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Abstract— Despite primary space-time coding where the chan-
nel state information (CSI) is available at the receiver only,
the capacity and performance of multiple-input multiple-output
(MIMO) systems can be increased significantly when a complete
or partial CSI is available at the transmitter. Recently, limited
feedback methods including antenna subset selection and unitary
precoding have been proposed for orthogonal space-time codes
where a partial knowledge of the channel is available at the
transmitter via an error-free, zero-delay feedback channel. In
this paper, we propose a general structure matrix rather than
a unitary one for precoding. By maximizing the signal-to-noise
ratio (SNR) per received symbol, we find the optimal precoder
for general space-time codes with rate�1 symbol per channel
use. The performance of the optimal scheme is analytically
evaluated. Next, we extend the result for limited feedback
systems. Simulation results show that the proposed precoder
outperforms the previous work.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless channels,
created by deploying antenna arrays at both the transmitter
and receiver, promise high capacity and high-quality wireless
communication links [1], [2]. To fully exploit the benefits of
MIMO channels, space-time modulation and receiver algo-
rithms are required to provide a sensible performance and
complexity tradeoff. Space-time block codes (STBC) with
rate�1 symbol per channel use are of interest when the number
of receive antennas may be one or more, particularly in the
downlink of mobile systems. Orthogonal STBCs (OSTBCs)
[3] are a class of STBCs that guarantee full diversity and
simple decoding.

Primary schemes proposed for exploiting multiple antennas
at the transmitter and/or receiver commonly assume that by
applying pilots or training sequences, the receiver can estimate
the channel gains accurately, but this information is not avail-
able at the transmitter. However, in communication systems
that experience a slow fading environment, complete or partial
knowledge of the channel may be available at the transmitter.
Channel state information (CSI) at the transmitter may be
exploited in two ways: antenna subset selection and precoding.
The optimum precoder matrix can be obtained based on the
eigen structure of the channel matrix [4]. Due to the bandwidth
limits on feedback channel, however, full CSI is not always
available at the transmitter. Therefore, precoding techniques
using limited feedback are of interest [5].

In [5], the authors propose a codebook of unitary precoders
derived from Grassmannian subspace packing for limited feed-

back systems. The codebook is known to both the transmitter
and receiver and for each channel realization, only the index
of the appropriate matrix (precoder) is sent back to the trans-
mitter. The precoder structure is originally proposed in [6] for
differential unitary space-time modulation (DUSTM) which
consists of a diagonal matrix and a rectangular sub-matrix of
the Discrete Fourier Transform (DFT) matrix. The diagonal
terms are some points on the unit circle in the complex plain
where their angles are defined by some integers that should
be optimized.

In this paper, when CSI is available at the transmitter,
we relax the precoder matrix from being unitary matrix to
a general structure matrix. We extend the precoder design
for all rate�1 STBCs. Considering the power constraint at
the transmitter, we maximize the received signal-to-noise
ratio (SNR) for each transmitted symbol to find the optimal
precoder. We show that any precoding for STBCs with rate�1
symbol per channel use (e.g. [5]) is not optimal. In fact, we
show that the optimal precoding for any STBCs with rate�1
symbol per channel use is reduced to transmit beamforming
of the transmit signals individually, by the weighting vector
equal to the corresponding right singular vector of the largest
singular value of the channel matrix. Due to the use of a
general matrix, the proposed precoding method outperforms
the unitary precoding proposed in [5] for OSTBCs. To show
this, we analytically derive the exact bit error rate (BER) of the
system and compare it with the performance of the previous
work. Finally we extend the results for limited feedback
systems. Simulation results show that our proposed precoding
method outperforms the previous limited feedback precoder
for OSTBCs [5].

II. SYSTEM MODEL

Consider a narrow-band, flat fading communication system
with Nt transmit and Nr receive antennas (MIMO(Nt, Nr))
where the channel is fixed at least for T symbol periods.
Each transmission takes T channel uses where the linear
transformation between the transmit and receive antennas can
be modeled as

X =
√

ρHFS + V (1)

where the matrix X ∈ CNr×T is the complex received matrix,
S ∈ CM×T (M � min (Nt, Nr, T )) is the transmitted matrix,
F ∈ CNt×M is the precoder matrix, V ∈ CNr×T is the additive
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noise matrix, H ∈ CNr×Nt is the channel matrix and ρ is
the total transmit power at each signaling interval. Entries of
H and V are independent and identically distributed (i.i.d.)
complex Gaussian random variables with zero mean and unit
variance, CN (0, 1).

