposed to

facilitate the theoretical study and optimization on power flow

routing. First, the generic architecture with a load flow model

of a PFR is proposed to characterize the desired functions

of the PFR. Then, we formulate the PFR-incorporated OPF

problem which extends the conventional OPF by augment-

ing the controllable ranges of terminal voltages. The SDP

relaxation of the original non-convex PFR-OPF is derived

to pursue global optimality and computational benefits. Our

numerical study on the assessment of the system loadability

shows that the integration of PFRs and PFCs to the power

network can improve the loadability sigificantly, and that the

proposed SDP relaxation succeeds in obtaining the optimal

or near-optimal solution of the PFR-OPF problem. Moreover,

the SDP approach helps certify that the local NLP approach

finds the global optimums in all the test cases. Future work

will generalize the SDP relaxation to a moment relaxation

of the PFR-OPF problem, and further explore other potential

advantages of power flow routing, such as extending the

PFR-OPF framework to the corrective SCOPF scenario, and

the coordinated and dynamic control of PFRs and PFCs to

maintain the power balance and stability of the power network.
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