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Reliability assessment is an important issue in reliability engineering. Classical reliability-estimating methods are based on precise
(also called “crisp”) lifetime data. It is usually assumed that the observed lifetime data take precise real numbers. Due to the lack,
inaccuracy, and fluctuation of data, some collected lifetime data may be in the form of fuzzy values. Therefore, it is necessary to
characterize estimation methods along a continuum that ranges from crisp to fuzzy. Bayesian methods have proved to be very useful
for small data samples. There is limited literature on Bayesian reliability estimation based on fuzzy reliability data. Most reported
studies in this area deal with single-parameter lifetime distributions. This article, however, proposes a new method for determining
the membership functions of parameter estimates and the reliability functions of multi-parameter lifetime distributions. Also, a
preventive maintenance policy is formulated using a fuzzy reliability framework. An artificial neural network is used for parameter
estimation, reliability prediction, and evaluation of the expected maintenance cost. A genetic algorithm is used to find the boundary
values for the membership function of the estimate of interest at any cut level. The long-run fuzzy expected replacement cost per
unit time is calculated under different preventive maintenance policies, and the optimal preventive replacement interval is determined
using the fuzzy decision making (ordering) methods. The effectiveness of the proposed method is illustrated using the two-parameter
Weibull distribution. Finally, a preventive maintenance strategy for a power generator is presented to illustrate the proposed models
and algorithms.

Keywords: Preventive maintenance, T-age replacement, Bayesian estimation, fuzzy lifetime data, fuzzy reliability, fuzzy parameter
estimation, reliability assessment, fuzzy value ranking, neural network, genetic algorithm

1. Introduction

Many of the analysis methods used to estimate the reli-
ability of a product depend on access to a large amount
of lifetime data. In these methods, the parameters of the
lifetime distribution are assumed to be constant but un-
known, and sample statistics are used as the estimators of
these parameters. This requires a relatively large amount
of lifetime data. Such methods have been used in a va-
riety of fields and have solved many practical problems
successfully. However, with the progress of modern indus-
trial technologies, product development cycles have become
shorter and shorter while the lifetime of products has be-
come longer and longer. As a result, it is time-consuming,
costly, and sometimes impossible to obtain sufficient life-
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time observations (Tanaka et al., 1983; Park and Kim, 1990;
Kenarangui, 1991). In many engineering applications, there
may be very few available data points, at times only one or
two observations. In such cases, it is impossible to estimate
lifetime distribution parameters using conventional statis-
tical analysis methods. The Bayesian approach, in which
the parameters of the lifetime distribution are considered
to be random variables themselves, has been developed to
overcome this difficulty. This enables an engineer to sys-
tematically combine the subjective data based on experts’
knowledge and intuitive judgment with the objective data
from observations, thereby obtaining a balanced estimate,
and that estimate is updated as more information and data
become available. Therefore, it can be used even when there
are only a few lifetime data points. There is extensive lit-
erature on classic Bayesian reliability analysis and many
practical problems have been solved successfully using this
method (Mahadevan et al., 2001; Akama, 2002).
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Optimal preventive maintenance policies 735

In engineering applications, randomness is not the only
type of uncertainty that can exist in a system. Fuzziness can
be found in numerous practical situations and means that
exact observations on a system are impossible (Fruehwirth-
Schnatter, 1992; Cai, 1996). In this situation lifetime distri-
butions need to be defined using fuzzy concepts. Tanaka et
al. (1983), Onisawa (1988), Singer (1990), Cai et al. (1991,
1993, 1995), Capelle and Kerre (1995), Huang (1995, 1996,
1997), Cai (1996), Utkin and Gurov (1996), Cremona and
Gao (1997), Huang et al. (2004), and Huang et al. (2006)
have all attempted to define reliability in terms of fuzzy set
theory. The applications of fuzzy set theory to reliability
include fault tree analysis, failure modes and effects analy-
sis, optimization of probist reliability, life testing, structural
reliability, software reliability, human reliability, and pro-
fust, posbist, and posfust reliability theories (Cai, 1996). In
addition, fuzzy multi-state system reliability theory, an ex-
tension of fuzzy binary state reliability theory, has started
to receive attention (Ding and Lisnianski, 2008; Liu et al.,
2008; Liu and Huang, 2010).

Fuzzy Bayesian reliability assessment, in which fuzzy pa-
rameters are assumed to be fuzzy random variables with
fuzzy prior distributions, was developed by Wu (2004a,
2004b, 2004c). Chou and Yuan (1987), Viertl and Gurker
(1995), and Viert (1997) have also used fuzzy set theory in
Bayesian reliability analysis. Their research, however, has
only focused on single-parameter distributions such as the
exponential, binomial, and Poisson distributions. In Huang
et al. (2006), we proposed a numerical method that was able
to determine the membership functions of parameters and
the reliability functions of multi-parameter distributions
using a fuzzy Bayesian approach. The membership func-
tions were determined using neural networks and a genetic
algorithm. This article extends that work in that we discuss
the creation of a preventive maintenance strategy using a
fuzzy Bayesian reliability assessment framework with the
aim of investigating the impact of fuzzy lifetime data on
maintenance decision making. Popova and Wu (1999) ap-
plied fuzzy set theory to renewal processes and formulated
the long-run fuzzy average reward per unit time and the
T-age replacement policy using a fuzzy cost structure. Mo-
tivated by their work, we provide an expression for the
long-run fuzzy expected replacement cost per unit time us-
ing a fuzzy Bayesian reliability function, which is computed
based on fuzzy lifetime data. Neural networks are imple-
mented to approximate the complicated multiple integral
functions, and a genetic algorithm is used as a global opti-
mization tool to find the maximum and minimum bound-
aries of the membership functions for the fuzzy reliability
indices at arbitrary cut levels. Two fuzzy decision methods
are introduced to determine the optimal preventive main-
tenance strategy in a fuzzy environment.