For each transmission, according to the input information,
Q signals, {s1, . . . , sQ}, are chosen from a signal constellation
(for example pulse amplitude modulation (PAM) or quadratic
amplitude modulation(QAM)) with unit average energy. The
transmit STBC matrix S with rate Q/T symbol per channel
use is constructed to be sent over M virtual transmit antennas.
S satisfies the power constraint E {tr (S∗S)} = 1 where E{·},
tr(·) and ∗ denote the expectation, matrix trace and Hermitian
respectively. S is precoded by F and sent over Nt transmit
antennas. To ensure that the transmit power on each signaling
interval is ρ, the precoder matrix should satisfy the following
power constraint:

tr (F∗F) = 1 (2)

It can be shown [7] that for any rate�1 STBC, the optimum
performance is obtained when the code is orthogonal, i.e.
S∗S = (1/T )IT. Considering HF as the equivalent channel,
the virtual MIMO(Nr,M ) system is decoupled to the follow-
ing single-input single-output (SISO) model:

s̃q =
√

ρ

(
T

Q
‖HF‖2

)
sq + zq , q = 1, . . . , Q (3)

where zq is the additive white noise with CN
(
0, T

Q‖HF‖2
)

distribution and ‖·‖ denotes the Frobenius norm. Based on (3),
the optimum achievable SNR (γ) for each transmitted symbol
is

γ =
(

T

Q
‖HF‖2

)
ρ. (4)

III. OPTIMAL PRECODER

To find the optimal precoder, we assume that the space-
time code used by the system is orthogonal. We will show
that this assumption does not affect the final results. In fact,
we maximize the SNR of the OSTBCs as the optimal SNR
bound for general STBCs.

It is obvious from (4) that the optimal precoder is obtained
when ‖HF‖2 is maximized. Consider the ordered singular
value decomposition (svd) of H and F as follows:

H = VLΣV∗
R , F = ULAU∗

R

where VL ∈ UNr×Nr , VR ∈ UNt×Nt , UL ∈ UNt×M ,
UR ∈ UM×M are all unitary matrices, i.e. U∗U = I, and
Σ ∈ RNr×Nt

+ and A ∈ RM×M
+ are diagonal matrices with

decreasing order, i.e. σi > σi+1. Since VL and UR are both
square unitary matrices, therefore

‖HF‖2 = ‖VLΣV∗
RULAU∗

R‖2

= ‖ΣV∗
RULA‖2 (5)

It has been shown [4]-[5] that the optimum UL is V̄R which
is a unitary matrix constructed by the first M columns of VR.

Thus,

‖HF‖2 = ‖ΣV∗
RV̄RA‖2

= ‖Σ
[

IM

0(Nt−M)×M

]
A‖2

= ‖Σ̄A‖2

where Σ̄ is the ordered diagonal matrix constructed by the
first M largest singular values of the channel matrix H.
Therefore, the optimal precoder is obtained from the following
optimization problem:

max
ai,i=1,...,M

M∑
i=1

a2
i σ

2
i (6)

subject to the power constraint in (2) or equivalently

M∑
i=1

a2
i = 1. (7)

It can be easily shown that the optimum answer to the
maximization problem in (6) subject to (7), is a1 = 1 and
ai = 0 for i = 2, . . . ,M .

It means that the optimal precoder sends all signals
{s1, . . . , sQ} over the maximum singular value of the channel
matrix with the full transmit power. Therefore, with optimal
precoding, independent of the original STBC used by the
system, the transmission rate is increased to one symbol per
channel use (T = Q = M = 1) and the performance of the
system is equivalent to the performance of the corresponding
OSTBC. Finally, by optimal precoding, the equivalent system
model for each transmit signal is

s̃ =
√

ρ σ2
1 s + z (8)

where z ∼ CN (0, σ2
1), σ1 = σmax(H), and consequently

γopt = ρ σ2
1 . This system model shows that the optimal

precoding for any space-time code with rate�1 is reduced
to transmit beamforming of the transmit signals individually,
by the weighting vector equal to the corresponding singular
vector of the largest singular value of the channel matrix H.

