
Optimal Power Management Based on Q-Learning and
Neuro-Dynamic Programming for Plug-in Hybrid Electric Vehicles

by

Chang Liu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Information Systems Engineering)

in the University of Michigan-Dearborn

2018

Doctoral Committee:

Professor Yi Lu Murphey, Chair

Assistant Professor Wencong Su

Staff Researcher Shige Wang, General Motors Co.

Associate Professor Ya Sha Yi

c© Chang Liu 2018

All Rights Reserved

DEDICATION

It has been seven years since I started this PhD study. I just realized how much time and

efforts I have put in during this longer-than-expected part-time study. I would like to use

this dedication page to thank my family for their continuous support and encouragement

during all these years - particularly, for all the warm encouragement from my wife Shunyao

when I was not able to see the light at the end of the tunnel, for all the valuable advice from

my mother Shichong regarding my research, and for my father Keren’s great help, which

allowed me to have more time working on my research. I also dedicate this dissertation

to my lovely son Ethan for bringing so much fun to me throughout this entire long and

challenging journey.

ii

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Yi Lu Murphey.

She introduced me to this program about eight years ago. Her expertise, diligence, and

guidance have made me a better thinker, writer, and researcher. I am grateful for her con-

tinuous and strong support during my PhD study, for her patience, time, and all the great

advice. Without her help, this dissertation would not be possible.

Besides my advisor, I would like to thank the rest of my thesis committee, Prof. Ya Sha

Yi, Prof. Wencong Su, and Dr. Shige Wang, for their valuable comments, suggestions, and

time. My sincere thanks go to my friend and colleague Dr. Shige Wang, who provided me

with such valuable advice based on his own PhD study experience.

I would like to thank all the university staff and faculty members who have provided admin-

istrative help during my study. I also thank General Motors for encouraging and supporting

its employees to pursue further academic degrees.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

LIST OF TABLES . ix

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Power Management for Hybrid Electric Vehicles 3

1.2 Power Management Solutions in the Literature 4

1.3 New Contributions Made by This Research 14

II. PHEV Energy Optimization and Reinforcement Learning 18

2.1 PHEV Energy Optimization Problem Formulation 18

2.2 Reinforcement Learning in Vehicle Control 20

III. Powertrain Control in a PHEV Model 22

3.1 PHEV Modeling . 22

3.2 Power Flow Modeling . 26

IV. OPTIMAL PHEV POWER MANAGEMENT USING ANALYTICAL

GREEDY CONTROL FOR SHORT TRIPS 27

4.1 The Greedy Policy is Optimal for Short Trips 28

4.2 Analytical Solution for the Greedy Policy 30

iv

V. A Model-free, In-vehicle Learning Paradigm for Optimal PHEV Power

Management . 37

5.1 Introduction to the proposed Q-learning Algorithms 37

5.2 Deployment Strategy of the Q-learning Algorithms 38

VI. Q-Learning Algorithm QL-ST for Short Trips and Its Evaluation . . . 42

6.1 QL-ST Algorithm Description . 42

6.2 Evaluation of QL-ST on Fixed Drive Cycles 46

6.3 QL-ST on Home-Work Commutes 49

6.4 Evaluation of QL-ST on Random Short Trips 52

VII. Q-learning Algorithm QL-LT on Long Trips and Its Evaluation 58

7.1 Optimal Control Policy w.r.t the Penalty Function 58

7.2 QL-LT Algorithm Description . 60

7.3 Evaluation of QL-LT on Long Trips 61

7.4 SoC Prediction Using Neural Network 68

VIII. Conclusion and Future Work . 72

APPENDIX . 74

A. Deterministic Dynamic Programming by Forward Induction For PHEV

Energy Optimization . 75

BIBLIOGRAPHY . 79

v

LIST OF FIGURES

Figure

2.1 An RL problem is modeled as a sequence of state transitions over time. . 20

3.1 A Planetary Gear Set. 24

3.2 A Power-split Hybrid System . 25

4.1 From state s, different control actions a1 and a2 will cause the system to

transition to different future states s1 and s2 with the immediate cost c1
and c2, respectively. 28

4.2 A simplified battery model with a constant open circuit voltage Voc and

a constant internal resistance R. The SoC change is driven by Pbatt, and

the useful power output is Pbo. 31

4.3 The immediate cost in function of Pbatt assumes a parabolic form. 32

4.4 The term C in Eq. 4.12 is a linear function of Teng. 34

4.5 The optimal battery power P ∗

batt is a linear function of the electricity/fuel

price ratio. 35

4.6 Illustration of battery powers generated on drive cycle US06 using two

different policies, a greedy control policy and a rule-based controller. . . . 36

5.1 Two-stage Q-Learning for real-world deployment. 40

5.2 Stage-1 Q-Learning on engineering development vehicles. 41

6.1 The NN used to approximate the Q-Function has seven inputs, one output,

and one hidden layer of H neurons. 44

vi

6.2 QL-ST convergence on repeated UDDS cycles. SoCinit is a randomly

selected number ∈ [70%, 90%]. 48

6.3 Battery SoC profile comparison between converged optimal control (VEC-

UDDS) and initial untrained control on the UDDS drive cycle. SoCinit =
90%. 49

6.4 UDDS drive cycle and the recorded cost-to-go at each time step for the

initial untrained controller and the converged optimal controller (VEC-

UDDS). 50

6.5 QL-ST converges well on the UDDS drive cycles with 20% white noise.

SoCinit is a randomly selected number ∈ [70%, 90%]. 51

6.6 The recorded cost of the first 20 randomly selected trips. SoCinit is a

randomly selected number ∈ [70%, 90%]. 53

6.7 QL-ST convergence on randomly selected short trips. SoCinit is a ran-

domly selected number ∈ [70%, 90%]. 54

6.8 Plot of the NN outputs from VEC-ST. The NN is trained to generate the

expected cost-to-go. 55

6.9 Trip costs obtained by applying VEC-Rnd200, VEC-Rnd400, VEC-Rnd600,

VEC-Rnd800, and VEC-ST to four test cycles: HWFET, JAPAN-1015,

WLTC and Dearborn. 56

7.1 QL-LT applied to repeated UDDS cycles with SoCinit = 45%, SoCthrd =
30%. 62

7.2 SoC profile comparison between the initial untrained controller and the

converged optimal controller (VEC-SoC4530-UDDS) on the UDDS drive

cycle. SoCinit = 45%, SoCthrd = 30%. 63

7.3 SoC penalty function defined in Eq. 7.4. α = 10, β = 0.2, ∆ = 0.3 64

7.4 Four trips used to evaluate QL-LT algorithm. Two of them have durations

of over one hour. 65

7.5 QL-LT convergence on randomly selected long trips subject to the SoC

constraint. SoCinit = 70%, SoCthrd = 30%. 66

7.6 SoC profile comparison on Mixed2 drive cycle between the analytical

SoC prediction, the NN-based (NNSoC) prediction and Rule-based con-

trol. SoCinit = 70%, SoCthrd = 30% . 69

vii

7.7 The histograms of the SoC prediction errors made by analytical method

and NNSoC . 70

A.1 Dynamic Programming for PHEV Energy Optimization 77

viii

LIST OF TABLES

Table

1.1 PHEV Models Commercially Available 16

1.2 PHEV Models in Pre-production . 17

3.1 Vehicle Parameters . 23

6.1 Summary of QL-ST . 43

6.2 Trip Cost ($) Comparison on UDDS Cycles with Noise 52

6.3 Count of Drive Cycles Randomly Selected 52

6.4 Trip Cost ($) Comparison on Different Drive Cycles 57

7.1 Summary of QL-LT . 60

7.2 Trip Cost ($) Comparison on Different Drive Cycles with SoC Constraint 68

ix

ABSTRACT

Energy optimization for plug-in hybrid electric vehicles (PHEVs) is a challenging prob-

lem due to its system complexity and various constraints. In this research, we present

a Q-learning based in-vehicle model-free solution that can robustly converge to the opti-

mal control. The proposed algorithms combine neuro-dynamic programming (NDP) with

future trip information to effectively estimate the expected future energy cost (expected

cost-to-go) for a given vehicle state and control actions. The convergence of those learning

algorithms is demonstrated on both fixed and randomly selected drive cycles. Based on the

characteristics of these learning algorithms, we propose a two-stage deployment solution

for PHEV power management applications. We will also introduce a new initialization

strategy that combines optimal learning with a properly selected penalty function. Such

initialization can reduce the learning convergence time by 70%, which has huge impact

on in-vehicle implementation. Finally, we develop a neural network (NN) for the battery

state-of-charge (SoC) prediction, rendering our power management controller completely

model-free.

Keywords: Machine learning, Reinforcement learning, Q-learning, Neuro-dynamic pro-

gramming, Plug-in hybrid electric vehicles, Power management, Energy optimization, En-

ergy cost minimization

x

CHAPTER I

Introduction

Automotive electrification is advancing rapidly. Multiple vehicle manufacturers have an-

nounced significant investments in developing the next generation of hybrid and electrical

vehicles. For example, Ford has announced a $4.5 billion investment for developing 13

new hybrids and electric cars by 2020. GM was able to increase the all-electric range

(AER) of the Chevy Volt from 38 miles to 50 miles while cutting its price by more than a

thousand dollars. Several Chinese OEMs are also adding new plug-in hybrid and electric

models to their product portfolios. The main advantages of electrified vehicles are energy

cost savings and emissions reduction. Although the fuel price has dropped recently, it still

represents the dominant portion of the total energy cost for hybrid electric vehicles (HEVs).

In addition, more stringent emission standards are on the horizon. For example, the United

Nations Climate Change Conference has proposed zero net greenhouse gas emissions for

the second half of the 21st century.

The full electric cars currently available on the market are either very compact in size

or expensive due to the on-board battery packs. The supporting charging infrastructure

has not been fully established. At this moment, large consumer vehicles such as SUVs,

pickup trucks, etc. still rely on hybrid technology to reduce their fuel cost and emissions.

Plug-in hybrid technology represents a good solution for the transition of vehicles into

full electrification. PHEVs carry both an engine and a rechargeable battery pack, so they

1

can have the same power and driving range as conventional vehicles, but offer fuel cost

savings and fewer emissions. In recent years, plug-in hybrid electric vehicles (PHEVs)

have become more and more popular. Compared to conventional hybrid electric vehicles

(HEVs), a PHEV is normally equipped with a bigger battery pack and a more powerful

electric motor. The on-board battery can be charged by using a wall outlet. So, a PHEV

can offer an all-electric range (AER) (the driving distance with fully charged battery and

engine off), which is not achievable by a conventional HEV. We foresee the technology

trend of moving from conventional HEVs to PHEVs mainly due to the following reasons:

• PHEVs can offer more fuel savings and produce fewer emissions than conventional

HEVs.

• Smart grid techniques are being developed for PHEVs to optimize electricity usage.

• The rapid development in battery technology will further reduce the cost of building

PHEVs.

• The rapid advancement in charging technologies and infrastructures will greatly fa-

cilitate PHEV operations.

Table 1.1 and Table 1.2 list the PHEV models commercially available and the pre-production

models that will be on the market in the near future [1].

For current hybrid control applications, energy cost minimization is still one of the primary

control goals. This is supported by the obvious reason that most hybrid vehicle customers

care about energy cost savings. As a matter of fact, the current PHEV design process

involves the proper component sizing for battery, motors, engine, etc. at a very early design

stage to meet the fundamental emission and performance requirements. The real-time on-

road control still aims at saving energy as much as possible without compromising the

driver’s performance demand. For these reasons, we will focus on the problem of energy

cost minimization for PHEVs. It is worth noting that our energy optimization solution can

2

certainly be extended to incorporate the effect of emissions. The control methodologies

presented in this paper would still be applicable.

1.1 Power Management for Hybrid Electric Vehicles

One of the most challenging problems in HEV or PHEV control is power management. The

goal of power management is to optimize the energy usage of the vehicle while meeting

the requirements for performance and emissions. For example, for a power-split hybrid

architecture (details will be given later), at any instance of time, the proper power output

and its split between the two power sources, the gasoline engine and the electric motor

need to be determined. It is worth noting that the power flow from the electric motor could

be negative. In such a case, the electric motor is functioning as a generator to charge

the battery. At the time of braking, negative power output is desired, which could be

partially contributed by the electric motor subject to the system’s physical limitations. As

a consequence, partial kinetic energy could be recovered into the battery.

The high complexity of the power management problem is mainly due to the following

reasons:

• It is a global optimization problem subject to many system constraints. The opti-

mization is for the overall energy usage over extended time. The focus is not on a

local system or for a short period of time. The constraints include system evolu-

tion constraints, component physical constraints, etc., and they may be either static

or dynamic in nature. Examples are engine/motor torque or power outputs, battery

state-of-charge threshold, battery current and power output, transmission static and

dynamic characteristics, etc.

• It aims at achieving multiple objectives at the same time and across multiple di-

mensions. The high-level objectives are minimizing the energy usage, reducing the

3

tail pipe emissions, and meeting the requirements for vehicle drivability and per-

formance. Energy minimization can further include objectives such as reducing the

battery energy loss, improving the motor and engine operating efficiencies, etc. For

instance, the discharge of the battery leads to power loss due to the internal resis-

tance of the battery. As a consequence, higher power output will generate higher

loss. On the other hand, the engine and motor should be controlled to operate in the

high efficiency region as much as possible.

• It is impossible to completely and accurately obtain the mathematical models for

the overall system and various components such as engine, battery, motor, driveline,

tires, etc. So there is no analytical approach for the optimization problem unless

certain assumptions with simplified models are made.

• Driving information related to the energy usage is in general unknown before the trip.

Random inputs such as driver’s driving style, road and traffic conditions, weather

conditions and other environmental conditions, etc. often have significant impact on

the vehicle’s energy usage.

• Component aging and wear cause system characteristics to change continuously.

• There are a variety of hybrid architectures available. In general, different architec-

tures require different control strategies.

• The control algorithms need to run efficiently in real-time with limited computational

and memory resources.

1.2 Power Management Solutions in the Literature

Various power management strategies have been researched in the literature. In his sur-

vey, Salmasi [2] classified power management methods into two general trends: rule-based

4

(deterministic and fuzzy) and optimization-based (global and real time). Each approach

is explained. The characteristics of various strategies are evaluated and compared qualita-

tively. Gurkaynak et al. [3] summarized the state-of-the-art power management algorithms

for HEVs. The controllers are classified according to their dependency on time. The paper

suggests that time-dependent controllers (dynamic controllers) show better performance

than their static counterparts, which are rule-based controllers performing the control strat-

egy based on instantaneous inputs. Ganji and Kouzani [4] surveyed the control methods

using the look-ahead approach. They conclude that “there is a significant potential to im-

prove the energy usage of HEVs if real traffic conditions are used.” For example, intelligent

transportation systems can provide road and traffic information, GPS can provide informa-

tion about the location and elevation of a vehicle, GIS can give information about the trav-

eling route in advance, and radars can determine the distance from the vehicle ahead. All

of the above-mentioned trip information can be used to optimize energy efficiency. Very

recently, Malikopoulos [5] provided a survey on the supervisory power management con-

trol algorithms for HEVs that have been reported in the literature to date. “The exposition

ranges from parallel, series, and power split HEVs and PHEVs and includes a classifi-

cation of the algorithms in terms of their implementation and the chronological order of

their appearance.” For each hybrid configuration, rule-based, offline, and online control

algorithms have been reviewed. Also, learning-based algorithms have been discussed. The

author suggested that future development for HEV energy optimization could integrate

multi-scale information obtained from new on-board sensors and from vehicle-to-vehicle

and vehicle-to-infrastructure communications, etc. By investigating this new optimization

infrastructure, “the power management controller would have to account for limited un-

certainty about surrounding traffic and commuters and be able to optimize fuel economy,

pollutant emissions, as well as battery lifetime and range.”