The remainder of this article is organized as follows.
Section 2 briefly introduces the Bayesian approach. Sec-
tion 3 proposes Bayesian parameter estimation for multi-
parameter lifetime distributions and presents a detailed dis-
cussion for the case of a Weibull distribution. Preventive

maintenance policy is defined and the long-run expected
replacement cost per unit time is formulated in Section 4.
The definitions of a fuzzy number and fuzzy lifetime data
are introduced in Section 5. Section 6 discusses Bayesian
parameter estimation for multi-parameter distributions us-
ing fuzzy data, neural networks, and genetic algorithms.
Section 7 presents the two adopted fuzzy decision meth-
ods. A case study of a power generator is given in Section
8 to illustrate the effectiveness of the proposed models and
algorithms. Conclusions are drawn in Section 9.

2. The Bayesian approach

For a continuous random variable, X, (X ∼ f ( · |θ ), θ ∈ �)
with continuous parameter space, �; a priori density, π( · ),
of the parameter θ ; and observation space, MX, of X; Bayes’
theorem for exact data observations, x1, x2, . . . , xn, is

π (θ |x1, x2, . . . , xn )

= l (θ ; x1, x2, . . . , xn) π (θ)∫
�

l (θ ; x1, x2, . . . , xn) π (θ) dθ
, ∀θ ∈ � (1)

where l(θ ; x1, x2, . . . , xn) is the likelihood of the observa-
tions with a given parameter, θ . When the lifetime dataset
is complete with exact observations, the likelihood function
is given by

l (θ ; x1, x2, . . . , xn) =
n∏

i=1

f (xi |θ ), ∀θ ∈ �. (2)

Mainly because of its use of subjective prior beliefs, the
use of Bayes’ theorem for statistical inference has been con-
troversial within the field of statistics for many years. It is
important to note that the prior distribution cannot be
specified arbitrarily, because the prior distribution has a
large impact especially when the amount of observed data
is limited. Several effective methods have been proposed to
determine a priori distributions, such as non-informative
priors, conjugate priors, Jeffreys’ priors, empirical Bayesian
priors, maximum entropy priors, bootstrap priors, and
random weight priors (Berger, 1985; Press, 1989; Smith,
1998).

3. Bayesian parameter estimation for multi-parameter
lifetime distributions

In this section, we summarize the literature on Bayesian
parameter estimation and Bayesian reliability prediction
using precise lifetime data. In Section 6, we will discuss
our proposed method for Bayesian parameter estimation,
Bayesian reliability prediction, and the expected mainte-
nance cost evaluation using fuzzy lifetime data.

Given the lifetime probability density function (pdf),
f (x |θ ); the sample data, D = (x1, x2, . . . , xn); the
parameter space, �; and a priori distribution, π (θ), one
can determine the posterior distribution of parameter θ .
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736 Liu et al.

According to Bayes’ theorem, one has

π (θ |D )=π (θ |x1, x2, . . . , xn ) ∝ π (θ) l (θ ; x1, x2, . . . , xn) .

(3)
After the posterior distribution of the parameter, π (θ |D ),
is determined, reliability indices can be estimated. There are
two important indices in Bayesian reliability analysis. One
is the mathematical expectation of the estimated parameter
of the lifetime distribution:

θ̂ =
∫ +∞

−∞
π (θ |D )θdθ. (4)

The other is the updated reliability function:

R (t |D ) =
∫ ∞

t

∫
�

f (x |θ )π (θ |D ) dθdx. (5)

We will now summarize the detailed equations for updating
θ̂ and R(t|D) for a specific multi-parameter distribution,
namely, the two-parameter Weibull distribution (Huang
et al., 2006).

The pdf of the Weibull distribution with two parameters,
m and η, is written as

f (x|m, η) = m
η

(
x
η

)m−1

exp
(

−
(

x
η

)m)
,

0 < m, η < +∞. (6)

According to the non-informative method (Cremona and
Gao, 1997), the a priori distribution of the parameters of
the Weibull distribution is given by

π(m, η) ∝ 1
mη

. (7)

The likelihood function of the observations from the
Weibull distribution is

l(m, η; x1, x2, . . . , xn) =
(

1
η

)mn

mn
n∏

i=1

xm−1
i

× exp
(

−
(

1
η

)m

xm
i

)
. (8)

The joint posterior distribution of the parameters of the
Weibull distribution is

π (m, η|x1, x2, . . . , xn)

= (1/η)mn+1mn−1 ∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
∫ +∞

0

∫ +∞
0 (1/η)mn+1mn−1

∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dmdη

.

