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Abstract

This paper presents a pricing optimisation framework for energy, reserve, and load scheduling of a power system con-
sidering demand response (DR). The proposed scheduling framework is formulated as a reliability-constrained unit
commitment program to minimise the power system operation costs by finding optimal electricity prices and optimal
incentives while guaranteeing the reliability of the system during contingencies. Moreover, customers’ attitude toward
the electricity price and incentive adjustment and the effect of their preferences on load scheduling and operation of the
system are investigated in various DR programs. The proposed scheme is implemented on an IEEE test system, and
the scheduling process with and without DR implementation is discussed in detail by a numerical study. The proposed
method helps both the system operators and customers to reliably schedule generation and consumption units and select
the proper DR program according to defined prices and incentives in the case of an emergency.
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1. Introduction

Demand response (DR) is one of the significant ways
that help the network operators to control the electrical
energy consumption during emergency conditions [1, 2].
DR implementation in modern electricity grids with mod-
ified pricing methods influences the consumers’ comfort
and payments [3]. The economic consequence of DR is at
the heart of attraction in most DR-related studies, espe-
cially in the United States and Europe. The authors have
presented a bi-level model in [4] to minimise the total costs
of an isolated microgrid and maximise the revenues of a
storage system using a DR scheme. Mathematical opti-
misation models in a real energy hub considering demand
response under uncertainties have been proposed in [5, 6]
to minimise the operation costs. Linear and non-linear op-
timisation models have been proposed in [7, 8] to assess the
economic feasibility of providing DR programs by hydro-
gen production units and their effect on power system flex-
ibility. An experimental methodology has been introduced
in [9] to identify the flexibility of customers in response to
financial incentives. The authors have examined the re-
lationships of home appliance usage, energy consumption,
and participation in IBDRPs for peak load reduction in
[10]. The impact of a time-of-use (TOU) program on con-
sumption patterns of the residential consumers has been
studied in [11]. Although TOU design has been employed
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as a powerful approach to change customers electricity con-
sumption, current TOU programs are not as effective as re-
quired in many developed countries due to the complexity
of human behaviour. Some metrics have been used in [12]
to assess the DR flexibility of heat pumps. A control algo-
rithm for the load aggregation has been presented using an
energy consumption tool. Compared to [12], it is also pos-
sible to examine the total consumption at each bus rather
than modelling of the individual consumption pattern for
residential loads. In this manner, DR programs let the sys-
tem operator plan a proper production capacity. In [13],
the influence of customers participation level in an emer-
gency DR program (EDRP) and the effect of incorrect in-
centives on the microgrid performance have been studied.
In the above-mentioned studies, TOU or incentive-based
DR programs (IBDRPs) have been used without consider-
ing reliability standards and different types of consumers
whose comfort preferences have not been examined when
participating in such programs.

Apart from the economic point of view, DR programs
have been also employed in several studies for enhancing
the reliability of the network by considering renewable en-
ergy penetration and unforeseen events [14, 15]. In [16],
a new formulation of reliability indices has been proposed
considering the outages of generation units where the cus-
tomers participate in both energy and reserve scheduling
through DR. However, the hourly price of electricity and
incentives have not been calculated. Transmission switch-
ing has been deployed in a unit commitment (UC) prob-
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Nomenclature

Acronyms

CDI Consumption delay index

CWI Consumption way index

DR Demand response

EDNS Expected demand not served

EDRP Emergency demand response program

FOR Forced outage rate

IBDRP Incentive-based demand response program

ISO Independent system operator

LRCs Long-range customers

MCs Mixed customers

PBDRP Price-based demand response program

PEM Price elasticity matrix

PI Payment index

RT Real time

SCUC Security-constrained unit commitment

TOU Time of use

VoLL Value of lost load

Indices

b, b′ Index of buses

c Index of components

f Index for segments of linearised fuel cost

g Index of generators

i, j Index of times

l Index of transmission lines

s Index of scenarios

Parameters

B Number of buses

C Number of components

d0bi Baseline consumption of bus b at hour i (MW)

DRb Maximum consumers’ reply to DR signals at bus b

EDNS Maximum amount of EDNS (MW)

Eij Elasticity of demand

F Number of segments in piece-wise linearised fuel cost

FCg Minimum fuel cost of generator g ($/h)

G Number of generators

Gb Number of generation units at bus b

H Number of hours

Kg Start-up cost of generator g ($/MWh)

L Number of transmission lines

Mfg Maximum production of segment f for generator g

(MW)

Pg, Pg Maximum/minimum production of generator g

(MW)

Pl Maximum power on line l (from bus b to b′) (MW)

S Number of scenarios

T Spinning reserve market lead time (min)

V Sh
bi Penalty for not-served load at bus b, hour i ($/MWh)

Xbb′ The line reactance (from bus b to b′)

αs Probability of scenario s

βfg Slope of segment f in cost curve of generator g

($/MWh)

ψ Loss-gain coefficient

ρ0bi Baseline rate at bus b and hour i ($/MWh)

Variables

Abj Incentive in EDRP at bus b and hour j ($/MWh)

CPi Customers payment at hour i ($)

dbi Customers’ consumption at bus b and hour i (MW)

FCgi Fuel cost of generation unit g at hour i ($)

Igi Off/On status of generator g at hour i

LSh
bis Load curtailment at bus b, hour i, scenario s (MW)

Pbb′i Active power of line from bus b to b′ at hour i (MW)

Pgi Production of generator g at hour i (MW)

P f
gi Generation of segment f in fuel cost curve (MW)

RU
g , R

D
g Ramp- up and down of generator g (MW/h)

SRD
gi Down-spinning reserve of generator g at hour i

(MW)

SRD
gis Down-spinning reserve of generator g at hour i in

scenario s (MW)

SRU
gi Up-spinning reserve of generator g at hour i (MW)

SRU
gis Up-spinning reserve of generator g at hour i in sce-

nario s (MW)

SRCD
gi Down-spinning reserve cost of generator g at hour i

($/MW)