In general, the power management control strategies such as rule-based controls, dynamic

programming, offline learning and online learning algorithms, etc. are applicable to either

5

conventional HEVs or PHEVs, with the consideration that battery charge depletion is al-

lowed for PHEVs. Thus, the same amount of SoC drop implies a different energy cost for

HEVs and PHEVs. In the first case, the lost SoC has to be recovered from either regen-

erative braking or the engine. In the latter case, the lost SoC can be recharged by using

electricity from the grid.

It has been proved that a simple control strategy such as an aggressive charge-depletion

mode followed by a charge-sustaining control for PHEVs is far from optimal [6–8]. The

commonly used power management control strategies can be classified as follows:

• Rule-based Control: This category can be subdivided into deterministic approach

and fuzzy logic approach [2]. The deterministic rules [9, 10], such as the thermostat

strategy to turn on/off the engine based on max and min SoC threshold levels, are

defined based on intuition and human control expertise. The fuzzy logic controller

uses fuzzy inference rules [11–14], which can be generated, for example, based on

the engine, motor, and battery efficiency maps [11] or based on the optimal solution

obtained from dynamic programming (DP) [13], to provide the control actions.

Rule-based control methods have been popular among engineers due to their sim-

plicity for implementation and interpretation. They are suitable for real-time appli-

cations. However, it is difficult to prove their optimality.

• Analytical Approach: Zhang et al. [15] developed a mathematical power loss model

for a blended mode PHEV and obtained the optimal solution analytically for any

constant-speed drive cycle based on simple control rules. The results were extended

to other drive cycles. The paper proved that the control strategy yields better fuel

economy if the total travel distance is known before the trip. In [8], the authors

proposed an analytical approach to find the optimal power management solution. In

order to solve the problem analytically, the authors made several assumptions, such

as the electrical loss model, the fuel consumption rate, the power demand statistic

6

distribution, etc. The control strategy is based on a set of simplified rules that lead

to determining a pair of parameters representing the power demand threshold for

turning on the engine and the constant motor power when the engine is on.

The analytical methods provide the optimal solution in the context of their problem

formulation, but they are normally built on simplified control rules. Assumptions for

the statistics of the drive cycles, power loss models etc. are also required.

• Equivalent Fuel Consumption Minimization Strategy (ECMS): It consists of evaluat-

ing the instantaneous cost function as a sum of the fuel consumption and an equiva-

lent fuel consumption related to the SoC variation. The equivalence between electri-

cal energy and fuel energy is basically evaluated by considering average energy paths

leading from the fuel to the storage of electrical energy [16]. The real-time control

strategy is evaluated under the assumption that every variation in the SoC will be

compensated in the future by the engine running at the current operating point. Scia-

rretta et al. [17] proposed a new method for evaluating the equivalence factor between

fuel and electrical energy. This method does not require the assumption of the aver-

age efficiencies of the parallel paths, and it is based on a coherent definition of system

self-sustainability. Finally, Musardo et al. [18] presented an adaptive equivalent fuel

consumption minimization (A-ECMS) algorithm, where the equivalence factor was

estimated on-the-fly with respect to real-time driving conditions.

ECMS-based algorithms aim at minimizing the instantaneous energy consumption.

They are robust and easy to implement. Converting the electrical energy into the

equivalent fuel cost may not be fully applicable for PHEV applications because the

electrical energy can be recovered from the electric grid instead of being recovered

from the fuel. Also, it is difficult to prove the algorithm’s global optimality.

• Deterministic Dynamic Programming (DDP): DP is by now a widely used approach

for optimal energy management in hybrid vehicles because it can solve general dy-

7

namic optimization problems by robustly handling the constraints and nonlinearity

of the problem and producing a global optimal solution. Lin et al. [19] used DP

for the optimal power management of a hybrid electric truck by minimizing a cost

function over a driving cycle. They used the DP results to improve a simple control

algorithm. Kum et al. [20] used DP results as the benchmark of the global optimiza-

tion for minimizing the fuel consumption and tail pipe emissions. A new extraction

method was developed to extract engine on/off, gear-shift, and power-split strategies

from the DP results. Finally, an adaptive supervisory powertrain controller was built

based on those extracted strategies. Patil et al. [21] compared two power management

strategies, both based on DP. One has no restrictions on the fuel usage and another

one permits engine operation only when the SoC is below a certain threshold level.

The paper concludes that there is no significant difference in energy consumption

between the two methods except if the fuel price is unreasonably cheap.

DP is commonly used in research as a benchmark for the optimization-based control

strategies because it yields the global optimal solution. Also, control strategies can

be extracted from the DP results to create real-time control rules, fuzzy inference

rules, neural network training samples, etc. However, the DP method has mainly

two drawbacks: Firstly, it requires the driving information, such as the vehicle speed

and power demand, beforehand; secondly, the computational complexity of the DP

approach is generally too high to be considered for a real-time implementation.

• Online Learning: Learning-based power management controls founded on artificial

intelligence (A.I.) have gained increasing interest recently. They can be generally

classified as supervised offline learning using neural networks (NNs) or online rein-

forcement learning (RL). Lin et al. [22] developed the breakthrough strategies based

on stochastic dynamic programming (SDP). In this approach, the power demand at

the next step is predicted by assuming that it has a Markov property. The Bellman

8

optimality equation is used to provide the control inputs. The algorithm is called

the policy iteration algorithm, which continuously learns the expected future energy

usage cost and converges to the global optimal solution. Johannesson et al. [23] com-

pared the results of three algorithms based on SDP but with different levels of trip

information access. The first level gives a general description of the type of drive

cycle, such as city driving; the second level uses GPS data with the traffic flow infor-

mation; and the third highest access level assumes that the speed and power demand

are exactly known, so deterministic DP is used for obtaining the global optimal re-

sults. In [24], the authors proposed a shortest path stochastic dynamic programming

(SP-SDP) approach, where a terminal state is defined for drive cycles. This new ap-

proach allows no discount factor in the cost function and the deviations of battery

SoC from a desired setpoint to be penalized only at key off. The simulation results

show that SP-SDP provides a better SoC control and has fewer parameters to tune

than an SDP approach where the problem is formulated in an infinite horizon. Liu

and Peng [25] studied the power management algorithms for a power-split configu-

ration by comparing the results of SDP, ECMS against deterministic DP. The paper

concludes that besides a little bit more “jumpy” engine power produced by ECMS,

both algorithms produced near optimal results. Moura et al. [26] used SDP over a

distribution of the drive cycles. It also demonstrated that the fuel-electricity price

ratio may play an important role for minimizing the total cost in an SDP algorithm.

SDP uses the Markov property to predict the next state transition probabilities. The

policy iteration technique allows the controller to learn and converge to the optimal

solution. This method can be implemented in real time without a priori trip knowl-

edge. Statistical trip data or other driving information, such as the GPS coordination

and traffic flow, may help the algorithm to better predict the state transitions. At

present, the algorithms are generally model-dependent and their convergence prop-

erty has not been studied.

9

SDP is essentially an RL-based approach. The system is modeled as a sequence of

state transitions possessing the Markov property. At each state, the future cost-to-go,

sometimes called the future total reward or state-value is estimated. This approach

suffers a well-known problem named the “Curse of Dimensionality”[27–30]. The

cost-to-go is a function of the state. If the cost-to-go value is stored in a table for each

state, then, depending on the number of possible states, the table could be too big to

be iteratively evaluated and updated. In other words, the number of iterations for

each table value to converge becomes enormous, rendering this approach impossible

in real-world applications.

Neuro-dynamic programming (Neuro-DP) or approximate dynamic programming

(ADP) aims to estimate the cost-to-go function using neural networks or user-defined

functions. In this way, the algorithm convergence is independent of the number of

states. Instead, it relies on the approximation performance of the neural networks or

the user-defined functions. Johannesson and Egardt [31] presented an ADP scheme

that gives the possibility of efficiently estimating the value function, i.e., the cost-

to-go function. The value function was approximated by using a linear function of

engine torque for the fuel consumption and a quadratic term of SoC for the power loss

of the battery. Johri and Filipi [32] proposed a neuro-DP structure that includes two

networks, actor and critic. The critic network is trained to estimate the approximation

of optimal cost-to-go function. The actor network is trained to produce control ac-

tions that are greedy with respect to optimal cost-to-go function. The objective is to

optimize the desired performance by learning to choose appropriate control actions

through interaction with the environment.

Q-learning is a powerful model-free reinforcement learning approach. Compared

with the classical control methods, which normally incorporate tedious system identi-

fication, construction of detailed mathematical models, and big efforts in developing

10

control synthesis, the Q-learning-based controller simply interacts with the environ-

ment and continuously improves the control policy from the rewards/costs observed.

The learning process is capable of converging to the optimal control behavior. Q-

learning is particularly suitable for applications where the system model is unknown

or not accurate. For example, the vehicle on-board battery pack represents such a

system [33, 34]. The characteristics of battery systems keep changing as the vehicle

goes through numerous charging/discharging iterations. Q-learning can continuously

learn from the observed experiences and automatically adjust to the evolving dynam-

ics. Some researchers have also applied Q-learning on the fuel cell hybrid electric

vehicles [35] to minimize the fuel cell consumption.

• Offline Learning: Supervised learning approaches have also been studied for HEV

power management. Neural networks (NNs) are mostly used to achieve this control

objective. Park et al. [36] developed an intelligent machine learning method for

conventional vehicle power management. NNs have been trained to produce the

optimal control parameters with respect to various road types and traffic congestion

levels. The simulation results showed that the intelligent controller had performance

very close to the optimal control generated by the offline DP. In 2012, Murphey et al.

[37] extended their research on the NN algorithms for power-split HEVs. In the two

papers published [37, 38], they demonstrated that their neural network-based control

framework can effectively predict the road types and traffic congestion levels as well

as the driving trend. Finally, the power-split NNs trained with respect to various road

types and traffic congestion levels are capable of achieving quasi-optimal control

results. Chen et al. [39] used two NNs trained with the optimized results obtained

by the DP method to perform battery current control. Based on the knowledge of

the trip length and duration, one of the NNs will be used to determine the power

distribution between the ICE and the battery using the sub-optimal battery current

control command.

11

Using NNs can be an effective way for energy optimization of the HEVs. However,

NN-based offline learning demands that the pre-trained model be fit to all vehicles

and driving cycles.

• Control Strategy Using Trip Information: Much research work has been conducted

considering the trip information as future information which is, therefore, not avail-

able a priori. This situation can be changed by the recent rapid developments in

on-board GPS, GIS, TMC, and intelligent transportation systems (ITS). The trip in-

formation generally include the predicted drive cycle for the near- or long-term fu-

ture, the distance of travel, the time of travel, the road grade change, the road type

and the traffic conditions, etc.

Gong et al. [6] presented a DP-based global optimal power-management scheme for

PHEVs by trip modeling with traffic data, where historical traffic data were used for

trip modeling. Essentially, a simplified driving cycle model was constructed based on

the trip route and the historical traffic information. Then, backward DP with interpo-

lation was used to find the optimal power usages. Later on, Gong et al. [7] proposed

a computationally efficient optimal power management for PHEVs based on spatial-

domain two-scale DP. The trip is divided into a number of segments of certain length.

The SoC and fuel consumption of each segment can be pre-calculated under different

speeds and power-splitting ratios. The original optimization problem in the time do-

main is then converted into that in the spatial domain, which can greatly improve the

computational efficiency. Zhang et al. [40] in their paper evaluated the potential gain

in fuel economy if road grade information is integrated into the energy management

of hybrid vehicles. Simulation results show that road terrain preview enables fuel

savings. The level of improvement depends on the cruising speed, control strategy,

road profile, and size of the battery. Recently, Yu et al. [41] used the trip preview

information to generate an optimized energy usage policy based on predicted driving

12

patterns along a trip. A feedback control system is designed to realize the preplanned

optimal energy consumption process by controlling the fuel-to-electricity consump-

tion ratio properly during the driving process.

Trip information can greatly help energy optimization. However, little work has been

done combining the trip information with online learning for power management.

• Model Predictive Control (MPC): MPC tries to iteratively solve a finite horizon op-

timization problem based on a plant model. At one time step, the system state is

captured, and an on-the-fly computation explores the state trajectories and find the

cost-minimizing control strategy for a relatively short future time horizon based on

the prediction of the state transitions until the end of the same time horizon. However,

only the first step of the control is applied, and then the plant state is sampled again

and the calculations are repeated, yielding a new control and a new predicted state

transition path. The prediction time horizon keeps being shifted forward. Although

this approach is not globally optimal, in practice it yields very good results [42].

Kermanil et al. [43] in 2009 proposed an MPC scheme for HEV power management.

At each time step, a new optimization problem is formulated. The problem over

the prediction horizon depends only on a quantity that is characterized based not

on the time order sequence but on its distribution. To compute the control over the

predicted horizon, the prediction of the time-ordered sequence for the wheel torque

demand and wheel speed is required. However, the control is robust with respect

to the prediction error. Borhan et al. [44] in their paper compared the liner time

variant MPC method with non-linear MPC control and concluded that the non-linear

MPC strategy yields a noticeable improvement in fuel economy. In order to find

control inputs for a finite time horizon, they used Bellman’s optimality theory and

approximated the fuel cost-to-go as a piecewise linear function of the SoC.

• Other Related Applications: Other interesting applications related to vehicle energy

13

management include overall emission optimization [45], where the on-road power

management and charging strategy are coupled into a simultaneous framework; smart

grid charging [46] to optimize the energy usage and minimize the power loss etc.

1.3 New Contributions Made by This Research

In this research, we present a novel Q-learning-based [47] PHEV energy management so-

lution that is model-free and optimal, and is capable of in-vehicle learning. The new con-

tributions made by this research work can be briefly summarized as follows:

• We formulate the power management problem into two categories, optimization for

short trips and for long trips. Short trips are those driving cases during which the SOC

will not run below the required SoC minimum threshold under any reasonable energy

controller. Long trips are those during which the SoC may go under the required SoC

threshold if energy flow is not properly managed. An optimal control algorithm has

been developed for each category.

