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Abstract—This paper considers the control of a linear plant
when plant state information is being transmitted from a sensor
to the controller over a wireless fading channel. The power
allocated to these transmissions determines the probability of
successful packet reception and is allowed to adapt online to
both channel conditions and plant state. The goal is to design
plant input and transmit power policies that minimize an infinite
horizon cost combining power expenses and the conventional
linear quadratic regulator control cost. Since plant inputs and
transmit powers are in general coupled, a restricted information
structure is imposed allowing them to be designed separately.
Under this information structure the standard LQR controller
becomes the optimal plant input policy, while the optimal com-
munication policy follows a Markov decision process minimizing
transmit power at the sensor and state estimation error at
the controller. The optimal power adaptation to channel and
plant states is examined qualitatively for general forward error
correcting codes. In the particular case of capacity achieving
codes event-triggered policies are recovered, where the sensor
decides whether to transmit or not based on plant and channel
conditions. Approximate dynamic programming is employed to
derive a family of tractable suboptimal communication policies
exhibiting the same qualitative features as the optimal one. The
performance of our suboptimal policies is shown in simulations
and is contrasted to other simple transmission policies.

Index Terms—Networked control systems, wireless fading
channels, power adaptation, linear quadratic control, con-
trol/communication separation, event-triggered design.

I. INTRODUCTION

The networked control systems studied in this paper are

characterized by the separation of sensing and actuation in

different physical devices with control loops involving the

communication of plant state information over a wireless

channel. When sensor and controller communicate over a

wireless channel the cost of controlling the plant gets mixed

with the cost of sending plant state information from the sensor

to the controller. The more information the sensor conveys the

more precise actuation becomes, but the resulting increase in

power consumption at the sensor leads to rapid depletion of

its energy resources. It is therefore apparent that a tradeoff

emerges between plant performance and power consumption.

To quantify this tradeoff we study the problem of selecting
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plant inputs and power management policies that minimize a

joint cost that accounts for the plant regulation cost and the

cost of conveying information from the sensor to the controller.

A. Related literature

Early works on networked control systems ignore the cost of

conveying information and focus their analysis on the perfor-

mance of control loops when various communication effects

are taken into account. For packet-based communication over

analog erasure channels, necessary and sufficient requirements

for stability are analyzed, and controllers and estimators are

designed to counteract random packet drops and delays in,

e.g., [2]–[5] and references therein. Alternative models of

analog channels as input-output systems with channel ran-

domness treated as stochastic model uncertainty have been

examined [6], facilitating controller synthesis using robust

control techniques [7]. A different set of issues arise when

loops close over digital channels with data-rate constraints.

In such case quantization effects become important and apart

from the controller design an efficient encoding/decoding

scheme is required [8]. Fundamental limits like the minimum

bit rate for stabilization are also known; see, e.g., [9].

For networked control architectures where communication

is not treated as a limitation but becomes an active part of the

design, the setup typically departs from the classic periodic

communication paradigm. This leads to frameworks such as

event-triggered sampling [10], [11] and control [12], [13], or

self-triggered control [14]. The underlying concept in these

contributions is to prolong the time elapsed between successive

sampling or input updates as long as some Lyapunov-like

plant performance criterion is satisfied. Such schemes exhibit

in general an average communication/update rate lower than

periodic schemes that attain similar plant performance. How-

ever, communication costs are not explicitly accounted for in

the triggering design.

Communication costs are explicitly modeled in the context

of remote state estimation in [15]–[18]. In this framework a

sensor measuring the plant state decides whether to transmit

its value to an estimator or not and each transmission incurs a

fixed cost. The overall goal is to minimize the estimation error

cost and the communication penalties aggregated over time.

The optimal communication is event-triggered [15], similar

to, e.g., [12], [13], meaning that transmissions are triggered

when the estimation error exceeds a threshold. Computing the

optimal transmission-triggering sets is not tractable, motivating

the development of suboptimal schemes [17], [18]. Related



contributions consider plant and communication controllers

jointly optimal with respect to linear quadratic and communi-

cation cost assuming again a fixed cost per transmission [19],

[20]. The problem is more complex than the case of simple

state estimation but a separation principle can be imposed [20],

and optimal inputs and schedules can be found by dynamic

programming for a finite horizon. The characterization and de-

termination of jointly optimal plant and transmission policies

in this context is otherwise open. We note however that in the

case of control over digital channels, aspects of jointly optimal

encoder and controller design have recently been studied [21].

B. Contributions and summary

Instead of accounting for communication cost in terms of

transmissions, in this paper we are interested in the allo-

cation of the actual resource used by the wireless sensors

to communicate, namely, transmitted power. This perspective

permits the incorporation of fading effects in the wireless

channel. Fading refers to large unpredictable variations in

wireless channel transferences whose mitigation involves ex-

tensive use of power adaptation to channel conditions [22,

Ch. 3,4]. Besides counteracting fading effects power adap-

tation may be also helpful in closed-loop control to protect

some transmissions more than others, e.g., to increase the

likelihood of successful packet decoding when the plant state

deviates from target. In this paper transmit power is allowed

to adapt to both, the random fading channel state and the

plant state. The allocated power and the fading channel state

determine the likelihood of successful packet decoding at the

receiver by a known complementary error function (Section

II). This communication model has been used in the context

of remote state estimation [23], [24] and can be regarded as

a generalization of the erasure channel with i.i.d. dropouts

of, e.g., [2]–[5], since here the probability of packet drops

is actively controlled by an online transmit power policy. We

note that an alternative model where transmit power affects

directly the value of the received analog message, instead of

the packet decoding, is examined in [25, Ch. 7] but does not

consider adaptation to fading effects.

Given our communication model we are interested in the

trade-off between closed-loop plant performance and power

resources. To this end we combine the transmit power with

a conventional linear quadratic regulator (LQR) cost to form

an aggregate infinite horizon cost that we seek to minimize

through proper joint selection of plant and power control

policies (Section II-A). For the novel problem formulation

proposed we begin by identifying restricted information struc-

tures that permit decoupling of plant input and power control

policies (Section II-B). For this particular information structure

the usual LQR control law becomes optimal at the controller

side while the optimal communication policy at the transmitter

follows from a Markov decision process (MDP) formulation

accounting for transmit power and the state estimation error at

the controller (Section III). The optimal power control policy

is then expressed in terms of a value function solving the MDP

problem (Section IV). While this does not allow computation

of optimal policies it does allow us to understand the qualita-

tive characteristics of the optimal resource allocation.

In contrast to the work in, e.g., [15]–[17], [19] where trans-

mission is based just on plant state, the availability of channel

state information at the transmitter leads to new insights on

the optimal communication policy. In particular when channel

gain is low or estimation error small no transmission is trig-

gered, since it would be costly or unnecessary respectively. On

the other hand, similar to the above work, there is an event/set

of plant and channel states where transmission is triggered,

but the optimal power allocation on this event still needs

to adapt to the channel and plant states. Alternatively, our

power management policy can be viewed as a ’soft’ version

of the event-triggered paradigm of, e.g., [12], as instead of just

deciding whether to transmit or not we select how much power

to allocate to the transmission attempt. This interpretation is

further fostered by the realization that conventional event-

triggered policies emerge as the optimal communication when

the sensor uses capacity achieving forward error correcting

codes (Section IV-A).

Finally since optimal communication is not computationally

tractable we devise suboptimal power control policies using

approximate dynamic programming, in particular rollout al-

gorithms (Section V). These policies maintain the same qual-

itative characteristics as the optimal policies for general error

correcting or capacity achieving codes, and this is verified in

numerical simulations (Section VI). Our rollout policies are

shown to have significant performance benefits compared to

other simple policies that adapt only to channel conditions

and not the plant state, such as the ones proposed in [23],

[24]. We close the paper with conclusions and suggestions

on how the adopted model can be used for more complex

wireless communication/control network design problems in

future work (Section VII).

Notation: Let Nµ,Σ denote the n-dimensional Gaussian

distribution with mean µ and covariance Σ. For a square matrix

M ∈ R
n×n let λmax(M), λmin(M) denote respectively the

largest and smallest eigenvalues in magnitude. For compact-

ness a set of variables {xk, xk+1, . . . , xk+t} is denoted by

xk:k+t. Subscripts of variables as in xk, xk+1 denote discrete

time. When time index k is clear from the context, subscripts

are omitted and the respective variables are denoted as x, x+.

II. PROBLEM FORMULATION

We consider the architecture shown in Fig. 1 deployed to

control a discrete-time linear time-invariant plant described by

the difference equation

xk+1 = Axk +Buk + wk, k ≥ 0, (1)

where xk ∈ R
n is the plant’s state with x0 given, uk ∈ R

m the

driving input, and {wk, k ≥ 0} is the process noise composed

of independent identically distributed (i.i.d) n-dimensional

Gaussian random variables wk ∼ N0,W with zero mean and

covariance W . We assume the plant is unstable (λmax(A) > 1)

but that (A,B) is stabilizable.

The wireless control system considered in this paper in-

cludes a sensor/transmitter collecting state measurements xk
that it communicates with power pk ∈ [0, pmax] over a wireless

fading channel with coefficient hk. At the other side of the
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Fig. 1. Wireless control system architecture. A sensor measures the plant and
wireless fading channel states xk , hk respectively and transmits with power
pk . Messages are successfully decoded at the controller with probability qk
that depends on the channel state hk and the power pk . The sensor receives
acknowledgments with a one-step delay.

channel the receiver/controller uses the received information

to determine a control input uk that it feedbacks into the plant.

