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Abstract. When issuing user-specific queries, users often have a vaguely
defined information need. Skyline queries identify the most “interesting”
objects for users’ incomplete preferences, which provides users with intu-
itive query formulation mechanism. However, the applicability of this
intuitive query paradigm suffers from a severe drawback. Incomplete
preferences on domain values can often lead to impractical skyline re-
sult sizes. In particular, this challenge is more critical over categorical
domains. This paper addresses this challenge by developing an iterative
elicitation framework. While user preferences are collected at each iter-
ation, the framework aims to both minimize user interaction and max-
imize skyline reduction. The framework allows to identify a reasonably
small and focused skyline set, while keeping the query formulation still
intuitive for users. All that is needed is answering a few well-chosen ques-
tions. We perform extensive experiments to validate the benefits of our
strategy and prove that a few questions are enough to acquire a desired
manageable skyline set.

1 Introduction

The information need of users in today’s databases and information systems has
evolved from SQL-style exact match queries to answering vague queries. To ad-
dress this need, new query paradigms like top-k retrieval or skyline queries have
been recently studied. These paradigms assess the grades of match in all data-
base objects with respect to a given query, and only identify the best matching
results.

More specifically, the strengths of two paradigms are complementary. Top-k
retrieval returns only the best k objects based on a user-specific utility function
combining scores with respect to all queried attributes. While top-k queries al-
ways provide a focused and manageable set, it is difficult for end-users to define
an exact utility function for their individual preferences. In contrast, skyline
queries do not require users to define a utility function, and simply identify “in-
teresting” objects that are not “dominated” by any other objects. While this
intuitive query formulation has been a key strength of skyline queries, it is im-
possible for users to control the size of skyline. In particular, when the number of
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Table 1. Toy dataset for Example 1

ID type color brand

o1 convertible red Ferrari

o2 sedan red Ferrari

o3 convertible blue Ferrari

o4 sedan blue Toyota

o5 roadster blue Honda

queried attributes increases, the size of skyline also increases exponentially, i.e.,
curse of dimensionality. This challenge is especially more critical over categorical
domains.

This paper deals with skyline queries over categorical domains in which the
challenge of skyline queries is more critical. Although both paradigms have been
mostly applied for numerical domains in the previous literatures (e.g., minimiz-
ing price or distance), these can also be used for categorical domains as well (e.g.,
maximizing a preference on favorite color or brand). To illustrate, Example 1
describes how skyline queries work in categorical domains.

Example 1. Consider a customer shopping for an ideal car with respect to three
attributes type, color and brand. Suppose that a user gives specific preferences
that he/she prefers ‘convertible’ to ‘sedan’ for type, ‘red’ to ‘blue’ for color, and
‘Ferrari’ to ‘Honda’ for brand. Based on these preferences, we identify car o1 as
one of the best choices, i.e., a skyline object, from the toy dataset in Table 1.
This means o1 is superior to o2 and o3 in all dimensions, i.e., o1 dominates o2
and o3. However, the user preferences are not sufficient to determine a preference
between o1 and o4, or o1 and o5, i.e., o1 is incomparable with o4 or o5.

As Example 1 illustrates, in practical scenarios, the amount of preference in-
formation available to query processing is usually limited, because specifying all
relationships requires considerable effort for the user. Missing relationships are
thus interpreted as indifference, or equal importance for the user. As a result,
skyline query results will typically include all the incomparable objects, due to
incomplete user preferences.

This paper studies the problem of eliciting preferences enough to acquire
a concise skyline result set. In particular, we use the cardinality of different
domain values with respect to the database instance (and a priori knowledge on
user preferences, if exists). This makes users elicit more useful preferences with
minimal user efforts. Ideally, such an elicitation process achieves both minimizing
user interaction and maximizing skyline reduction. We thus aim at developing
and evaluating an optimal elicitation process. In summary, this paper has the
following contributions:

– We study preference elicitation in numerical and categorical domains and
design an optimal elicitation strategy (Section 2)
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– We develop Framework MaxPrune to identify skylines with reasonable size
by implementing our optimal elicitation strategy. (Section 3)

– We validate effectiveness and efficiency of Framework MaxPrune. (Section 4)

This paper is organized as follows. Section 2 presents preliminaries on qualita-
tive preference and elicitation model over categorical domains. Section 3 proposes
a framework adopting optimal elicitation method in the given problem setting,
and Section 4 validates Framework MaxPrune. Section 5 briefly reviews existing
efforts related to our work. Finally, Section 6 discusses our future work.