• We incorporate estimated future trip information, such as the remaining travel dis-

tance and time, with neuro-dynamic programming (NDP) to make in-vehicle learning

possible and effective.

• We show that robust convergence of the proposed Q-learning algorithms on both

fixed and random trips can be achieved. Furthermore, a novel initialization strategy

has been developed that reduces the learning convergence time by 70%.

• Because the proposed learning algorithms are model-free and applicable for in-vehicle

learning, we propose a novel two-stage deployment strategy for real-world PHEV en-

ergy optimization applications.

14

Our solution is carried out in two major energy optimization algorithms. Algorithm QL-ST

is designed for short trips. We first prove, mathematically, that for short trips a greedy con-

trol policy that minimizes the immediate step cost is optimal. An analytical greedy control

method is derived from the steady-state powertrain model. To eliminate the dependency

on any system model, we developed the Q-learning based algorithm QL-ST that can con-

verge on random short trips and is robust against cycle noises. It is well-understood that

the theoretical optimal results from deterministic dynamic programming (DDP) cannot be

achieved in real simulations. Q-learning, on the other hand, neither relies on any model nor

requires any detailed a-priori trip knowledge. It is capable of converging to the real-world

achievable optimal control [47]. The learning algorithm QL-LT was developed for optimal

energy control in long driving trips subject to the SoC minimum constraint. In algorithm

QL-LT, we also developed a neural network for the SoC prediction task to make the entire

solution model-independent.

The subsequent discussion is organized as follows: Chapter II formulates the PHEV en-

ergy optimization problem and presents the background information about Reinforcement

Learning (RL) and Q-learning; Chapter III describes the PHEV model used in this research;

in Chapter IV, we derive the analytical description of optimal energy control for short trips

that do not run SoC under the minimum requirement; Chapter V introduces the two-stage

machine-learning paradigm for in-vehicle deployment of the two Q-learning algorithms for

optimal energy management; Chapter VI presents the short-trip learning algorithm QL-ST

with its evaluation results; Chapter VII presents the algorithm QL-LT with its evaluation

on long trips; finally, the conclusion and some interesting future research topics are given

in Chapter VIII.

15

Table 1.1: PHEV Models Commercially Available

Model Price All Electric Range

Chevrolet Volt Gen1 or Gen2 $34K - $41k 35 - 53 miles

Opel Ampera $40K 35 miles

Toyota Prius Plug-in or prime $28k-$32k 11 - 25 miles

Ford C-Max Energi $34k 21 miles

Ford Fusion Energi $35.5k - $39.5k 21 miles

Volvo V60 XC90-T8 S60L Plug-in $65k - $68K 27 - 31 miles

Honda Accord Plug-in $40K 13 miles

Mitsubishi Outlander PHEV $37k 37 miles

BMW i3 $42k 80 - 100 miles

BMW i8 $136k 15 - 23 miles

BMW X5 xDrive40e $63k 14 miles

BMW 330e or 740e iPerformance $45k - $101k 14 miles

Porsche Panamera S E-Hybrid $99k 20 miles

Porsche Cayenne S E-Hybrid $76k 14 miles

BYD Qin or Tang $31k - $48K 43 - 50 miles

SAIC Roewe 550 PHEV $41K 36 miles

Cadillac CT6 or ELR $76k 35 miles

Volkswagen XL1 $146K 31 miles

Volkswagen Golf or Passat GTE $48K 31 miles

Audi A3 Sportback/Q7 e-tron $49K 31 miles

Mercedes-Benz C350e or S500e $60K - $146K 14 - 19 miles

Mercedes-Benz GLC 350e or GLE 550e N.A. 19 miles

Hyundai Sonata PHEV N.A. 27 miles

Hyundai Ioniq Plug-in N.A. 31 miles

Kia Optima PHEV N.A. 27 miles

McLaren P1 $1,350k 12 miles

16

Table 1.2: PHEV Models in Pre-production

Model All Electric Range

Ford Escape Plug-in 30 miles

Volvo V70 Plug-in 12-19 miles

Suzuki Swift Range Extender 15.8 miles

Dodge Ram 1500 Plug-in 20 miles

Chrysler Pacifica Hybrid 33 miles

VW Golf Variant Twin Drive 35 miles

Audi A1 e-tron 31 miles

BMW 530e iPerformance 19 miles

Mini Cooper SE Countryman All4 25 miles

Honda Clarity Plug-in 40 miles

17

CHAPTER II

PHEV Energy Optimization and Reinforcement Learning

In this chapter, we first formulate the PHEV energy optimization problem and then present

the reinforcement learning technology that is the theoretical foundation of the proposed

vehicle energy optimization algorithms.

2.1 PHEV Energy Optimization Problem Formulation

We first define a cost function that quantifies the energy usage by taking into account both

battery and fuel. The energy consumption in PHEVs consists of two sources, battery and

fuel. Therefore, the cost function is defined as the amount of US dollars needed to bring

the fuel and battery SoC at the end of the trip to the same level as at the beginning of the

trip. The problem under study is subject to the following constraints:

• Physical constraints of the vehicle components such as the rotational speed and

torque limits, electrical current limits, power output limits, etc.

• Battery SoC minimum threshold constraint. This is to ensure the state-of-health

(SoH) of the battery.

For a driving trip, the vehicle energy system can be modeled as a sequence of state transi-

tions over time. At time t = 0, 1, 2, ..T , the state of the system st belongs to a finite state

18

space S ⊂ R
n, where n ∈ N is the number of state variables. The state space definition

of the power management is a design choice. The state variables are generally chosen as

features related to the current and future vehicle energy usage. They may include battery

SoC, speed and torque requested by the driver etc. The possible control actions are also

bounded by a finite control space A ⊂ R
m, where m ∈ N is the number of control actions.

In the next section, we will show that our PHEV system has two degree of freedom for

control. Thus, two actions can be independently produced by the controller at each time

step. The state transition is governed by the discrete time equation st+1 = f(st, at), where

at ∈ A is the control actions taken at the state st. The underlying assumption is that the

state transitions posses the Markov property [48], i.e., the probability of transitioning to

a future state depends on only the current state and the control actions performed, not on

the historical evolution. Along with each time step, an immediate cost is incurred. So,

the overall energy cost equals the sum of all of the step costs. Due to random inputs such

as driver’s speed and torque requests from the environment, we attempt to minimize the

expected total cost C for any trip.

Minimize C = E

{ ∞
∑

k=0

γk · c(sk, ak)

}

subject to: sk+1 = f(sk, ak)

and SoC ≥ SoCthrd

and components physical constraints,

(2.1)

where (sk, ak) is the state-action pair at time step k. γ ∈ [0, 1] is a discount factor. Because

every trip has a finite duration, we choose γ = 1. c(sk, ak) is the immediate cost incurred

at time step k associated with (sk, ak). It is defined as follows:

c(sk, ak) =
∆Ebatt,k

ηcharg
· ue +∆Fk · uf , (2.2)

where ∆Ebatt,k is the electrical energy used in the battery at time step k. Letting Cbatt

represent the total battery capacity and ∆SoCk the battery SoC variation for time step

19

k, we have ∆Ebatt,k = ∆SoCk · Cbatt. In Eq. 2.2, ∆Fk represents the amount of fuel

consumed at step k; ue and uf are the unit price in US dollars for electricity and fuel; ηcharg

is a constant battery charging efficiency factor.

2.2 Reinforcement Learning in Vehicle Control

In vehicle energy control, an RL agent (i.e. controller) interacts with the environment,

learns from the past control experiences and continuously improves the control actions. At

each time step k, the agent produces a set of control actions ak and observes the immediate

reward or cost c(sk, ak) incurred. Function π(·), which maps a state to a set of control

actions is called control policy. This process is illustrated in Fig. 2.1.

The goal of the RL is to achieve the optimal control policy that will maximize the total

expected reward, or in terms of “cost”, minimize the total expected cost.

Figure 2.1: An RL problem is modeled as a sequence of state transitions over time.

The RL process can be generally classified as model-based or model-free. Model-based

learning tries to learn an optimal state-value function V ∗(s), defined as the minimum ex-

pected total future cost, i.e., the minimum expected cost-to-go, following the state s among

all the control policies. It has been proven [28] that there exists at least one optimal policy

π∗, which will generate the control actions leading to the minimum expected cost-to-go. If

we assume that the optimal state-value function V ∗(s) is learned, then the optimal policy

π∗ can be derived as

π∗(s) = a∗ = argmin
a

{

c(s, a) + V ∗(snext|s, a))
}

, (2.3)

20

where c(s, a) is the immediate cost for the state-action pair (s, a); V ∗(snext|s, a) is the

optimal state-value for snext transitioned from (s, a). It is easy to observe that the policy

defined in Eq. 2.3 requires a model to predict both the immediate cost c(s, a) and snext

given (s, a).

A model-free RL approach, also referred to as Q-learning, uses a Q-function to estimate

the expected cost-to-go from any state-action pair (s, a). So, compared with the model-

based state-value estimation, the Q-function essentially tries to estimate the optimal value

of each action in a state. A common representation of the Q-function is a look-up table that

stores the Q-values. However, due to the huge number of states for the PHEV application,

the table look-up approach suffers notably the “Curse of Dimensionality”[27–30]. For

this reason, we have developed a neural network (NN) to approximate the Q-function.

Similar to the optimal state-value function, an optimal Q-function Q∗(s, a) is defined to

generate the minimum expected cost-to-go from a state-action pair (s, a), and it is also

policy independent. Assuming the optimal Q-function is learned, then the optimal policy

π∗ is given by:

π∗(s) = a∗ = argmin
a

{

Q∗(s, a)
}

. (2.4)

Eq. 2.4 does not require any model. The optimal policy simply chooses those actions

to minimize the optimal Q-function. However, being model-free is normally at the cost

of more learning and converging time. For most real-world engineering applications, the

knowledge of the underlying model is very limited. For a complicated system such as

PHEV, Q-learning offers many advantages over the model-based methods. Although opti-

mal Q-function and optimal policy are both unknown before the learning, there are well-

developed learning algorithms that have been mathematically proven to converge to the op-

timal policy. In this research, we present the RL learning-based algorithm, the Q-learning

with ǫ-greedy exploration [28, 49], developed for optimal vehicle energy control.

21

CHAPTER III

Powertrain Control in a PHEV Model

A vehicle model specifies: (1) the state transition governing function defined in Eq. 2.1, (2)

the control actions to be produced at each time step, and (3) the immediate cost for a given

state-action pair defined in Eq. 2.2.

3.1 PHEV Modeling

We used a midsize power-split PHEV as the testbed of this study. Similar PHEV architec-

ture was adopted by the Toyota Prius Plug-in. The detailed vehicle model has been provided

in the Autonomie [50] software. All the simulations in this research were performed using

Autonomie. Table 3.1 lists the main vehicle parameters.

The powertrain model equations are dependent on the hybrid configurations. In general,

three sets of equations can be derived at the steady state:

• Torque equations: the engine torque, motor torque, and torque demand at the wheel

are related through various gear systems.

• Angular Speed equations: relate the engine speed, and motor speed to various gear-

box speeds and the wheel speed.

• Power flow equations: energy power should be conserved for the powertrain system.

22

Table 3.1: Vehicle Parameters

Midsize Power-Split PHEV

Vehicle Mass 1126kg

Engine

Type 1.8L Inline 4 Cylinder D.I.

Power Max 57kw @ 4500rpm

Torque Max 201Nm @ 4500rpm

Motor/

Generator1

Power Max 66kw @ 1250rpm

Torque Max 502Nm @ 0-1250rpm

Motor/

Generator2

Power Max 55kw @ 1865rpm

Torque Max 281Nm @ 0-1865rpm

Battery

Type 39Ah Li-on

Nominal Cell Volt 3.6v

Number of Cells 72

Current Max 145A @ SoC ≥ 20%

Burst Current Max 388A @ SoC ≥ 20% for 10s

Basically, the sum of the engine power and motor power discounted by an efficiency

factor should be equal to the power at the wheel plus the accessory power. Further-

more, the battery power and motor power can be related through other efficiency

factors.

Please note that the power flow equations are redundant to the torque and angular speed

equations. So, among the above three sets of equations, only two of them are truly inde-

pendent.

At non-steady state, the dynamic equations will be used, which will take into account the

angular acceleration and inertia of various rotational components such as the gear pinions

and the shafts. In this research, we focus on the steady-state behavior of the powertrain

model.

In a power-split configuration, the planetary gear set is the key component relating the

torque and speed between various components. The planetary gear set imposes one con-

23

straint on the angular speeds between the sun gear, ring gear, and carrier. Also, torque at

the pinion between the three sub-components are related to each other through a fixed ratio.

Figure 3.1: A Planetary Gear Set.

A planetary gear set is shown in Figure 3.1, where the outer circle represents the ring gear;

the center four connected circles are the carrier and the inner circle represents the sun gear.

rr, rc and rs are the radius for ring, carrier and sun gear correspondingly. Let Tr, ωr, Tc, ωc

and Ts, ωs be the torque and angular speed of the three components. At the steady state, we

have

rc =
rr + rs

2
(3.1)

Ts

rs
=

Tr

rr
=

Tc

rs + rr
(3.2)

ωrrr + ωsrs = ωc(2rc) (3.3)

The power-split architecture of our PHEV (Toyota Prius Plug-in Hybrid) under study is

illustrated in Fig. 3.2, where “S”, “C” and “R” represent sun gear, carrier and ring gear of

the planetary. In this configuration, the engine is directly connected to the carrier. Mo-

tor1/Generator1 and Motor2/Generator2 are connected to the ring gear and sun gear, re-

spectively. The power flows indicated by the red arrows may be either positive or negative.

24

Figure 3.2: A Power-split Hybrid System

The steady state equations of this power split configuration are given in Eq. 3.4:

Te2

rs
=

Teng

rs + rr
rr

rs + rr
Teng + Te1 = Tfd =

Twhl

Gfd

(rs + rr)ωeng = rsωe2 + rrωe1

ωe1 = ωfd = Gfdωwhl,

(3.4)

where Teng, Te1, Te2, Tfd, and Twhl are the torques for engine, motor1/generator1, mo-

tor2/generator2, final drive, and wheel; ωeng, ωe1, ωe2, ωfd, and ωwhl are the angular speed

for engine, motor1/generator1, motor2/generator2, final drive, and wheel; rr, rc, and rs are

the radius for ring, carrier and sun gear; and Gfd is the gear ratio of the final drive.

At a time step, the Twhl and ωwhl, i.e., the wheel torque demand, and the wheel speed

demand, are the driver inputs, which can be measured from the sensors. Therefore, the

above four equations have six variables: Teng, Te1, Te2, ωeng, ωe1, and ωe2. This implies

that the degree of freedom for this control problem is two. For example, our controller is

allowed to generate any two of the six variables as the control actions at each time step; the

rest of the variables can be then resolved from Eq. 3.4, and the performance requested by

the driver is automatically guaranteed.