The effects of state quantization and transmission delays are

considered negligible and are thus ignored henceforth.

Due to propagation effects the channel gain hk changes

unpredictably [22, Ch. 3]. We adopt the standard block

fading model of wireless communications whereby channels

{hk, k ≥ 0} are modeled as i.i.d. random variables taking

values in the positive reals R+ according to some known

distribution mH and are independent of the plant process noise

{wk, k ≥ 0}. We make the technical assumption that the

distribution mH of the channel state has a probability density

function on R+. To allow for transmissions adapted to the

current channel conditions the transmitter has access to the

channel state information hk before transmitting at time k –

the development is equally valid if estimates are available in

lieu of hk as discussed in Remark 2.

At the controller side the received signal includes the

information bearing signal and additive white Gaussian noise

(AWGN). The noise power is denoted by N0 and the power of

the information bearing signal is the product hk pk. Assuming

the receiver also has channel state information, successful

decoding of the transmitted packet is determined by the signal

to noise ratio (SNR) at the receiver defined as SNRk :=
hkpk/N0. More precisely, given the particular type of modu-

lation and forward error correcting (FEC) code used, the SNR

determines the probability of successful detection qk. To keep

the analysis general we define a generic complementary error

function

qk = q (hk, pk) , (2)

mapping SNRk := hkpk/N0 to the probability qk. We assume

that q (h, p) is a known increasing function of the product h p
- see Remark 1.

Considering packet decoding as a part of the communication

process, we can model communication as a sequence of

indicator variables γk taking value γk = 1 when information

is successfully decoded and γk = 0 otherwise. Variables

γk ∼ Bern(qk) are Bernoulli distributed with time-varying

success probabilities qk given by (2). With this communication

model the controller receives the output of the decoding
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Fig. 2. Complementary error function for FEC and capacity achieving codes.
The probability of successful decoding q for a practical FEC code is a sigmoid
function of the received SNR = h p/N0, while for a capacity achieving code
a threshold value SNR0 determines whether a packet is successfully received.

process which we model by the signal yk = γkxk. We

further assume that the controller also gets γk so that it

can distinguish between the cases xk = 0 and γk = 0.

Packet receipt acknowledgment γk is also sent to the sensor

as provided by 802.11 and TCP protocols. We assume lossless

acknowledgments, so that the sensor knows what information

is received at the controller.

The problem addressed in this paper is the joint design of

the control inputs uk and the transmit powers pk. The control

input uk is determined by the received information y0:k, γ0:k.

The power pk is determined as a function of the plant state

measurements x0:k, the observed channel realizations h0:k, and

the controller acknowledgments γ0:k. Informally, to conserve

power at the sensor side we want to transmit information

only when the state xk deviates from its desired value or

when the channel realization hk is favorable. In the first case

transmission is necessary to keep the plant under control. In

the latter case the transmission cost is minimal. A formal

problem specification is presented in the next section after

the following remarks.

Remark 1. The error profiles 1−q (hk, pk) of particular FEC

codes are difficult to determine analytically but can be mea-

sured in actual or simulated experiments [26], [27]. Typically

q (hk, pk) is a sigmoid function of hk pk with exponential tails

as depicted in Fig. 2. In the theoretical limit, correct decoding

depends on the channel capacity Ck = W log2(1 + SNRk),
where W is the channel bandwidth. If the packet is transmitted

at a rate smaller than Ck bits per second it is almost surely

successfully decoded, and it is almost surely incorrectly de-

coded otherwise. Thus, we can write the successful decoding

probability as the indicator function

q (hk, pk) = I

(

hkpk
N0

≥ SNR0

)

, (3)

for some constant SNR0. Determining the threshold SNR0

requires specification of the sampling rate and quantization

resolution of the state xk. With α samples per second and

β bits per sample we require a transmission rate of αβ bits

per second. The SNR threshold is then given by SNR0 =
2αβ/W − 1. Our interest in (3) is conceptual as it will allow

us to recover results in event-triggered communication [15] as
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Fig. 3. Equivalent wireless control system architecture. A scheduler decides
the successful decoding probability qk and transmits the state measurement
xk with the required power pk = p(hk, qk). The controller receives the
message with probability qk .

arising from the use of capacity achieving codes – see Section

IV-A. The form of (3) is shown in Fig. 2.

Remark 2. The assumption that channel state information

(CSI) is available at the transmitter is typical in modern

wireless communication setups [22, Ch. 9]. To measure the

wireless channel conditions a short pilot signal of fixed

power can be sent from the transmitter and then the fading

characteristics can be estimated at the receiver and sent back

to the transmitter by utilizing the reverse channel. Although

accurate CSI is difficult to acquire at the transmitter side, our

development is still valid if channel estimates are available

in lieu of the actual channel value hk. Reinterpreting hk
as an estimate of the fading coefficient the complementary

error function q(h, p) in (2) captures not only the success of

decoding but also the uncertainty over the real channel gain.

It suffices to integrate q(h, p) with respect to the conditional

distribution of the channel realization given the estimate.

Remark 3. There is a distinction to be made between errors

that are detected by the receiver and errors that are undetected

and may confuse the controller. The model here handles the

former and ignores the latter. This is justified because practical

communication schemes include the use of cyclic redundancy

checks (CRC) for error detection that can drive the probability

of undetected errors to very small values [28, Ch. 4]. The use

of simple CRCs reduces the probability of undetected errors to

10−3, while longer codes can reduce this probability to 10−7.

A. Joint design of plant and power control

To formulate the joint design of plant controller and power

management we introduce an equivalent architecture. In view

of (2), choosing pk is equivalent to choosing the desired prob-

ability of successful decoding qk at time k and transmitting

with the minimum required power to achieve this qk, namely

pk = p(hk, qk) := inf {0 ≤ p ≤ pmax : q(hk, p) ≥ qk} . (4)

We can therefore interpret qk as our decision variable with

p(hk, qk) denoting the cost of selecting transmission success

probability qk. This leads to the equivalent control system

architecture shown in Fig. 3 where a scheduler block respon-

sible for deciding qk replaces the sensor/transmitter block of

Fig 1. Our formulation generalizes the simple transmit-or-not

decision as considered in, e.g., [15].

We note for future reference that the assumed monotonicity

of the function q(h, p) on the product h p implies that the

power function p(h, q) is increasing in q and decreasing in

h. Using maximum power pmax, the transmitter can achieve

a maximum successful decoding probability qmax(h) :=
q(h, pmax) for a given channel state h. Therefore, the decision

variables qk belong in the interval [0, qmax(hk)]. We also make

the following assumptions.

Assumption 1. The maximum achievable successful decoding

probability qmax(h) satisfies

Ehqmax(h) > qcrit := 1− 1/λmax(A)
2, (5)

where expectation is taken over the channel distribution mH .

Assumption 2. For any channel realization h, the function

p(h, q) in (4) is continuous in the successful decoding proba-

bility variable q.

Assumption 1 is essentially a stability condition, which as

we will see in the following section states that transmitter

has enough power to keep the plant state bounded in second

moment, and it will be used to establish our main Theorems 1

and 2. Assumption 2 is of a technical nature and will be used

in Theorem 2.

In the architecture of Fig. 3 the communication decision

qk is chosen as a function of the information available at

the sensor, while the plant control signal uk is a function

of the information available at the controller. These choices

are in general allowed to be randomized. The sequence π :=
{q0, q1, . . .}, or equivalently the power allocation {p0, p1, . . .},

is termed the communication policy, whereas the sequence

θ := {u0, u1, . . .} denotes the control policy. With fixed poli-

cies π, θ, all random variables are defined on an appropriate

product space and have a measure that we denote as P
π,θ. We

use E
π,θ to signify integration with respect to P

π,θ, which we

simplify to E when not leading to confusion. We remark that

sensor and controller know each other’s policy.

The policy pair (π, θ) incurs a control cost and a commu-

nication cost. As a control cost we adopt the standard linear

quadratic regulator cost

JN
LQR(π, θ) := E

π,θ
N−1
∑

k=0

xTkQxk + uTkRuk, (6)

for some pair of matrices R > 0 and Q ≥ 0, with (A,Q1/2)
detectable. The communication cost is given by the expected

power consumption

JN
PWR(π, θ) := E

π,θ
N−1
∑

k=0

p(hk, qk). (7)

To quantify the tradeoff between plant performance and power

consumption we combine the LQR cost in (6) and the power

cost in (7) into the limit aggregate cost

J(π, θ) := lim sup
N→∞

1/N
[

JN
LQR(π, θ) + λJN

PWR(π, θ)
]

, (8)



for some positive constant λ > 0. Our goal is to design plant

and power control policies θ and π respectively that minimize

the joint cost (8). These policies depend on what information is

available to the sensor and controller. The specific information

structure considered in this paper is introduced next.

B. Information structure

Denote as Ok the information known at the controller side

at time k just before deciding the input uk. This information

includes the given initial plant state x0, the history of decoding

success variables γ0:k and the decoded signals y0:k, as well as

the previously chosen control inputs u0:k−1, i.e.,

Ok := {x0, γ0:k, y0:k, u0:k−1}. (9)

Then the control input uk is chosen as a function of Ok,

or more formally, measurable with respect to the σ-field

generated by Ok.

