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ABSTRACT With offloading the tasks that mobile users (MUs) running in their mobile devices (MDs) to

the data centers of remote public clouds, mobile cloud computing (MCC) can greatly improve the computing

capacity and prolong the battery life of MDs. However, the data centers of remote public cloud are generally

far from the MUs, thus long delay will be caused due to the transmission from the base station to the public

clouds over the Internet. Mobile edge computing (MEC) is recognized as a promising technique to augment

the computation capabilities of MDs and shorten the transmission delay. Nevertheless, compared with the

traditional MCC and MEC generally has a limited number of cloud resources. Therefore, making a choice

on offloading task to the MCC or MEC is a challenging issue for each MU. In this paper, we investigate

service selection in a mobile cloud architecture, in which MUs select cloud services from two cloud service

providers (CSPs), i.e., public cloud service provider (PSP) and an edge cloud service provider (ESP). We use

M/M/∞ queue and M/M/1 queue to model PSP and ESP, respectively. We analyze the interaction of the two

CSPs and MUs by adopting Stackelberg game, in which PSP and ESP set the prices first, and then the MUs

decide to select cloud services based on performances and prices. In particular, we study the relationship

between PSP and ESP in the simultaneous-play game (SPG) scenario, in which they compete to set prices

of their cloud services simultaneously. Our numerical results show that MUs prefer to select service from

the edge cloud if the number of tasks they run is small. In another hand, more tasks will be offloaded to the

remote public cloud if the number of tasks they run becomes large.

INDEX TERMS Pricing, mobile cloud computing, mobile edge computing.

I. INTRODUCTION

With the rapid growth of the technologies of wireless

communications, mobile devices (MDs) have become a nec-

essary part in our daily life. Cisco predicted that the num-

ber of mobile users (MUs) will be 5.2 billion in the year

of 2019 and the total number of the worldwide MDs would

be 75 billion by 2020 [1]. With the growing popularity of

MDs, more mobile applications, like face recognition and

natural language processing, have emerged and obtained a lot

of attention [2]. However, it is a challenging issue for MDs to

execute these mobile applications as both of their computing

The associate editor coordinating the review of this manuscript and
approving it for publication was Mianxiong Dong.

resources and battery lives are limited. Moreover, the gap

between the limited capabilities of MDs and the demand

to execute these resource-hungry applications is gradually

increasing [3].

Mobile cloud computing (MCC) is recognized as a

prospective technology to solve the aforementioned chal-

lenging issue by the way of offloading tasks to the data

centers of the public clouds [4], such as Google Compute

Engine and Amazon EC2. After the executions of tasks

are finished in the public clouds, the final results will be

returned to the MDs. Nevertheless, there is a long distance

between the remote public clouds and the MUs. Therefore,

long delay will be caused due to the transmission from

43564
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-6295-6089
https://orcid.org/0000-0003-2135-7546
https://orcid.org/0000-0003-0556-2769


X. Li et al.: Optimal Pricing and Service Selection in the Mobile Cloud Architectures

the base station to the public clouds over the Internet [5],

which will have a bad impact on the MUs’ experience and

decrease the potential advantages of adopting the public cloud

services [6].

FIGURE 1. System architecture.

To eliminate these issues, mobile edge computing (MEC)

has appeared and become an alternative solution to pro-

vide computing services for MDs [2], [7]–[9]. As illustrated

in Fig.1, MEC can provision computing resources near to

MUs such that not only the transmission delay can be signif-

icantly reduced but also the MDs’ computation capabilities

are enhanced and battery lives are prolonged [2], [10]–[12].

In MEC, the tasks of MDs can be offloaded to the edge cloud

via cellular networks. With MEC, MUs can select services

from the edge cloud or the remote public cloud for tasks

processing. Nevertheless, as the edge cloud usually has less

computing resources than the public cloud, the service rate of

the edge cloud is slower than that of the public cloud [6], [7].

Therefore, it is challenging for each MU to make a choice as

to which cloud service to select from the edge cloud and the

remote public cloud to process its task.