25

3.2 Power Flow Modeling

For our PHEV system, the following power flow equations hold:

Pfd = Pe1 + Pe2 + Peng

Pbo = γ1Pe1 + γ2Pe2,

(3.5)

where Peng = Tengωeng, Pe1 = Te1ωe1, and Pe2 = Te2ωe2 represent the power output of the

engine, the motor1, and the motor2; Pfd = Tfdωfd is the power demand at the final drive.

Pbo is the power at the output of the battery illustrated in Fig. 4.2. γ1 and γ2 are related

to the efficiency factors ηe1 and ηe2 of the two motors and inverters based on charging or

discharging situation. (The motor power is negative when charging the battery.)

γ1 =

1
ηe1

if Pe1 ≥ 0

ηe1 if Pe1 < 0

γ2 =

1
ηe2

if Pe2 ≥ 0

ηe2 if Pe2 < 0.

(3.6)

The power flow equations essentially introduced a new variable Pbo with one new equation,

so the overall degree of freedom of the system is not affected. For a small time step ∆t

where the Pbo can be considered as a constant, we can estimate the ∆SoC based on a

simplified battery model. The details are provided when we derive the analytical greedy

control actions in the next section. Therefore, Eq. 3.4 and Eq. 3.5 allow us to predict the

immediate cost as well as to derive the next transition state based on a given state and power

split control action.

26

CHAPTER IV

OPTIMAL PHEV POWER MANAGEMENT USING

ANALYTICAL GREEDY CONTROL FOR SHORT

TRIPS

In this chapter, we focus on energy optimization for short trips. We define a driving trip

as a short trip if the battery SOC will not drop below the minimum threshold throughout

the entire trip. Based on the current battery technologies in PHEV, short trips are gener-

ally characterized by less than 30 minutes of duration with a fully charged battery at the

beginning of the trip.

The surveys [51–53] from The United States Census Bureau claim that about 86% of U.S.

workers commute from home to work by automobile with a mean travel time of around 26.1

minutes and a mean travel distance of about 18.8 miles. Therefore, energy optimization for

shorts trips represents a strong value for practical applications.

We will first introduce our analytical solution for the optimal power management of short

trips. The proposed analytical approach is based on the powertrain model described in

Chapter III. Without losing generality, we assume that at the end of a trip, the battery will

be recharged from the electric grid. This charging event will reset our controller for a new

trip with a full battery.

27

In the literature, the battery SoC has always been considered as one of the state variables

for power management. However, it is very important to emphasize that the SoC gives

no indication about the future trip cost-to-go unless the trip is constrained by a minimum

SoC level. We prove that, without this constraint, a greedy control policy simply yields the

optimal cost.

4.1 The Greedy Policy is Optimal for Short Trips

Proposition IV.1. The optimal solution for the PHEV power management problem can be

obtained by using the greedy control policy if the component dynamics and the battery SoC

minimum threshold are not considered, or in other words, if we assume that the battery’s

capacity is infinite within the whole trip.

A greedy policy is defined as a policy that produces the control actions while minimizing

the immediate cost [28].

πgreedy(s) = argmin
a

{

c(s, a)
}

. (4.1)

Proof. As shown in Fig. 4.1, let us assume the vehicle is currently at state s. A control

action a1 will cause the system to transition to the next state s1 with an immediate cost c1.

Similarly, action a2 will lead the system to the state s2 with an immediate cost c2.

Figure 4.1: From state s, different control actions a1 and a2 will cause the system to tran-

sition to different future states s1 and s2 with the immediate cost c1 and c2,
respectively.

28

It is important to observe that the future states s1 and s2 essentially differ on the battery

SoC. If the battery’s capacity is not a concern, then the optimal control actions for s1 or s2

will not be dependent on the current SoC. Furthermore, the transient dynamics related to the

engine’s and motor’ speed and torque do not cause significant future cost-to-go variations

for the real-world applications. By ignoring the component dynamics, the optimal control

actions on s1 and s2 are not dependent on their current engine and motor speed and torque.

As a result, the optimal control actions following s1 and those following s2 will be the

same. This has an important implication: s1 and s2 will have the same optimal cost-to-go.

In other words, the optimal cost-to-go of the next state is independent of the control actions

we choose for s. We can write the above statement using Eq. 4.2.

V ∗(s1) = V ∗(s2) =⇒ V ∗(snext|s, a) = V ∗

next(s), (4.2)

where V ∗(snext|s, a) represents the optimal expected cost-to-go of the next state snext tran-

sitioned from the state-action pair (s, a); V ∗

next(s) indicates that the optimal cost-to-go

V ∗(snext) is actually a function only of s but not a.

From Eq. 2.3, we know that the optimal policy is given by:

π∗(s) = argmin
a

{

c(s, a) + V ∗(snext|s, a)
}

= argmin
a

{

c(s, a) + V ∗

next(s)
}

= argmin
a

{

c(s, a)
}

.

(4.3)

Eq. 4.3 proves that the optimal policy is the one that minimizes the immediate cost c(s, a).

By definition, this is the greedy control policy. In other words, the optimal cost of the

whole trip can be obtained by minimizing the cost of each single step.

29

4.2 Analytical Solution for the Greedy Policy

We will begin with the steady-state powertrain Eq. 3.4 to derive our greedy control policy

analytically. Since we have two degrees of freedom to choose our control actions, the

immediate cost function has two control variables, whose values should be properly chosen

in order to minimize the cost function.

At each time step, the immediate cost associated with a state-action pair (s, a) is given in

Eq. 2.2. We can further rewrite this cost using the following:

c(s, a) = αPeng∆tuf + βPbatt∆tue. (4.4)

In Eq. 4.4, the fuel rate is modeled as a linear function of the engine power (Zhang et al.

[8, 15]). We also assume the electrical cost being linearly proportional to the battery power.

α and β are two linear coefficients, respectively. Peng and Pbatt are the constant engine and

battery power output for this small time step ∆t; uf is the unit price of the fuel in dollars

per gallon; and ue is the unit price of the electricity in dollars per KWH.

From Eq. 3.5 we have Peng = Pfd − Pe1 − Pe2 and ωe2 =
Pbo−γ1Te1ωfd

γ2Te2
, where we replaced

ωe1 with ωfd. So we can rewrite the immediate cost as:

c(s, a)

∆t
= α(Pfd − Pe1 − Pe2)uf + βPbattue

= α
[

Pfd − Te1ωfd −
1

γ2
(Pbo − γ1Te1ωfd)

]

uf

+ βPbattue.

(4.5)

We use a theoretical battery model to relate Pbo with Pbatt. As shown in Fig. 4.2, assuming

the battery open voltage Voc and the internal resistance R are constants, we have:

Pbo = Pbatt −
P 2
batt

V 2
oc

R. (4.6)

Our goal is to represent the immediate cost as a function of the battery power Pbatt and

the engine torque Teng using Eq. 4.5. Based on Eq. 3.4, we can replace Te1 with (Tfd −

30

Figure 4.2: A simplified battery model with a constant open circuit voltage Voc and a con-

stant internal resistance R. The SoC change is driven by Pbatt, and the useful

power output is Pbo.

1
1+ρ

Teng), where ρ = rr
rs+rr

, and replace Pbo using Eq. 4.6. So the immediate cost can be

represented as:

c(s, a)

∆t
= AP 2

batt +BPbatt + C, (4.7)

where we have

A =
αR

γ2V 2
oc

uf (4.8)

B = βue −
α

γ2
uf (4.9)

C =
[

(1−
γ1
γ2

)(
1

1 + ρ
)Tengωfd +

γ1
γ2

Pfd

]

αuf . (4.10)

Eq. 4.7 provides a parabolic form allowing us to find the minimum immediate cost, where

A and B are two constants and C is a linear function of the engine torque Teng. The

resultant 2nd order parabolic function is mainly caused by the battery internal resistance

term. Therefore, a controller that always maximizes the battery energy usage against fuel

may not lead to the optimal cost due to the energy dissipation on the battery’s internal

resistance.

Eq. 4.7 also nicely decouples the dependency of the immediate cost on Pbatt and on Teng.

In the subsequent discussion, we will show how to independently choose the best values

31

for Pbatt and Teng to minimize the immediate cost. We will also study the impact of the

electricity and fuel price ratio on the optimal control strategy.

Fig. 4.3 shows the parabolic function defined in Eq. 4.7, where we have:

P ∗

batt = −
B

2A
= (

V 2
oc

2R
)(1− γ2

β

α

ue

uf

) (4.11)

c∗

∆t
= C −

B2

4A
. (4.12)

At a high-level summary, the cost minimization can be achieved by first selecting the opti-

mal battery power P ∗

batt and then choosing the proper value for Teng to minimize c∗.

Figure 4.3: The immediate cost in function of Pbatt assumes a parabolic form.

For more conveniently describing our greedy control, we introduce a new variable P ∗

fd,

which corresponds to the best battery power P ∗

batt but converted at the point of the final

drive.

P ∗

fd =
1

γ1
P ∗

bo =
1

γ1
(P ∗

batt −
P ∗

batt
2

V 2
oc

R) (4.13)

From Eq. 4.7 and using the P ∗

fd defined in Eq. 4.13, we derive the following greedy control

strategy:

32

• If the power demand from the final drive Pfd falls in the range of [0, P ∗

fd], then we

would disable the engine output power and use only the battery to provide the power

needed. This case is represented by the left side of the parabola where higher Pbatt

leads to lower cost.

• If Pfd falls in the range of [P ∗

fd, P
∗

fd + Peng max], where Peng max is the engine power

upper limit, we would limit the battery power to P ∗

batt and find the best Teng value

described below to minimize the immediate cost.

• If Pfd > P ∗

fd + Peng max, we would limit the engine to its maximum power output

and let battery to provide all of the rest of the power needed.

• If Pfd < 0, then we would disable the engine torque output and use regenerative

braking to charge the battery as much as possible.

The term C in Eq. 4.7 and Eq. 4.12 is a linear function of Teng. However, the slope of this

line can be either positive or negative based on the value (1 − γ1
γ2
), i.e., based on whether

the motors/generators are providing the propulsion or charging the battery. This behavior

is illustrated in Fig. 4.4, where we have:

T ∗

1 = (1 + ρ)(Tfd −
1

γ1

P ∗

bo

ωfd

) (4.14)

T ∗

2 = (1 + ρ)Tfd (4.15)

C∗

min = α
γ1
γ2

Pfduf . (4.16)

In region(I), the motor1 is outputting the power, but motor2 is working as a generator to

charge the battery, so the cost is decreasing as Teng increases; in region(II) both motors are

providing power, and thus the slope (1− γ1
γ2
) could be positive, negative or zero depending

on the value of ηe1 and ηe2; in region(III), the torque of the engine is so big that motor1

starts charging the battery and motor2 still produces positive power, the slope of the line

becomes positive and the cost increases as Teng increases. Therefore, we would choose

33

Figure 4.4: The term C in Eq. 4.12 is a linear function of Teng.

Teng = T ∗

1 if ηe1 > ηe2; Teng = T ∗

2 if ηe1 < ηe2; or set Teng to any value in the range of

[T ∗

1 , T
∗

2] if ηe1 = ηe2.

It is interesting to observe that in Eq. 4.11, the optimal battery power P ∗

batt is linearly

dependent on the fuel and electricity price ratio ue

uf
. As shown in Fig. 4.5, P ∗

batt will decrease

as the price ratio ue

uf
increases. When ue

uf
> r∗ue/uf

, the electricity becomes so expensive

that we would not use the battery power at all. The r∗ue/uf
is about 0.09, expressed in

Gallon/KWH. In our simulation, we set ue = $0.12/KWH and uf = $2.5/Gallon. This

yields the price ratio of 0.048.

It is possible to predict the end-of-trip SoC using the optimal battery power given in

Eq. 4.11 based on some attainable trip estimations. We have selected five features for

this prediction: travel distance; travel time, excluding the stop time; average speed, exclud-

ing the stop time; time duration when the acceleration is greater than 0.5m/sec2; and time

duration when the deceleration is stronger than −0.5m/sec2. Our experiments show that

a simple linear regression model over these five features can make an excellent prediction

34

Figure 4.5: The optimal battery power P ∗

batt is a linear function of the electricity/fuel price

ratio.

of whether a trip is short enough for the greedy policy to be applied. For example, we

estimate that our analytical greedy actions will cause the SoC to drop about 27% for the

UDDS cycle. Thus, as long as the battery is initially charged above 57% (assuming the

SoC minimum constraint is at 30% level), we can safely apply the greedy control on the

UDDS.

Table 6.4 compares the costs of the analytical greedy strategy with those of the default rule-

based control and other Q-learning controllers, which will be covered in the next section.

The greedy policy is able to outperform the rule-based control for most of the short drive

cycles.

Fig. 4.6 shows the simulated battery power Pbatt of the greedy policy vs the rule-based

control on the US06 drive cycle. The dotted red horizontal line marks the optimal battery

power level P ∗

batt defined in Eq. 4.11. The greedy policy attempts to set the battery power

to this optimal level for the purpose of minimizing the immediate cost. This behavior

is illustrated by those horizontal red segments taking more than 60% of the entire trip

35

duration. As a result, the greedy policy yields a 16.9% lower trip cost. The red power

oscillations are mainly caused by the battery transient dynamics associated with the braking

events. The rule-based control (blue line) uses less battery power and more fuel, yielding a

higher energy cost and higher emissions.

Figure 4.6: Illustration of battery powers generated on drive cycle US06 using two different

policies, a greedy control policy and a rule-based controller.

36

CHAPTER V

A Model-free, In-vehicle Learning Paradigm for Optimal

PHEV Power Management

The analytical greedy control solution introduced above relies on simplified powertrain and

battery models. For real-world applications, model identification normally involves tedious

development and validation efforts. We propose to build a model-free energy controller

using Q-learning. As introduced in Section II, it is a model-free learning approach where

a controller interacts with the environment and tries to learn an optimal cost-to-go function

for any given state-action pair.

5.1 Introduction to the proposed Q-learning Algorithms

We propose two machine-learning algorithms, QL-ST and QL-LT, for optimizing energy

control for the short-trip and long-trip categories, respectively. The core of the two algo-

rithms is a Q-function that accurately estimates the expected future cost-to-go at any given

state-action pair (s, a). This function is continuously updated by the controller using only

the observed state transitions and costs that are available at the end of each driving trip.

The Q-function is approximated by using a neural network (NN). This method is called

neuro-dynamic programming (NDP) [27, 32]. The traditional look-up table approach is

seriously limited by the “curse of dimensionality” [28] due to the large state space we are

37

dealing with, and it has limited capability to adapt to dynamic environments.

Both algorithms use estimated future trip information, namely, remaining travel distance

and time, which are available in most modern vehicles, as input to the neural network de-

signed to learn to estimate the expected cost-to-go. The future trip information is closely

related to the future energy consumption; therefore this is effective input to the neural net-

work for learning the cost-to-go function. For long trips, algorithm QL-LT further enforces

a battery power cutoff rule to prevent the battery from dropping below its minimum SoC

threshold.