(9)

The marginal posteriori distributions of the parameters m
and η are, respectively, written as

π (m|D) =
∫ +∞

0
π (m, η)dη

=
∫ +∞

0 (1/η)mn+1mn−1 ∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dη∫ +∞

0

∫ +∞
0 (1/η)mn+1mn−1

∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dmdη

,

(10)

π (η|D) =
∫ +∞

0
π (m, η)dm

=
∫ +∞

0 (1/η)mn+1mn−1 ∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dm∫ +∞

0

∫ +∞
0 (1/η)mn+1mn−1

∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dmdη

.

(11)

The expected values of the parameters m and η are, respec-
tively, derived as

m̂ =
∫ +∞

0
π(m|D)mdm

=
∫ +∞

0 m
∫ +∞

0 (1/η)mn+1mn−1 ∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dηdm∫ +∞

0

∫ +∞
0 (1/η)mn+1mn−1

∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dmdη

,

(12)

η̂ =
∫ +∞

0
π(η|D)ηdη

=
∫ +∞

0 η
∫ +∞

0 (1/η)mn+1mn−1 ∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dmdη∫ +∞

0

∫ +∞
0 (1/η)mn+1mn−1

∏n
i=1 xm−1

i exp
(−(1/η)mxm

i

)
dmdη

.

(13)

The updated reliability function of the Weibull distribution
then becomes:

R(t|D) =
∫ +∞

t

∫ +∞
0

∫ +∞
0 xm−1

(
1
η

)mn+m+1
mn exp

(
−

(
1
η

)m
xm

)∏n
i=1 xm−1

i exp
(
−

(
1
η

)m
xm

i

)
dηdmdx

∫ +∞
0

∫ +∞
0

(
1
η

)mn+1
mn−1

∏n
i=1 xm−1

i exp
(
−

(
1
η

)m
xm

i

)
dηdm

,

(14)
and the other reliability indices, such as mean time to fail-
ure, failure rate function, and conditional survival function,
can be derived based on Equation (14).

4. Preventive maintenance policy

Systems suffer from deterioration with age and unexpected
damage after they are put into operation. Maintenance
is carried out to keep a system in or restore it to an ac-
ceptable operating condition for the fulfillment of service
requirements. A large number of reports in the literature
discuss maintenance policy, because multiple maintenance
actions are involved in the lifecycle of systems (Pham and
Wang, 1996; Cassady et al., 2001). A survey of mainte-
nance policy is given in Wang (2002). To study the impact
of fuzzy lifetime data on maintenance strategy optimiza-
tion, this article uses the preventive age replacement policy
(also known as “T-age replacement policy” in Popova and
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Optimal preventive maintenance policies 737

Wu (1999)) to demonstrate our proposed methodology, be-
cause it is simple and widely employed in industry (Wang,
2002).

Before formulation, some basic assumptions should be
noted.

1. cp is the cost of each preventive replacement, and c f
is the cost of each corrective (or failure) replacement.
Without loss of generality, we assume cf >>cp, since the
corrective maintenance is unplanned and often involves
additional cost, such as product loss and unplanned
transportation.

2. f (t) is the probability density function of the lifetime of
the system.

3. The maintenance policy is to perform a preventive re-
placement once the system has reached a specified age,
Tp, or carry out corrective replacement when failure oc-
curs within the preventive replacement interval.

4. The objective is to determine the optimal preventive
replacement age, T∗

p , of the system to minimize the long-
run expected total replacement cost per unit time.

Thus, two possible cycles of operations are involved: one
cycle determined by the system reaching its planned pre-
ventive replacement age, Tp, and the other determined by
the system ceasing to operate due to a failure occurring be-
fore the planned replacement time. The long-run expected
replacement cost per unit time, Cs (Tp), is

Cs(Tp) = Total expected replacement cost per cycle
Expected cycle length

= E(C(Tp))
E(L(Tp))

, (15)

where the total expected replacement cost per cycle is

E(C(Tp)) = cp R(Tp) + c f [1 − R(Tp)], (16)

and the expected cycle length is

E(L(Tp)) =
∫ Tp

0
t f (x)dx +

∫ ∞

Tp

Tp f (x)dx

= Tp R(Tp) +
∫ Tp

0
t f (t)dt =

∫ Tp

0
R(t)dt. (17)

Thus, we have:

Cs(Tp) = cp R(Tp) + cf [1 − R(Tp)]∫ Tp

0 R(t)dt
. (18)

According to Equations (14) and (17), the updated expected
cycle length using Bayesian estimation is integrated as

E(L(Tp)) =
∫ Tp

0
R(t|D)dt

=
∫ Tp

0

∫ +∞
t

∫ +∞
0

∫ +∞
0 xm−1

(
1
η

)mn+m+1
mn exp

(
−

(
1
η

)m
xm

)∏n
i=1 xm−1

i exp
(
−

(
1
η

)m
xm

i

)
dηdmdxdt

∫ +∞
0

∫ +∞
0

(
1
η

)mn+1
mn−1

∏n
i=1 xm−1

i exp
(
−

(
1
η

)m
xm

i

)
dηdm

, (19)

and R(Tp) in Equation (16) can be derived by setting t = Tp
in Equation (14).

As illustrated in Sections 3 and 4, though the lifetime
data are non-fuzzy, the equations for obtaining updated
estimates of the parameters, the reliability function of
the multi-parameter distribution, and the expected cycle
length are quite complicated. They involve multiple inte-
grals. Numerical methods can be used to evaluate these
equations.