2 Preliminaries

This section states preliminaries to help understand our framework. Let D be
a data space with finite n attributes {D1, D2, . . . , Dn}, where Di denotes a
set of possible domain values on ith attribute. Specifically, let D be possible
alternatives, i.e., D := D1 × D2 × . . . × Dn, and A be actual alternatives as
a subset of D, i.e., A ⊆ D. An alternative a = (a1, . . . , an) is contained in a
product set A := A1 × A2 × . . . × An. A weak order is denoted as � on the set
of alternatives A, by setting a � b if and only if a is equal to or more preferred
than b. The asymmetric part and symmetric part of weak order, denoted as �
and ∼, correspond to strict order and indifference, respectively.

2.1 Qualitative Preferences

We first discuss strengthes and weaknesses of qualitative preferences. Specifically,
given alternatives a and b, it clearly requires much less cognitive effort to tell
which one among a � b, b � a, and a ∼ b holds. This ignores any numerical
values and solely considers an induced weak order. However, for large D and A,
it seems hopeless to ask the user about his/her preferences in a qualitative way,
since there are

(|D|
2

)
pairs to be compared. An exception is a numerical attribute

domains with an inherent order based on which users can express preference
straightforwardly, e.g., ascending order of “price”.

For practical aspects, we introduce ceteris paribus semantics which provides an
intuitive meaning [24,13]. For instance, saying “red �color blue” means “The user
prefers red cars to blue ones, if everything else is equal”. Since this is exactly the
meaning of just saying “red cars are better than blue ones”, stating preferences in
terms of attribute value comparisons is highly intuitive. Based on ceteris paribus
semantics, preference monotonicity between alternatives can be constructed over
multi-attribute domains. This construction rule exploits Pareto aggregation, a
relational operator that maps a sequence of weak orders into a binary relation
on a set. Specifically, let W1, . . . , Wk be weak orders on set S := S1 × . . . × Sk.
The operator of Pareto aggregation, denoted as Par, is defined as follows: For
a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ S, it is (a, b) ∈ Par(W1, . . . , Wk) if and only
if aiWibi is true, for any 1 ≤ i ≤ k. It is easy to show that Par(W1, . . . , Wk) is
derived from weak orders on S.
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Returning to the problem of reconstructing a total order � on A from attribute
orders �1, . . . , �n, it is known that Par(�1, . . . , �n) is the best reconstruction
of �. We have the following reasons: First, Par(�1, . . . , �n) is always a subset
of �. Second, for any superset of Par(�1, . . . , �n), there exists a utility function
inducting weak orders �1, . . . , �n. We thus will base our model on �1, . . . , �n

and Par(�1, . . . , �n). For the sake of representation, we simplify Par(�1, . . . , �n)
into �Par. Also, The symmetric part and asymmetric part of �Par correspond
to �Par and ∼Par, respectively.

The final questions to be answered are then: What are the “best” alternatives?
What alternatives should be returned by the database system when the attribute
orders �i are known? To answer these questions, we adopt skyline queries lever-
aging Pareto aggregation, and define the “best” actual alternatives to be exactly
those that are not strictly dominated in A with respect to Par(�1, . . . , �n). More
formally, we define dominance and skyline, respectively. (These definitions are
consistent with the definition of skyline used in all the existing skyline work.)

Definition 1. An alternative a ∈ A strictly dominates an alternative b ∈ A if
and only if ai �i bi, for any index i, and there is an index j such that aj �j bj.