Pricing is of great importance for resource management

in public and mobile cloud markets; meanwhile, response

time is considered as one of the critical performance indi-

cators for quality of service (QoS) [13]. For the CSPs, how

to price their cloud services is an important issue. If the

prices are too high, some cloud users may be lost leading

to the loss of their revenues. However, if the prices are too

low, the CSPs may not get high revenues. In the mean-

time, guaranteeing the QoS of cloud services is of great

importance, particularly for those cloud users when they are

running delay-sensitive mobile applications like interaction

gaming. The reason that the increased response time may

have the possibility of preventing users from using cloud

services or force them to choose cloud service from other

CSPs. It is reported that Amazon may lose 1% in sales if

every 100ms of delay increases, and the traffic of Googlemay

drop by 20% if 0.5 s increases in the search page generation

time [14].

A great number of efforts have been denoted to studying

resource management in the public or mobile cloud, such as

[15], [16], and [17]. However, much of the existing work

considered the public cloud service providers and mobile

cloud service providers separately. To overcome this short-

coming, in our work, we investigate service selection in an

mobile cloud architecture, in which one edge service provider

(ESP) and one public service provider (PSP), both of whom

are known as cloud service providers (CSPs), compete to

provision services to MUs. Particularly, we investigate price

competition between ESP and PSP whose objectives are to

maximize their revenues by optimally determining the prices

of their services.Wemodel ESP by using anM/M/1 queue for

the reason that this CSP has limited cloud resources, whereas

we model PSP by an M/M/∞ queue as it has abundant

cloud resources compared with ESP. Moreover, we study the

simultaneous-play game (SPG) scenario that PSP and ESP

determine the prices of their cloud services simultaneously.

We analyze the interaction of the two CSPs and MUs by

using the Stackelberg game, in which PSP and ESP determine

the prices of their services first, and then MUs select cloud

services to maximize their utilities according to the prices and

performances. The backward induction method is employed

to get the equilibrium of the game.

In summary, we make the following main contributions in

this work.

• We investigate service selection in a mobile cloud archi-

tecture, in which MUs select cloud services from PSP and

ESP. The objectives of the two CSPs are to optimally deter-

mine the prices of their services to maximize their revenues.

Due to the reason that the two CSPs have different capacities

of their cloud resources, we adopt M/M/∞ and M/M/1 queu-

ing models to denote PSP and ESP, respectively.

• We consider the simultaneous-play game (SPG) compe-

tition scenario, in which PSP and ESP compete to simultane-

ously determine the prices of their cloud services.

• We conduct numerical results to evaluate our analysis.

The analysis of our simulation results indicate that moreMUs

will offload their tasks to be processed in the edge cloud

and the ESP can set higher prices if the number of tasks to

be offloaded from MUs is small; however, more MUs will

select the service of PSP with the number of tasks of MUs

increasing. The numerical analysis also show thatMUs prefer

to choose the cloud services of ESP with the transmission

delay of PSP increasing.

The rest part of this work is structured in the following.

In the second section, we present a review and discussion of

some related studies on resource management in cloud com-

puting and mobile cloud computing. We introduce system

models in the third section. We present the analysis of service

selection in the mobile cloud market in Section IV. Section V

presents the analysis of our numerical results to verify our

theoretical analysis. Finally, we give the conclusions and

some future research work.

II. RELATED WORK

We present a review and discussion of some work centered

around resource management in public clouds and mobile

clouds in this section.
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In order to minimize energy consumption and delay cost

of MDs, optimal resource management for offloading tasks

of MUs has received a lot of research interests in mobile

cloud architectures. In work [18], resource allocation for

task offloading was explored in MEC. The authors tried to

minimize the total energy consumed by the MDs by opti-

mally allocating computing resources. In [19], the computa-

tion offloading in an MEC system with multiple MUs was

investigated by Zhao et al.. They also tried to minimize

energy consumption of MDs by optimizing both of radio and

computational resources allocations. In [20], Chen and Hao

investigated the problem of multiuser task offloading inMEC

with the software defined unltra-dense network. Their goal is

to optimally allocate computing resources in the edge cloud

to minimize the delay costs, and meanwhile prolonging the

battery life of MDs. In [5], the authors investigated commu-

nication offloading in MEC systems where MDs can harvest

energy. In [21], Li et al. proposed a game theoretical approach

for power control in an MEC system with multiple MUs by

considering interference factor. In [22], Fang et al. studied the

profit maximization problem in a mobile cloudlet platform.

They proposed an online control algorithm by leveraging the

Lyapunov optimization technique to the cope with the time-

varying arrival rates of tasks from MUts. In [23], the authors

aimed to improve the efficiency of radio transmission in an

MEC enabled by non-orthogonal multiple access (NOMA).