For each category, we will evaluate the proposed algorithm by analyzing its convergence

on power management applications, a topic not being discussed in the previous literature.

In general, the benefit of model-free learning is at the cost of bigger action exploration and

longer convergence time. For this reason, we also developed a new initialization strategy

for the long-trip learning algorithm QL-LT so that the convergence time can be significantly

reduced.

5.2 Deployment Strategy of the Q-learning Algorithms

Our research experiments have shown that both Q-learning algorithms can converge on

both fixed and random drive cycles (see Chapter VI and VII), and they yield better perfor-

mance than the analytical or rule-based controls. This implies that we can directly deploy

our algorithms to real-world vehicle energy management to learn optimal control func-

tions. However, our experimental results also show that the number of trips, i.e. learning

iterations, needed to achieve the convergence is dependent on the type and length of the

cycles. In order to minimize the in-vehicle learning period, i.e., to make the in-vehicle

learning converge faster, we propose a two-stage machine-learning paradigm (see Fig. 5.1)

for practical implementation of two Q-learning algorithms in vehicle systems.

38

Stage-1 learning is carried out during the vehicle engineering development period. The

QL-ST algorithm performs Q-learning on random short ships, e.g., randomly selected short

standard driving cycles, until it converges. The result of the QL-ST learning is an optimal

vehicle energy controller VEC-ST applicable to short trips. For long-trip learning, QL-LT

uses VEC-ST with a proper penalty function to initialize the learning process. We will

show that with this initialization step, QL-LT can reduce the learning convergence time by

70%. The output of QL-LT is another optimal energy controller VEC-LT for energy control

in long trips.

At Stage-2, QL-ST will continue the learning process in-vehicle on the customer trips ded-

icated to home/work commutes. Our experimental results show that QL-ST can converge

robustly on repeated drive cycles even with a certain level of noise (see Section VI). For

long trips, QL-LT uses a very small exploration and learning rate during in-vehicle learning.

This will make the controllers be finely tuned to each individual vehicle, driving routes, and

driving style.

Fig. 5.2 illustrates the details of Stage-1 learning. The block on the left side describes the

learning algorithm QL-ST on short trips, which should be completed before the long-trip

learning begins. The block on the right side shows the Q-learning algorithm QL-LT on long

trips subject to the SoC constraint. Long-trip learning is initialized using the following three

components: the optimal controller VEC-ST learned from short trips; a properly selected

penalty function W(·), and a trained neural network NNSoC for the SoC prediction task.

Finally, VEC-LT represents the converged optimal controller for long trips. The entire

learning process is completely model-independent. Sections VI and VII present detailed

descriptions of the QL-ST and QL-LT algorithms, respectively.

39

Figure 5.1: Two-stage Q-Learning for real-world deployment.

40

Figure 5.2: Stage-1 Q-Learning on engineering development vehicles.

41

CHAPTER VI

Q-Learning Algorithm QL-ST for Short Trips and Its

Evaluation

In this chapter, we will provide details about the QL-ST algorithm and study its conver-

gence and robustness on fixed and random short trips against cycle noises. We will also

evaluate the performance of the optimal controller VEC-ST generated by QL-ST.

6.1 QL-ST Algorithm Description

QL-ST is a machine-learning algorithm developed for learning optimal vehicle energy con-

trol for short trips. It is developed based on Q-learning and neuro-dynamic programming.

It takes a pre-trained neural network (NN (0)) and a training data set as input and outputs a

neural network (NN∗) that accurately approximates the Q-function to estimate the optimal

cost-to-go for any state-action pair. The NN∗ is used for the optimal control policy defined

in Eq. 2.4 in the final controller VEC-ST.

Table 6.1 summarizes the setup of the QL-ST algorithm. The state variables include driver’s

torque request converted at the final drive (Tfd); driver’s speed request converted at final

drive (ωfd); the remaining travel distance (lr); the remaining travel time, excluding the stop

time (tr); and the average vehicle speed for the remaining trip, excluding the stop time

42

(v̄r). Algorithm QL-ST produces two control actions Teng and ωeng at each time step using

the ǫ-greedy control policy. The rest of the actions can be resolved from Eq. 3.4, which

guarantees the vehicle performance requested by the driver. A NN is used to approximate

the Q-function. The input to the NN are scaled state variables and control actions. The

output of the NN is the estimated cost-to-go for the state-action pair presented at the input.

Table 6.1: Summary of QL-ST

State Variables (s): Tfd, ωfd, lr, tr, v̄r

Control Action (a): Teng, ωeng

NN Input: State-Action pair (s, a)

NN Output: Expected future cost-to-go for (s, a), i.e. Q(s, a)

Control Policy: ǫ-greedy

Q-func. Update:
Temporal Difference with learning rate

(NN weights updated at the end of each trip)

The NN illustrated in Fig. 6.1 is a multilayer perceptron network with H neurons in the

hidden layer.

During a trip, at each time step, we use the ǫ-greedy policy to generate control action

a = (Teng, ωeng). In order to constrain our Action Space to be a finite space, we discretize

the engine speed into a vector of [0 : ∆ω : ωeng max]. For a fixed engine speed, the engine

torque is discretized into [0 : ∆trq : Teng max(ωeng)], where Teng max(ωeng) is the max

engine torque for a given speed ωeng; ∆ω and ∆trq are the discretization steps.

We also limit our action space such that all of the components’ physical constraints are

strictly followed. Our control policy is deterministic, meaning that for a given state, this

policy will output deterministic control actions. This is different from stochastic DP (SDP),

where each possible control action is accompanied by a probability.

The QL-ST algorithm is designed such that it can incrementally optimize the NN based on

43

Figure 6.1: The NN used to approximate the Q-Function has seven inputs, one output, and

one hidden layer of H neurons.

newly available training data. The whole learning process is carried out while the algorithm

is generating the power management control actions. Therefore, the QL-ST algorithm can

be used for in-vehicle online learning. The pre-trained neural network input to the QL-

ST algorithm, NN (0), can be initialized using a rule-based control method, which will be

described below.

We train the NN at the end of each trip. After the NN is trained at the end of trip i using

the collected data from trip i, it will be used to generate control actions during the next

trip i+ 1. This process continues until convergence of the trip energy cost is achieved (see

Fig. 6.2 as an example). The cost convergence is discussed in detail in the next subsection.

In summary, with the continued QL-ST learning from a sequence of new training data,

we obtain a sequence of NNs: NN (1), NN (2), NN (3), ... NN∗, where NN (i) is the NN

trained at the end of trip i. NN∗ is the final converged one, which approximates the optimal

Q-function. The following describes the training data used as input to all the learning

algorithms presented in this paper, including QL-LT.

44

Any trip i is recorded by the algorithm as a sequence of observed state-action pairs {(sk, ak)}
(i);

k = 1, 2, ...N , is the index of each time step. As indicated in Table 6.1,

(sk, ak) = {(T k
fd, ω

k
fd, l

k
r , t

k
r , v̄

k
r); (T

k
eng, ω

k
eng)}, (6.1)

Besides all the state-action pairs, the QL-ST algorithm also records the energy cost for each

time step {ck}
(i), k = 1, 2, ...N .

The three main parts of the algorithm are described below:

• Pre-training of NN (0) We use the rule-based control to make one trip. Any kind

of trip can serve the purpose of the pre-training. In our case, we use a UDDS drive

cycle. We then compute the recorded cost-to-go value at each time step k:

ctgk = (ck + ck+1 + ck+2 + ...+ cN) =
N
∑

j=k

cj, (6.2)

The initial training data set is composed of {(sk, ak), ctgk}, k = 1, 2, ...N , where

(sk, ak) are the observed state-action pairs presented as the inputs to the NN, and

ctgk are the target values. The result of this initial training is NN (0).

• Control actions generation during each trip During a trip i, at any time step k,

we observe the current state sk = (T k
fd, ω

k
fd, l

k
r , t

k
r , v̄

k
r). We combine sk with all legal

control actions a = (Teng, ωeng) and present each pair (sk, a) to NN (i−1). We then

choose the action ak that minimizes NN (i−1) as the control action generated at this

time step k. For a small probability ǫi, we choose a control action randomly from all

the legal actions. This is called ǫ-greedy control.

ak =

argmin
a∈A

{NN (i−1)(sk, a)}, probability 1− ǫi,

a random action in A, probability ǫi.

(6.3)

where A is the action space containing all the legal actions. For each possible action

a = (Teng, ωeng), we make sure it first does not violate the engine power, speed, and

torque constraints. We then use Eq. 3.4 to derive other control variables. We consider

45

a as a legal action only if all the other physical constraints associated with motors

and battery are also met.

• Subsequent NN training at the end of each trip At the end of trip i, the cost-to-go

at time step k is computed based on the temporal difference (TD(0)) algorithm:

ctgk = (1− αi)NN (i−1)(sk, ak)

+ αi[ck +min
a

NN (i−1)(sk+1, a)]
(6.4)

In other words, the target value ctgk is computed as the observed step cost ck plus the

minimum value of the NN (i−1) evaluated at sk+1. Then this value is adjusted by a

learning rate αi. So, the entire training set is {(sk, ak), ctgk}, k = 1, 2, ...N . The NN

after the training is NN (i), which will be used during the next trip i + 1 to generate

the control actions as described above.

Eq. 6.4 is derived from the temporal difference (TD(0)) method [28, 49]. The original

TD(0) algorithm learns on the difference between temporally successive predictions. The

predicting function is updated at each time step. However, NN training on the fly is compu-

tationally intensive. We modified the original TD algorithm by making the learning update

only at the end of the trip. This will help increase the controller’s real-time processing

throughput. The entire learning iteration process is described in Algorithm QL-ST.

6.2 Evaluation of QL-ST on Fixed Drive Cycles

Algorithm QL-ST was first tested on the repeated UDDS cycles. Each iteration in this

case runs through one complete UDDS trip. Fig. 6.2 demonstrates the convergence of the

Q-learning for 1000 iterations (i.e., 1000 UDDS trips). Each small circle in the figure rep-

resents the recorded energy cost for that trip. The red curve is the cost moving average with

a window size of 30 iterations. It represents the trend of the trip cost. During the learning

process, the QL-ST algorithm achieved the minimum of $0.39 after 687 UDDS cycles. The

46

Algorithm QL-ST

Input: NN (0) trained using the trip data of a rule-based control

multiple trip data recorded {(sk, ak), ck}
(i)
i=0,1,2,...

exploration schedule {ǫi}i=0,1,2,...

learning rate schedule {αi}i=0,1,2,...

Output: NN∗ that approximates the optimal Q-function

1 repeat at every trip i, i.e. iteration i
2 for each time step k = 0, 1, 2, ...N do

3 observe sk = (T k
fd, ω

k
fd, l

k
r , t

k
r , v̄

k
r)

4 ak =

{

argmin
a∈A

{NN (i−1)(sk, a)} probability 1− ǫi,

a random action in A probability ǫi.

5 A contains all legal actions

6 apply ak, record immediate cost ck
7 end

8 at the end of trip, compute new target values:

9 ctgk = (1− αi)NN (i−1)(sk, ak) + αi[ck +min
a

NN (i−1)(sk+1, a)]

10 train NN with {(sk, ak), ctgk}k=1,2,...N ⇒ NN (i)

11 until the trip cost has converged;

results in Fig. 6.2 were generated using exploration schedule = [0.60:-0.001:0.01], learn-

ing rate = [0.2:-0.00028:0.005], fuel price(uf) = $2.5/gallon, and electricity price(ue) =

$0.12/KWH.

We extended the learning process to 1200 trips but found no further lower cost. Therefore,

the converged optimal has been reached after 687 iterations. This suggests that for in-

vehicle implementation, the Q-learning will converge after a certain amount of learning

from a specific trip. The reason for the small cost oscillations after the minimum set point

is because of a constant 1% control exploration used in Q-learning. We call the controller

that yields the minimum cost of $0.39 VEC-UDDS.

The 687 iterations for achieving the convergence are equivalent to 5040 miles/256 hours of

driving. Our studies show that using analytical greedy control to initialize the NN can make

the convergence time significantly shorter. However, the analytical greedy strategy requires

a model. In this research, we focus on the model-free solution. If an accurate model can be

47

Figure 6.2: QL-ST convergence on repeated UDDS cycles. SoCinit is a randomly selected

number ∈ [70%, 90%].

developed for real-world applications, then the convergence time can be further optimized.

The theoretical optimal cost calculated using deterministic dynamic programming (DDP)

for the UDDS drive cycle is about $0.34. (Please refer to Appendix A for DDP description.)

However, DDP not only requires detailed trip information beforehand but also relies on a

simplified vehicle model. As a result, the theoretical minimum cannot be achieved in the

real simulation. The control actions derived from the DDP were tested on the UDDS cycle,

and they yielded a cost around $0.42, which is higher than the converged Q-learning cost.

This is marked by the horizontal red line in Fig. 6.2.

Fig. 6.3 compares the battery SoC profiles between the initial untrained controller and

the converged optimal controller (VEC-UDDS). The optimal policy utilized more battery

energy during the trip to minimize the total trip cost. It was able to recover more SoC with

48

regenerative braking toward the end of the cycle.

Figure 6.3: Battery SoC profile comparison between converged optimal control (VEC-

UDDS) and initial untrained control on the UDDS drive cycle. SoCinit = 90%.

Fig. 6.4 shows the recorded cost-to-go from the initial untrained controller and the con-

verged optimal controller (VEC-UDDS). The cost-to-go at time 0 represents the total trip

cost. The untrained controller (blue curve) and VEC-UDDS (red curve) yield a trip cost

of $0.47 and $0.39, respectively. The cost-to-go curve is not monotonically decreasing

because the regenerative braking causes the battery energy cost to be negative.

6.3 QL-ST on Home-Work Commutes

Another important characteristic of our Q-learning framework is that it has excellent ro-

bustness against noise in cycles. To demonstrate this, we added 20% white noise to each

UDDS cycle. Fig. 6.5 shows the first 10 of 1000 UDDS cycles with white noise and the

49

Figure 6.4: UDDS drive cycle and the recorded cost-to-go at each time step for the initial

untrained controller and the converged optimal controller (VEC-UDDS).

convergence of the Q-learning. The learning has converged after about 750 iterations, a

little bit more than in the case of the original UDDS cycles. The results were generated

with exploration schedule = [0.60:-0.001:0.01], learning rate = [0.2:-0.00028:0.005], fuel

price(uf) = $2.5/gallon, and electricity price(ue) = $0.12/KWH. Due to the added white

noise, the cost continues to oscillate around the average level after 800 iterations. We name

the controller trained after 750 UDDS noise cycles VEC-UDDS-Noise750. The robust con-

vergence on the repeated short trips with noise makes Q-learning very suitable for learning

optimal energy control for real world driving trips such as home/work commuting trips.

We also evaluated the optimal controller’s performances on cycles with noise. We gener-

ated four new trips with different white noise levels from the standard UDDS. The max

noise levels were limited to 10%, 20%, 30%, and 40%. Table 6.2 compares the perfor-

mance of VEC-UDDS and VEC-UDDS-Noise750 with the default rule-based controller

50

Figure 6.5: QL-ST converges well on the UDDS drive cycles with 20% white noise.