Definition 2. An alternative a ∈ A is a skyline object if and only if there is no
alternative b ∈ A that strictly dominates a.

2.2 Preference Elicitation

The term preference elicitation refers to the task of collecting information about
the user’s preferences. In the existing skyline work, it is usually assumed that
�1, . . . , �n are complete total orders for preference elicitation. However, this
assumption is unrealistic over categorical domains.

We first discuss how to model preference elicitation for collecting more “in-
formative” user preferences. In particular, we model preference elicitation as an
iterative process in which the user answers which one among a �i b, b �i a, and
a ∼i b holds, where a, b ∈ Di. User preferences are consistently collected for t

iterations, which is essentially binary relations �(t)
1 , . . . , �(t)

n , where index t ∈ N

refers to the time index of elicitation iteration. As preference elicitation accu-
mulates monotonically, preference knowledge also accumulates in any elicitation
step, i.e., for any i and t, the relation �(t+1)

i is a superset of �(t)
i . Since we know

that the “true” orders �i are reflexive and transitive, an elicited order �(t)
i also

must have these properties. We formally state an elicitation step at time t. (For
simplicity, we denote the existing derived notations as follows: �(t)

i , ∼(t)
i , �(t)

Par,
�(t)

Par, and ∼(t)
Par.)

Definition 3. Given weak orders �(t)
1 , . . . , �(t)

n , an elicitation step from time t
to time t + 1 is the following procedure:

(1) Choose attribute values a, b ∈ Di on ith attribute, where neither a �(t)
i b nor

b �(t)
i a is true.

(2) Ask the user which one among a �i b, b �i a, and a ∼i b is true.
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(3) If a �i b is true, define �(t+1)
i to be the transitive closure of �(t)

i ∪
�
(a, b)

�
.

If b �i a is true, define �(t+1)
i to be the transitive closure of �(t)

i ∪
�
(b, a)

�
.

If a ∼i b is true, define �(t+1)
i to be the transitive closure of �(t)

i ∪
�
(a, b), (b, a)

�
.

The elicitation process starts at time t = 0 with weak orders �(0)
i , which can

contain initial information on user’s preferences. That is, it can contain domain-
specific preferences shared by all users, or personalized preference information
based on a user profile.

2.3 Optimal Elicitation Method

The hardest part of preference elicitation is asking the user the right questions.
Some questions may result in a large decrease of skyline size when stepping from
SKY

(
A, �(t)

Par

)
to SKY

(
A, �(t+1)

Par

)
, while other questions might not. For example,

we know nothing about the user’s preferences, but we know A to contain roughly
as many blue cars as red cars. It thus would be a reasonable strategy to ask the
first question about the preference relationship between attribute values “red”
and “blue”. If the user is not indifferent between both, the answer to this question
can be expected to result in a large decrease of skyline size (assuming a good-
natured data distribution in A). Based on this property, we formally state an
elicitation method as follows:

Definition 4. An elicitation method E is a deterministic algorithm that takes
initial attribute weak orders �(0)

1 , . . . , �(0)
n as input and performs a sequence of

elicitation steps until time t is reached with �(t)
1 , . . . , �(t)

n being weak orders.

Clearly, the optimality of elicitation method depends on the distribution of ac-
tual alternatives A and prior knowledge of typical user preferences. To represent
these notions, we introduce the following notations: Let Wi be the set of all
possible weak orders on Di. Also, let W := W1 × · · ·×Wn, and let Q be a prob-
ability distribution on W , where Q = (Q1, . . . , Qn) denotes a random variable
having distribution Q. We use distribution Q to model prior knowledge of user
preferences. (We will later discuss different elicitation decisions based on the
distribution Q in details.) Up to now, we assumed both the elicitation method
E and the user’s preferences w ∈ W used for answering the elicitation questions
to be fixed. To allow more precision in further definitions, we extend notations
by making these assumptions explicit. We thus denotes notation �(t)