Nevertheless, these studies mainly study from the perspective

of MUs without considering the pricing factor which is of

great importance for ESPs.

Pricing is critically important for resource management

in the public cloud and mobile cloud. A great number of

research interests have been focused on the design of optimal

prices in the literature. In [24], the authors introduced a new

pricing mechanism to maximize the PSP’s profit in a cloud

cache. A pricing mechanism for resource management in a

public cloud is proposed in [25] with the goal to maximize

the PSP’s profit. In [26], Fang and Li studied how to design

the optimal price schemes in a monopoly public cloud market

where only one CSP exists. In [16], the authors developed

an framework to set price of the mobile cloud services, and

analyzed the incentives for offloading CSPs to offload the

tasks of MUs. They modeled the pricing scheme as a Stack-

elberg game, in which the CSPs are the followers and the

MUs are the leaders. In [17], the authors studied the designing

of optimal pricing strategy for task offloading in the MCC

systems. Their objectives are to make the profits of the public

CSP maximized while minimizing the energy consumption

and delay costs of MUs. However, these aforementioned

studies investigated the resource allocation of PSPs and ESPs

separately, and they did not consider the competition between

the PSP and ESP.

Competition of service providers has been extensively

studied in cloud computing and wireless networks. In [27],

the authors analyzed competition in a wireless network mar-

ket consists of two network service providers competing to

set the optimal prices of their network services in different

time slots for maximizing their revenues. In [28], the authors

studied competition of two service providers in an femtocell

communication market where they compete to set the prices

of the network services simultaneous for revenue maximiza-

tion. In particular, designing the optimal pricing mechanisms

to maximize the revenues of CSPs is especially important

in a cloud market where the competition of several CSPs

exists. Competition and cooperation of CSPs are studied by

the work of [29], where the authors proposed a novel model.

In [30], Feng et al. explored the problem of service provision

in a public cloud market existing the competition of multiple

CSPs. The authors analyzed how these CSPs should price

their services such that their revenues can be maximized.

However, these previous studies considered either the pub-

lic ormobile cloud ignoring the competition between PSP and

ESP.WithmoreMUs beginning to process their computation-

intensive applications in the public cloud and edge cloud,

there is no denying the fact that these MUs should make a

choice as to which cloud services they choose. There are

only few studies that considered service selection from the

edge cloud and public cloud. In [31], Chen et al. considered

a general MCC system consisting of an edge cloud and a

remote public cloud. Their objective is to minimize the total

costs of all MUs by optimally allocating the communication

resources and finding the optimal offloading decisions of all

the tasks. But how to select cloud services from the edge

cloud and the remote public cloud is not fully studied. Espe-

cially, the pricing factor is not analyzed in the mobile cloud

market where PSP and ESP compte to provide cloud services.

Although Zhao et al. in [32] studied the price competition

between the ESP and CSP, several problems remain to be

further analyzed, such as how the arrival rate of task impact

on the prices of the cloud services, and how the service rates

of the two CSPs affect the choices of the MUs. Besides,

the objective of [32] is different from our work.

III. SYSTEM MODELS

Consider a mobile cloud architecture where MUs can offload

tasks for execution by selecting services from the edge cloud

near to the Base Station (BS) or the public cloud, as depicted

by Fig.1. The edge cloud and the remote public cloud belong

to two different CSPs, respectively denoted by ESP and PSP.

ESP can be network service providers, such as NTT Docomo

in Japan or the China Mobile in China, and the PSP can be

major cloud companies like Amazon or Google. The ESP and

PSP compete to deliver cloud services to a number of MUs.

We assume that the MUs submit their tasks with arrival rate

λ (tasks/second) according to the Poisson process [30], [33].

We assume that each MU owns one MD, and each MD has

one task to be offloaded. Each task can be an application (e.g.

face recognition) or a function (e.g. an image compression).

Hence, we use MUs and tasks interchangeably in the paper.

The tasks from MUs are assumed to have high requirements

for computing resources and be sensitive to delay, such as

the face recognition applications. We model PSP by using

the M/M/∞ queue reflecting its adequate cloud resources,
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whereas we model ESP as an M/M/1 queue as it has con-

strained cloud capacities [7], [33], [34]. For MUs, each of

them will select service from the CSP or ESP according to

the prices and performances to process their tasks. Let λp and

λe denote the respective arrival rate of tasks at PSP and ESP,

so that λp + λe = λ.