SRCU
gi Up-spinning reserve cost of generator g at hour i

($/MW)

SUCgi Start-up cost of generator g at hour i ($)

σgi Reserve condition of generator g at hour i

Θbis Voltage angle at bus b and hour i in scenario s (rad)

ρbi Electricity price at bus b and hour i ($/MWh)
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lem in [17, 18] to improve the grid flexibility. However,
demand-side activities have been overlooked. In [19], the
authors have proposed a method which evaluates the DR
penetration to support the reliability of electricity grids. A
probabilistic modelling strategy to maximise the reliability
through the DR in emergency conditions has been offered
in [20]. However, only the EDRP and incentives have been
considered in [19, 20], where no consumers behaviour and
no electricity price design were taken into account. Sev-
eral flexible resources such as a DR program and energy
storage units to provide the grid with enough flexibility
have been considered in [21]. However, the outages of gen-
eration units or transmission lines have not been exam-
ined. Besides, the proposed model has mainly focused on
the generation-side scheduling and ramp products, where
the calculation of optimal electricity rates considering con-
sumers role for optimal scheduling of the demand side has
not been studied.

The information gap decision theory (IGDT)-based mod-
els have been proposed in [22, 23] to solve the UC problems
integrated with DR considering electric vehicles (EVs) and
wind power uncertainties. However, contingencies as a
result of network component outages and customers be-
haivour have not been taken into account for an ideal price
design. In [24], a security-constrained unit commitment
(SCUC) model linked with DR plans has been used in an
islanded microgrid to maximise the expected benefits of
the operator considering the uncertainties of loads and re-
newable energy sources. For the optimal scheduling of a
virtual power plant considering DR and the influence of
the risk on decision making, a stochastic framework has
been presented in [25]. The authors have foreseen electric-
ity market prices in price-based DR programs (PBDRPs).
However, the calculation of incentives in EDRPs and the
consumers’ behaviour and comfort indices have not been
taken into account in the optimisation model in [24, 25].

A data-driven UC method considering load and re-
newable production uncertainties has been implemented
in [26] to minimise total operating costs while ensuring
system safety. A flexible uncertainty set strategy has been
introduced in [27] to deal with the uncertain production
of renewable energy sources in UC, where DR has been
applied to overcome the risk of load shedding and renew-
able energy curtailment. A set of reserve limits have been
elaborated in [28], considering the activation cost of re-
serves in high renewable-penetrated power systems. A
SCUC model considering the coordinated performance of
DR and hydrogen storage systems in the presence of wind
energy has been presented in [29]. In [30], a scenario-
based SCUC model has been introduced considering un-
certain wind power generation with the Weibull distribu-
tion function. The integration of the aggregated EV fleets
and DR into power systems has been studied in [31] using
the SCUC to minimise total operating costs and examine
the reliability of power systems. The presented UC model
in [32] has analysed the frequency dynamics of the power
system where the impact of wind turbines, PEVs and DR

have been investigated. While the above-mentioned stud-
ies have looked at different aspects of integrated UC and
DR models, the consumers’ behaviour and comfort indices
have not been taken into account in the proposed optimi-
sation models.

According to the literature review, the consequences of
outages are reduced by DR, and responsive loads, by ad-
justing their consumption, help the operators to improve
the reliability level. Electricity consumers also desire to
minimise their electricity bills by participating in DR pro-
grams and appropriate load scheduling. However, partici-
pation in DR programs has a great impact on consumers
comfort [33]. If consumers perceive difficulty more than
the achievable financial compensation, they might refuse a
DR program. Moreover, without considering the impacts
of human behaviour and comfort, unacceptable errors arise
in evaluating the effectiveness of DR strategies. The au-
thors have suggested a DR algorithm in [34] to study the
customers’ eagerness to participate in a DRP. However, the
price design for optimal supply-side scheduling considering
network flexibility has not been examined. A DR model
in which residential loads are sorted into several categories
according to various DR programs has been presented in
[35]. However, consumers comfort index, optimum incen-
tives, and reliability measures were not considered.

In [36], a multi-objective algorithm has been applied
to solve the scheduling problem. The user preference has
been evaluated from the historical usage patterns. A com-
fort model, which includes psychological aspects and pre-
dicts the rate of unsatisfied residents has presented in [37].
While consumers comfort and bill reduction at the resi-
dential level is the point of focus in [36, 37], calculation of
prices and incentives and reliability constraints have not
been included in the proposed model.

System operators or utilities persuade the clients by
proposing cost drops as a result of reducing energy con-
sumption or with greater incentives in peak hours, which
is more acceptable by customers with less operational re-
strictions on their loads. While comprehensive models
have been offered in the literature regarding the dynamic
electricity pricing, a wide range of customers viewpoints
regarding the fluctuations of prices and incentives has re-
mained unanswered, where their satisfaction and behaviour
have not been addressed thoroughly. Hence, customers
behaviour and comfort as fundamental principles must be
included in the optimal scheduling of demand units to im-
prove the reliability and efficiency of DR programs [33].

The main aim of this article is to define an accurate
model of DR considering customer behaviour and the ef-
fect of customers preferences on the optimal power system
operation. Instead of focusing on the individual consump-
tion pattern modelling in the residential sector and at the
distribution level, the introduced approach focuses on total
consumption at the transmission level. This paper further
develops a pricing algorithm to find the optimal electric-
ity prices and incentives to guarantee network reliability
and customers’ comfort, while minimising system opera-
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tion costs in the presence of uncertainties. Modified and
detailed information of a regression investigation is used
for obtaining the reliance of elasticity variables. Two types
of consumers are used for modelling the users’ involvement
in DR. In the employed EDRP, a factor that shows the real
value of the incentive payment perceived by the customers
is used. Several cases are considered to model the effect of
the outage of generators or transmission lines and various
behaviour of customers in the operation of power systems.

This article is structured as follows: Section 2 defines
the proposed method and problem formulation. Section
3 describes the test system information. Then, the nu-
merical studies and simulation results for different cases
are presented in Section 4. Finally, Section 5 describes
conclusions and possible future steps.