SoCinit is a randomly selected number ∈ [70%, 90%].

on the four noise cycles. The last column is called the converged optimal, which stores

the costs obtained by running the Q-learning repeatedly on that specific cycle until it con-

verges. So, in other words, the last column represents the optimal cost value for each drive

cycle. It can be observed that controllers (VEC-UDDS and VEC-UDDS-Noise750) gen-

erated by the Q-learning achieved lower costs than the rule-based control. The controller

VEC-UDDS-Noise750 trained on the noise cycles has even slightly better performance

than VEC-UDDS trained on the original UDDS cycles.

51

Table 6.2: Trip Cost ($) Comparison on UDDS Cycles with Noise

SoCinit = 90%, uf=$2.5/Gallon, ue=$0.12/KWH

Drive

Cycles

VEC- VEC-UDDS Rule- Converged

-UDDS -Noise750 based Optimal

UDDS 0.39 0.40 0.41 0.39

UDDS+10%Noise 0.38 0.38 0.41 0.38

UDDS+20%Noise 0.40 0.39 0.47 0.39

UDDS+30%Noise 0.39 0.38 0.43 0.38

UDDS+40%Noise 0.45 0.44 0.58 0.44

6.4 Evaluation of QL-ST on Random Short Trips

Our next objective is to explore whether Q-learning can learn and converge on random

drive cycles, because real world applications consist of random trips. For this purpose, we

let QL-ST learn from 1200 random short trips. At each iteration, one trip was randomly

selected from the following five cycles: UDDS, US06, NYCC, LA92, and NEDC. Table 6.3

counts the number of times each cycle was selected.

Table 6.3: Count of Drive Cycles Randomly Selected

UDDS US06 NYCC LA92 NEDC Total

242 252 232 229 246 1200

Fig. 6.6 shows the first 20 of the 1200 trips. Each small circle is a recorded trip cost for that

cycle after using the Q-function updated at the end of previous trip. The results were ob-

tained with exploration schedule = [0.60:-0.001:0.01], learning rate = [0.2:-0.00028:0.005],

fuel price(uf) = $2.5/gallon, and electricity price(ue) = $0.12/KWH. Every cycle type is

marked by a different color. For example:

• The 1st trip is US06. The recorded cost is $0.71. This trip is completed by using the

NN initialized with the rule-based control.

• The 2nd trip is NEDC. The recorded cost, using the Q-function updated at the end of

52

the 1st trip, is $0.47.

• The 3rd trip is UDDS. The recorded cost, using the Q-function updated at the end of

the 2nd trip, is $0.49, etc.

Figure 6.6: The recorded cost of the first 20 randomly selected trips. SoCinit is a randomly

selected number ∈ [70%, 90%].

The convergence of the trip energy cost on 1200 random trips is shown in Fig. 6.7. For

clarity, we plotted only the cost trend, i.e., the moving average of the recorded cost with

a window size of 30 iterations, for each type of cycle by coloring them differently. The

cost values are normalized so that the convergence can be properly compared. The parame-

ters associated with the learning simulations are exploration schedule = [0.60:-0.001:0.01],

learning rate = [0.2:-0.00028:0.005], fuel price(uf) = $2.5/gallon, and electricity price (ue)

= $0.12/KWH.

All the cycles reached their own minimum costs after about 850 iterations. From 900 to

53

1200, there is no further improvement. Compared with the convergence on fixed UDDS

cycles, this result suggests that more variations in the drive cycles require more iterations

to converge. We give the name VEC-Rnd200, VEC-Rnd400, VEC-Rnd600, VEC-Rnd800,

and VEC-ST to the controllers that learned after 200, 400, 600, 800 and 1000 random trips

through the procedure described above.

It is very interesting to observe that the convergence on the standard New York City drive

cycle (NYCC) was most significant. On the other hand, the convergence on the highway

cycle (US06) was least significant. This implies that Q-learning can do a better optimization

on city trips with frequent start-stops.

Figure 6.7: QL-ST convergence on randomly selected short trips. SoCinit is a randomly

selected number ∈ [70%, 90%].

The NN used to approximate the Q-function in VEC-ST is represented by a 3D surface in

Fig. 6.8. The outputs of the NN are the expected cost-to-go, and they were plotted against

the remaining travel time tr and the remaining travel average speed v̄r. An interesting

54

fact is that when the remaining trip time tr is short, a small average speed increase (e.g.

from 15m/s to 20m/s) can cause a sudden cost-to-go jump. As the tr becomes longer, the

cost-to-go smooths out to an almost linear function of the v̄r.

Figure 6.8: Plot of the NN outputs from VEC-ST. The NN is trained to generate the ex-

pected cost-to-go.

To validate the Q-learning process, we applied VEC-Rnd200, VEC-Rnd400, VEC-Rnd600,

VEC-Rnd800, and VEC-ST to four test cycles chosen differently from the learning cycles.

These four cycles are: HWFET, JAPAN1015, WLTC, and Dearborn. The Dearborn cycle

is a real-world short driving trip collected in an urban area in southeast Michigan. This trip

consists of 38 minutes/16 miles of combined highway-urban driving with 15 short traffic

stops. Fig. 6.9 plots the energy cost by applying the above five Q-learning controllers to

the four test cycles. The cost has also converged on each of those test cycles.

Table 6.4 summarizes the performances of the five vehicle energy controllers applied to the

nine drive cycles. The Converged Optimal values in the last column were again obtained

55

Figure 6.9: Trip costs obtained by applying VEC-Rnd200, VEC-Rnd400, VEC-Rnd600,

VEC-Rnd800, and VEC-ST to four test cycles: HWFET, JAPAN-1015, WLTC

and Dearborn.

by applying Q-learning repeatedly on that specific cycle until it converged. These numbers

are considered as the upper bound of the performance on each drive cycle. The cost associ-

ated with the analytical greedy control was generated by applying the method described in

Section IV on each drive cycle. The numbers shown in parentheses are the cost reduction

in percentage from the rule-based control. VEC-UDDS, VEC-ST, and analytical greedy all

showed cost savings compared with the default rule-based control. VEC-UDDS and VEC-

ST demonstrated more significant cost savings for trips such as US06, NYCC, LA92, and

WLTC. VEC-ST, the controller trained on random short trips, yields performances better

than or equal to VEC-UDDS on all cycles other than UDDS, which is reasonable since

VEC-UDDS was trained on UDDS drive cycles only.

For the HWFET cycle, the rule-based control achieved the lowest cost among all of the

56

strategies. However, with some further investigation we found that the vehicle speed error

(calculated as the accumulated speed errors in percentage between the target drive cycle

and the real simulation output) generated by the rule-based controller was about 9%. In

our study, all of the simulations using any Q-learning controller must have a speed error

less than or equal to 5%. So in this case, the energy savings from the rule-based control

was achieved by compromising vehicle driving performance, i.e. the energy control did not

provide sufficient power to meet the driving speed demand.

Table 6.4: Trip Cost ($) Comparison on Different Drive Cycles

SoCinit is random ∈ [70%, 90%], uf=$2.5/Gallon, ue=$0.12/KWH

Drive

Cycles

VEC- VEC- Analytical Rule- Converged

ST UDDS Greedy based Optimal

UDDS 0.40(-2.4%) 0.39 (-4.9%) 0.40(-2.4%) 0.41 0.39(-4.9%)

US06 0.71(-14.5%) 0.71(-14.5%) 0.69(-16.9%) 0.83 0.68(-18.1%)

HWFET 0.58(+7.4%) 0.59(+9.3%) 0.58(+7.4%) 0.54 0.55(+1.8%)

NYCC 0.09(-10.0%) 0.09(-10.0%) 0.09(-10.0%) 0.10 0.09(-10.0%)

LA92 0.75(-9.6%) 0.77(-7.2%) 0.78(-6.0%) 0.83 0.73(-12.0%)

NEDC 0.38(-5.0%) 0.39(-2.5%) 0.38(-5.0%) 0.40 0.37(-7.5%)

JAPAN1015 0.13(0%) 0.13(0%) 0.13(0%) 0.13 0.13(0%)

WLTC 0.87(-8.4%) 0.88(-7.4%) 0.89(-6.3%) 0.95 0.86(-9.5%)

Dearborn 0.72(-4.0%) 0.72(-4.0%) 0.72(-4.0%) 0.75 0.72(-4.0%)

Overall 4.63(-6.3%) 4.67(-5.5%) 4.66(-5.7%) 4.94 4.52(-8.5%)

57

CHAPTER VII

Q-learning Algorithm QL-LT on Long Trips and Its

Evaluation

In this section, we start with the introduction of a penalty function used for the cost-to-go

estimation. This penalty term takes into account how far the current state’s SoC is above

the minimum threshold level.

7.1 Optimal Control Policy w.r.t the Penalty Function

With the additional penalty term, the optimal state-value function V ∗(s) was changed to a

new optimal function V̂ (s) defined in Eq. 7.1.

V̂ (s) = V ∗(s) +W (s) = V ∗(s) +W (SoC). (7.1)

The new optimal cost-to-go function V̂ (s) is the sum of two terms: V ∗(s) is the optimal

cost-to-go following the state s without considering the SoC threshold; W (SoC) represents

the additional cost-to-go due to the SoC constraint. SoC in this case is the battery state-of-

charge in s.

58

The optimal control action for the V̂ (s) can be derived as:

a∗ = argmin
a

{

c(s, a) + V̂ (snext|s, a)
}

= argmin
a

{

c(s, a) + V ∗(snext|s, a) +W (snext|s, a)
}

= argmin
a

{

c(s, a) + V ∗

next(s) +W (SoCnext|s, a)
}

,

(7.2)

where SoCnext is the SoC of the next state from (s, a), so W (SoCnext|s, a) is an action-

dependent term. V ∗

next(s) is introduced in Eq. 4.2 and is not action dependent.

Recall that we have learned the Q∗(s, a) on short trips. This Q-function estimates the

optimal cost-to-go following a given state-action pair (s, a) without the SoC constraint.

Thus, we can substitute the term c(s, a) + V ∗

next(s) with Q∗(s, a) in Eq. 7.2. This gives us

the new optimal control action:

a∗ = π∗(s) = argmin
a

{

Q∗(s, a) +W (SoCnext|s, a)
}

. (7.3)

Based on the above equations, the following observations can be made.

• We can directly apply the Q-function learned from short trips to generate optimal

control actions a∗ w.r.t. a specific penalty function. Our experiments in the next

section will show that in most cases, by properly choosing the penalty function, this

approach can already produce good results without the need for any further learning.

• The control policy presented in Eq. 7.3 is optimal only for that specific penalty func-

tion, so it is not guaranteed to be globally optimal. Later on, we will demonstrate

that Eq. 7.3 can be used to setup the initial policy of QL-LT to significantly reduce

the convergence time to the global optimal control, which is not dependent on the

penalty function.

• In order to generate the control actions defined in Eq. 7.3, we need to predict SoCnext

following a given state-action pair (s, a).

59

7.2 QL-LT Algorithm Description

In order to achieve optimal control independent of any penalty function, we still need to

enable action exploration and let the algorithm learn and converge on long trips. However,

in this case, we enforce a battery power cutoff rule to protect the battery state-of-health

(SoH): when the SoC drops to the minimum threshold, we will not allow any battery output

power. A free learning scheme such as proposed for short trips may cause the SoC to drop

far below the minimum threshold, thus damaging the battery.

We add (SoC − SoCthrd) as a new state variable to help in estimating the cost-to-go for

those long trips subject to the SoC constraint. The Q-function is approximated by a new

N̂N taking an extra input. Please note that there is no penalty function involved during the

learning. We will show that the penalty function is used only to pre-train N̂N
(0)

. The new

QL-LT framework is summarized in Table 7.1.

Table 7.1: Summary of QL-LT

State Variables (s): Tfd, ωfd, lr, tr, v̄r, (SoC − SoCthrd)

Control Action (a): Teng, ωeng

N̂N Input: State-Action pair (s, a)

N̂N Output: Expected future cost-to-go for (s, a), i.e. Q(s, a)

Control Policy: ǫ-greedy with battery power cutoff rule

Q-func. Update:
Temporal Difference with learning rate

(NN weights updated at the end of each trip)

Algorithm QL-LT is given below for any trip subject to the SoC constraint. The NN training

process and the overall learning iterations are the same as QL-ST. Please refer to Section

VI for those details. However, comparing with QL-ST, QL-LT has two modifications: a

new initialization strategy and a battery power cutoff rule. The details of the initialization

method will be provided in the next subsection. The output of QL-LT is N̂N
∗

, which

approximates the optimal cost-to-go function. N̂N
∗

is used in the final controller VEC-LT.

60

Algorithm QL-LT

Input: N̂N
(0)

trained with VEC-ST and a penalty function

multiple trip data recorded {(sk, ak), ck}
(i)
i=0,1,2,...

exploration schedule {ǫi}i=0,1,2,...

learning rate schedule {αi}i=0,1,2,...

Output: N̂N
∗

that approximates the optimal Q-function

1 repeat at every trip i, i.e. iteration i
2 for each time step k = 0, 1, 2, ... do

3 observe sk = (T k
fd, ω

k
fd, l

k
r , t

k
r , v̄

k
r , SoC

k − SoCthrd)

4 if SoCk > SoCthrd then

5 ak =

argmin
a∈A

{N̂N
(i−1)

(sk, a)} probability 1− ǫi,

a random action in A probability ǫi.

6 A contains all legal control actions

7 else

8 battery power cutoff (Pbo ≤ 0): ak = argmin
a∈A′

{N̂N
(i−1)

(sk, a)}

9 A′ contains all legal control actions such that Peng ≥ Pfd

10 end

11 apply ak, record immediate cost ck
12 end

13 at the end of trip, compute new target values:

14 ctgk = (1− αi)N̂N
(i−1)

(sk, ak) + αi[ck +min
a

N̂N
(i−1)

(sk+1, a)]

15 train N̂N with {(sk, ak), ctgk}k=1,2,...N ⇒ N̂N
(i)

16 until the trip cost has converged;

7.3 Evaluation of QL-LT on Long Trips

We first showcase the long-trip algorithm QL-LT on the repeated UDDS cycles, but this

time with the initial SoC set at 45% and the minimum threshold at the 30% level. A greedy

control policy will cause the SoC to drop far below the 30% level. So, the UDDS cycle in

this case becomes a long trip by our definition. The N̂N was initially trained with the trip

data from a rule-based control, and the battery power cutoff rule was enforced during the

61

entire learning process.