5. Fuzzy lifetime data

In order to model fuzzy observed lifetime data, a general-
ization of real numbers is necessary. A lifetime observation
will be represented by a fuzzy number, x̃. A fuzzy number is
a subset, denoted by x̃, of the set of real numbers (denoted
by �) and is characterized by the so-called membership
function, µx̃ (·). Fuzzy numbers satisfy the following con-
straints (Zadeh, 1965, 1978).

1. µx̃ : � → [0, 1] is Borel-measurable.
2. ∃x0 ∈ � : µx̃(x0) = 1.

3. The so-called λ-cut level (0 < λ ≤ 1), defined as: Bλ(x̃) =
{x ∈ � : µx̃(x) ≥ λ}, are all closed intervals; i.e., Bλ(x̃) =
[aL

λ , bU
λ ], ∀λ ∈ (0, 1]. This means that the membership

function has to be a unimodal function with a maximum.
For example, a strictly concave function is a unimodal
function with a maximum.

According to the presented definition of a fuzzy number,
an exact (non-fuzzy) number can be treated as a special
case of a fuzzy number. For a non-fuzzy real observa-
tion, x0 ∈ �, the corresponding membership function is
µ{x0}(x0) = 1. For a non-fuzzy interval observation, [c, d],
the corresponding membership function is µ[c,d](x) = 1 for
c ≤ x ≤ d. For a fuzzy lifetime observation, the L-R (Left-
Right) type membership functions are commonly used
(Huang, 1995; Ding and Lisnianski, 2008; Ding et al., 2008;
Liu et al., 2008; Liu and Huang, 2010). The triangular and
trapezoidal membership functions are special cases of the
L-R type membership functions.

Given fuzzy lifetimes, x̃1, x̃2, . . . , x̃n, we have the
following corresponding membership functions,
µx̃1 (·), µx̃2 (·), . . . , µx̃n (·). We call x̃ = (x̃1, x̃2, . . . , x̃n)
a fuzzy sample or a fuzzy vector where each x̃i for
i = 1, 2, . . . , n can be considered as a realization of the
associated fuzzy number x̃. If the definition domain of x̃ is
M, then the definition domain of x̃ is Mn.
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738 Liu et al.

To the best of our knowledge, no study except Huang
et al. (2006) has been reported on estimating the parameters
or the reliability function of multi-parameter distributions
when the lifetime data are fuzzy values. In the following
section, we will introduce the approach proposed in Huang
et al. (2006) for this purpose.

6. Bayesian parameter estimation for multi-parameter
distributions using fuzzy data

Given fuzzy lifetime data points, x̃1, x̃2, . . . , x̃n,
with their corresponding membership functions,
µx̃1 (·), µx̃2 (·), . . . , µx̃n (·), the Bayesian point estimates
of the parameters and the reliability function are fuzzy
numbers where the fuzziness depends on the fuzziness of
the n observed lifetime data points.

Consider a general fuzzy function, f̃(x̃1,x̃2, . . . ,x̃n), for
which the membership functions of the n fuzzy arguments
are known. We need to find the membership function of
f̃(x̃1,x̃2, . . . ,x̃n). When the explicit membership function of
f̃(x̃1,x̃2, . . . ,x̃n) is difficult to determine directly using the

extension principle of fuzzy set theory (Zadeh, 1965, 1978),
we proposed the following approach to generating the
membership function numerically in Huang et al. (2006).
The approach guarantees that the membership function of
f̃(x̃1,x̃2, . . . ,x̃n) is unimodal with a maximum.

Step 1. Let λ change from zero to one with an increment
size that satisfies the precision requirement.

Step 2. For each fixed value of λ selected in Step 1, find the
maximum value of the function, f (x1, x2, . . . , xn),
such that µx̃i (x) ≥ λ for all i = 1, 2, . . . , n. Denote
this maximum value by fR(λ).

Step 3. For the same fixed value, λ, used in Step 2, find the
minimum value of the function f (x1, x2, . . . , xn)
such that µx̃i (x) ≥ λ for all i = 1, 2, . . . , n. Denote
this minimum value by fL(λ).

Because of the unimodality requirement of a member-
ship function, one has

µ f̃ ( f ) ≥ λ for fL (λ) ≤ f ≤ fR (λ) ,

where fL(λ) and fR(λ) are, respectively, the lower and upper
boundary values of the function, f̃ , at cut level, λ.

Through the iterative procedure given above, we are
able to numerically obtain the membership function of
f̃ (x̃1, x̃2, . . . , x̃n). Reducing the step size of λ increases the
accuracy of the membership function of f̃ at the expense
of increased computation time.

From the equations given in Section 3, we can see that
multiple integrals are required for Bayesian parameter es-
timation, reliability prediction for non-fuzzy lifetime data
following multi-parameter distributions, and estimation of
the expected cycle length. Evaluation of such multiple in-
tegrals is time-consuming, and yet we have to evaluate the
membership functions of the parameters and the reliability

function of such multi-parameter distributions using fuzzy
lifetime data. It is obvious that determination of the mem-
bership functions of the estimated parameters and the
reliability function requires repeated evaluation of such in-
tegrals. A more efficient method of evaluating these inte-
grals is needed.