Par at time t

as �(t)
E,w,Par

Our goal finds a minimal sequence of questions with the smallest number t for∣
∣
∣SKY

(
A, �E,w,Par

)∣∣
∣ ≤ k by stepsE,w(k), where k means user-specific retrieval

size. This setting is similar to that of top-k retrieval except for two major differ-
ences: First, while a result set in top-k retrieval is assumed to contain the “best”
k objects, in our setting a set of all the optimal objects (of size at most k) is
required to be returned. Second, in top-k retrieval the user has to be proactive
and state her/his preferences in advance. In our case, the active part is played by
an internal framework. We formally state the optimality of elicitation method.
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Definition 5. Denote the class of all elicitation methods that take an additional
N-valued input argument by C. For any E ∈ C, write E(k) to denote the behavior
of E when given input k. An elicitation method E ∈ C is optimal (with respect
to D, A, and Q) if and only if

E

(
stepsE(k),Q(k)

)
≤ E

(
stepsF (k),Q(k)

)

holds, for k ∈ N, ∀F ∈ C, and the number of questions E(·).

The idea underlying this definition is that an optimal elicitation method should
ask questions in a way such that the number of expected questions needed to
reach the target skyline size is as small as possible. Note that the definition of
optimality is relative to D, A, and Q. In practice, we are looking for a general
optimal algorithm that work well regardless of the choice of D, A, and Q. This
corresponds to a greedy algorithmic approach, where in any elicitation step, the
most desirable question leading to the best possible reduction in skyline size will
be chosen. Without loss of generality, the next definition presents a step-optimal
elicitation method, which also guarantees global optimality. (We will discuss this
property in Section 3.)

Definition 6. A greedy elicitation method E is called step-optimal (with respect
to D, A, and Q) if and only if, when given attribute preorders �(t)

1 , . . . , �(t)
n for

input, the algorithm E maximizes the term

∣
∣
∣SKY

(
A, �(t)

Par

)∣∣
∣ − E

(∣
∣
∣SKY

(
A, �(t+1)

F,Q′,Par

)∣∣
∣
)

over all greedy elicitation methods F (given the same input), with Q′ =
(Q′

1, . . . , Q
′
n) as a random variable that is distributed according to Q conditioned

on the fact that Q′
i is a superset of �(t)

i , for any i.

3 Optimal Elicitation Framework

In this section, we implement an optimal elicitation framework (discussed in
Section 2.3) in a restricted problem setting. In particular, our framework aims
at maximizing expected pruning cardinality (Definition 5) at each elicitation step,
based on which the greedy elicitation strategy has global optimality.

3.1 Problem Setting

At each iteration, our framework shows a sample pair1 (a, b) such that a, b ∈ Di,
and prune out objects that are never qualified as skyline objects. This means,
when a user selects a over b , every object o with non-preferred attribute value
1 Note the sample corresponds to a question on some pair a and b, asking which among

a � b, b � a, or a ∼ b holds.
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b can be pruned, if there exists another object o′ having the same values as o
in all dimensions except for o′(Di) = a. We formally state this pruning process
as follows. (Due to the space limitation, we leave all the proofs to our technical
report [20].)

Lemma 1 (Pruning Process). For user preference a �i b on a, b ∈ Di, we
safely prune out object o such that o(Di) = b, if there exists object o′ such that
o′(Di) = a and ∀j(1 ≤ j ≤ n, j 	= i) : o(Dj) = o′(Dj).

Note that, we assume that there always exists such dominating object o′, which
simplifies the pruning process. We argue that this assumption is often true in
real-life data, as highly preferred values often have high frequency as well (as
Zipf’s law similarly observed, i.e., the frequency of any word is roughly inversely
proportional to its rank in the number of frequency). This observation implies
that a dominating (or highly preferred/ranking) object o′ is highly likely to exist
as in our assumption.