A. PSP’S MODEL

Queueing models have been widely adopted in the cloud

computing systems [35], [36]. In comparison with ESP, PSP

has abundant cloud resources to process the tasks of MUs [6],

[32]. Therefore, its system can be modeled as an M/M/∞

queue [6], [32]. Similar assumption is widely adopted in

many existing studies. For example, in [33], cloud broker is

modeled by using an M/M/∞ queue, and the work of [37]

modeled a system with multiple servers as an M/G/∞ queue.

Denote α as the delay cost per unit time andµp (in the number

of processed tasks per second) as the service rate of PSP.

Different values of α reflect different types of applications

and their sensitivity to delay [17]. A higher value of α means

that the application has higher sensitivity to delay. When

offloading tasks to the remote public cloud, extra transmis-

sion delay will be incurred. We assume that the transmission

time from the BS to the public cloud is a fixed value, denoted

by dt [34]. For aMU, if it selects cloud services from the PSP,

the total costs can be expressed as

Cp =
α

µp
+ dt + pp (1)

where 1
µp

is the mean delay that MUs experienced in M/M/∞

queue including processing delay and the time waiting in this

queue, and pp is the subscription price (in $ per task) set by

PSP.

Accordingly, the revenue of PSP is given as [30], [33], [38]

πp = ppλp (2)

B. ESP’S MODEL

Compared with PSP, ESP has constrained cloud capacity;

therefore, ESP has an M/M/1 queue of cloud resources [7],

[34]. Let µe (in the number of processed tasks per second)

denote the service rate of ESP. For an MU, if it selects

cloud service from the ESP, the total costs that this MU will

experience can be expressed as

Ce =
α

µe − λe
+ pe (3)

where 1
µe−λe

is themean delay inM/M/1 queue including pro-

cessing delay and the time waiting, and pe is the subscription

price of ESP (in $ per task).

Accordingly, the revenue of ESP is given as [30], [33], [38]

πe = peλe (4)

For convenient analysis, we summarize some main nota-

tions in Table 1.

Remark: How to model cloud computing platforms still

remains in discussion. The system models in a lot of existing

TABLE 1. Notations summary.

work have some gaps and constraints in comparison with

the real cloud computing systems. Numerous studies have

realized this point and discussed about it, such as [6], [15],

[30], [33]. When selecting a proper system model, the ease to

analyze and the convenience of getting closed form solutions

should be considered. Thework of [15] and [33] alsomodeled

a CSP with limited cloud resources as an M/M/1 queue.

In [30], the authors argued that modeling a cloud system

by using an M/M/1 queue is enough. In [6], [32] and [34],

the authors modeled the remote public cloud computing sys-

tem as an M/M/∞ queue, as it has infinite cloud computing

resources compared with the edge cloud system.

FIGURE 2. The Stackelberg game in mobile cloud architecture.

IV. SERVICE SELECTION IN THE MOBILE CLOUD

ARCHITECTURE

Consider amobile cloud architecture consists of PSP and ESP

provisioning cloud services to a number of MUs. The MUs

pay to select cloud services from the two CSPs to execute

their tasks in the edge cloud or remote public cloud. The

objectives of PSP and ESP are to maximize their revenues

by setting the optimal price for its cloud service. We study

the interaction of the two CSPs and MUs by adopting the

Stackelberg game [39], in this context, PSP and ESP com-

pete to provision their services with optimal prices first, and

then MUs make decisions to select cloud services based

on performances and prices of the two CSPs in stage two,

as illustrated by Fig.2. This game can be solved by resorting

VOLUME 7, 2019 43567
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to the backward induction method [40]. In particular, we con-

sider the relationship of PSP and ESP in the simultaneous-

play game (SPG) scenario, where they simultaneously start

to provision cloud services with different performances and

prices [41].

It is important to note that two competition scenarios

exist, i.e., static and dynamic scenarios. In this paper, our

study only considers the static scenario, and we leave the

dynamic scenario as a future research direction. There are

some related studies on dynamic scenario. For example,

the work of [33] analyzed the dynamic scenario by using the

evolutionary game. In [27], Zhang et al. investigated dynamic

price competition in the duopoly network market, where two

service providers compete to offer network services with

different prices in different time slots to maximize their

revenues.