Artificial neural networks have been successfully used in
many areas of science and engineering (Aourid and Do,
1995), as well as the reliability field (Liu et al., 2003; Rajpal
et al., 2006). Cybenko (1989) and Aourid and Do (1995)
pointed out that the finite linear combination of sigmoidal
functions used in neural networks can approximate any
continuous function of n variables with support in the unit
hypercube to any degree of accuracy. Liu et al. (2003) used
neural networks to approximate a complicated utility func-
tion involving multiple integrals for optimal design of a
continuous-state system. As a result, we propose to use
a neural network to approximate f (x1,x2, . . . ,xn). A feed-
forward neural network with a single hidden layer is used.
The back-propagation learning scheme is adopted.

To approximate the functions for point estimates of pa-
rameters, we need to approximate Equations (12) and (13).
From these equations, we can see that input data for the
neural network are (x1, x2, . . . , xn) and the output data for
the neural network are m and η. Because the parameters
may take real values, the transfer function of the output
layer is chosen to be a linear function.

To find the Bayesian reliability function, we need to ap-
proximate Equation (14). We can see that the input data of
this neural network is (t, x1, x2, . . . , xn). The single output
is the value of reliability, R. Since the reliability is between
zero and one, we choose the transfer function of the output
layer to be the log-sigmoid function:

logsig (n) = 1
1 + exp (−n)

. (20)

The transfer function used in the hidden layer is the tan-
sigmoid function:

tansig (n) = 1 − exp (−2n)
1 + exp (−2n)

. (21)

To evaluate the long-run expected replacement cost per
unit time according to Equation (18), we need to approx-
imate Equation (19) by a neural network using the input
data (Tp, x1, x2, . . . , xn), and a linear function is chosen as
the transfer function of the output layer.

Although function f has been approximated by a neural
network, we still need to follow the proposed procedure to
find the maximum and the minimum values of f subject to
constraints for each selected λ value. This is a constrained
optimization problem. Because the objective function is
simulated by a neural network, we cannot use the gradi-
ent projection method or the feasible-direction method to
search for the optimal solution. In addition, it is difficult
to find the global optimal solution by using direct search
methods. As a result, we use a genetic algorithm to solve
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Optimal preventive maintenance policies 739

the optimization problem in the process of determining the
membership function of f̃ , since it has a good global opti-
mization capability (Leuitin, 2006; Tian et al., 2008).

To find the upper bound for the fuzzy reliability at
cut level λ, we need to solve the following optimization
problem:

max R (t |x1, x2, . . . , xn ) ,

subject to: µx̃i (x) ≥ λ, i = 1, 2, . . . , n
0 ≤ λ ≤ 1,

,

(22)

where µx̃i (x) is the membership function of lifetime data
point, x̃i . The maximum value obtained for the reliability
is denoted by Rmax. To find the lower bound for the fuzzy
reliability at cut level λ, we need to solve the following
optimization problem:

min R (t |x1, x2, . . . , xn ) ,

subject to: µx̃i (x) ≥ λ, i = 1, 2, . . . , n
0 ≤ λ ≤ 1,

,

(23)

and the minimum reliability value obtained is denoted by
Rmin.

To find the upper bound of the fuzzy estimate of the
parameter, θ̃ , at cut level λ, we need to solve the following
optimization problem:

max θ̂ (x1, x2, . . . , xn) ,

subject to: µx̃i (x) ≥ λ, i = 1, 2, . . . , n
0 ≤ λ ≤ 1,

,

(24)

and the maximum value obtained for θ̃ is denoted by θmax.
To find the lower bound for the fuzzy estimate of the

parameter, θ̃ , at cut level λ, we need to solve the following
optimization problem:

min θ̂ (x1, x2, . . . , xn)
subject to: µx̃i (x) ≥ λ, i = 1, 2, . . . , n

0 ≤ λ ≤ 1,

,

(25)

and the minimum value obtained for θ̃ is denoted by θmin.
For the Weibull distribution, θ denotes m or η.

To find the upper bound for the long-run fuzzy expected
replacement cost per unit time, C̃s(Tp), at cut level λ, we
need to solve the following optimization problem:

max Cs
(
Tp, x1, x2, . . . , xn

)
subject to: µx̃i (x) ≥ λ, i = 1, 2, . . . , n

0 ≤ λ ≤ 1,

,

(26)

and the maximum value obtained for C̃s(Tp) is denoted by
Cs(Tp)max.

To find the lower bound of the long-run fuzzy expected
replacement cost per unit time, C̃s

(
Tp

)
, at cut level λ, we

need to solve the following optimization problem:

min Cs
(
Tp, x1, x2, . . . , xn

)
,

subject to: µx̃i (x) ≥ λ, i = 1, 2, . . . , n
0 ≤ λ ≤ 1,

,

(27)

and the minimum value obtained for C̃s(Tp) is denoted by
Cs(Tp)min.

The implementation of the genetic algorithm involves
the following steps:

1. Representation: A binary vector (or real-coded vector)
is used as a chromosome to represent the specific real-
izations of the n fuzzy lifetimes and the time instant.
The length of the chromosome depends on the domain
of the variables and the required precision. An initial
population of solutions is created.

2. Fitness function: The fitness function is used to mea-
sure the solutions in terms of their fitness. The objective
function (for maximization problems) or the reciprocal
of the objective function (for minimization problems) is
taken as the fitness function.