3.2 Framework MaxPrune

We first derive a sample (a, b) maximizing pruning cardinality PC(·) at the tth

step. Specifically, pruning cardinality PC(·) means the number of pruned objects
by Lemma 1. Let si denote a sample at the ith step. Note that PC(·) is conditional
for prior elicitation– For a set of skyline objects after an elicitation of the tth

step, denoted as SKY(A, �(t)
st,w,Par), PC(st) of sample st = (a, b) depends on prior

samples, s1, . . . , st−1. In particular, when a user answers his/her preference on
st, w = a �(t)

i b, we remove objects with value b from a set of current skyline
objects SKY(A, �(t−1)

Par ). PC(st, w| SKY(A, �(t−1)
Par )) is thus denoted as

∣∣
∣SKY

(
A, �(t−1)

Par

)∣∣
∣ −

∣∣
∣SKY

(
A, �(t)

st,w,Par

)∣∣
∣.

Observe that PC(st, w| SKY(A, �(t−1)
Par )) is maximized when the number of ob-

jects in SKY(A, �(t−1)
Par ) with less preferred attribute value is maximal. We for-

mally state this property as follows:

Lemma 2 (Maximizing Pruning Cardinality). For user preference w =
a �(t)

i b of st = (a, b) on a, b ∈ Di, PC(st, w| SKY(A, �(t−1)
Par )) is maximized,

when the number of objects with less preferred value b is maximal.

Based on Lemma 2, we discuss how to decide a sample maximizing pruning
cardinality. In fact, since pruning cardinality depends on user preference w, we
develop a probabilistic framework with the following two scenarios, with and
without a-priori knowledge based on distribution Q for user preference.

– Without a-priori knowledge on Q: With no a-priori knowledge, we as-
sume that a probability that each value in a sample pair is selected is equal
chances, i.e., 1

2 . That is, this probability implies that the user equally prefers
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either one among the two values. Distribution Q for user preferences thus
follows uniform distribution on W . For instance, when showing a sample
(‘Ferrari’, ‘Honda’) for ‘brand ’, we assume that a user prefers each value
with 1

2 probability.
– With a-priori knowledge on Q: On the other hand, we may have a-priori

knowledge on user preferences, e.g., such as query frequency from prior query
logs. Based on this we can model user preferences more realistically. The
distribution Q for user preferences shows different distributions according to
W . For instance, when a relative preference probability between ‘Ferrari’ and
‘Honda’ is pf and ph respectively, the probability of choosing ‘Ferrari’ over
‘Honda’ can be computed as pf/(pf + ph), while that of choosing ‘Honda’ is
ph/(pf + ph)2.

For ease of understanding, we first develop our framework assuming no a-
priori knowledge, which is later extended to consider also a-priori knowledge.
In particular, we develop the notion of expected pruning cardinality based on
the probabilistic assumption that the selected probability of the two values is
equivalent.

Theorem 1 (Expected Pruning Cardinality). Assuming no a priori knowl-
edge, expected pruning cardinality EPC(st| SKY(A, �(t−1)

Par )) is maximized, when
presenting sample st = (a, b) in which the number of objects with value a and b

in SKY(A, �(t−1)
Par ) is maximal.

Theorem 1 can be straightforwardly extended to consider the case of a-priori
knowledge. Let the relative preferences of a and b in st = (a, b) be pa and pb,
respectively. In that case, expected pruning cardinality EPC(st| SKY(A, �(t−1)

Par ))
is maximized, when choosing sample st = (a, b) which maximizes pb × ca and
pa × cb in which ca and cb is the cardinality of objects with value a and b in
SKY(A, �(t−1)

Par ).
Based on Theorem 1, we derive the global optimality of greedy elicitation at

each step. Specifically, when choosing a sample with the highest expected pruning
cardinality at each step, global pruning cardinality also guarantees optimality.
To prove this property, we first show properties on the order of samples selected
from each step in Lemma 3 and Lemma 4. Based on these properties, we can
show that global pruning optimality in Theorem 2 can be derived from selecting
maximal expected pruning cardinality at each step.

Lemma 3 (Exchange of adjacent samples). Given a sequence of samples
S = (s1, ..., st), changing the order of an arbitrary pair of adjacent samples has
no effect on the sum of the expected pruning cardinality.