2. Methodology

This part explains the proposed strategy to combine
UC and DRPs, considering network constraints and relia-
bility measures. Contingencies are included in a two-stage
SCUC problem by using a probabilistic mixed-integer lin-
ear program (MILP) model, and the performance of both
supply- and demand-sides are optimised concurrently. The
first stage decision variables, which are linked to market-
clearing, are given before the scenarios occur. These vari-
ables include start-up and shut-down costs, power genera-
tion, up and down reserve of each unit, and DR decisions.
The second stage variables associated with uncertainties
and the real performance of the system consider the val-
ues of up and down spinning reserves and the quantity of
unintentional load shedding in all scenarios.

2.1. DR formulation

Electricity consumption, like many products, is sensi-
tive to the price. When the electricity price drops, the
customers show elasticity and might have the intention to
increase the demand. On the other hand, by an increase
in the electricity price, consumers try to reduce their con-
sumption. To model this sensitivity during DRPs, the
concept of elasticity of demand is used in this paper.

The elasticity of demand, which is shown in (1), is de-
fined as the electricity demand change at ith interval ∆di
concerning the variation of electricity price at jth period
∆ρj . Elasticity matrix contains self and mutual elasticity
elements (see (1)). ρ0j and d0i are the baseline price and
demand at hours j and i, respectively.

Eij =
ρ0j∆di

d0i∆ρj
is

{
≤ 0, if i = j

≥ 0, if i ̸= j
(1)

2.1.1. Customers rationality

A crucial point in the description of consumers’ be-
haviour relates to the time range of consumers rationality.
The price elasticity matrix (PEM), which measures con-
sumers’ sensitivity to the price, will have non-zero records

Table 1: A section of PEM for LRCs.
h 7 8 9 10 11 12 13

2 0.01 0.01 0.01 0.012 0.012 0.013 0.013
... ... ... ... ... ... ... ...
7 -0.01 0.017 0.018 0.019 0.02 0.022 0.021
8 0 -0.01 0.015 0.016 0.018 0.019 0.019
9 0 0 -0.02 0.015 0.017 0.018 0.016
10 0 0 0 -0.05 0.015 0.016 0.017
11 0 0 0 0 -0.1 0.02 0.016
12 0 0 0 0 0 -0.16 0.02

Note: Elasticity coefficients corresponding to Row 2 and 7
through 12 for columns 7 through 13 for LRCs.

only within a time range that the perception of consumers
goes over. Considering the time range, customers could
be classified into five different types. The first type is the
short-range consumers (SRCs) who do not optimise their
consumption and think only about the price at the cur-
rent time interval. They could, therefore, be represented
by a diagonal PEM. The ideal consumers are defined to be
the ones who take a long-range outlook in decision mak-
ing. In that way, the long-range consumers (LRCs) choose
how to shift and optimise their consumption over a wide
range of hours following variations in prices. The PEM
of the LRCs might have non-zero coefficients anywhere
during the 24 hours. The third type covers deferring con-
sumers who pay attention to the current and future prices
only. These consumers, unlike LRCs who optimise their
load throughout the day, change their consumption over
a shorter range of hours into the future. On the other
hand, the behaviour of advancing customers is affected by
current and past prices. The PEMs of these consumers
would be similar to deferring consumers except that there
will be non-zero elements on and above the diagonal indi-
cating their insight into current and past periods. Finally,
mixed consumers (MCs) whose electricity demand is in-
fluenced by past, present and future electricity rates. The
elasticity values for LRCs in [38] are used along with new
elasticity coefficients for MCs depending on the rationali-
ties explained above. A mixture of postponing, advancing,
and short-range consumers is taken into account here. It
is assumed that the awareness of MCs goes into six earlier
and forthcoming hours. Non-zero elements will be on both
sides of the diagonal in the PEM of MCs. Tables 1 and 2
show the PEM sections for LRCs and MCs, respectively.

Another notable point is that the behaviour of cus-
tomers in PBDRPs, where real-time (RT) prices are ap-
plied, is different than their behaviour in EDRPs. Losses
have a greater impact than the effect of benefits on the
customers’ preferences. In PBDRPs, where the highest
prices are set for the peak hours, consumers perceive any
load shift to the off-peak hours as a loss. On the other
hand, in an EDRP, customers see the obtained remuner-
ations by load reduction and/or load shifting as profits.
Hence, while the implementation of both programs needs
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Table 2: A Section of PEM for MCs.
h 16 17 18 19 20 21 22

16 -0.04 0.025 0.025 0.02 0.017 0.015 0.014
17 0 -0.16 0.1 0.08 0.025 0.02 0.017
18 0 0 -0.45 0 0 0 0
19 0 0 0.019 -0.25 0 0 0
20 0 0 0.02 0.019 -0.22 0 0
21 0 0 0.03 0.025 0.02 -0.2 0
22 0 0 0.033 0.027 0.021 0.022 -0.18

the same action, customers perceive the results as penalties
and rewards which have opposite effects on their decision
making. In this concept, the perceived effect of penalties
or losses is steeper than perceived values of rewards and
gains [39, 40]. Thus, the felt value by consumers, which
they respond to, is not the same as the given value of
the imposed prices or offered incentives. ψ is a weighting
factor speaking for the value perception of the incentive
remunerations.

Considering the above-mentioned points, the proposed
method modifies the general economic model of DR pre-
sented in [41] by considering the loss-gain factor and adding
constraints related to consumers payment and consump-
tion way to contemplate the behavioural aspects and pref-
erences of consumers. Accordingly, optimal electricity prices
in PBDRPs and optimum incentives in EDRPs are calcu-
lated to manage the electricity consumption.