3. Crossover: The probability of crossover is selected based
on the fitness of chromosomes. If the fitness is greater, the
chance of being selected is greater. One-point crossover
is used in our study.

4. Mutation: The probability of mutation is initialized at
the beginning. Mutation alters one or more genes with
the probability equal to the probability of mutation. The
method used for mutation is random point mutation.
Mutation of a binary string is the process of changing
one of the genes between zero and one (or its feasible
range for real-coded genetic algorithms).

5. Selection: The expanded population is composed of
chromosomes generated through crossover and muta-
tion as well as the original population of chromosomes.
The chromosomes with higher fitness values are selected
as the parent generation in the next iteration of the
algorithm.

6. Stopping criteria: The maximum number of iterations
and the change in population fitness value are used in
combination to determine when to stop the optimization
process.

7. Fuzzy decision making

There are two fuzzy decision-making methods introduced
in this section to determine the optimal solution in the fuzzy
environment.

7.1. Method I: fuzzy number distance

This method was first introduced by Murakami et al. (1983)
and updated and extended by Cheng (1998). It ranks fuzzy
numbers by the distance from the origin to the centroid
point of fuzzy alternative Ã.

Let x̄ denote the coordinate on the horizontal axis cor-
responding to the centroid of Ã and let ȳ denote such co-
ordinate on the vertical axis. A trapezoid fuzzy number,
Ã = [a, b, c, d], with its membership function, µÃ, given
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740 Liu et al.

by

µÃ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − a
b − a

, a ≤ x ≤ b,

1, b ≤ x ≤ c,
x − d
c − d

, c ≤ x ≤ d,

0, otherwise

(28)

and let µL
Ã
(x) = µÃ(x)(x ∈ [a, b]) and µR

Ã
(x) =

µÃ(x)(x ∈ [c, d]). The inverse functions of µL
Ã
(x)

and µR
Ã

(x) are written as: gL
Ã

= a + (b − a)µÃ and

gR
λ = d + (c − d)µÃ. Thus, the centroid point (x̄, ȳ) of Ã

is defined as

x̄ =
∫ b

a xµL
Ã
dx + ∫ c

b xdx + ∫ d
c xµR

Ã
dx∫ b

a µL
Ã
dx + ∫ c

b 1dx + ∫ d
c µR

Ã
dx

, (29)

ȳ =
∫ 1

0

(
µÃgL

Ã

)
dµÃ + ∫ 1

0

(
µÃgR

Ã

)
dµÃ∫ 1

0 gL
Ã
dµÃ + ∫ 1

0 gR
Ã

dµÃ

. (30)

The distance index between the centroid point (x̄, ȳ) and
the origin is defined as

R(Ã) =
√

(x̄)2 + (ȳ)2
, (31)

and the ranking of the fuzzy alternatives follows Definition
1 according to the distance index.

Definition 1.

1. If R(Ã) < R(B̃), then Ã < B̃.
2. If R(Ã) = R(B̃), then Ã = B̃.
3. If R(Ã) > R(B̃), then Ã > B̃.

Thus, a better decision can be made under the fuzzy
environment, and this method can rank several alternatives
simultaneously.

7.2. Method II: the Liou-Wang method (Liou and Wang,
1992)

More than two alternatives can be ranked simultaneously
by this method, and an optimism index, β, is used to capture
the optimistic attitude of the decision maker.

For a fuzzy number Ã, the interval at the λ-cut level
is denoted by Ãλ = [AL

λ , AU
λ ]; the method defines the left

integral value of Ã as

IL(Ã) =
∫ 1

0
AL

λ dλ, (32)

and the right integral value as

IR(Ã) =
∫ 1

0
AU

λ dλ. (33)

Thus, the total integral value of the fuzzy number, Ã, is

Iβ(Ã) = β IR(Ã) + (1 − β)IL(Ã), (34)

where β(β ∈ [0, 1]) is an optimism parameter selected by
the decision maker; for example, β = 0.5 reflects a neutral
attitude.

According to the total integral value, Iβ(Ã), a fuzzy de-
cision can be ordered by following Definition 2.

Definition 2.

1. If Iβ(Ã) < Iβ(B̃), then Ã < B̃.
2. If Iβ(Ã) = Iβ(B̃), then Ã = B̃.
3. If Iβ(Ã) > Iβ(B̃), then Ã > B̃.

Following these two ranking methods, the optimal pre-
ventive replacement policy can be determined by ranking
the long-run fuzzy expected replacement cost per unit time.

8. Illustrative example

To demonstrate our proposed method, the case of a power
generator is presented in this section. The lifetime distri-
bution considering the fuzzy lifetime data is analyzed first,
and then the optimal preventive age replacement policy is
determined.

8.1. Lifetime distribution analysis

The lifetime of the power generator is modeled by a two-
parameter Weibull distribution. The pdf of the Weibull dis-
tribution is given in Equation (6). Suppose that we have
obtained five fuzzy failure data points, x̃1, x̃2, . . . , x̃5, with
membership function given respectively as

µx̃1 (x) =
{

(x − 3.2)/0.3, 3.2 ≤ x ≤ 3.5,

(3.8 − x)/0.3, 3.5 < x ≤ 3.8.