Given the possibility of lost packets as indicated by γk = 0,

the controller has partial information on the plant state xk. It is

then of importance to study the MMSE estimate E
π,θ(xk|Ok).

This estimation is complicated by the fact that the event

γk = 0 possibly contains information about the state xk
through the dependence of the probability qk on the value

of xk – see Remark 4. To avoid this complication we discard

the information given by events of the form γk = 0. Formally,

define τk := max{0 ≤ l ≤ k : γl = 1} as the time of the last

successful transmission by time k and define the sequence

Gk := {x0, γ0:τk , y0:τk , u0:k−1}. (10)

with G0 = {x0}. When γk = 1, Gk coincides with Ok. When

γk = 0, Gk only contains information received till the last

successful transmission which occurred at time τk < k.

We restrict attention to control policies θ selecting inputs

uk as functions of Gk, possibly randomized, and denote the

set of all such policies by Θ. Unlike E
π,θ(xk|Ok), the state

MMSE estimate x̂k := E
π,θ(xk|Gk) with respect to Gk is

easy to compute. When γk = 1 the state xk = yk becomes

known at the receiver side. When γk = 0 no new information

becomes available and x̂k is obtained by propagating x̂k−1

through the plant’s dynamics in (1). Put together, we get

x̂k := E
π,θ(xk|Gk) =

{

yk if γk = 1,
Ax̂k−1 +Buk−1 if γk = 0

,

(11)

with x̂0 = x0 since the initial state is given.

At the other side of the link at time k the sensor/transmitter

has access to the channel realization hk and the plant state

xk which allows selection of the successful transmission

probability qk to depend on the values of both of hk, xk.

This affects the controller design however, because when the

controller decides uk−1 to control xk, it should consider the

indirect effect on qk. This information structure renders the

joint communication and control co-design problem hard to

analyze. To overcome this, we restrict transmission policies

to depend on the channel state hk and the information about

plant state xk that the controller does not know. More precisely

consider the difference between the sensor measurement xk

and the controller’s estimate x̂k by (11) if the kth packet is

not successfully decoded, that is

εk := xk − (Ax̂k−1 +Buk−1), (12)

with ε0 := 0. Observe that the term in the parenthesis is known

to the sensor since by the acknowledgment mechanism the

controller’s previous estimate x̂k−1 and input uk−1 can be

replicated at the sensor. Alternatively the terms εk can be

viewed as the innovations of the controller’s estimate (11)

when a new message is received.

We restrict then information at the sensor side to the set Fk

defined as a collection of the channel history h0:k, the history

of innovations ε0:k, and past decisions q0:k−1, i.e.,

Fk := {ε0:k, h0:k, q0:k−1}. (13)

We also add a technical requirement that the sensor selects

maximum transmit power pmax when the innovation εk gets

too large, ‖εk‖ ≥ L for some positive constant L > 0, and

the channel gain hk is favorable, hk ≥ ht for some threshold

ht > 0 on channel values. We assume that a positive success

probability qmax(ht) > 0 is achieved at this threshold and also

that
∫

h≥ht

qmax(h) dmH(h) > qcrit, (14)

where qcrit is given in (5) and the integration is over the

channel distribution mH . Such a channel threshold exists by

Assumption 1. We consider then communication policies π
selecting decoding success qk as functions of Fk for each k,

possibly randomized, satisfying qk ∈ Q(εk, hk) where

Q(ε, h) :=

{

qmax(h) if ‖ε‖ ≥ L and h ≥ ht
[0, qmax(h)] otherwise

.

(15)

We denote the set of all such policies with Π. The technical

power saturation requirement is inconsequential as we may

pick L arbitrarily large, and will be used to prove Proposition 2

and Theorem 2 in the sequel. Similar requirements have

been introduced in [15], [16], however our setup is further

complicated by the availability of the random channel states.

The proposed information structure is depicted in Fig. 4.

The sensor block is split into a pre-processor and a scheduler.

The pre-processor computes εk based on the sample xk and the

acknowledgment γk−1 and feeds it to the scheduler who, upon

measuring the channel hk decides the transmission success

probability qk while incurring power cost p(hk, qk). Our goal

in this paper is to study policies π ∈ Π and θ ∈ Θ that are

optimal with respect to the joint objective (8), that is

minimize
π∈Π, θ∈Θ

J(π, θ). (16)

In particular, the next section shows that the information

structure we introduced allows optimal communication and

control policies to be designed separately. The standard LQR

controller is shown to be optimal and we then leverage this

result to study optimal communication policies in Section IV

and to develop tractable suboptimal policies in Section V.

Remark 4. If the controller uses the complete information

Ok to estimate xk, the optimal plant estimate is not x̂k as
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Fig. 4. Wireless control system with a restricted information structure. The sensor consists of two blocks. A pre-processor computes the error εk given the
measurement xk and the acknowledgment γk−1. A scheduler decides qk based on εk and the channel state hk , and transmits xk with the required power
pk = p(hk, qk). The controller receives the message with probability qk , computes the state estimate x̂k and provides input uk to the plant.

given by (11). When a packet drop γk = 0 is observed,

and since the communication policy is known, the controller

should consider the possibility that the sensor did not transmit

at all, which could in general give indirect information about

the value of xk – see also [19], [20] for a further discussion.

The restriction to Gk in (10) allows to overcome this issue

and obtain linear dynamics of the estimation error ek and the

related εk as described next in (17),(18), but it is not needed

for the separation result of Prop. 1 in the following section to

hold.

III. SEPARATION OF DESIGNS

In this section we show that with the imposed restrictions on

the information available at sensor and controller the control

law θ ∈ Θ and the communication policy π ∈ Π can

be designed separately. In particular the control policy has

no effect on the estimation process at the receiver and by

utilizing a separation principle the optimal controller becomes

the standard linear quadratic one.

Let us denote the difference between the plant state and

the estimate kept at the controller by ek := xk − x̂k and its

covariance as seen at the controller by Σk := E
π
[

eke
T
k

∣

∣Gk

]

.

The estimation error dynamics can be found by subtracting

(11) from the system dynamics (1) to get

ek = (1− γk)(Aek−1 + wk−1), (17)

with e0 = 0 since x0 is given. Stabilizability of estimation

error is guaranteed by Assumption 1. Indeed if transmitter

were to use maximum power all the time the dynamics in

(17) become a jump linear system since γk are Bernoulli with

constant probability equal to the left hand side of (5). Then

condition (5) is sufficient for bounded second moment as, e.g.,

in [2, Theorem 2]. It is also tight in the sense that estimation

error becomes unstable if Ehqmax(h) < qcrit.
Turning our attention to the innovation substituting xk by

(1) in the definition of εk in (12) gives εk = Aek−1 + wk−1.

The term ek−1 equals (1 − γk−1)εk−1 as seen by (17),

therefore εk evolves according to

εk = (1− γk−1)Aεk−1 + wk−1, (18)

with initial value ε0 = 0. The following proposition establishes

a separation principle in our restricted information structure

setup, stating that the control action has no effect on the quality

of the future estimates at the controller.

Proposition 1. Consider any communication policy π select-

ing successful decoding probabilities qk as functions of Fk

given in (13), possible randomized, with εk defined in (12)

and channel states hk independently drawn from a distribution

mH . Then at any step k the distributions of the future

processes {εℓ, qℓ, γℓ, eℓ, ℓ > k} given Gk do not depend on

the chosen control policy θ ∈ Θ.

Proof: First note that the processes {wk, hk, k ≥ 0} are

by assumption independent of any other process. Then we

follow an induction argument to prove the claim. At k = 0,

ε0 is equal to 0, q0 depends only on h0 and ε0, γ0 is

an independent Bernoulli with success q0, and e0 is also 0

since x0 is initially known. Consider then a time k with a

given Gk, the corresponding estimation error ek given Gk

having zero mean and covariance Σk, and a control input

uk that is a function of Gk as described by the control

policy θ. The term εk+1 equals Aek + wk, as indicated by

the arguments preceding (18), which given Gk has mean

0 and covariance AΣkA
T + W . The choice qk+1 ∈ Fk+1

by construction depends on past variables in Fk which by

causality do not depend on the action uk, as well as the new

variables εk+1, hk+1 which are also independent of uk. Also

the distribution of γk+1 ∼ Bern(qk+1) only depends on the

distribution of qk+1, and the same holds for ek+1 which equals

(1 − γk+1)εk+1 again by the arguments preceding (18). To

sum up all variables εk+1, qk+1, γk+1, ek+1 given Gk do not

depend on uk.

The intuition behind this proposition is that the effect

of control inputs is subtracted from xk when forming the

innovation terms εk in (12) that are fed to the communication

policy π. Similar separation results based on innovation terms

have been utilized in other communication/control design

problems [9], [19], [20]. The above proposition restates the

separation principle for our power allocation problem under

channel state information.

Since the power cost JN
PWR(π, θ) in (7) only depends on

pairs (qk, hk), the above proposition shows that the control

policy θ has no effect on the power cost. Thus we can rewrite



the objective in (8) as

J(π, θ) = lim sup
N→∞

1

N
JN

LQR(π, θ) + λ lim sup
N→∞

1

N
JN

PWR(π).

(19)

This means that the optimal control policy θ ∈ Θ for a given

communication policy π ∈ Π is the one minimizing the limit

LQR cost. It turns out that the form of the optimal controller

does not depend on the communication policy, leading to a

stronger separability than what follows from (19).