IV. EXACT BER ANALYSIS FOR OPTIMAL PRECODING

Performance analysis of transmit beamforming has been
studied in literature before. In [8], the cumulative density
function (cdf) and probability density function (pdf) of σ2

1 is
presented in the form of generalized hypergeometric functions,
generalized Marcum Q-functions, modified Bessel functions
and incomplete gamma functions, when the channel gains are
correlated CN (µ, σ2). They use the cdf and pdf to calculate
the outage probability in a system with transmit beamforming.
In [9] and [10], the BER analysis is presented only for BPSK
modulation while the expressions in [9] are in the form of
hypergeometric functions with matrix arguments. In general,
hypergeometric functions are very slow converging functions
and therefore numerically hard to compute [9].

In this section, we present the exact closed-form expression
of the BER performance for the system model in (8) when the
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transmitted signal, s, is selected from a PAM or QAM con-
stellation and a Gray code mapping is used. Our expressions
do not involve with hypergeometric functions and consist of
some summations with finite indexes.

A. Exact BER expression for PAM and QAM signallings

Assume the transmitted signal s in (8) is selected from a
I×J rectangular QAM constellation with unit average energy
and a Gray code mapping. I and J denote the number of in-
phase and quadrature amplitudes respectively. We define

PI|σ2
1
(k) =

(1−2−k)I−1∑
i=0

βI(k, i)Q
(√

η(i)σ2
1

)
(9)

where

βI(k, i) = (−1)�
i·2k−1

I � ·
(

2
I

)(
2k−1 −

⌊
i · 2k−1

I
+

1
2

⌋)
,

Q(x) =
1√
2π

∫ ∞

x

e−
u2
2 du , η(i) =

6(2i + 1)2ρ
I2 + J2 − 2

and �x� denotes the largest integer to x. Now the average BER
of the I ×J rectangular QAM conditioned on σ2

1 is expressed
as [11]

Pb|σ2
1

=
1

log2(I · J)


log2 I∑

k=1

PI|σ2
1
(k) +

log2 J∑
l=1

PJ|σ2
1
(l)


 .

(10)
Note that (10) reduces to the BER of a BPSK signal for I = 2
and J = 1, an I-array PAM signal for J = 1, and an M -
array square QAM signal for I = J =

√
M . Thus, the exact

BER is obtained by averaging (10) over the distribution of
σ2

1 . Interested readers may refer to [11] for more details on
the derivation of (9) and (10).

B. Distribution of the largest singular value of H

Assume m = min(Nt, Nr), n = max(Nt, Nr) and the
Hermitian matrix W ∈ Cm×m defined as

W =

{
H∗H if Nt � Nr

HH∗ if Nt > Nr

.

The nonzero singular values of H are corresponded to the
eigenvalues of W by λi = σ2

i , i = 1, . . . , m. Therefore, λ1 =
λmax(W) and σ2

1 have the same distribution.
When H is a complex random matrix of i.i.d. elements with

CN (0, 1) distribution, W is called a complex Wishart random
matrix. By defining

K−1
m,n =

m∏
k=1

Γ(m − k + 1)Γ(n − k + 1),

the joint pdf of the ordered eigenvalues λ1 � · · · � λm of W
is expressed as [12]

fλ(λ) = Km,n e−
∑

λi

∏
λn−m

i

∏
i<j

(λi − λj)
2 (11)

where Γ(·) is the Gamma function and the unlabelled sum
and products run from i = 1 to m. By integrating (11) over
λ2, . . . , λm, the pdf of λ1 is expressed as

fλ1(λ1) = Km,n e−λ1λn−m
1 ×∫ λ1

0

e−λ2λn−m
2 (λ1 − λ2)2

∫ λ2

0

· · ·
∫ λm−1

0

e−λmλn−m
m

m−1∏
k=1

(λk − λm)2 dλm · · · dλ2

(12)

Calculation of (12) is a complicated process in general, but
for MIMO systems is tractable since m is relatively small.