Lemma 4 (Ordering Independence). Changing the order of a given se-
quence of samples S = (s1, ..., st) has no effect on the sum of the expected pruning
cardinality.
2 Assume that this relative preference is independent regardless of other relative

preferences.
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Table 2. Illustration of MaxPrune

type card. color card. brand card.

convertible 40 red 60 Ferrari 35

sedan 30 blue 40 Honda 35

roadster 20 - - Toyota 30

sports car 10 - - - -

Theorem 2 (Global Pruning Optimality). Choosing si (1 ≤ i ≤ t) maxi-
mizing expected pruning cardinality at each iteration leads to optimal sampling
S = {s1, ..., st}, which maximizes overall expected pruning cardinality SUM(S) =∣
∣
∣SKY

(
A, �(0)

Par

)∣∣
∣ −

∣
∣
∣SKY

(
A, �(t)

Par

)∣∣
∣.

We now develop our framework based on Theorem 2. We name our framework
as MaxPrune, where overall expected pruning cardinality is maximized by iden-
tifying an optimal sample at each steep. We briefly describe how Framework
MaxPrune works. As an initial state, all current skyline objects are initialized
as the entire set of data instances. Framework MaxPrune then follows the fol-
lowing three steps– First, it selects a sample with the highest expected pruning
cardinality from all current skyline objects. Second, it collects a user preference
with respect to the given sample, based on which it prunes all dominated ob-
jects having a non-preferred value from the current skyline. Lastly, it updates
the cardinalities in each dimension. The processes are repeated until the number
of skyline objects is reduced to at most k.

To illustrate, we describe how Framework MaxPrune works over our example
dataset in Table 2. First, we consider samples with the highest expected pruning
cardinality, e.g., ‘convertible’ and ‘sedan’ for type, ‘red’ and ‘blue’ for color, and
‘Ferrari’ and ‘Honda’ for brand. Among these, we decide to obtain a preference
elicitation on ‘red’ and ‘blue’ first, since its expected pruning cardinality (The-
orem 1) is the highest, e.g., 1

2 (60 + 40). Once the elicitation result is obtained,
for instance ‘red’ �brand ‘blue’, for each object with ‘red’, we can prune out ob-
jects with ‘blue’ sharing the same remaining attribute values. For the remaining
objects, we then update the cardinality of attribute values for each attribute.
Framework MaxPrune continues this iterative process until the size of skylines
is reduced to k or less. We formally state Framework MaxPrune as follows:

1. Initialize SKY(A, �(0)
Par) as the entire data set.

2. Select the most effective sample as a pair of values with the highest expected
pruning cardinality (Theorem 1).

3. Elicit preference information on the sample, and according to the user pref-
erence, prune out “dominated” objects from current skylines. (Lemma 1)

4. Update the cardinality of attribute values for each attributes.

5. Repeat step 2, 3, and 4 until | SKY(A, �(t)
Par)| ≤ k.
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Table 3. Parameters for Experimental Setup

Parameter Value : Default
Database Size N 100K
Dimensionality n [3,7] : 4
Number of distinct values m [3,7] : 4
Retrieval Size k(%) [1,20] : 5
Skewness of Data z [0,2] : 1
Skewness of Query Frequency z′ [0,2] : 1
Kendall τ distance d [0,1] : 0.5

4 Experimental Evaluation

This section validates the effectiveness and efficiency of frameworks MaxPrune
and MaxPruneQF 3 using various synthetic datasets. Our experiments were car-
ried out on a Intel(R) Xeon(TM) machine with 3.20 GHz dual processors and
1GB RAM running LINUX. Our algorithms were implemented in C++ language.