Indeed by the above separation principle standard dynamic

programming arguments show that the optimal control law

for a finite horizon is given by the standard LQR one, as in,

e.g., [19], [20]. We are interested however in the infinite hori-

zon problem. Our setup differs from the standard LQG/Kalman

filtering problem with state observations yk containing Gaus-

sian noise, where the estimation error covariance Σk converges

to some limit and the system is assumed to start at time k = 0
with this limit estimation error. In our setup whenever a packet

is received the estimation error is reset to zero otherwise it

grows (cf. (17)), so for the general communication policies

π ∈ Π under consideration it is not clear whether some

limit covariance exists. Alternatively the following proposition

shows that estimation errors admit a uniform bound in second

moment.

Proposition 2. Suppose Assumption 1 holds. Then there exists

a finite positive constant M such that for any communication

policy π ∈ Π selecting successful decoding probabilities

qk with respect to Fk given in (13), possibly randomized,

satisfying the additional restriction qk ∈ Q(εk, hk) given by

(15), and for every k = 0, 1, . . ., it holds that

E
πeTk ek ≤M. (20)

Proof: See Appendix A

With this bound on expected magnitude of estimation error

established, uniform over k and over any policy π ∈ Π, the

following theorem determines the optimal control law for the

average infinite horizon problem (16).

Theorem 1 (Optimal control policy). Consider the wireless

control system of Fig. 4 with any communication policy π :=
{q0, q1, . . .} ∈ Π selecting successful decoding probabilities

qk as functions of Fk given in (13), possibly randomized, with

innovation terms εk as defined in (12) and channel states

hk independently drawn from a distribution mH , satisfying

the additional restriction qk ∈ Q(εk, hk) given by (15).

Suppose Assumption 1 holds. Then for any control policy

θ := {u0, u1, . . .} ∈ Θ composed of inputs uk as possibly

randomized functions of Gk in (10) such that

lim
N→∞

1/N E
π,θxTNxN = 0, (21)

the joint objective J(π, θ) described by (6) - (8) satisfies

J(π, θ) ≥ Tr(PW ) + lim sup
N→∞

1

N
E
π

N−1
∑

k=0

eTk P̃ ek + λp(hk, qk)

(22)

where P is the solution to the standard algebraic Riccati

equation P = ATPA + Q − ATPB(R + BTPB)−1BTPA

for the system in (1) and the linear quadratic regulator cost

(LQR) in (6), and the matrix P̃ is defined as

P̃ := ATPA+Q− P. (23)

Moreover, the minimum value in (22) is achieved for the

control policy

uk = Kx̂k, (24)

with x̂k the state estimate described in (11) and the steady

state LQR gain K := −(R+BTPB)−1BTPA.

Proof: See Appendix B

The theorem determines the optimal control policy θ of

problem (16) as the conventional LQR controller in (24),

shown in Fig. 4. The optimal cost given in (22) equals a

constant Tr(PW ) and a limit average sum term that only

depends on the communication policy π ∈ Π. This term shows

that the optimal communication policy needs to balance the

power expenditures with a weighted version of the estimation

error at the controller.

Observe that as per (11) and (17) it holds that ek = (1 −
γk)εk. Also E

π[γk|Fk] = P
π[γk = 1|Fk] = qk and εk ∈ Fk.

So we can write

E
π[eTk P̃ ek|Fk] = E

π[(1− γk)ε
T
k P̃ εk|Fk] = (1− qk)ε

T
k P̃ εk,

(25)

and taking the expectation in both sides gives

E
π[eTk P̃ ek] = E

π[(1− qk)ε
T
k P̃ εk]. (26)

Substituting the expression (26) into the second summand of

(22) it follows that the optimal communication policy π ∈ Π
of problem (16) is the one achieving the infimum cost

J∗
COMM := inf

π∈Π
lim

N→∞

1

N
E
π

N−1
∑

k=0

c(εk, hk, qk), (27)

where we define

c(ε, h, q) := (1− q)εT P̃ ε+ λp(h, q). (28)

The difference between the sum in (22) and the objective in

(27) is that in the former ek is not known at the sensor at

time k, while εk in the latter is. This way (27) takes the form

of a Markov decision process (MDP) problem with an infinite

horizon average cost criterion. The state of the problem at

time k is the pair (εk, hk) ∈ R
n ×R+, the available action is

qk ∈ Q(εk, hk) by (15), and the cost-per-stage is c(εk, hk, qk).
The state transition probabilities can be obtained from (18) and

are given by

P(ε+, h+|ε, h, q)

=
[

q N0,W (ε+) + (1− q) NAε,W (ε+)
]

mH(h+). (29)

Here ε, h and ε+, h+ denote the current and next states

respectively, and q the current action. When q is chosen at

state (ε, h), a variable γ ∼ Bern(q) is drawn. By (18) on

the event γ = 1, ε+ = w ∼ N0,W , while on the event

γ = 0, ε+ = Aε + w with w ∼ N0,W , which is equivalent

to ε+ ∼ NAε,W . Since h+ is independent of ε, h, ε+, its

distribution mH appears as a product in (29). We denote



E
[

ε+, h+
∣

∣ ε, h, q
]

the integration with respect to the above

transition probability measure.

To sum up, we have exploited the proposed decoupling in-

formation structure to determine the optimal control policy as

the standard LQR control input. We proceed in the following

section to show that an optimal communication policy exists

and we characterize its main features in the case of general

FEC codes and in the special case of capacity achieving codes.

Remark 5. The technical condition (21) for the controller in

Theorem 1 can be viewed as an additional stability condition

requiring that the norm of the plant state grows at a sub-linear

rate. Such conditions appear in general average cost optimal

control problems, see e.g. [29, Vol.II, p.254-5], and have also

been used in average LQG problems [29, Vol.II, p.272-3].

This technical condition may potentially be relaxed under a

different proof technique.

IV. OPTIMAL COMMUNICATION POLICY

Exploiting the MDP formulation of (27) we can show that

optimal communication policies for the co-design problem in

(16) exist. This existence result provides a characterization

of these policies from which we infer the general features

of optimal transmit powers pk and corresponding successful

decoding probabilities qk as a function of innovation terms εk
and channel realizations hk.

The existence of optimal policies for average infinite-

horizon MDPs on general state spaces requires some technical

conditions [30]. In our case restriction to communication

policies π ∈ Π that uniformly satisfy (15) guarantee existence,

as the following theorem shows.

Theorem 2 (Optimal communication policy). Consider the

Markov decision process with optimal cost as in (27), state

transition probabilities as in (29), and actions restricted to

qk ∈ Q(εk, hk) with Q(ε, h) abiding to (15). If Assumptions

1 and 2 hold true there exists a function V : Rn × R+ 7→ R

such that for all ε ∈ R
n and h ∈ R+ it satisfies

V (ε, h) = min
q∈Q(ε,h)

{c(ε, h, q)− J∗
COMM

+E
[

V (ε+, h+)
∣

∣ ε, h, q
]}

. (30)

The optimal communication cost can be written as J∗
COMM =

Ew,hV (w, h), where Ew,h denotes integration with respect to

the product measure N0,W ×mH . The optimal communication

policy π∗ achieving the minimum cost can be written as a func-

tion of the error and channel states at time k, q∗k = q∗(εk, hk),
and is the one achieving the minimum in the right hand side

of (30), i.e.

q∗(ε, h) := argmin
q∈Q(ε,h)

{c(ε, h, q)− J∗
COMM

+E
[

V (ε+, h+)
∣

∣ ε, h, q
]}

. (31)

Proof: See Appendix C.

The theorem states that the optimal communication policy

exists, is deterministic, and also stationary in the sense that

q∗k adapts only to the current state (εk, hk) and not the

complete history Fk in (13). The optimal policy is described

by (31) in terms of a function V (ε, h) that solves (30).

Note that this function is unique up to a constant. Related

characterizations of optimal communication policies when the

decision is whether to transmit or not appear in [15], [16].

Our setup however differs since the decision is on the transmit

power and this depends on the random wireless channel state.

The proof of the theorem relies on constructing a Lyapunov-

like function that is common for all policies π ∈ Π, and

applying the MDP results of [31]. This methodology has been

used in [16], however a refined construction is required here

to account for the random channel states.

An informal interpretation of condition (30) based on fi-

nite state spaces [29] is the following. Suppose the constant

J∗
COMM, corresponding to the optimal cost of (27), was known.

Subtracting this constant from the cost-per-stage in problem

(27) does not change the optimal policy, and gives a relative

cost per stage c(ε, h, q) − J∗
COMM indicating how far we

are from the optimal average cost. Then equation (30) has

exactly the form of a standard Bellman equation for a non-

averaged infinite horizon problem with this relative cost per

stage [29, Vol.I, Ch.7]. The function V (ε, h) captures the

expected future relative cost of following the optimal policy

when starting from state (ε, h), and is termed the relative

value function. Bellman’s equation (30) states that the optimal

choice q at every step minimizes the sum of the current-stage

relative cost c(ε, h, q)−J∗
COMM and the expected future relative

cost E
[

V (ε+, h+)
∣

∣ ε, h, q
]

. The minimization over the current

action q gives again the value V (ε, h) of the current state at

the left hand side of (30).