After 1033 iterations, the controller has converged to the minimum cost, which is demon-

strated in Fig. 7.1. We denote this converged controller as VEC-SoC4530-UDDS in the

later context. In order to reach an optimal control point, the learning rate should be suffi-

ciently small. However if the learning rate is too small at the very beginning of the learning

process, it may take a long time for the learning to converge to the optimal point. So our

method is to use a relatively larger learning rate at the beginning and then reduce the learn-

ing rate after 1000 iterations. The results in Fig. 7.1 were obtained with exploration sched-

ule = [0.80:-0.001:0.01], learning rate = [0.2:-0.00028:0.005], fuel price (uf) = $2.5/gallon,

and electricity price (ue) = $0.12/KWH. Short trip learning took 687 iterations to converge

on repeated UDDS cycles. With the SoC restriction, the number of iterations required to

converge is much greater.

Figure 7.1: QL-LT applied to repeated UDDS cycles with SoCinit = 45%, SoCthrd = 30%.

62

SoC profiles can provide insightful information about the control strategies. Fig. 7.2 com-

pares the SoC generated by the initial untrained controller and by the converged one (VEC-

SoC4530-UDDS). We reach the same conclusion that an aggressive charge depletion fol-

lowed by charge sustaining is not optimal.

Figure 7.2: SoC profile comparison between the initial untrained controller and the con-

verged optimal controller (VEC-SoC4530-UDDS) on the UDDS drive cycle.

SoCinit = 45%, SoCthrd = 30%.

The battery discharge curve produced by VEC-SoC4530-UDDS inspired us to use Eq. 7.3

to define a new initialization strategy. More specifically, we will combine the VEC-ST

learned from short trips with a penalty function W (SoC) that can gradually increase the

penalty value as SoC gets close to its threshold. This penalty function will cause the bat-

tery to gradually deplete to its minimum level and produce an SoC profile similar to the

optimal one generated by VEC-SoC4530-UDDS. The penalty function W (SoC) for this

63

new initialization purpose is defined in Eq. 7.4 and plotted in Fig.7.3.

W (SoC) = βe−α(SoC−SoCthrd−∆). (7.4)

Figure 7.3: SoC penalty function defined in Eq. 7.4. α = 10, β = 0.2, ∆ = 0.3

The new initialization strategy is carried out as follows: We use VEC-ST and W (SoC) to

generate control actions (defined in Eq. 7.3) for a long trip. We then collect the trip data to

perform the initial training for N̂N . This initialization is expected to make the controller

start with close-to-optimal behavior. In order to use the policy defined in Eq. 7.3, we have

developed another nerual network NNSoC , to predict the SoC of the next step. The details

about NNSoC are given in the next subsection.

The QL-LT convergence was studied on random long drive cycles using the new initializa-

tion strategy. The set of cycles we randomly choose from is composed of four trips. Two

trips, Mixed and Mixed2, were created by mixing some standard drive cycles and have a

duration of over an hour. The third trip is a real-world trip driven from Dearborn, Michigan,

64

to Ann Arbor, Michigan. This trip is 39.6 miles in distance with about 32 miles (33 min-

utes) on the I-94 freeway. The fourth trip is the standard 30-minute WLTC cycle composed

of four speed phases, low, medium, high, and extra-high speed, and has a driving distance

of 14.45 miles. The initial SoC for each iteration was set to 70%. Fig. 7.4 plots the speed

profiles of these 4 cycles.

Figure 7.4: Four trips used to evaluate QL-LT algorithm. Two of them have durations of

over one hour.

We expect our initial Q-function (N̂N
(0)

) to be close to optimal. Thus, a small exploration

rate (10%) with a small learning rate (0.05) is used to kick off the learning. In our previous

learning experiments, we had chosen the initial exploration rate to be 60% or 80% and set

the learning rate to 0.2. At each QL-LT iteration, we apply the QL-LT algorithm to a drive

65

cycle randomly selected from the four drive cycles shown in Fig. 7.4.

The trip cost moving averages (window size set to 30 iterations) of 600 simulated iterations

are shown in Fig. 7.5. For a relatively short cycle such as WLTC, the controller out of the

initialization is almost optimal. Additional learning beyond 150 cycles did not yield any

better result. However, for three longer trips, the cost achieved the minimum after about 300

cycles, 70% quicker than the rule-based initialization (Fig. 7.1). We denote the controller

trained after 300 iterations as VEC-LT. The small cost oscillations after 300 trips are due

to the continuous action exploration. In this experiment, we used exploration schedule =

[0.10:-0.0005:0.0005], learning rate = [0.05:-7.5E-5:0.005], fuel price (uf) = $2.5/gallon,

and electricity unit price (ue) = $0.12/KWH. We extended the learning iterations to 1000

and there was no lower cost reached beyond the first 300 trips for all four types of cycles.

Figure 7.5: QL-LT convergence on randomly selected long trips subject to the SoC con-

straint. SoCinit = 70%, SoCthrd = 30%.

For the purpose of comparison, the performance of various controllers within our study is

66

summarized in Table 7.2. The column “VEC-ST+W (·)” represents the trip costs obtained

by directly applying VEC-ST learned from short trips with the penalty function W (SoC)

defined in Eq. 7.3, and no further learning is performed. “VEC-LT” is the controller after

300 iterations on random long cycles (Fig. 7.5). “VEC-SoC4530-UDDS” is the converged

controller from the repeated UDDS drive cycles (Fig. 7.1). The 4th controller is the default

rule-based one. The “Converged Optimal” values are the optimal costs achieved by apply-

ing Q-learning repeatedly on that specific drive cycle until it converged. These values are

considered the upper bound of system performances.

Along with the trip cost, we also list the lowest SoC level SoCmin reached for a given

controller and drive cycle. For shorter trip WLTC(14.5 mile), VEC-ST+W (·) yields higher

costs than the rule-based control. This is expected, as the penalty function will penalize the

battery usage as the SoC drops to its threshold. This approach will lead to a higher end-of-

trip SoC and higher fuel cost. For longer trips, i.e., Mixed (43.4 mile), Mixed2 (36.1 mile),

and UofM (32.4 mile), the penalty function is capable of producing close-to-optimal SoC

profiles.

Similar behaviors can be observed for VEC-LT and VEC-SoC4530-UDDS. Both con-

trollers outperformed the rule-based one and VEC-ST+W (·) for longer trips. In particular,

VEC-LT has the best performance for Mixed, Miexed2, and UofM cycles among all the

strategies. One note is that despite the battery power cutoff rule, the lowest SoC level of

several simulations still touched below 30%. This is due to the fact that the battery/motor’s

power was used when the engine itself could not meet the propulsion demand.

Based on the results presented in Table 7.2, we can reach the conclusion that QL-LT trained

on random cycles with the penalty function-based initialization yields the best performance

for longer trips. However, this learning scheme is not suitable for short trips, to which we

should apply algorithm QL-ST.

67

Table 7.2: Trip Cost ($) Comparison on Different Drive Cycles with SoC Constraint

SoCinit = 70%, SoCthrd = 30%, uf=$2.5/Gallon, ue=$0.12/KWH

VEC-ST+W(·) VEC-LT VEC-SoC4530-UDDS Rule-based Converged Optimal

cost($) SoCmin cost($) SoCmin cost($) SoCmin cost($) SoCmin cost($) SoCmin

WLTC 1.19(+12.3%) 31.6% 1.23(+16.0%) 46.6% 1.26(+18.9%) 38.3% 1.06 30.9% 1.06(0%) 31.5%

MIXED 7.84(-8.4%) 28.0% 7.18(-16.1%) 29.1% 8.15(-4.8%) 27.7% 8.56 26.4% 6.58(-23.1%) 30.2%

MIXED2 5.98(-1.5%) 28.8% 5.69(-6.3%) 27.6% 5.76(-5.1%) 27.6% 6.07 27.4% 5.45(-10.2%) 28.0%

UofM 3.85(-4.0%) 24.3% 3.49(-13.0%) 25.9% 3.50(-12.7%) 26.1% 4.01 22.6% 3.44(-14.2%) 26.2%

Overall 18.86(-4.3%) 17.59(-10.7%) 18.67(-5.2%) 19.7 16.53(-16.1%)

7.4 SoC Prediction Using Neural Network

The new initialization strategy in QL-LT requires the application of the control actions

defined in Eq. 7.3 with the prediction of SoCnext. In this section, we present two methods

for predicting SoCnext: the first one is an analytical solution derived from the powertrain

model; the second one is using a neural network, NNSoC , which makes the prediction

model-free. The performance of the two methods will be compared.

From Eq. 3.4 and Eq. 3.5, we have:

Pbo = γ1Pfd − γ2Peng +
(γ2 − γ1
1 + ρ

)

Tengωfd. (7.5)

Using the relationship between Pbo and Pbatt defined in Eq. 4.6, we can estimate the battery

power Pbatt and therefore calculate the SoCnext given in Eq. 7.6.

SoCnext = SoC −
Pbatt∆t

Cbatt

. (7.6)

To eliminate the use of an analytical model, we experimented with a multilayer perceptron

network, NNSoC , with H neurons in the hidden layer. The inputs to the NNSoC are: power

demand from the wheel, speed demand from the wheel, battery SoC, motor1/generator1

power, motor2/generator2 power, engine power, and engine torque. The output of the

NNSoC is the predicted SoC change (∆SoC) for this time step.

Our controller collects training examples directly from the trip data and performs the train-

ing at the end of the trip. For real world applications, the training can be periodically

68

scheduled according to the vehicle’s life cycle. This strategy allows the prediction to adapt

to the changing vehicle dynamics due to component wear and other usage factors.

Fig. 7.6 compares three SoC profiles on the Mixed2 cycle with the initial SoC set to 70%.

The red curve was the result of the controller defined in Eq. 7.3 (VEC-ST+W (·)), where

SoCnext was predicted at each time step using the analytical Eq. 7.6. The green SoC curve

represents the same controller except that SoCnext was estimated by NNSoC . The blue

curve was associated with the rule-based control. The similarity of the first two SoC curves

can be easily observed: they both held a slower discharging profile than the rule-based

control due to the SoC penalty term. The rule-based controller adopted the charge sustain-

ing strategy around the 30% level and caused the SoC to drop to 27.4% at the peak power

demand. The first two controllers also yield lower trip costs.

Figure 7.6: SoC profile comparison on Mixed2 drive cycle between the analytical SoC pre-

diction, the NN-based (NNSoC) prediction and Rule-based control. SoCinit =
70%, SoCthrd = 30%

69

To further assess the performance of NNSoC , we plot the histograms of SoCnext predic-

tion errors shown in Fig. 7.7. The errors generated by the NNSoC have a higher mean but

a smaller standard deviation (mean=-1.61E-4, std=2.82E-4) compared with the analytical

prediction (mean=-9.15E-5, std=3.38E-4). The overall performance of the two methods

is comparable. The error means can be corrected by shifting the prediction with a corre-

sponding offset.

Figure 7.7: The histograms of the SoC prediction errors made by analytical method and

NNSoC .

Finding the optimal power management for long trips is a more challenging problem be-

cause it involves the battery minimum SoC constraint. A free learning scheme is no more

appropriate as it may let the battery discharge below its threshold level, causing permanent

damage. We derived a new learning algorithm, QL-LT, by enforcing a battery power cutoff

rule. The difference between the current state’s SoC and its minimum threshold was used

as a new input to the Q-function to improve the cost-to-go estimation. Finally, to support

70

our new initialization strategy, we have developed a neural network for the SoC prediction,

which rendered our solution completely model-free.

71

CHAPTER VIII

Conclusion and Future Work

In this research work, we presented a machine learning approach that is model-free and

capable of in-vehicle learning for minimizing PHEV energy cost. The approach consists

of optimal Q-learning based algorithms, QL-ST and QL-LT, for optimizing energy cost

for short and long trips, respectively. Q-learning is a powerful model-free reinforcement

learning approach. The QL-ST learning algorithm is aimed at most of the home-work daily

commuting trips, which usually can be driven solely with battery power, i.e., the energy

optimization has no SoC constraint. We proved mathematically that a greedy policy is

optimal for short trips without the SoC constraint and derived an analytical greedy control

strategy from a steady-state powertrain model. The QL-LT algorithm is designed for long

trip energy optimization, which incorporates SoC constraints.

Both algorithms are built upon Q-learning and neural dynamic programming (NDP). We

demonstrated through extensive experiments that both the QL-ST and the QL-LT algo-

rithms give superior performance over other control methods, are inherently robust against

cycle noises, and have the capability of converging to the optimal policy on both fixed and

random trips. With an innovative initialization strategy, QL-LT is capable of reducing the

convergence time by about 70%.

Another significant new contribution of this work is a new learning paradigm proposed

for deployment of the two learning algorithms, namely QL-ST and QL-LT, for in-vehicle

72

applications. In this paradigm, in order to speed up in-vehicle learning convergence, the

two learning algorithms are first applied to pre-selected trips on engineering development

vehicles to obtain the energy controllers that converge. These energy controllers are then

directly applied to production vehicles and continue to be improved based on knowledge

learned from new completed trips. For in-vehicle learning, it is recommended that a very

small action exploration be used. In-vehicle learning allows the controller to adapt to each

individual vehicle and driver style.

Finally we would like to point out that the proposed machine learning algorithms can be

easily applied to cost functions that incorporate an emission control component. Our future

work will be to incorporate the effect of emissions into the optimal learning algorithms.

Subsequently, we would like to explore Q-learning applications in battery performance and

smart grid optimization. As automotive engineering moves to fully electrified solutions,

we believe that Q-learning technologies can play an important role in solving future chal-

lenging vehicle control problems.

73

APPENDIX

74

APPENDIX A

Deterministic Dynamic Programming by Forward

Induction For PHEV Energy Optimization

Deterministic dynamic programming (DDP) is an approach for resolving a complex opti-

mization problem by dividing it into a sequence of stages, where each stage poses a simpler

problem. Essentially, at each stage, we deal with a much simpler optimization problem, and

its solution relies only on the information from the current stage, and is not dependent on

the history data.

DDP has become a commonly used technique to obtain the theoretical optimal results for

a vehicle energy optimization problem. In order to find the optimal energy usage, the

algorithm requires knowledge such as the wheel torque and wheel speed demands for the

entire trip. It also relies on a simplified vehicle model.

In the literature, DDP by backward induction [13, 19–21, 21, 36, 37, 39] has been widely

used. In this algorithm, an end-of-trip SoC is chosen and the algorithm works backward

to find the minimum energy consumption paths from a set of starting SoCs. Although

this setup works well for conventional HEVs, where the battery works mostly in a charge-

sustaining mode, it does not fit the real-world PHEV applications because the combined

fuel and battery energy optimization for PHEVs imposes only one condition, which is the

75

lowest SoC level allowed, i.e., SoC minimum threshold (SoCthrd). There is no constraint

on the end-of-trip SoC as long as it is above the minimum threshold level.

We found that DDP by forward induction is a better alternative for the PHEV energy op-

timization problem. The forward induction algorithm is mathematically equivalent to the

backward induction. However, the forward induction algorithm starts with a beginning SoC

and works forward to find the optimal energy paths for a set of end-of-trip SoCs. Thus, the

minimum SoC constraint can be easily incorporated into the algorithm.