So, the term ψAbj is included in the DR model to com-
pare the results of PBDRPs and EDRPs. The relation
between power price ρbj and the electricity consumption
level at each bus dbi is made clear in (2) as the increase
of tariff and reward Abj at each bus and hour can flatten
the consumption profile in the peak hours, however, the
degree of load decline is not identical. ρ0bj and d0bi are the
baseline price and demand at bus b and hours j and i,
respectively.

dbi = d0bi

[
1 +

∑24
j=1Eij(ρbj − ρ0bj + ψAbj)

ρ0bj

]
(2)

Fig. 1 shows the process of calculating RT rates and
incentives for PBDRPs and EDRPs considering the ob-
jective function and given constraints. The goal is to de-
termine the incentives and the price deviations ∆ρbi from
the base line price ρ0bj to minimise the net operation costs
and ensure system reliability. First, the conventional UC is
performed to find the flat rate, and consequently, RT prices
in PBDRPs and incentives during peak hours in EDRPs
for all buses are obtained. After calculating RT rates and
incentives at each load bus and time, the modified demand
profile is entered as an input to the supply-side scheduling
section. This link between supply and demand sides could
ensure a flexible and efficient power system operation. Fi-
nally, the output variables of economic and flexibility op-
eration targets of ISO are extracted as outputs.

2.1.2. DR constraints

Several constraints must be considered to find a suit-
able pricing programme. It is acceptable to allocate the
lowest price to the period with minimum consumption
level, fifth period here [42]. Consequently, the electricity
price ρbi compared to the the baseline rate ρ0bi should raise
according to the electricity demand at each hour. Twenty-
four limitations for change in prices are considered (see
(3)). The larger the consumption of hour i is, the larger
∆ρbi should be set for that hour. This variable is negative
for (i= 2-8), which suggests lower rates than the flat rate.
∆ρbi assumed as a free variable for (i= 1, 9, 14-16, 23-24)
and as a positive variable for the remaining hours, which
means consumers are charged with higher rates than the
flat rate.

∆ρbi =
ρbi − ρ0bi
ρ0bi

(3)

In addition to the PBDRP, as mentioned before, an
EBDRP is also analysed along with the SCUC problem.
By dividing the peak hours into three peak periods, it is
acceptable to designate the higher incentive values to the
periods with more consumption. To have a suitable incen-
tive scheme, inequality (4) have been considered to define
the logical range of incentives in peak hours. TLP repre-
sents the hours with lower peaks (i = 10-13, 17, 21-22),
TMP represents the hours with medium peaks (i = 19,
20) and THP represents the peak period with the highest
consumption, i = 18.

0 ≤ ATLP
b ≤ ATMP

b ≤ ATHP
b (4)

Test system and
Load data

Conventional UC

Test system & Load data
VoLL & maximum EDNS

Participation rate & Elasticities

Objective function
+

1st and 2nd stage
constraints

+
PBDRP 

Price deviations
Eq. 3

Objective function
+

1st and 2nd stage
constraints

+
EDRP 

Incentive contraints
Eq. 4

Optimal prices 
for 24 hours

Optimal incentives 
for peak hours

Baseline price

Figure 1: Method to find real-time prices and incentives.
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OF =

H∑
i=1

G∑
g=1

[
FCgiIgi + SUCgi + SRCD

giSR
D
gi + SRCU

giSR
U
gi

]
+

S∑
s=1

αs

[
H∑
i=1

G∑
g=1

(
SRCD

giSR
D
gis + SRCU

giSR
U
gis

)
+

H∑
i=1

B∑
b=1

V Sh
bi LSh

bis

] (10)

The maximum available demand at each bus, which
can be changed at different hours, is shown in (5). DRb

is the maximum consumers’ reply to DR signals at bus b.
The maximum DR potential for demand modification is
assumed to be 15% at all load buses, which guarantees a
load increase at low-load or off-peak hours does not create
a larger peak for the system.

−DRbd
0
bi ≤ ∆dbi ≤ DRbd

0
bi (5)

As mentioned before, if the proposed method ignores
customers’ preferences, the optimum points can make an
undesirable load shifting and affect the customers’ com-
fort. Consumption way and payment indices are used in
this paper to conceive the consumers’ satisfaction. The
constraints for consumption way index CWI and the pay-
ment index PI are formulated as (6) and (7), respectively.
Customers ideally prefer not to change their consumption
or minimise it. Thus, smaller ∆di and larger CWI show
that consumers face less discomfort. Undeniably, a larger
PI will overall reduce customers payment CPi and bring
more satisfaction. ∆CPi is the change in consumers’ pay-
ment at hour i. Lower bounds for CWI and PI are ex-
tracted from [43]. Moreover, to guarantee the users con-
venience, it is ensured by (8) that the overall energy usage
at every bus remains unchanged during the DR exertion.
The average consumption delay index CDI (9) is also con-
sidered to show the average time that consumers shift the
usage time of one MW electricity while participating in
DR programs compared to the situation without demand
response implementation. ∆dij is the exchanged demand
between hours i and j.

CWI =

∑24
i=1 d

0
i − |∆di|∑24
i=1 d

0
i

≥ 0.95 (6)

PI =

∑24
i=1 CPi −∆CPi∑24

i=1 CPi

≥ 1.02 (7)

H∑
i=1

∆dbi = 0 (8)

CDI =

∑24
j=1

∑24
i=1 |∆dij ||i− j|∑24
i=1 |∆di|

(9)

2.2. Objective function

The proposed model aims to schedule the units at min-
imum production costs without jeopardising the system
security when the system encounters contingencies. The
objective function (see (10)) covers seven terms, among
which terms 1–4 are linked to first-stage choices, and terms
5–7 are associated with the second stage. The first-stage
choices are made before the realisation of scenarios in con-
tingencies. Hence, a conventional UC problem is per-
formed in the first stage to define the commitment status
of generators and their programmed energy and reserve
capacity. The reliability limits of the system are examined
after the realisation of scenarios in the second stage. A DC
optimal power flow is performed in the second stage to op-
timise the volume of deployed down- and up-spinning re-
serves and load curtailment in each scenario. In this man-
ner, the system security will be guaranteed based on the
desired maximum expected demand not served (EDNS)
value set by the system operator.