In principle one can find V (ε, h) using value iteration or

policy iteration algorithms which involve iterative application

of (30) [30]. This procedure is, however, computationally

onerous as each iteration requires minimizing the right hand

side of (30) for all possible state pairs (ε, h) ∈ R
n × R+.

Nevertheless, (30) still gives qualitative information on the

optimal policy.

Let us ignore the case ‖ε‖ ≥ L, h ≥ ht in (15) as it

is irrelevant for the following discussion. Integrating V (ε, h)
with respect to the transition (29) gives

E
[

V (ε+, h+)|ε, h, q
]

= qEw,h+V (w, h+) + (1− q)Ew,h+V (Aε+ w, h+). (32)

We substitute this, the cost-per-stage c(ε, h, q) defined by (28),

and the expression J∗
COMM = Ew,hV (w, h) provided by the

theorem in the minimization of (31), and upon reordering

terms, the optimal communication policy can be written as

q∗(ε, h) = argmin
q∈[0,qmax(h)]

λp(h, q) + (1− q)R(ε), (33)

where for convenience we defined the function

R(ε) := Ew,h [V (Aε+ w, h)− V (w, h)] + εT P̃ ε, (34)

which can be thought as a penalty function on the error ε. The

optimal policy q∗(ε, h) depends on the shape of the function

p(h, q) and takes values anywhere in the interval [0, qmax(h)].
The optimal power allocation can be found by converting (33)

to power by (2), (4), and is described by

p∗(ε, h) := argmin
p∈[0,pmax]

λp+ (1− q(h, p))R(ε). (35)
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Fig. 5. Optimal power allocation for FEC codes with different complementary
error functions. The optimal transmit power p∗ is plotted as a function of the
factor R(ε) for a fixed channel state h using FEC codes with different q-SNR
characteristics. When the q-SNR curve becomes steeper, the optimal power
allocation resembles a step function.

Despite the fact that V (ε, h) and R(ε) are hard to compute,

the above expression is an important characterization of the

optimal power allocation. It provides a tool for qualitative

analysis of different FEC codes in wireless control systems.

We illustrate this in Fig. 5 where we examine how the q-

SNR relationship of a FEC code affects the optimal power

allocation. For simplicity we fix the channel state h and plot

p∗ in Fig. 5 as a function of R(ε). In all cases, when the error

penalty R(ε) is below some threshold, the best option is to

not transmit. Above the threshold, the optimal transmit power

increases as the error penalty R(ε) gets larger. For powerful

FEC codes characterized by a steep q-SNR relationship, close

to the theoretical limit in (3), the optimal power allocation

resembles a step function, since the probability of successful

decoding becomes practically one for large powers. For fat

q-SNR tails, this behavior deteriorates as the sensor needs to

transmit with higher power to achieve a larger q.

Then in Fig. 6 we present qualitative plots of the optimal

decoding probability q∗ and optimal transmit power p∗ as

functions of both the factor R(ε) and the channel state h for

a given q-SNR characteristic. The blue region indicates the

event where no transmission occurs. This happens if channel

gain h is low, where transmission is costly, or if error ε
has a low penalty, meaning that there is no need to update

the receiver’s estimate. This no-transmission region becomes

larger for a higher penalty λ on power in (8). Outside this

region a transmission occurs and transmit power adapts to both

channel and error states. In principle when channel gain h is

high, a small amount of power suffices. For intermediate values

of channel h power takes a wide range of values depending

on the error as well.

Overall this optimal power management displays different

features than the standard ”0-1” event-triggered transmission

paradigm of, e.g., [15] or [12]. It can be though as a ’soft”

version of these policies since the power decision ranges

between [0, pmax], or equivalently the decoding q between

[0, qmax(h)]. Finally we note that the transmit power/remote

estimation problem has also been studied in the very re-

cent works [23], [24], which however consider only power

adaptation to the channel and the packet drop processes, not

the plant state/error observed online. Hence the qualitative

Fig. 6. Optimal decoding probability and power allocation for a FEC code.
Color intensity indicates the magnitude of optimal decoding probability q∗

and optimal transmit power p∗ as functions of the factor R(ε) and the channel
state h.

characterization we discuss here and the connections with the

event-triggered paradigm were not apparent.

A. Optimal solution for capacity achieving codes

Consider now the case of capacity achieving codes. By (3),

at time k the transmitter needs to use either pk = 0, i.e.

not transmitting, or pk = p0/hk with p0 := N0SNR0, which

certainly guarantees correct packet delivery. Any other power

allocation is unfavorable. However the instantaneous power is

bounded by pk ≤ pmax, so the sensor can transmit only when

p0/hk ≤ pmax, or equivalently when the channel state exceeds

hk ≥ p0/pmax.

In this case we are looking again for a randomized policy,

i.e. a distribution on the two power options {0, p0/hk} when

hk ≥ p0/pmax. With a slight abuse of notation we denote

qk ∈ [0, 1] the probability of choosing power p0/hk. Then

when hk ≥ p0/pmax the transmitter draws independent

γk ∼ Bern(qk) and transmits with power pk = γk p0/hk. The

decoding success at the receiver is given by the same γk. The

expected power consumption becomes

E

N−1
∑

k=0

pk = E

N−1
∑

k=0

qk
p0
hk

I

(

hk ≥
p0
pmax

)

. (36)

Observe that this is of the same form as the expected

power consumption of the original problem given in (7) with

the function p(h, q) substituted with q p0/h I (h ≥ p0/pmax).
Then the statements of the results so far hold for the capacity

achieving codes as well. For this special case of p(h, q)
however the minimization in (33) becomes linear in q, and

the optimal communication policy is deterministic,

qCA(ε, h) :=

{

0 if hR(ε) ≤ λ p0 or h ≤ p0/pmax

1 otherwise
,

(37)

or in terms of power

pCA(ε, h) :=

{

0 if hR(ε) ≤ λ p0 or h ≤ p0/pmax

p0/h otherwise
.

(38)



This is an event-triggered transmission scheme along the

lines of, e.g., [15], except that now the decision is also affected

by the current channel state h apart from the error ε. This

deterministic policy was expected as the limit behavior of

powerful FEC codes in Fig. 5. The region of the plant/channel

state space Rn×R+ where it is optimal to transmit is described

in (37) as hR(ε) > λp0 and h ≥ p0/pmax. Intuitively

condition hR(ε) > λp0 states that when channel gain is large,

transmitting is worthy as it does not cost much, while when

an error penalty R(ε) is large, it is necessary to transmit in

order to reset it to zero. This region gets smaller when the

constant p0 = N0SNR0 (cf. (3)) increases, since transmission

then requires more power, or when λ increases, since power

then is penalized more in the objective (8).

In the following section we present easily computable

suboptimal communication policies, which we examine with

simulations in Section VI.

V. A ROLLOUT COMMUNICATION POLICY

The optimal communication policy q∗(ε, h) was described

in the previous section in terms of the relative value function

V (ε, h) which is not computationally tractable in general. The

purpose of this section is to show how approximate dynamic

programming can be used to devise tractable suboptimal

policies.

As shown in Theorem 2, the optimal communication policy

q∗(ε, h) given by (31) selects the decision q that minimizes

a combination of the current cost c(ε, h, q) and the opti-

mal expected future cost E [V (ε+, h+)|ε, h, q]. However the

function V (ε, h) is not available. Suppose instead that some

suboptimal communication policy π is available, for which the

corresponding relative value function V π(ε, h) is known at all

state pairs (ε, h). This means that if the transmitter employs

this given policy π at all future steps, we can model the

expected future cost induced by π as E [V π(ε+, h+)|ε, h, q].
Then the optimal current action under this suboptimal model

of future communication decisions is described by

qroll(ε, h) := argmin
q∈[0,qmax(h)]

c(ε, h, q) + E
[

V π(ε+, h+)|ε, h, q
]

.

(39)

This approximation defines a rollout algorithm [29, Vol. I].

We consider a family of suboptimal policies of the form

qk = q(hk) adapting only to channel state hk and not

to innovation εk, which have a computable relative value

function. Policies of this form have been proposed in prior

works [23], [24]. Since channel states are independent of

εk the policy q(h) results in successful packet decodings

with expected probability q̄ := Ehq(h) implying that the

communication success indicator variable is γk ∼ Bern(q̄).
The expected power consumption at every stage is constant

given by Ehp(h, q(h)). Thus the cost of this policy q(h) for

the MDP problem in (27) becomes

Jq(·) := lim sup
N→∞

1

N
E

N−1
∑

k=0

(1− q̄)εTk P̃ εk + λEhp(h, q(h)).

(40)

For any policy of the form qk = q(hk) the corresponding

relative value function V q(·)(ε, h) can be determined in closed

form as stated in the following theorem that also provides an

explicit expression for the cost Jq(·).

Theorem 3 (Cost of channel-adaptive communication poli-

cies). Consider the Markov decision process with state pair

(ε, h) and state transition probabilities as in (29). Consider

policies q(·) for which the success transmission probability is

selected as a function q(h) independent of the innovation terms

ε. For any policy of this form satisfying q̄ := Ehq(h) > qcrit
for the critical probability qcrit of Assumption 1, the cost Jq(·)

in (40) becomes

Jq(·) = Tr(P̃E) + λEhp(h, q(h)), (41)

where the matrix E is the unique solution of

E = (1− q̄)(AEAT +W ). (42)

Furthermore, the relative value function V q(·) is given by

V q(·)(ε, h) =
1− q(h)

1− q̄
εTHε+ λp(h, q(h)), (43)

where the matrix H is the unique solution of

H = (1− q̄)(ATHA+ P̃ ). (44)

Proof: See Appendix D.