1) Case m = 1: In this case, W is only a random
number with central Chi-square distribution, variance one and
n degrees of freedom, χ(1, n). Since K1,n = Γ(n), from (11)
it is easy to see that

fλ1(λ1) =
1

Γ(n)
e−λ1λn−1

1 . (13)

2) Case m = 2: In this case K2,n = Γ(n)Γ(n − 1). From
(12) we have

fλ1(λ1) =
1

Γ(n)Γ(n − 1)
e−λ1λn−2

1 ×∫ λ1

0

e−λ2λn−2
2 (λ2

1 − 2λ1λ2 + λ2
2) dλ2 .

Since [13]∫ x

0

1
Γ(n)

un−1e−u du = 1 − e−x
n−1∑
i=0

xi

i!

and by some manipulations we obtain

fλ1(λ1) =
1

Γ(n)
e−λ1λn−2

1

[
n(n − 1) − 2(n − 1)λ1 + λ2

1

]
−

1
Γ(n)

e−2λ1λn−2
1

[
n(n − 1) + (n − 1)(n − 2)λ1

+
n∑

i=2

(
n(n − 1)
i(i − 1)

− 2
(n − 1)
(i − 1)

+ 1
)

λi
1

i!

]
. (14)

3) Case m > 2: In general, it is easy to show that

fλ1(λ1) =
m∑

t=1

e−tλ1Gt(λ1) (15)

where

Gt(λ1) =
Dt∑
j=0

at,j λj
1 (16)

denotes the corresponding polynomial coefficient of e−tλ1 and
Dt is the degree of Gt(·). Although there is no straightforward
expression or algorithm, symbolic mathematic programs (e.g.
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Maple, Mathematica) can be used to easily solve (12) and
compute at,j’s. For instance, for m = 3 and n = 4 we have:

G1(λ1) = 6λ1 − 8λ2
1 +

9
2
λ3

1 − λ4
1 +

1
12

λ5
1

G2(λ1) = −12λ1 + 4λ2
1 + λ3

1 − λ4
1 −

1
12

λ5
1 −

1
12

λ6
1

G3(λ1) = 6λ1 + 4λ2
1 +

1
2
λ3

1

C. Averaging Pb|λ1 over the distribution of λ1

From (9) and (10), it is clear that to find Pb = Eλ1{Pb|λ1},
we need to calculate PI(k) = Eλ1{PI|λ1(k)} (note that λ1 =
σ2

1). From (9) we have

PI(k) =
(1−2−k)I−1∑

i=0

βI(k, i)Eλ1

{
Q

(√
η(i)λ1

)}
Therefore, by considering the general distribution of λ1 (15)
and (16), we obtain

PI(k) =
(1−2−k)I−1∑

i=0

βI(k, i)
m∑

t=1

Dt∑
j=0

at,j

·
∫ ∞

0

λj
1 e−tλ1Q

(√
η(i)λ1

)
dλ (17)

It is well known that [14]∫ ∞

0

tL xL−1 e−txQ
(√

αx
)

dx = φ(L, t, α)

where

φ(L, t, α) = Γ(L)
(

1 − µ

2

)L L−1∑
r=0

(
L − 1 + r

r

)(
1 + µ

2

)r

and

µ =
√

α

2t + α
.

Finally, from (17) we obtain

PI(k) =
(1−2−k)I−1∑

i=0

βI(k, i)
m∑

t=1

Dt∑
j=0

at,j

tj+1
φ (j + 1, t, η(i))

(18)

and consequently the average BER of the I × J rectangular
QAM signal transmitted through the system model in (8) is
expressed as

Pb =
1

log2(I · J)


log2 I∑

k=1

PI(k) +
log2 J∑
l=1

PJ(l)


 . (19)

Fig. 1 shows the BER performance of the optimal precoding
for a MIMO system with Nt = 4 transmit antennas and Nr =
1, 2 and 3 receive antennas. The transmit signal is selected
from a 16-QAM constellation. In this figure, solid lines are the
results from (19) and the symbolic points are from simulations
which verify our analytical results.
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Fig. 1. Bit error rate of optimal precoding. Solid lines are analytic results
and symbolic points are from simulation.