µx̃2 (x) =
{

(x − 3.7)/0.3, 3.7 ≤ x ≤ 4.0,

(4.2 − x)/0.2, 4.0 < x ≤ 4.2.

µx̃3 (x) =
{

(x − 4.2)/0.3, 4.2 ≤ x ≤ 4.5,

(4.8 − x)/0.3, 4.5 < x ≤ 4.8.

µx̃4 (x) =
{

(x − 4.6)/0.2, 4.6 ≤ x ≤ 4.8,

(5.0 − x)/0.2, 4.8 < x ≤ 5.0.

µx̃5 (x) =
{

(x − 5.0)/0.2, 5.0 ≤ x ≤ 5.2,

(5.4 − x)/0.2, 5.2 < x ≤ 5.4.

where the unit time is a year.
To estimate the parameter m the transfer function of the

output layer of the neural network was selected to be a
linear function. With Equation (12), we obtained 40 train-
ing data points. Other parameter values for the used neural
network were

number of hidden nodes = 10;
number of input nodes = 5;
learning rate = 0.01;
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Optimal preventive maintenance policies 741

acceptable training error = 0.000 001;
training epochs = 5000.

The program was developed in Matlab. Through train-
ing we obtained the interconnection weights and the bias
weights.

Then the genetic algorithm was used to determine the
membership function of the fuzzy parameter estimation, ˜̂m.
The real-coded genetic algorithm approach was adopted,
and we used the following parameter values for the genetic
algorithm:

length of chromosome = 5; size of population = 80; fitness
function: the parameter value when it is to be maximized
and the reciprocal of the parameter value when it is to be
minimized; probability of crossover = 0.6; probability of
mutation = 0.05; iteration epochs = 500.

Using the genetic algorithm, the parameter estimates at
any cut level can be calculated. The membership function of
the fuzzy parameter Bayesian estimate, ˜̂m, can be obtained
by connecting these estimates with different membership
function values, as shown in Fig. 1.

The output layer transfer function of the neural network
model for estimation of the parameter η was selected to be
a linear function. Using Equation (13), we also obtained
40 data points for training the neural network. The other
parameter values for training the neural networks were the
same as those in the neural network for estimating param-
eter m. Through training, we obtained all the interconnec-
tion weights and the bias weights.

The genetic algorithm was then used to determine the
membership function of the fuzzy parameter estimation, ˜̂η.
The parameter values for the genetic algorithm in this case
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Fig. 1. Membership function of the parameter ˜̂m.
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Fig. 2. Membership function of the parameter ˜̂η.

for ˜̂η were the same as those used for the parameter ˜̂m. The
fitness function was determined in the same manner.

Using the genetic algorithm, the parameter estimate at
any cut level can be calculated. The membership function
of the fuzzy parameter Bayesian estimation, ˜̂η, can be ob-
tained by connecting these estimates with different degrees
of membership, as illustrated in Fig. 2.

Using Equation (14), we calculated the reliability func-
tion at time t using precise data, x1, x2, . . . , xn. This way,
we could also obtain a training data set for the neural net-
work. The parameter values used in our training of this
neural network for the reliability function were

number of samples = 60; number of input nodes = 6; num-
ber of hidden nodes = 12; learning rate = 0.02; acceptable
training error = 0.000 001; training epochs = 5000.

Through training, we obtained the interconnection
weights and the bias weights of the neural network.

The genetic algorithm was used to determine the mem-
bership function of fuzzy reliability, R̃(t|D̃). The following
parameter values for the genetic algorithm were used:

length of chromosome = 5; size of population = 80; fit-
ness function: the reliability function when it is to be
maximized and the reciprocal of the reliability function
when it is to be minimized; probability of crossover =
0.6; probability of mutation = 0.05; iteration epochs =
500.

Using the genetic algorithm, we also calculated the relia-
bility values at time point t using different cut level values.
Connecting these reliability values with different member-
ship function values at the same time point, t, as plotted in
Fig. 3, makes it possible to obtain the membership function
for estimating fuzzy Bayesian reliability. Figure 3 illustrates
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Fig. 3. Reliability at different λ cut levels.

a single curve for the crisp case where λ = 1, two dash-dot
curves as the boundaries of the fuzzy value under the con-
dition λ = 0, and two dot curves for the case λ = 0.5.

The membership function of the reliability at the time
point of 4 years is shown in Fig. 4.

8.2. Fuzzy analysis of the long-run expected
replacement cost

It is assumed that the preventive replacement activity is
performed on the power generator at fixed time inter-
vals, Tp, and that the corresponding maintenance costs for
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Fig. 4. Membership function of reliability at t = 4.0 years.
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Fig. 5. The long-run fuzzy expected replacement cost per unit
time at different discrete Tp values.

different actions are cf = $100 × 103 and cp = $30 × 103,
respectively.

Randomly generating some preventive replacement in-
terval values, Tp, makes it possible to calculate the updated
expected cycle length, E(L[Tp]), using precise failure data
and the complex multiple integrals as presented in Equa-
tion (19). This gives us a set of training data for the neural
network of:

number of samples = 60; number of input nodes = 6; num-
ber of hidden nodes = 14; learning rate = 0.02; acceptable
training error = 0.000 001; training epochs = 5000.