Theorem 3 provides an explicit formula for a family of

relative value functions V q(·)(ε, h) that can be used in the

rollout algorithm in (39). Substituting (43) into (39) and

removing constants from the resulting expression we find the

rollout policy

qroll(ε, h) := argmin
q∈[0,qmax(h)]

λp(h, q) + (1− q)
εTHε

1− q̄
. (45)

Computing such policies is easy. Given the parameter q̄ that

models the suboptimal future actions, we can compute H by

(44) and then solve (45) given the function p(h, q). Observe

that (45) is of the same form as the optimal communication

policy (33) except that the optimal unknown function R(ε)
is replaced by the quadratic form εTHε/(1 − q̄). Since the

rollout policy is suboptimal the quadratic can be viewed as an

approximation of the function R(ε). As a side note, the rollout

policy need not satisfy the technical requirement qroll(ε, h) ∈
Q(ε, h) of (15).

For the particular case of capacity achieving codes repeating

the analysis of Section IV-A to modify (45) we obtain the

suboptimal policy

qroll,CA(ε, h) :=







0 if h
εTHε

1− q̄
≤ λ p0 or h ≤

p0
pmax

1 otherwise

.

(46)

Again the unknown function R(ε) in (37) is approximated by

a quadratic that can be computed by (44). This is an explicit

event triggered communication policy, where the events de-

pend on the current channel state h and error ε.
The rollout policy (39) is a heuristic. Intuitively if the

reference policy π is close to the optimal policy then the

rollout is close to the optimal as well. It is not easy to
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Fig. 7. Simulation results of the rollout policy for a capacity achieving code.
The points |εk,1|, hk and |εk,2|, hk are plotted respectively, with blue dots
indicating the decision to not transmit, qk = 0, and red crosses the decision
to transmit, qk = 1. The decision is highly dependent on εk,1 corresponding
to the unstable dynamics of the plant.

characterize how worse the rollout performs compared to the

optimal value J∗
COMM. However it is guaranteed by design

to perform not worse than the reference policy π. In many

practical problems the improvement is significant [29, Vol. I].

In the following section we simulate the constructed rollout

policies and characterize numerically the improvement to the

reference policies adapting only to channel.

VI. SIMULATIONS

We begin by presenting simulations of the rollout algorithm

for capacity achieving codes given in (46). We assume the

channel state distribution to be exponential with mean 0.5.

The plant is given by

A =

[

2 0
1 0.8

]

, B =

[

2
1

]

. (47)

The rest of the parameters are Q = W = I , R = 1,

λ = 50, p0 = 1. As a reference communication policy

we use q(h) = I (h ≥ ht) which transmits whenever the

channel state is above some threshold ht, inducing a con-

stant transmission rate q̄ ≈ 0.79. The simulations of the

rollout policy reveal a dramatic decrease in the empirical

transmission rate qemp = 1/N
∑N−1

k=0 γk ≈ 0.37, which is

also much lower than the minimum non-adaptive transmission

rate qcrit = 0.75 that would keep the error stable (cf.

(5), (17)). Similarly, the empirical cost of the rollout policy

Jemp = 1/N
∑N−1

k=0 e
T
k P̃ ek + λγkp0/hk ≈ 56 decreased

compared to the reference Jq(·) ≈ 124.

The event-triggered nature of the rollout policy in the case

of capacity achieving codes is captured in Fig. 7 where we

plot the two plant states |εk,1|, |εk,2| along with the channel

hk during the simulation. Blue dots indicate the decision

not to transmit, qk = 0, while red crosses are the points

where qk = 1. When the channel fading coefficient hk
is low, the sensor avoids transmission as it requires large

power consumption. The rollout policy is also adapted to the

plant structure. The error state εk,1 is related to the unstable

eigenvalue of A, so the sensor always decides to transmit when

this state is far from 0. The hyperbolic shape of the |εk,1|, hk
plot is justified by the form of the rollout algorithm in (46). In

contrast, such a correlation between the error state εk,2 and the
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Fig. 8. Comparison of the optimal channel-threshold policy and the resulting
rollout policy performance for a capacity achieving code. The power and
estimation error costs of the two policies are plotted for different values of the
power weight λ. As the power weight increases, the estimation performance
of the reference policy becomes increasingly worse compared to the rollout.

decision to transmit is not clear. Even when εk,2 takes large

values, the sensor might choose to not transmit. The reason is

that this state’s dynamics are related to a stable eigenvalue, so

informally εk,2 will remain bounded even if the sensor takes

no action. More precisely, as long as the sensor keeps εk,1
bounded, εk,2 will also be bounded.

Next, for the plant and channel described above we compare

the performance of the rollout algorithm with that of the

reference policy we used to compute the value function in (43).

For different values of λ we find the optimal threshold policy

q(h) = I (h ≥ ht), i.e. the one that minimizes (41), and the

corresponding rollout policy in (46). The resulting power cost

1/N
∑N−1

k=0 γkp0/h and estimation cost 1/N
∑N−1

k=0 e
T
k P̃ ek

that we got from simulating the rollout algorithm are plotted

separately in Fig. 8 along with the costs of the reference policy.

As λ increases the power consumption decreases, since it is

penalized more in the aggregate cost (27), and the decrease

rate is similar for the rollout and the reference policies. On

the other hand, when λ increases the estimation cost increases,

since the sensor decides to transmit less often. However the

increase for the rollout policy is slower than that of the

reference policy. The reason is that the reference only adapts

to the channel, avoiding transmissions when the channel state

hk is low. The rollout algorithm adapts not only to the channel,

but also to the error εk. By transmitting only when εk is large,

it results in only a moderate increase in the estimation cost

without sacrificing too much power.

Finally, we simulate the rollout algorithm (45) for the above

plant and channel model when a FEC code is employed.

The probabilities qk of successful decoding that the rollout

selected during the simulation are plotted in Fig. 9 on ‖εk‖, hk
axes (compare with the optimal policy in Fig. 6). Unlike

the capacity achieving codes, qk take values smaller than 1.

However, due to the sigmoid form of the q-SNR characteristic

of the FEC code (cf. Fig. 2), practically qk are either 0 or

very close to 1, especially when the channel state is good (hk
large). For low channel gain hk a very high power penalty is

incurred to transmit with high success probability, hence the
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Fig. 9. Simulation results of the rollout policy for a FEC code. The points
‖εk‖, hk during the simulation are plotted with colors denoting the magnitude
of the chosen decoding probability qk . Practically qk takes values either 0 or
close to 1.

rollout chooses either to not transmit (qk = 0) or transmit with

qk very close to 1. The simulation points are accumulated in

the region of small values of ‖εk‖ since when the error gets

large, qk is chosen close to 1 and the error gets reset with high

probability.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we examined a control system with a wireless

fading channel between the sensor and the controller. The

sensor adapts transmit power to plant and channel states

and affects the probability of successful decoding at the

controller. For the problem of co-designing transmit powers

and control inputs to minimize an average LQR and power

cost a method to separate the two designs is provided, leading

to the standard LQR controller. The optimal power allocation

is then characterized qualitatively for general FEC codes and

capacity achieving codes. Tractable suboptimal policies are

derived and their performance is compared with alternative

policies in simulations.

Near-optimal and computationally efficient policies for the

general co-design framework requires further research. For

example power policies adapting to the plant state directly,

not the estimation innovation, need to be examined. Further

work includes also the incorporation of other wireless channel

models, e.g., Markov. Moreover interference effects when

multiple control loops close over the same channel need

to be considered. Overall the proposed framework can be

expanded to accommodate modeling and analysis of more

complex wireless sensor & actuator networks. This unified

control/wireless networking framework could serve in novel

design problems, such as a control-aware network resource

allocation, or a resource-aware networked controller synthesis.

APPENDIX

A. Proof of Proposition 2

First note that, by the same arguments we use to derive (26)

later, conditioned on Fk we can rewrite

E
π eTk ek = E

π(1− qk)ε
T
k εk. (48)

The bound in (20) will be shown by an equivalent bound on

the innovation process {εk, k ≥ 0}. By Proposition 1 for any

communication policy π ∈ Π this process is independent of the

control policy θ ∈ Θ and its evolution is given by (18). This

evolution can be described more formally along with the i.i.d.

channel process hk ∼ mH by a stochastic transition kernel

given the values of ε, h and decision q at each step as

P(ε+, h+|ε, h, q)

=
[

q N0,W (ε+) + (1− q) NAε,W (ε+)
]

mH(h+). (49)

This expression is included again in (29), where its derivation

is explained in detail.

The following technical lemma shows that under Assump-

tion 1 one can construct a Lyapunov-like function common for

all communication policies, satisfying explicitly the technical

requirements of [31, Assumptions 3.1, 3.2]. The uniform

bound (20) will be a direct consequence of these requirements.

We note also that the lemma will be subsequently used to prove

Theorem 2 based on the results of [31].