Precisely, the first and second terms handle the en-
ergy costs and the start-up costs of generators, third and
fourth terms calculate the costs of scheduling down- and
up-spinning reserves, fifth and sixth terms define the costs
associated with the deployment of down-and up-spinning
reserves in scenarios, and the last term is the costs of load
shedding. So, the stage two in the proposed model includes
the costs of providing supply-load balance in scenarios.

Looking at (10), H, G, S, and B are the number of
scheduling hours, generating units, scenarios, and buses,
respectively. FCgi, Igi, and SUCgi are the fuel cost, the
commitment state, and the startup cost of unit g at hour
i, respectively. SRCD

gi and SRD
gi are the down-spinning

reserve cost and the down-spinning reserve of production
unit g at hour i. Similarly, SRCU

gi and SRU
gi are the up-

spinning reserve cost and the up-spinning reserve of gener-
ator g at hour i. αs is the probability of scenario s. SRD

gis

and SRU
gis are the deployed down- and up-spinning reserve

of unit g at hour i in scenario s, respectively. V Sh
bi is the

value of lost load in bus b at time i, and LSh
bis is the load

shedding in bus b at time i in scenario s.
In case of the EBDRP, IC which calculates the amount

of incentive payed to the customers will be added to the
objective function. This term has been linearised using
[44] in order to fit in the linear model of this paper.

IC =

H∑
i=1

B∑
b=1

Abi(d
0
bi − dbi) (11)

6



It should be mentioned that the authors have consid-
ered the following assumptions:

• It is assumed that shut down costs are negligible
compared to other expenses such as startup costs.

• Losses over transmission lines are ignored.

• The piece-wise linear approximation is adopted for
the incremental cost function of thermal units to fa-
cilitate reaching a real-time solution without a no-
table impact on the accuracy.

• Outage of a generator or a transmission line is taken
into account in contingency events as multiple out-
ages have approximately low possibilities while adding
more computational complexity.

• The optimisation problem might become unsolvable
as the payment index constraint could create a non-
linear constraint. Price and demand variables are
decoupled to linearise this constraint.

2.2.1. First stage constraints

The first stage constraints are given in this section. The
costs of generation units are defined as an incremental cost
function in a linear piece-wise form. The generation cost
of generator g at hour i is given by (12).

FCgi = FCgIgi +

F∑
f=1

βfgP
f
gi

where 0 ≤ Pf
gi ≤ Mfg

(12)

FCg is the minimum fuel cost of generator g and F is
the number of segments in piece-wise linearised fuel cost.
βfg, P

f
gi, and Mfg are the slope, the generation, and the

maximum production of segment f in cost curve of the
generator g, respectively.

The linear relation of the total scheduled power of the
generation unit Pgi is defined by (13). Pg is the minimum
production of generator g.

Pgi = PgIgi +

F∑
f=1

P f
gi (13)

• Start-up cost constraints of generation units

0 ≤ SUCgi ≤ Kg(Igi − Ig,i−1) (14)

where SUCgi is the startup cost of unit g at hour i, Kg is
the start-up cost of generator g, and Igi is the commitment
status of generator g at hour i.

• Constraints of spinning reserves

Constraints of down- and up-spinning reserves are shown
in (15) and (16). Pg is the maximum production of gen-
erator g. SRD

gi and SRU
gi are the down- and up-spinning

reserves of generator g at hour i. RD
g and RU

g are ramp-
down and ramp-up of generator g. T is the spinning re-
serve market lead time.

Pgi + SRU
gi ≤ PgIgi, Pgi − SRD

gi ≥ PgIgi (15)

0 ≤ SRU
gi ≤ RU

g T, 0 ≤ SRD
gi ≤ RD

g T (16)

• Up and down constraints of generation units

Pgi − Pg,i−1 ≤ RU
g Igi + Pg(1− Ig,i−1) (17)

Pg,i−1 − Pgi ≤ RD
g Ig,i−1 + Pg(1− Igi) (18)

• Time constraints of generation units

i+T+
g∑

j=i+2

(1− Igj) + T+
g (Igi − Ig,i−1) ≤ T+

g (19)

i+T−
g∑

j=i+2

Igj + T−
g (Ig,i−1 − Igi) ≤ T−

g (20)

• Ramp-down and ramp-up constraint

Pgi − Pg,i+1 ≤ RD
g , Pg,i+1 − Pgi ≤ RU

g (21)

• Active power equilibrium

The power balance between loads and generation units on
each bus is ensured by (22). Pgi and Pbb′i are the produc-
tion of generator g and the active power of the transmission
line from bus b to bus b′ at hour i, respectively. Xbb′ and
Θbi are the line reactance from bus b to bus b′ and the
voltage angle at bus b and hour i, respectively.

Gb∑
g=1

Pgi − d0bi −∆dbi =

B∑
b′=1

Pbb′i b′ ̸= b

where Pbb′i =
1

Xbb′
(Θbi −Θb′i)

(22)

2.2.2. Second stage constraints (depending on scenario s)

The outage scenarios are taken into account by the
equations of stage 2, which are given hereafter. Examining
reliability measures in scenarios depends on the determina-
tion of contingencies which could be done by enumeration
techniques. Once the set of contingencies are determined,
one must focus on analysing their possibility. The forced
outage rate (FOR) of components in each contingency is
employed to calculate the failure possibility αs (see (23)).
c′ is the failed component, c is the index of components,
and C is the number of components.

αs = FORc′

∏
c∈C
c ̸=c′

(1− FORc) (23)
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FOR is calculated based on the statistical data of that
component using (24), where MTTR and MTTF stand for
mean time to repair and mean time to failure, respectively.