The DDP by forward induction algorithm is able to provide all of the optimal paths to-

ward different end-of-trip SoCs by one pass. We consider the set that includes all of the

paths with the lowest SoC level above SoCthrd. The global optimal solution subject to the

SoCthrd constraint is simply the path with the minimum energy consumption in this set. On

the other hand, DDP by backward induction would require running the algorithm through

multiple passes, where each pass is for a fixed end-of-trip SoC.

Fig. A.1 below illustrates the DDP by forward induction algorithm. An exemplary optimal

energy usage path has been indicated by the red arrows.

The standard UDDS drive cycle used in our simulations has a duration of 1369 seconds. So

we setup 1370 (i.e. N=1370) stages, where each stage represents a one-second time-step.

As shown in Fig. A.1, the SoC is the state variable, and it has been discretized into M levels

representing M states. Also, we have the wheel torque and wheel speed demands known

at each stage. They are the a-priori trip knowledge, which imposes the conditions on the

stage transitions.

In Fig. A.1, C is the matrix to record the minimum energy cost from starting to any (state,

stage) point. For example, C(i, n) is the minimum energy cost from the starting point s0 to

(state-i, stage-n). We have C(i, 0) = 0 for all i = 1, 2, ...M .

Assuming that we know C(i, n − 1) for all i in stage-(n-1), we can determine the C(i, n)

76

Figure A.1: Dynamic Programming for PHEV Energy Optimization

for each state-i in stage-n:

C(i, n) = min
j

{

C(j, n− 1) + cost(j,n−1)→(i,n)

}

, (A.1)

where cost(j,n−1)→(i,n) is the minimum energy cost associated with the transition from

(state-j, stage-(n-1)) to (state-i, stage-n). It is worth noting that cost(j,n−1)→(i,n) has to

be determined with respect to the torque and speed demands and the powertrain Eq. 3.4.

The transition from (j, n − 1) to (i, n) imposes a constraint on the ∆SoC, which means

that the electrical energy cost for this step transition is fixed. Therefore, the powertrain

system represented by Eq. 3.4 becomes a system with one degree of freedom. In our DDP

algorithm, we choose the best engine torque value Teng to find the minimum step cost,

“cost(j,n−1)→(i,n)”. The methodology is the same as for the analytical solution presented in

Chapter IV, section 4.2.

The optimal path derived from DDP by forward induction allows us to find the best control

actions at each stage, i.e., a∗i = {P ∗

batt, T
∗

eng}i=1,2,...N . We deployed these control actions

77

into the UDDS drive cycle simulation. However, the true trip energy cost from the simula-

tion is $0.42, 23.5% higher than the theoretical DDP result ($0.34). Therefore, we conclude

that the Q-learning algorithms proposed in this research are the better solutions for finding

the real achievable optimal energy cost.

78

BIBLIOGRAPHY

79

BIBLIOGRAPHY

[1] Wikipedia. “Wikipedia Web Source”. http://en.wikipedia.org/wiki/

Plug-in_hybrid/, 2017. [Online; accessed 10-September-2017].

[2] F. R. Salmasi. “Control Strategies for Hybrid Electric Vehicles: Evolution, Classica-

tion, Comparison, and Future Trends”. IEEE Transactions on Vehicular Technology,

56(5), September 2007.

[3] Y. Gurkaynak, A. Khaligh, and A. Emadi. “State of the Art Power Management Al-

gorithms for Hybrid Electric Vehicles”. In Proceedings of Vehicle Power Propulsion

Conference, pages 388–394, September 2009.

[4] B. Ganji and A. Z. Kouzani. “A Study on Look-ahead Control and Energy Man-

agement Strategies in Hybrid Electric Vehicles”. In 2010 8th IEEE International

Conference on Control and Automation, June 2010.

[5] A. A. Malikopoulos. “Supervisory Power Management Control Algorithms for Hy-

brid Electric Vehicles: A Survey”. IEEE Transactions on Intelligent Transportation

Systems, PP(99):1–17, March 2014.

[6] Q. Gong, Y. Li, and Z. Peng. “Trip Based Optimal Power Management of Plug-

in Hybrid Electric Vehicles”. IEEE Transactions on Vehicular Technology, 57(6),

November 2008.

[7] Q. Gong, Y. Li, and Z. Peng. “Computationally Efficient Optimal Power Management

for Plug-in Hybrid Electric Vehicles Based on Spatial-Domain Two-Scale Dynamic

Programming”. In Proceedings of the 2008 IEEE International Conference on Vehic-

ular Electronics and Safety, September 2008.

[8] M. Zhang, Y. Yang, and C. Mi. “Analytical Approach for the Power Management of

Blended-Mode Plug-In Hybrid Electric Vehicles”. IEEE Transactions on Vehicular

Technology, 61(4), May 2012.

[9] N. Jalil, N. A. Kheir, and M. Salman. “A Rule-Based Energy Management Strategy

for a Series Hybrid Vehicle”. In Proceedings of the American Control Conference,

June 1997.

[10] V. H. Johnson, K. B. Wipke, and D. J. Rausen. “HEV Control Strategy for Realtime

Optimization of Fuel Economy and Emissions”. SAE 2000-01-1543, 2000.

80

[11] N. J. Schouten, M. A. Salman, and N. A. Kheir. “Fuzzy Logic Control for Parallel

Hybrid Vehicles”. IEEE Transactions on Control Systems Technology, 10(3):460–

468, May 2002.

[12] A. Kahrobaeian, B. Asaei, and R. Amiri. “Comparative Investigation of Charge-

Sustaining and Fuzzy Logic Control Strategies in Parallel Hybrid Electric Vehicles”.

In IEEE Vehicle Power and Propulsion Conference, 2009. (VPPC 2009), pages 1632–

1636, September 2009.

[13] Z. Chen and C. Mi. “An Adaptive Online Energy Management Controller for Power-

split HEV Based on Dynamic Programming and Fuzzy Logic”. In IEEE Vehicle

Power and Propulsion Conference (VPPC 2009), September 2009.

[14] S. G. Li, S. M. Sharkh, F. C. Walsh, and C. N. Zhang. “Energy and Battery Manage-

ment of a Plug-In Series Hybrid Electric Vehicle Using Fuzzy Logic”. IEEE Trans-

actions on Vehicular Technology, 60(8), October 2011.

[15] B. Zhang, M. Zhang, and C. Mi. “Charge-Depleting Control Strategies and Fuel

Optimization of Blended-Mode Plug-in Hybrid Electric Vehicles”. IEEE Transactions

on Vehicular Technology, 60(4):1516–1525, May 2011.

[16] G. Paganelli, S. Delprat, T. M. Guerra, J. Rimaux, and J. J. Santin. “Equivalent

consumption minimization strategy for parallel hybrid powertrains”. In IEEE 55th

Vehicular Technology Conference (VTC 2002), May 2002.

[17] A. Sciarretta, M. Back, and L. Guzzella. “Optimal Control of Parallel Hybrid Electric

Vehicles”. IEEE Transactions on Control Systems Technology, 12(3), May 2004.

[18] C. Musardo, G. Rizzoni, and B. Staccia. “A-ECMS: An Adaptive Algorithm for

Hybrid Electric Vehicle Energy Management”. In Proceedings of the 44th IEEE Con-

ference on Decision and Control, December 2005.

[19] C. Lin, H. Peng, J. W. Grizzle, and J. Kang. “Power Management Strategy for a

Parallel Hybrid Electric Truck”. IEEE Transactions on Control Systems Technology,

11(6), November 2003.

[20] D. Kum, H. Peng, and N. K. Bucknor. “Optimal Energy and Catalyst Temperature

Management of Plug-in Hybrid Electric Vehicles for Minimum Fuel Consumption

and Tail-Pipe Emissions”. IEEE Transactions on Control Systems Technology, 21(1),

January 2013.

[21] R. M. Patil, Z. Filipi, and H. K. Fathy. “Comparison of Supervisory Control Strategies

for Series Plug-In Hybrid Electric Vehicle Powertrains Through Dynamic Program-

ming”. IEEE Transactions on Control Systems Technology, 22(2), March 2014.

[22] C. Lin, H. Peng, and J. Grizzle. “A Stochastic Control Strategy for Hybrid Electric

Vehicles”. In Proceedings of American Control Conference, 2004.

81

[23] L. Johannesson, M. Asbogard, and B. Egardt. “Assessing the Potential of Predictive

Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming”.

IEEE Transactions on Intelligent Transportation Systems, 8(1), March 2007.

[24] E. D. Tate Jr, J. W. Grizzle, and H. Peng. “Shortest path stochastic control for hybrid

electric vehicles”. International Journal of Robust and Nonlinear Control, 18:1409–

1429, December 2008.

[25] J. Liu and H. Peng. “Modeling and Control of a Power-Split Hybrid Vehicle”. IEEE

Transactions on Control Systems Technology, 16(6), November 2008.

[26] S. J. Moura, H. K. Fathy, D. S. Callaway, and J. L. Stein. “A Stochastic Optimal

Control Approach for Power Management in Plug-In Hybrid Electric Vehicles”. IEEE

Transactions on Control Systems Technology, 19(3), May 2011.

[27] D. P. Bertsekas and J. N. Tsitsiklis. “Decision and Control, Proceedings of the 34th

IEEE Conference on”. In Proceedings of the 2008 IEEE International Conference on

Vehicular Electronics and Safety, December 1995.

[28] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge MA, 1998.

[29] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality. John Wiley and Sons, Hoboken, New Jersey, 2011.

[30] G. Tesauro. “Temporal Difference Learning and TD-Gammon”. Communications of

the ACM (Association for Computing Machinery), 38(3), March 1995.

[31] L. Johannesson and B. Egardt. “Approximate Dynamic Programming Applied to

Parallel Hybrid Powertrains”. In Proceedings of the 17th World Congress on the

International Federation of Automatic Control, July 2008.

[32] R. Johri and Z. Filipi. “Self-Learning Neural Controller for Hybrid Power Manage-

ment Using Neuro-Dynamic Programming”. SAE 2011-24-0081, 2011.

[33] S. Yue, Y. Wang, Q. Xie, D. Zhu, M. Pedram, and N. Chang. “Model-Free Learning-

Based Online Management of Hybrid Electrical Energy Storage Systems in Electric

Vehicles”. In IECON 2014 - 40th Annual Conference of the IEEE Industrial Elec-

tronics Society, 2014.

[34] S. Mohan, Y. Kim, and A. G. Stefanopoulou. “Estimating the Power Capability of

Li-ion Batteries Using Informationally Partitioned Estimators”. IEEE Transactions

on Control Systems Technology, 24(5), September 2016.

[35] R. Hsu, S. Chen, W. Chen, and C. Liu. “A Reinforcement Learning Based Dynamic

Power Management for Fuel Cell Hybrid Electric Vehicle”. In 2016 Joint 8th In-

ternational Conference on Soft Computing and Intelligent Systems and 2016 17th

International Symposium on Advanced Intelligent Systems, 2016.

82

[36] J. Park, Z. Chen, L. Kiliaris, M. L. Kuang, M. A. Masrur, A. M. Phillips, and Y. L.

Murphey. “Intelligent Vehicle Power Control Based on Machine Learning of Opti-

mal Control Parameters and Prediction of Road Type and Trafc Congestion”. IEEE

Transactions on Vehicular Technology, 58(9), November 2009.

[37] Y. L. Murphey, J.Park, Z. Chen, M. L. Kuang, M. A. Masrur, and A. M. Phillips. “In-

telligent Hybrid Vehicle Power ControlPart I: Machine Learning of Optimal Vehicle

Power”. IEEE Transactions on Vehicular Technology, 61(8), October 2012.

[38] Y. L. Murphey, J. Park, L. Kiliaris, M. L. Kuang, M. A. Masrur, A. M. Phillips, and

Q. Wang. “Intelligent Hybrid Vehicle Power ControlPart II: Online Intelligent Energy

Management”. IEEE Transactions on Vehicular Technology, 62(1), January 2013.

[39] Z. Chen, C. Mi, J. Xu, X. Gong, and C. You. “Energy Management for a Power-

Split Plug-in Hybrid Electric Vehicle Based on Dynamic Programming and Neural

Networks”. IEEE Transactions on Vehicular Technology, 63(4), May 2014.

[40] C. Zhang, A. Vahidi, P. Pisu, X. Li, and K. Tennant. “Role of Terrain Preview in

Energy Management of Hybrid Electric Vehicles”. IEEE Transactions on Vehicular

Technology, 59(3), March 2010.

[41] H. Yu, M. Kuang, and R. McGee. “Trip-Oriented Energy Management Control Strat-

egy for Plug-In Hybrid Electric Vehicles”. IEEE Transactions on Control Systems

Technology, 22(4), July 2014.

[42] Wikipedia. “Wikipedia Web Source”. http://en.wikipedia.org/wiki/

Model_predictive_control, 2014. [Online; accessed 18-July-2014].

[43] S. Kermanil, S. Delprat, T.M. Guerra, and R. Trigui. “Predictive Control for HEV

Energy Management : Experimental Results”. In IEEE Vehicle Power and Propulsion

Conference (VPPC 2009), September 2009.

[44] H. Borhan, A. Vahidi, A. M. Phillips, M. L. Kuang, I. V. Kolmanovsky, and S. Di

Cairano. “MPC-Based Energy Management of a Power-Split Hybrid Electric Vehi-

cle”. IEEE Transactions on Control Systems Technology, 20(3), May 2012.

[45] X. Hu, S. J. Moura, N. Murgovski, B. Egardt, and D. Cao. “Integrated Optimiza-

tion of Battery Sizing, Charging, and Power Management in Plug-In Hybrid Electric

Vehicles”. IEEE Transactions on Control Systems Technology, 24(3), May 2016.

[46] H. Nafisi, S. M. Agah, H. A. Abyaneh, and M. Abedi. “Two-Stage Optimization

Method for Energy Loss Minimization in Microgrid Based on Smart Power Manage-

ment Scheme of PHEVs”. IEEE Transactions on Smart Grid, 7(3), May 2016.

[47] C. J. C. H. Watkins and P. Dayan. “Q-Learning”. Machine Learning, 8(3):279–292,

May 1992.

[48] R. Bellman. “A Markovian Decision Process”. Journal of Mathematics and Mechan-

ics, 6:1–11, April 1957.

83

[49] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement Learning and

Dynamic Programming Using Function Approximators. CRC Press, 2010.

[50] Argonne National Laboratory. “Autonomie (Version 13.0), Computer Software”.

http://www.autonomie.net/, 2013.

[51] M. A. Rapino and A. K. Fields. “Mega Commuting in the U.S., 2006-2010”. Techni-

cal report, U.S. Census Bureau, 2010.

[52] U.S. Census Bureau. “American Community Survey Results 2015”. Survey, The

United States Census Bureau, 2015.

[53] B. McKenzie. “Who Drives to Work? Commuting by Automobile in the United

States: 2013”. Technical report, U.S. Department of Commerce, Economics and

Statistics Administration, U.S. Census Bureau, 2015.

84