Lemma 1. Suppose Assumption 1 holds and consider the

innovation and channel processes {εk, hk, k ≥ 0} described

by the transition (49), with communication decisions satisfying

qk ∈ Q(εk, hk) given in (15). Then there exists a measurable

function W on R
n ×R+ bounded below by a constant γ > 0

such that

(1− q)εT ε+ c ≤ KW (ε, h), (50)

where c ≥ 0 is some constant, for all ε, h ∈ R
n × R+, q ∈

Q(ε, h), for some positive K. Moreover there exists a non-

trivial measure ν on R
n × R+, a non-negative measurable

function φ(ε, h, q) for ε, h ∈ R
n × R+, q ∈ Q(ε, h), and a

positive constant µ < 1 such that

(i) ν(W ) :=

∫

W (ε, h)dν(ε, h) <∞,

(ii) P(ε+ ∈ B1, h
+ ∈ B2|ε, h, q) ≥ ν(B1, B2)φ(ε, h, q)

for all measurable subsets (B1, B2) ∈ B(Rn × R+),

(iii) E
[

W (ε+, h+)|ε, h, q
]

≤ µW (ε, h) + φ(ε, h, q)ν(W )

(iv)

∫

φ(ε, h, q)dν(ε, q) > 0 for all q ∈ Q(ε, h).

Proof: The proof is constructive. Let

ν := N0,W ×mH and φ(ε, h, q) := q. (51)

Let us denote the set where the choice of q is free as

S := {(ε, h) ∈ R
n × R+ : ‖ε‖ < L or h < ht}. (52)

We choose µ < 1 such that

µ > 1− qmax(ht) + qmax(ht)ν(S), (53)

µ > (1− q̄)λmax(A)
2, (54)



where q̄ denotes the integral introduced in (14),

q̄ :=

∫ +∞

ht

qmax(h)dmH(h). (55)

The right hand side of (53) is less than 1 because the event

S under the measure ν happens with probability less than 1

and we have assumed qmax(ht) > 0. The right hand side of

(54) is also less than 1 because of Assumption 1 and by the

choice for ht that satisfies (14).

For future reference note that by construction of the set

Q(ε, h), for any L > 0, when ‖ε‖ ≥ L we can upper bound

1− q ≤ 1− qmax(h)I (h ≥ ht) =: ψ(h), (56)

where we named the quantity on the right ψ(h) to be used

within this proof. This inequality holds because when h < ht,
we have q ≥ 0, and when h ≥ ht, we choose q = qmax(h).

Finally we pick

W (ε, h) :=ψ(h)εTHε+ β I (ε, h ∈ S) + γ, (57)

where β, γ > 0 are appropriate positive constants that will

be designed next, and H > 0 is a positive definite matrix

satisfying

(1− q̄)ATHA− µH = −Θ, (58)

for some positive definite matrix Θ > 0. This Lyapunov

equation is feasible by our choice of µ that satisfies (54).

Next we show that the conditions of the lemma are satisfied

for the constructed quantities. First observe that W (ε, h) ≥
γ > 0 by construction. Then we check (50). When ‖ε‖ < L,

(1− q)εT ε+ c ≤ L2 + c ≤ K(β + γ) ≤ KW (ε, h), (59)

for a sufficiently large K, where the last inequality follows

from the form of W (ε, h) on ‖ε‖ < L. On the other hand if

‖ε‖ ≥ L, we may use (56) to upper bound

(1− q)εT ε+ c ≤ ψ(h)εT ε+ c

≤ K(ψ(h)εTHε+ γ) ≤ KW (ε, h), (60)

for a sufficiently large K, by our choice for the function

W (ε, h) when ‖ε‖ ≥ L.

We proceed to show that parts (i)-(iv) in the statement of

the lemma also hold. Part (i) holds because the integral of

W (ε, h) with our chosen measure ν equals

ν(W ) = (1− q̄)Tr(HW ) + ν(S)β + γ <∞. (61)

Part (ii) holds because the transition probability in (49) gives

P(ε+ ∈ B1, h
+ ∈ B2|ε, h, q)

= [q N0,W (B1) + (1− q) NAε,W (B1)] mH(B2)

≥ q N0,W (B1) mH(B2) = φ(ε, h, q)ν(B1, B2). (62)

Part (iv) follows by our choice φ(ε, h, q) = q and the

construction of the set Q(ε, h) in (15) because
∫

φ(ε, h, q)dν(ε, h) ≥

∫

ε,h∈Sc

qmax(h)dν(ε, h)

= q̄

∫

‖ε‖≥L

dN0,W (ε) > 0. (63)

The remainder of the proof shows that (iii) also holds. First

observe that by the transition defined in (49) and our choices

for ν and φ we have

E
[

W (ε+, h+)|ε, h, q
]

= φ(ε, h, q)ν(W )

+ (1− q)

∫

W (ε+, h+)dNAε,W (ε+) d mH(h+). (64)

Substituting (64) in (iii), we only need to show that

(1− q)

∫

W (ε+, h+)dNAε,W (ε+) d mH(h+) ≤ µW (ε, h).

(65)

Plugging the expression of W (ε, h) given by (57) in the

integral of the left hand side, condition (65) becomes

(1− q) { (1− q̄)
[

εTATHAε+ Tr(HW )
]

+βNAε,W ×mH(S) + γ} ≤ µW (ε, h). (66)

We can bound NAε,W × mH(S) ≤ ν(S) for any ε ∈ R
n,

and also (1− q)(1− q̄)Tr(HW ) ≤ Tr(HW ). So a sufficient

condition for (66) is to show that

(1− q)
{

(1− q̄)εTATHAε+ β ν(S) + γ
}

+ Tr(HW )

≤ µW (ε, h) (67)

holds for every choice of q ∈ Q(ε, h). To show this we

examine cases.

Case ‖ε‖ ≥ L. Using (56) to upper bound 1 − q ≤ ψ(h),
and upon substituting W (ε, h) in (67) and rearranging terms,

we need to show equivalently that

ψ(h)
{

εT
[

(1− q̄)ATHA− µH
]

ε

+βν(S) + γ}+ Tr(HW ) ≤ µ {βI (h < ht) + γ} (68)

By the choice of H in (58) the quadratic on the left hand side

is negative definite equal to to −εTΘε. And since ‖ε‖ ≥ L we

can upper bound −εTΘε ≤ −λmin(Θ)L2 ≤ 0. After these, a

sufficient condition for (68) is

Tr(HW ) + ψ(h) {βν(S) + γ} ≤ µ {βI (h < ht) + γ} (69)

Now consider two cases for h. If h < ht condition (69)

becomes

Tr(HW ) + βν(S) + γ ≤ µ(β + γ). (70)

On the other hand if h ≥ ht we have that qmax(h) ≥ qmax(ht)
by monotonicity of qmax, so we may bound ψ(h) = 1 −
qmax(h) ≤ 1− qmax(ht). Condition (69) becomes

Tr(HW ) + (1− qmax(ht)) {βν(S) + γ} ≤ µγ. (71)

We pick a γ > to satisfy (71) with equality, that is

γ =
(1− qmax(ht))ν(S)β + Tr(HW )

µ− (1− qmax(ht))
(72)

where the denominator is positive by the choice of µ in (53).

We will show that condition (70) also holds by an appropriate

choice for β > 0.

Case ‖ε‖ < L. In this case q ≥ 0 ⇒ 1 − q ≤ 1 and it is

sufficient for (67) to show that

sup
‖ε‖<L

εT (1− q̄)ATHAε+ Tr(HW ) + βν(S) + γ

≤ µ(β + γ) (73)



holds, where on the right hand side we lower bounded the

quadratic term of W by 0. This is of the general form

C2 + βν(S) + γ ≤ µ(β + γ) (74)

for some constant C2, and recall that the left over condition

(70) is of the same form. Plugging the chosen γ by (72) in

(74) leads to a condition of the form

C3 ≤

(

1−
qmax(ht) ν(S)

µ− (1− qmax(ht))

)

µβ, (75)

for some constant C3. We want to be able select β > 0 that

satisfies (75) for any value of the constant C3. Hence we

require the coefficient of β to be strictly positive. This turns

out to be equivalent to µ > 1 − qmax(ht) + qmax(ht)ν(S),
which corresponds to our choice of µ in (53). Therefore we

conclude that part (iii) of the lemma holds as well and this

completed the proof.

Returning to the proof of Proposition 2, combining (48) with

condition (50) of the above Lemma we have that Eπ eTk ek ≤
K E

πW (εk, hk), so it suffices for (20) to show that a uniform

bound on the expected value of W (εk, hk) exists.

By condition (ii) of the above lemma for (B1, B2) =
(Rn,R+) we have that φ(ε, h, q) ≤ 1/ν(Rn,R+). Plugging

this in (iii) leads to

E
[

W (ε+, h+)|ε, h, q
]

≤ µW (ε, h)+ν(W )/ν(Rn,R+) (76)

Iterated applications of this inequality across some policy π ∈
Π yields

E
πW (εk, hk) ≤ µk

EW (ε0, h0) +
ν(W )

(1− µ)ν(Rn,R+)
(77)

Thus since µ < 1 a uniform bound on E
πW (εk, hk) exists

and this completes the proof.

B. Proof of Theorem 1

First note that since Σk := E
π
[

eke
T
k

∣

∣Gk

]

we have that

E
π[Tr(Σk)] = E

πeTk ek. (78)

Then under Assumption 1, Proposition 2 states that for any

π ∈ Π condition (20) holds and guarantees that both quantities

in (78) are bounded uniformly over k.