V. LIMITED FEEDBACK PRECODING

In Section III, we showed that the optimal precoding for
any arbitrary STBC with rate� 1 symbol per channel use,
is to send the signals one-by-one through the sub-channel
corresponding to the largest singular value of the channel
matrix. To this end, we require the v̄R at the transmitter for
precoding where v̄R is the right eigenvector of the channel
matrix H, corresponding to its largest singular value. There-
fore, the optimal precoding is applicable when the transmitter
knows the channel (or v̄R ) perfectly. This happens in slow
fading environments or when the system uses time division
duplex (TDD) technique for transmission where the transmitter
and receiver use the same channel.

In some applications, while complete CSI is not available
for the transmitter, a limited–bandwidth feedback channel
is available to send partial CSI from the receiver to the
transmitter. For this limited feedback systems, we use a set
(codebook) F of L = 2Nb precoders that are pre-known to
the transmitter (Nb is the number of feedback bits). For a
given H, the only feedback parameter is I which is the index
of fI ∈ F , obtained from the following optimization problem:

fI = arg max
fi∈F

‖Hfi‖2 (20)

Note that since M = 1 for optimal precoder, therefore
σ2

max(Hfi) = ‖Hfi‖2.
The remaining problem is to generate the codebook F . The

members of F should be designed based on the following
distortion minimization problem [5]:

EH

{
min
f∈F

(‖Hv̄R‖2 − ‖Hf‖2
)}

(21)

It has been shown [5] that the minimization in (21) leads to
the maximization of the chordal distance between any pairs
of precoders in F . The chordal distance is defined as

dchord(fi, fj) =
1√
2
‖fif∗i − fjf∗j ‖ , 1 � i �= j � L. (22)
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Similar to the codebook structure proposed in [6] that can
be very easily implemented, we construct the codebook F as
follows

F = {e,Φe, . . . ,ΦL−1e}

where e = 1√
Nt

[

Nt︷ ︸︸ ︷
1, . . . , 1 ]t and Φ is a diagonal matrix given

by

Φ = diag{ej 2π
L u1 , ej 2π

L u2 , · · · , ej 2π
L uNt }

where 0 � ui < L are the design parameters and should be
optimized as follows

u = arg max
{ui}

min
1�l<L

dchord(e,Φle)

where u = [u1, u2, . . . , uNt
]t.

In [6], it is assumed that {ui}’s are integer and then
by exhaustive or random search, the optimum u is found.
Recently in [15], the authors relax {ui}’s to be real numbers
and use the genetic algorithm to find the optimum solution.
They show that the precoders obtained from genetic algorithm
outperform the precoders extracted from exhaustive search.

Fig. 2 shows the optimal and limited feedback BER perfor-
mance of a MIMO system with Nt = 4 transmit antennas and
Nr = 2 receive antennas when Nb = 5 bits of information
is feedbacked or equivalently the codebook F consists of 32
precoders. For comparison, the BER of Alamouti’s code [16]
with no precoding (Nt = M = 2) and the optimal and limited
feedback BER of precoded Alamouti code (M = 2) [5] are
included. The transmitted signals are chosen from 16-QAM
constellation. Fig. 2 clearly shows that the precoding with
M = 1 is the optimum case when the STBC code rate is less
or equal to one symbol per channel use. This figure shows that
even limited feedback precoding with M = 1 outperforms the
optimal precoding for Alamouti’s code proposed in [5].

VI. CONCLUSION

In this paper, we introduced a new method for precoding
of STBCs with rate� 1 symbol per channel use. We relaxed
the precoder matrix to be a general matrix rather than a
unitary one. We showed that the optimal precoding for rate� 1
STBCs is to send the data symbols one-by-one through the
sub-channel corresponding to the largest singular value of the
channel matrix. By employing the singular value distribution
of the channel matrix, the exact BER performance of the
optimal precoder was derived. Genetic–algorithm–based lim-
ited feedback precoder design was developed. Our simulation
results show that our proposed precoding outperforms the
previous precoding method for OSTBCs in [5].
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