FOR =
MTTR

MTTR+MTTF
(24)

• Active power equilibrium considering scenarios

The frequency stability issues as a result of contin-
gency events are one of the main concerns of system op-
erators. However, the balance between generations, losses
and loads ensures frequency stability throughout the sys-
tem. In contingency events, power balance at each bus
is ensured by loads and generators. So, the applied DC
power flow equation to the system is shown in (25). τ and
υ present the availability condition of transmission lines
and generation units, respectively. During the component
outages, they are set to 0 while they are 1 otherwise.
SRU

gis and SRD
gis are the up- and down-spinning reserves

of generator g at hour i in scenario s. LSh
bis represents the

amount of load curtailment at bus b. Plis is the active
power of transmission line l at hour i from bus b to b′ in
scenario s, while Pl is the maximum allowable power on
line l.

Gb∑
g=1

υ[Pgi + SRU
gis − SRD

gis]− dbi − LSh
bis =

∑
l∈Lb

τPlis

where − Pl ≤ Plis =
1

Xbb′
(Θbis −Θb′is) ≤ Pl

(25)

• Constraints of spinning reserves in contingencies

The reliability of the system is secured by down- and
up-spinning reserves together with DR plans when the sys-
tem operator monitors changes in demand-side behaviour
or the component availability status. The relationship be-
tween the first- and the second-stage spinning reserve vari-
ables is specified in (26).

0 ≤ SRU
gis ≤ σgisSR

U
gi, 0 ≤ SRD

gis ≤ σgisSR
D
gi (26)

where σgis is the reserve state of generator g at hour i in
scenario s, which is 0 if the unit outage has occurred and
otherwise it is considered 1. It ensures that only avail-
able production units in scenarios would provide spinning
reserves.

• Load shedding constraint

The generation shortage may cause involuntary load
shedding to ensure the system security. It is guaranteed
by (27) that the amount of load shedding in each scenario
at each bus remains less than the electricity consumption
of the respective bus.

0 ≤ LSh
bis ≤ dbi (27)
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Figure 2: Schematic of the 24-bus reliability test system

2.3. Reliability assessment

Using [45], to measure the reliable scheduling this pa-
per employs an expected demand not served (EDNS) in-
dex, which is achievable by multiplying the value of load
shedding and the likelihood of the component failure in
each scenario s at bus b and hour i (see (28)). As shown
in (28), the continuous power generation and consumption
are guaranteed by the highest permitted amount of EDNS,
which is set by the system operator.

EDNSi =

B∑
b=1

S∑
s=1

αsL
Sh
bis ≤ EDNS (28)

3. Test system

Fig. 2 shows the IEEE 24-bus test system with overall
generation and load capacity of 3405 MW and 2850 MW,
respectively. The generation and consumption data, ramp
rates, reliability factors, cost coefficients etc., are taken
from [42].

The load profile is divided into three sections, includ-
ing low consumption (2-8), off-peak (1, 9, 14-16, 23-24)
and peak (10-13, 17-22) hours. The value of the lost load
(VoLL) is set to 150, 300 and 450 $/MWh for low-load,
off-peak and peak periods, respectively. The maximum
amount of EDNS is assumed 7 MW to ensure the required
reliability.

4. Results and discussion

The electricity generation planning without and with
implementing DR are studied hereafter. First, the authors
obtained $701202 as the total system operating costs in
the absence of contingency events and DR programs. By
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analysing component contingencies using the N – 1 crite-
rion and under a flat rate price scheme, the system op-
erator has to provide the required flexibility by optimal
supply-side scheduling. As a result, a unit commitment is
obtained with the total operation cost of $831991. This
18.7% increase in operating cost compared to the condi-
tion without contingencies is because of the extra costs
due to the provision of reliability as in such times, the
peak load production units should be started up and run
at a non-economic point.

The proposed model is also applied to the system once
without considering reliability constraints, where the max-
imum amount of EDNS are ignored, and the influence of a
contingency event on the system functioning is taken into
account. As a result of ignoring the upper limit of 7 MW
for EDNS, the higher average amount of calculated com-
pulsory load shedding (40.8 MW) compared to the cases
which consider this limit brings more consumers dissatis-
faction with the whole operation costs of $757650.

Then, in the absence of DR, but by considering the
maximum amount of EDNS as the reliability constraint
$831991 and 4.98 MW are calculated as the total calcu-
lated operation cost and the average amount of EDNS,
respectively. The $74341 increase in the operating cost
compared to the case without limit for EDNS should be
spent to supply the reliability necessities in case of contin-
gency events.

To study the effect of DR programs on system relia-
bility in case of component contingencies, the price- and
incentive-based DR programs are investigated in 2 cases.
In the first case, where the total daily energy consump-
tion should remain constant (see (8)), the proposed model
aims to ensure the reliable and the flexible operation of
the system by finding optimal hourly electricity prices. To
guarantee the reliability, the EDNS should be below 7 MW
at all buses and each hour. In the second case, constraints
of energy, consumption way, and payment are neglected,
and the target of implementing EDRP and PBDRP is the
reduction of peak loads where the calculated hourly rates
from the first case and incentives are applied. In the follow-
ing sections, two cases are examined, in which LRCs and
MCs are modelled by allocating DR patterns come from
their PEMs. Besides, a behavioural factor is considered
to show the various response of customers to incentives
and punishments. The optimal electricity price at each
hour in PBDRPs and optimum incentives at peak hours
in EDRPs are calculated to minimise the total system op-
erational cost and ensure the system reliability.

4.1. Case 1: DR with constant total energy consumption

In addition to the generation side scheduling, both re-
liability constraints and demand-side response are inte-
grated into the problem in this case. Consequently, the
load profile is modified according to the consumers’ re-
sponse to the electricity rates. Fig. 3 gives the average RT
tariffs for different types of customers. LRCs, compared
to MCs, face prices with more deviation at low-load and
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Figure 3: RT rates at each hour in Case 1

peak hours. While the average and the standard deviation
of the electricity price for LRCs are 26.4 and 8.8, respec-
tively, these parameters are calculated 26.8 and 7.5 for
MC consumers. Calculated rates prove the ability of DR
to decrease the average of electricity prices for consumers.