To establish the optimality of the proposed control law we

use the fact that the Bellman-like equation

V (Gk) + Tr(PW ) + Tr(P̃Σk) =

min
uk

E
π
[

xTkQxk + uTkRuk + V (Gk+1)|Gk, uk
]

, (79)

is satisfied for the function

V (Gk) = E
π
[

xTk Pxk
∣

∣Gk

]

, (80)

with V (G0) = xT0 Px0, where P is the solution to the

standard algebraic Riccati equation and P̃ is given by (23). The

existence of P is guaranteed by the stabilizability of (A,B)
and detectability of (A,Q1/2).

Indeed observe that we can use the tower property to rewrite

the term on the right hand side of (79) as

E
π [V (Gk+1)|Gk, uk] = E

π
[

xTk+1Pxk+1|Gk, uk
]

= E
π
[

(Axk +Buk)
TP (Axk +Buk)|Gk, uk

]

+ Tr(PW ),
(81)

where the last equality follows by substituting xk+1 from the

system equation (1). The quadratic minimization over uk at

the right hand side of (79) takes the standard form appearing

in LQR problems with partial state information - see e.g. [29,

Vol. II, Section 5.2]. The argument of the minimization in (79)

is given by the control law (24). Straightforward substitutions

show that the optimal value of the minimization equals the

left hand side of (79).

The equation (79) can be used to show that the optimal

control policy is (24). First iterate (79) for k = 0, . . . , N − 1
across some control policy θ ∈ Θ to get

V (G0) +N Tr(PW ) + E
π

N−1
∑

k=0

Tr(P̃Σk)

≤ JN
LQR(π, θ) + E

π,θV (GN ) (82)

Dividing (82) by N and taking the limit as N → ∞, the

term on the left hand side tends to

lim sup
N→∞

1/N

[

xT0 Px0 +N Tr(PW ) + E
π

N−1
∑

k=0

Tr(P̃Σk)

]

= Tr(PW ) + lim sup
N→∞

1/N E
π

N−1
∑

k=0

eTk P̃ ek (83)

where we used (78) to convert Σk to ek.

Then consider the term on the right hand side of (82). Any

control policy θ ∈ Θ satisfying (21) also satisfies

lim
N→∞

1

N
E
π,θV (GN ) = lim

N→∞

1

N
E
π,θxTNPxN = 0 (84)

by the form of V given in (80). Thus taking the limit as N →
∞, by (84) the term on the right hand side of (82) tends to

the average LQR cost. The inequality in (82) then shows that

the average LQR cost of θ is larger or equal to the limit of

the left hand side which was given in (83). The result (22) of

the theorem follows by including the power cost that depends

only on the communication policy π as suggested by (19).

The final step of the proof is to show that the control policy

θ∗ defined by (24) gives exactly the LQR cost given in (83).

This policy satisfies (79) with equality, so (82) also holds with

equality for θ∗. Dividing by N and taking the limit as before

would prove the desired result if condition (84) also holds for

θ∗. We next verify that this is the case.

Indeed use u∗k = Kx̂k and xk = x̂k + ek to rewrite the

closed loop system equation (1) under θ∗ as

xk+1 = (A+BK)x̂k +Aek + wk. (85)

Then denoting ρ := λmax(A + BK) which is stable, ρ < 1,

we can upper bound (81) under θ∗ by

E
π,θ∗

[V (Gk+1)|Gk]

≤ ρ2x̂Tk P x̂k + Tr(ATPAΣk) + Tr(PW )

= ρ2V (Gk) + Tr((ATPA− ρ2P )Σk) + Tr(PW ) (86)



where in the last equality we used the fact that x̂kx̂
T
k =

E
π
[

xkx
T
k

∣

∣Gk

]

− Σk. Taking expectation on both sides of

(86) we have that

E
π,θ∗

V (Gk+1) ≤ ρ2Eπ,θ∗

V (Gk)

+ Tr((ATPA− ρ2P )Eπ,θ∗

Σk) + Tr(PW ) (87)

But (78) and (20) imply that Eπ,θ∗

Σk is uniformly bounded

over k so the term on the second line of (87) is bounded

by some constant δ < ∞. Iterating the above inequality (87)

across θ∗ up to k = N yields

E
π,θ∗ [

xTNPxN
]

≤ ρ2NxT0 Px0 + δ/(1− ρ2) (88)

which guarantees the limit (84) since ρ < 1.

C. Proof of Theorem 2

The proof of the theorem is a direct application of the

theorems contained in [31]. For these we need to show

that [31, Assumptions 3.1, 3.2, 3.4] hold in our case. In

particular [31, Assumption 3.1] requires that the cost per stage

is bounded |c(ε, h, q)| ≤ KW (ε, h) by a positive measurable

function W . This is a consequence of (50) of Lemma 1, since

|c(ε, h, q)| ≤ (1− q)λmax(P̃ )ε
T ε+ λpmax (89)

which is of the same form as (50). Also [31, Assumption 3.2]

requires exactly the conditions given in (i)-(iv) of Lemma 1.

Finally [31, Assumption 3.4] requires the following conditions

for the functions W and φ satisfying Lemma 1.

Assumption 3. For every ε ∈ R
n, h ∈ R+

(i) Q(ε, h) is compact,

(ii) c(ε, h, q) is lower semi-continuous in q ∈ Q(ε, h),

(iii) P(ε+, h+|ε, h, q) is strongly continuous 1 in q ∈ Q(ε, h),

(iv) the mapping q → E [W (ε+, h+)|ε, h, q] is continuous,

(v) φ(ε, h, q) is continuous in q ∈ Q(ε, h).

Part (i) is trivial, and (ii) is a consequence of the continuity

of p(h, q) by Assumption 2. Strong continuity in (iii) is

guaranteed by the fact that the transition kernel given in (29)

has a probability density function. Part (iv) holds because the

transition (29) is linear in q, and (v) is trivial.

Having established [31, Assumptions 3.1, 3.2, 3.4], then

[31, Theorems 3.5, 3.6] state that in our case the infimum

J∗
COMM in (27) exists, there exists a function V (ε, h) that

satisfies (30), and the optimal policy is the minimizer of the

right hand side of (30) as given in (31).

Finally note that (30) holds if we add any constant to

V (ε, h), so without loss of generality we may take V (0, ĥ) =
0 for some ĥ. Then for ε = 0, h = ĥ (30) gives

V (0, ĥ) = 0 = min
q∈Q(0,ĥ)

{

c(0, ĥ, q)− J∗
COMM

+E

[

V (ε+, h+)
∣

∣ 0, ĥ, q
]}

. (90)

1i.e. for every bounded measurable function Ψ on R
n ×R+, the mapping

q 7→ E[Ψ(ε+, h+)|ε, h, q] is continuous

Note that by (29), P(ε+, h+|0, ĥ, q) = N0,W (ε+)mH(h+),
and also c(0, ĥ, q) = λp(ĥ, q) by (28), so (90) becomes

0 = min
q∈Q(0,ĥ)

{

λp(ĥ, q)− J∗
COMM + Ew,hV (w, h)

}

. (91)

The minimizer is q = 0, giving the optimal value J∗
COMM =

Ew,hV (w, h) provided in the statement of the theorem.

D. Proof of Theorem 3

For any channel-dependent policy q(h) with expected suc-

cess q̄ the error ek in (17) is a Markov jump linear system,

with mean E(ek) = 0 for all k and covariance

E(eke
T
k ) = (1− q̄)(A E(ek−1e

T
k−1) A

T +W ). (92)

Since q̄ > qcrit the covariance reaches a steady state matrix

E that satisfies the Lyapunov equation (42), and ek is stable

in the bounded covariance sense. The cost of such a policy is

then given by (41).

The corresponding relative value function V q(·)(ε, h) satis-

fies the steady state condition [c.f. (30)]

V q(·)(ε, h) + Jq(·)

= c(ε, h, q(h)) + E

[

V q(·)(ε+, h+)|ε, h, q(h)
]

, (93)

where c(ε, h, q) is given by (28). We need to show that

V q(·)(ε, h) in (43) satisfies condition (93). First integrate (43)

with respect to (29) to get

E

[

V q(·)(ε+, h+)|ε, h, q(h)
]

= (1− q(h))εTATHAε

+ Tr(HW ) + λEh+p(h+, q(h+)). (94)

Using (94), the total cost Jq(·) in (41), and the cost per stage

c(ε, h, q) in (28), we conclude that V q(·)(ε, h) in (43) satisfies

condition (93) if the following equation holds

1− q(h)

1− q̄
εTHε+ λp(h, q(h)) + Tr(P̃E) + λEhp(h, q(h))

= (1− q(h))εT P̃ ε+ λp(h, q(h)) + (1− q(h))εTATHAε

+ Tr(HW ) + λEh+p(h+, q(h+)). (95)

Substituting H by (44) on the left hand side and canceling

terms, the above condition becomes equivalent to Tr(P̃E) =
Tr(HW ). This is easily verified if we substitute the explicit

expressions for the solutions E, H of the discrete-time Lya-

punov equations (42), (44) given by

E =

∞
∑

k=0

(1− q̄)k+1AkW (AT )k, (96)

H =
∞
∑

k=0

(1− q̄)k+1(AT )kP̃Ak, (97)

respectively. Existence and uniqueness of solutions to the Lya-

punov equations (42), (44) follows by assumption q̄ > qcrit.
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