4.1 Data and Preference Generation

For the purpose of extensive evaluations, we generate synthetic datasets by vary-
ing experiment settings, including the data size N , the number of distinct attribute
values m, and the user-specified retrieval size k% (of N), as described in Table 3.
Especially, we randomly generate m distinct attribute values and query frequency
for each dimension, according to Zipfian and Uniform distributions, varying the
skewness from z = 0 (uniform) to z = 2. Note that we generate datasets to fol-
low the assumption described in Section 3.1, i.e., there exists at least one object
for every attribute value combination. Specifically, we first populate one object for
every alternative, and then generate N objects according to Zipfian distribution.

We then generate user preferences and interactions to compare our frameworks
MaxPrune and MaxPruneQF with and without a priori knowledge, e.g., query fre-
quency Q. In particular, we randomly generate query frequency for each dimension
based on Zipfian distribution with the skewness z′ = [0, 2]. We then follow user
interactions on Q, to prefer values in the descending order of query frequency for
eachdimension.Note, if this descending order of query frequency coincideswith the
descending order of cardinality, i.e., when two orders are perfectly correlated, the
behavior ofMaxPrune and MaxPruneQF will be identical.We thus observe their be-
havior over the varying correlations. In particular, we adopt the Kendall τ distance
d = 1

n

∑n
1 Ki(Wi, Oi) [15], a widely-adopted metrics to quantify the correlation

between two orderings Wi and Oi. Ki(Wi, Oi) is defined as follows:

Ki(Wi, Oi) =

∑
(p,q) |Wi(p) > Wi(q) ∧ Oi(p) < Oi(q)|

m(m − 1)/2

3 Framework MaxPruneQF extends MaxPrune to use prior knowledge, i.e., realistic
distribution of user preferences, as discussed in Section 3.
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Fig. 1. Number of iterations over varying parameters

where (p, q) denotes a possible pair of values and Wi(p) and Oi(p) represent each
position in the respective ordering.

4.2 Experimental Results

In this section, we report our experiment results validating the pruning effec-
tiveness and efficiency of our proposed frameworks. Table 3 describes experiment
settings used. In particular, we adopt the following performance metrics:

– Effectiveness: We use the number of iterations until we identify the k best
results, averaged over 100 runs. We report relative performance against that
of Framework Random which randomly selects a sample to present.

– Efficiency: We measure the runtime performance of our framework at each
iteration, compared with that of Framework Random.

Pruning Effectiveness: Figure 1 reports the effectiveness of our frameworks
over varying parameters. Note, the y−axis represents the relative number of
iterations of our proposed frameworks, compared to that of Random.

Ratio =
# iterations with our framework

# iterations with Random
.

First, Figure 1(a) reports our results over varying retrieval size k%. Observe
that, Framework MaxPrune and MaxPruneQF , by minimizing user interactions,
significantly outperforms Framework Random– For instance, when k = 20%,
Framework MaxPrune saves 28% and 38% from Framework Random and Frame-
work MaxPruneQF respectively. Our frameworks similarly dominate the baseline
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Fig. 2. Number of remaining skyline tuples

approach over m and n, which can be observed in Figure 1(b) and (c) respec-
tively. Also, observe that our frameworks scale more gracefully compared to
Random. That is, the performance gaps increase as m and n increase– For in-
stance, when m = 7 in Figure 1(b), MaxPrune and MaxPruneQF save about 27%
and 32% from Random respectively, while they save 10% and 18% when m = 3.
Similarly, when n = 7 in Figure 1(c), this saving reaches up to 32% and 41%
respectively.

Second, Figure 1(d) validates the effectiveness over varying correlation distance
(quantified as a Kendall τ distance d discussed above). As already analyzed above,
MaxPrune and MaxPruneQF behave identically when d = 1, which can be ob-
served from Figure 1(d). As d increases, the performance gap increases, which
reaches up to 55% when d = 0.5. Third, Figure 1(e) and (f) validate the effective-
ness with respect to the skewness of datasets and query frequency, respectively.
Observe from the figures that, the relative effectiveness of our proposed frame-
works increase as the skewness increases, especially for MaxPruneQF . For instance,
when z = 2 and z′ = 2 Framework MaxPruneQF saves 43% and 32% from that of
Random, respectively. In summary, we validate that our framework significantly
outperforms Random in datasets with high cardinality and dimensionality, espe-
cially in the presence of high skewness in both data and query frequency.