The long-run expected replacement cost per unit time,
Cs(Tp), can be obtained through Equation (18). Actually, we
used two trained neural networks to approximate the R(Tp)
and E(L[Tp]) in Equation (18), respectively. The member-
ship of the long-run fuzzy expected replacement cost per
unit time for different preventive replacement intervals, Tp,
was estimated at any cut level through the genetic algo-
rithm. The parameters for the genetic algorithm were

length of chromosome = 5; size of population = 80; fitness
function: the long-run expected replacement cost per unit
time when it is to be maximized and the reciprocal of the
long-run expected replacement cost per unit time when
it is to be minimized; probability of crossover = 0.6;
probability of mutation = 0.05; iteration epochs = 800.

Using the genetic algorithm, the membership function
of long-run expected replacement cost per unit time un-
der different preventive intervals was obtained, as were
the membership functions of estimated parameter and
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Optimal preventive maintenance policies 743

Table 1. Fuzzy decision comparison using method I

Preventive replacement interval (years)

3.0 3.5 4.0

x̄C̃s
11.068 10.958 12.508

ȳC̃s
0.4573 0.4624 0.4661

R(C̃s) 11.077 10.968 12.517

fuzzy reliability. We obtained the possible expected replace-
ment cost per unit time for different preventive interval
strategies using half-year increments. The results are shown
in Fig. 5, where the solid line denotes the case in which the
failure data are crisp; i.e., λ = 1.0. The two dash curves are
the upper and lower boundaries of possible values for the
maintenance cost under the fuzzy environment; i.e., λ is
set to zero. The figure shows that the gap between the up-
per and lower boundaries varies for different strategies. A
larger gap exists when Tp = 0.5 year and Tp > 3.5 years, in-
dicating that the fuzzy failure data creates significant levels
of uncertainty to the average maintenance cost value.

In order to determine the optimal preventive replace-
ment interval, T∗

p , the introduced fuzzy order algorithms in
Section 7 were used to rank the fuzzy values. From Fig. 5,
we selected the cases Tp = 3.0, 3.5, 4.0 years as possible al-
ternatives. The corresponding memberships for these three
cases are given in Fig. 6.

The ranking results are as follows.

1. Method I.

Equations (29), (30), and (31) give us the centroid point
coordinates and the distances as tabulated in Table 1.

Fig. 6. Membership functions of the expected replacement cost
per unit time for different replacement policies.

Table 2. Fuzzy decision comparison using method II

Preventive replacement interval (years)

3.0 3.5 4.0

IL(C̃s) 5.754 5.484 6.104
IR(C̃s) 6.278 6.380 7.409
I0.5(C̃s) 6.016 5.932 6.757

The order of the fuzzy alternatives is C̃s(Tp =
3.5) < C̃s(Tp = 3.0) < C̃s(Tp = 4.0), and, according to this
method, the optimal interval for performing the preventive
replacement is 3.5 years.

2. Method II.

Equations (32), (33), and (34) with the optimism parame-
ter β = 0.5 give the alternative left, right and total integrals
as tabulated in Table 2.

The order of the fuzzy alternatives is C̃s(Tp = 3.5) <

C̃s(Tp = 3.0) < C̃s(Tp = 4.0); that is, the same result as that
given by the previous method is providing the identical op-
timal preventive replacement interval (3.5 years) as method
I.

3. Other perspectives.

Although the illustrated ranking methods show Tp = 3.5
years to be the optimal option (the fuzzy ranking method
producing the minimum expected maintenance cost), other
decision criteria may yield different results. For example,
from Fig. 6, one can observe that the case in which Tp =
3.5 years has a larger range of possible values (between
$9.45 × 103 and $12.77 × 103) than the case in which Tp =
3.0 years (between $ 10.25 × 103 and $12.07 × 103). In
other words, one can conclude that the fuzzy environment
exerts less influence on the case in which Tp = 3.0 years
than the case in which Tp = 3.5 years. In industry, decision
makers may select Tp = 3.0 years (or even Tp = 2.5 years)
as their final solution though it costs more, because it is
more robust under uncertain conditions.

9. Conclusions

This article discusses an optimal preventive maintenance
strategy under a fuzzy Bayesian environment. The method-
ology deals with not only determining the membership
function of the fuzzy estimates of the parameters and the re-
liability functions of multi-parameter distributions but also
examining maintenance policy and approaches to fuzzy de-
cision making. An artificial neural network is used to ob-
tain approximate solutions for fuzzy parameter estimation,
reliability prediction, and evaluation of long-run fuzzy ex-
pected replacement cost per unit time. The genetic algo-
rithm is used to find the boundary values for the member-
ship functions at any cut level. The methods provide a way
of determining the membership functions of the parameter
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744 Liu et al.

estimates and the reliability functions of multi-parameter
distributions, which are very difficult to obtain using con-
ventional methods involving multiple integrals. The mem-
bership function of the long-run fuzzy expected replace-
ment cost per unit time is obtained in the same fashion,
and two fuzzy ranking methods are implemented to deter-
mine the optimal solution. Fuzzy uncertainty is inevitable
in practice, and the methodology proposed in this article
makes risk analysis and maintenance decision making in
a fuzzy uncertainty environment more tractable. In addi-
tion, it can provide engineers with more useful information
about the state of a system, thus enabling them to make
better decisions about safety and economic issues.
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