Fig. 4 shows the influence of applying optimised RT
rates on the load profile. During the peak hours, because
of the higher rates, electricity consumption is reduced and
shifted to the low-load hours, where electricity prices are
much lower. Notably, compared with MCs, LRCs have a
flatter load profile because of more price deviation where
they face lower rates at low-load hours and higher rates at
peak hours.

The results of applying the PBDRP in Case 1 are sum-
marised in Table 3. The operational costs when LRCs and
MCs participate in DR are reduced by 3.2% and 2.9%, re-
spectively. Despite the reduction of operation cost, energy
consumption remains invariable for all customers. The
role of DR in decreasing consumers payments is also con-
firmed by the given results. Given CWI, PI, and the
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Figure 4: Demand profiles in Case 1

9



Table 3: Results of the PBDRP implementation.

Operation Consumers Peakavg PI CWI CDI EDNSavg

cost ($) payment ($) (MW) (Hour) (MW)

Without DR 831991 1600100 2656 1 1 0 4.98

Long-range customers 805209 1559200 2527 1.03 0.95 6.1 2.05

96.78% 97.44% 95.14%

Mixed customers 807697 1575900 2570 1.02 0.97 3.9 2.16

97.08% 98.49% 96.74%

Long-range customers 790008 1620530 2468 0.99 0.93 6.6 2.05

(No limit for CWI, PI) 94.95% 101.28% 92.92%

Mixed customers 797605 1625804 2510 0.98 0.94.5 4.3 2.16

(No limit for CWI, PI) 95.87% 101.61% 94.50%

average EDNS indices in Table 3 show that the proposed
method meets all the reliability and customers satisfactory
constraints. Although LRCs change their load more than
MCs and have lower CWI, higher PI shows the lower cost
they should pay. Compared to MCs, the larger value for
the average consumption delay index CDI between LRCs
makes them more competent to shift their loads and re-
duce the average peak and EDNS values. The calculated
values for EDNS confirm the efficiency of DR implemen-
tation to ensure the system reliability. As it is depicted
in Fig. 5, the value of EDNS in all hours is always less
than 7 MW, and generally decreases after using DR pro-
grammes compared with the base case without (W/O) DR
implementation.

The authors have also obtained the rates for a situa-
tion that ignores the limits of CWI and PI. As a result of
neglecting CWI limit, the model reduces the load as much
as possible during a contingency event to reduce the costs
of the generation side by minimising the start-up and gen-
eration costs of expensive units, which is not close to real
situations. On the other hand, by neglecting the limit for
PI, the model changes the loads in a way to increase the
CWI and decrease the EDNS. As a result, the customers’
payment will increase, which causes monetary dissatisfac-
tion for consumers. For a situation that ignores the limits
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Figure 5: Calculated hourly EDNS values in different situations

of CWI and PI, the prices (see Fig. 3) and electricity de-
mand (see Fig. 4) have changed more violently, new peaks
have emerged, and CWI and PI got worse (see Table 3)
compared to the cases where a limit for those indices was
set. The results show that operation costs in such a situa-
tion have been decreased, while the customers experience
an increase in their payments. The outcome of such a
scenario would be reduced customers’ satisfaction which
was reflected in 2.5% and 4% decrease in CWI and PI,
respectively.

Fig. 6 shows how DR programs could affect the gener-
ation mix. The legend show bus numbers. In contingency
events and without DR implementation, the system op-
erator must commit expensive units, located at Buses 1,
2, 7, and 13 to secure the system reliability. After DR
implementation, where the load can shift between peri-
ods, expensive units could be committed for fewer hours
at peak period compared to the situation without DR im-
plementation.

As it can be seen in Fig. 6, the proposed method have
decreased the generated power of units located at men-
tioned buses in peak and off-peak hours (Note: Buses 1, 2,
23: Coal/Steam, Buses 7 and 13: Oil/Steam, Buses 18 and
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Figure 6: Effect of DR programs on the generation mix
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Table 4: Results of implementing PBDRP, EDRP1, and EDRP2 for ψ = 1
4

Scenario Peakavg (MW) Payment ($) CWI PI CDI (Hour)

PBDRP 2459 (-7.4%) 1544745 94.22% 1.03 2.5

Mixed consumers EDRP1 2486 (-6.4%) 1585900 94.02% 1.01 1.2

EDRP2 (ψ = 1
4 ) 2405 (-9.5%) 1542985 93.91% 1.04 1.3

PBDRP 2367 (-10.8%) 1527847 92.46% 1.05 3.3

Long-range consumers EDRP1 2430 (-8.5%) 1568439 91.87% 1.02 1.6

EDRP2 (ψ = 1
4 ) 2309 (-13.0%) 1516647 91.60% 1.06 1.7

Table 5: Calculated Ai ($/MWh)

Hour 10-13 17 18 19,20 21,22

MC 12.2 9.0 15.0 14.3 12.1

LRC 12.0 9.0 14.7 14.0 12.0

21: Nuclear and Bus 22: Hydro). In the case of LRCs, the
mentioned units are committed for fewer peak hours com-
pared to the MCs. Therefore, the reduced operation costs
of the mentioned units have affected the total operation
costs of the system, which are given in Table 3.

4.2. Case 2: DR without energy constraint

EDRPs are also run for two types of consumers with
different response characteristics. In this case, the energy
consumption, consumption way and payment constraints
are neglected, and it is assumed that the system operator
is interested in reduction in electrical energy consumption
during the peak period. So, in addition to the PBDRP, two
options for the EDRP are studied. EDRP1 is an option
without considering the loss-gain factor (ψ = 1). EDRP2
is the other choice that the loss-gain parameter changes
in a range ( 18 ≤ ψ ≤ 1). As explained before in Section
2, the loss-gain factor interprets a behavioural tendency
where people are afraid of losses, and hate losing more
than they like winning. Thus, losses appear to be be more
than the earnings even though the value in monetary terms
might be equal. For example, for (ψ = 1

4 ), it is assumed
that loss of every dollar has the forth value of every dollar
gained and so on.