Runtime Performance: Figure 2(a) validates the efficiency of our frameworks
by reporting an average response time for each iteration over the default setting
(Table 3). Note that y-axis is log-scaled. As the figure reports, the response time
of our frameworks is comparable to Random at all iterations, which is impressive
considering Random blindly picks a random sample. Further, our framework
starts to outperform Random, as the number of remaining skyline objects rapidly
decreases over the iterations. For instance, after the 4th iteration, our framework
begins to deal with a much smaller sample pool and outperforms Random from
this point on. Similarly, Figure 2 reports results for extended parameters with
m = 6 and n = 6.
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5 Related Work

We summarize related work on skyline computation and the representation of
user preferences.

Skyline computation: Skyline queries have been first studied as maximal vec-
tors in [19]. Later, Börzsönyi at el. [5] introduced skylines queries in database ap-
plications. Next, Tan et al. [23] proposed progressive skyline computation using
auxiliary structures. Kossmann et al. [18] improves (D&C) algorithm, and pro-
posed nearest neighbor (NN) algorithm. Similarly, Papadias et al. [22] developed
branch and bound skyline (BBS) algorithm which achieves I/O optimal prop-
erty. Meanwhile Chomicki et al. [10] developed sort-filter-skyline (SFS) algorithm
leveraging pre-sorting lists, and Godfrey et al. [12] proposed linear elimination-
sort for skyline (LESS) algorithm with attractive average-case asymptotic com-
plexity. Recently, there have been active research efforts to address “curse of
dimensionality” problem of skyline queries [6,7,21] using inherent properties of
skylines such as skyline frequency, k-dominant skylines, and k-representative sky-
lines. All these efforts, however, focused only on numerical domains with inherent
orders, and did not consider skyline queries over categorical domains.

Preference foundation: For representing a variety of user preferences, Kießling
[16,17] proposed a framework using binary preference relations. Similarly,
Chomicki [9,10] developed a preference model, which consists of a basic pref-
erence winnow operator and its combinators. These preference models refer that
qualitative models are more “intuitive” than quantitative models [11,14], which
is consistent with our view. Meanwhile, Balke et al. [3,4,1,2] studied how to use
incomplete preference information for skyline queries: In particular, [3,4] studied
how to identify skylines over user-specified partial orders. More recently, [1] ex-
tended the notion of equivalence to include the inter-attribute equivalence, and
[2] discussed a sophisticated user interface in the cooperative process of identi-
fying partial orders. Meanwhile, Chen and Pu [8] summarizes methods eliciting
user preferences. However, this framework does not address how to collect and
leverage user-specific preferences. Our work helps users to elicit the most infor-
mative partial information on their preferences.

6 Future Work

We plan to extend our work in several ways. First, we can extend our framework
into general environment combining numerical and categorical domains. Our
technical report [20] discusses this extension in more details. Second, we want
to develop new pruning heuristics that are less restricted than the one used in
MaxPrune yet computationally feasible, to support sparse data sets. Lastly, we
plan to explore how elicitation methods can make use of more complicated a-
priori knowledge on the preference distribution (e.g., dependencies in probability
between attributes or attribute values).
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2. Balke, W.-T., Güntzer, U., Lofi, C.: User interaction support for incremental re-
finement of preference-based queries. In: RCIS (2007)
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vol. 3896, pp. 478–495. Springer, Heidelberg (2006)

7. Chan, C.-Y., Jagadish, H., Tan, K.-L., Tung, A.K., Zhang, Z.: Finding k-dominant
skyline in high dimensional space. In: SIGMOD (2006)

8. Chen, L., Pu, P.: Survey of preference elicitation methods. In: EPFL Technical
Report (2004)

9. Chomicki, J.: Querying with intrinsic preferences. In: Jensen, C.S., Jeffery, K.G.,
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