The calculated incentives would cause a reduction in
the peak hours demand, which reduces the burden on the
generation side and the operation costs. On the other
hand, the calculated incentives add costs to the system op-
erator side due to the reward payments to the customers,
which will be added to the objective function for this case.
It is acceptable to consider the highest incentive value

to the period with a maximum consumption level. Conse-
quently, the incentive values should decrease according to
the electricity demand decrease at each peak hour. Thus
similar to the procedure of finding the optimal prices in
Case 1, the incentives for peak hours would be calculated.
The calculated average rewards per MWh demand reduc-
tion compared to the baseline demand in EDRPs are given
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Figure 7: Demand profiles for mixed customers in Case 2

in Table 5. Accordingly, the load profiles are modified ac-
cording to the consumers’ response to the incentives. Ob-
tained incentives show that LRCs expect less remuneration
payments than MCs in peak hours. Fig. 7 and Fig. 8 il-
lustrate the influence of applying planned RT tariffs and
rewards on the load profile for MCs and LRCs. Same as
Case 1, LRCs have a flatter load profile and get better
results.

According to the results shown in Table 4 and Fig. 9,
both the EDRP and the PBDRP reduce the peak demand
and, as a result, the operation costs, which are favourable
by the system operators. On the other hand, the cus-
tomers’ payment and consequently, the utility revenue will
decrease. The obtained results for CWI and PI show how
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ignoring their related constraints in Case 2 could affect
the customers’ bill and demand change. From the utility
point of view, as long as ψ ≥ 1

3 , the utility achieves its tar-
get better with EDRP, losing the less amount of revenue
compared to PBDRP. On the other hand, taking the loss-
gain factor ψ ≤ 1

4 into account, PBDRP acts better than
EDRP. It is clear that when loss-gain parameter changes
in a range of ( 18 ≤ ψ ≤ 1), the amount of ψAi should be
constant to get comparable change in the peak load. So,
optimal incentive values should be offered to each type of
customers during peak hours. The values of ψAi, which
are given in Table 5 prove the reliance of the offered in-
centives on the reward weighting factor ψ.

4.3. Computational complexity and implementation issues

To solve the proposed mixed-integer programming model
the CPLEX as a high-performance solver is used. CPLEX
optimisers have been widely used by researchers to solve
large and complex problems swiftly and with minimum
user interference [44, 46, 47]. Each case has been run in
less than 5 minutes on a 2.11 GHz Windows-based system
with 16 GB of RAM. Thus, the proposed optimisation
problem can be solved nearly in real-time, providing a fast
response to changes in power system situations, electricity
prices, or electricity demand. The optimisation problem
might become unsolvable as the payment index limit could
create a nonlinear constraint. To linearise this constraint,
price and demand variables are decoupled.

With an increase in the problem size, the run time
could increase exponentially, which brings significant bur-
dens for solving scheduling problems. However, to analyse
a system with a large number of buses, lines, and scenar-
ios some possible solutions are available. One of the most
practised approaches to overcome the computational com-
plexity of large MILP models originates from the idea of
decomposition, which divides a large problem into smaller
non-complex subproblems. Reducing the number of sce-
narios and using supercomputers and methods to simplify

the network are other available options to cope with com-
putational complexity while considering larger systems in
case studies.

5. Conclusion

This article introduced a probabilistic day-ahead security-
constrained scheduling problem with various integrated
demand response programs considering consumers ratio-
nality for managing the contingency events. DR has been
formed as a responsive shiftable/curtailable demand bid-
ding mechanism that moves the consumption from peak
hours to off-peak or low-load hours and ensures social wel-
fare. This work emphasised the influence of consumers
representation on the power system performance. The of-
fered model studied the constraints of customers prefer-
ences in addition to the constraints of the traditional unit
commitment algorithms.

The offered probabilistic model was formulated as a
mixed-integer linear programming problem that deals with
the security-constrained unit commitment. Both incen-
tives and hourly electricity prices were calculated in emer-
gency and price-based demand response programs. The
electricity consumption was adjusted by demand response
to control the outages in the power grid, and hence, the
modified demand profile helped the system operator to re-
duce the start-up and reserve costs of generation units.
The achieved results validated the ability of the suggested
approach in decreasing the operational costs of the system,
customers payment, and peak load by optimal schedul-
ing of generation units and optimal use of the demand
response potential without bringing notable discomfort to
the customers.

The results also showed that consideration of differ-
ent demand response programs, different types of con-
sumers and comfort constraints have a significant impact
on power system reliability and minimising daily operation
cost. Overall, meaningful insight into system performance
with real-time prices and incentives was obtained. Results
proved that system behaviour depends not only on the de-
gree of consumers’ elasticity but also on the time range of
customers rationality. The implementation of optimal sys-
tem dispatch necessitates the modelling of time-dependent
elasticity to find the optimal scheduling solutions at dif-
ferent hours.

The impact of the loss-gain factor on the results of the
demand response programs for peak reduction proved that
when people are in a position where both earnings and
losses are likely, they normally favour less risky options. If
possible losses could be destructive or threaten customers’
lifestyle, they will generally reject the choice of participa-
tion in demand response programs that bring losses and
discomfort. This is one reason for system operators to op-
timise the prices for reducing the customers’ losses at peak-
price periods, while they make sure that it can minimise
the system operation costs. By limiting potential losses
and maximising profits, current consumers will continue

12



providing demand response and new consumers might join
the demand response programs too.

Hence, the explained method could be used to deter-
mine optimal scheduling plans, and grid operators together
with consumers could benefit from the offered method to
schedule the generations units and loads in a way that
meets the customers demand while the network reliability
and consumers comfort are guaranteed. In real applica-
tions, the stochastic nature of renewable energy produc-
tion or consumers energy consumption would affect the
results which should be considered in future works. Be-
sides, competitions in the electricity and reserve markets
in addition to minimising CO2 emissions and consumers
payments by forming a multi-objective optimisation prob-
lem could be taken into account in later studies.
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