A. WARDROP EQUILIBRIUM

In the cloud service selection game, a Wardrop equilibrium

[33], [42], [43] is reached, as a large number of MUs must

individually make a determination on which cloud service

they will choose. This equilibrium meets with the following

two Wardrop’s principles [33], [42], [43]: the MUs experi-

ence the equal total costs on all the used cloud services, that

is, the mean delay and cost are minimized.

Therefore, according to the Wardrop equilibrium, all the

MUs will experience the same total costs, i.e., C1 = C2.

Accordingly, we have

α

µe
+ dt + pp =

α

µe − λee
+ pe (5)

where λee is the number of tasks arrived at the ESP in equilib-

rium.

From Eq.(5), we get

λee = µe −
α

pp − pe + d
(6)

Accordingly, the number of tasks arrived at the PSP in

equilibrium is

λep = λ − µe +
α

pp − pe + d
(7)

where d =
α
µp

+ dt .

According to the arrival rates of tasks in equilibrium at PSP

and ESP in the Eqs.(6) and (7), respectively, PSP and ESP

compete to maximize their revenues by setting optimal prices

of their services. Therefore, we can formulate the following

game:
• Players: PSP and ESP,

• Strategies: PSP sets price pp, and ESP sets price pe,

• Payoff: the revenues of the two CSPs: πe
p = ppλ

e
p and

πe
e = peλ

e
e.

The corresponding revenues of the PSP and ESP at the

equilibrium are respectively expressed as

πe
p = ppλ

e
p

= pp

[

λ − µe +
α

pp − pe + d

]

(8)

πe
e = peλ

e
e

= pe

[

µe −
α

pp − pe + d

]

(9)

B. SIMULTANEOUS-PLAY GAME (SPG)

We consider the simultaneous-play game (SPG) competition

scenario, in which PSP and ESP simultaneously determine

the prices of their services with the goal of maximizing their

revenues [15], [43]. For PSP, we have the following revenue

optimization problem:

Problem1:

max
pp

ppλ
e
p

s.t. pp ≥ 0 (10)

where λe1 is denoted by Eq.(7).

The revenue optimization problem of ESP can be formu-

lated as:

Problem2:

max
pe

peλ
e
e

s.t. pe ≥ 0 (11)

where λee is given in Eq.(6).

From solving Problem1 and Problem2 simultaneously,

we can get Proposition 1, which is proved in the Appendix.

Proposition 1: A unique price pair (pnp, p
n
e) exists in the

Equilibrium.

According to the Proposition 1, we can obtain the follow-

ing Corollary 1.

Corollary 1: In the Equilibrium, PSP and ESP respectively

obtain the following revenues:

πn
p = pnpλ

n
p (12)

πn
e = pneλ

n
e (13)

V. PERFORMANCE EVALUATION

In this section, numerical results are conducted to evaluate

the theoretical analysis of this paper. We present an analysis

of the two CSPs’ revenues, prices and MUs’ arrival rates in

equilibrium, to different parameters, such as the total task

arrival rate of MUs, the service rates of the two CSPs and

the transmission delay of PSP.

A. PARAMETER SETTING

Unless otherwise specified, we set the default values of

parameters of the mobile cloud architecture as follows: ser-

vice rate µp = 20 tasks/s, µe = 20 tasks/s, total tasks arrival

rate λ = 30 tasks/s, the transmission delay of PSP dt = 0.4 s

and α = 1. We set the parameters values by referring

to [6], [34], in which these values are in line with they

are experimentally measured [6]. We emphasize that the

selected values of these parameters are just for demonstration.

Other values of parameters also have the similar results,

which means that the numerical analysis of this paper is not

limited by the selected values of these parameters.

43568 VOLUME 7, 2019
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B. IMPACT OF TASK ARRIVAL RATE

We first present an analysis of the impact of arrival rate

of tasks on PSP and ESP in equilibrium. Fig.3 shows the

prices of the PSP and ESP in equilibrium versus the arrival

rate of MUs’ tasks with λ varying in the range [20, 30].

Fig.4 shows the prices of the PSP and ESP in equilibrium

versus the arrival rate of MUs’ tasks with λ varying in the

range [30, 40). Fig.3 and Fig.4 show that ESP can set higher

equilibrium prices than PSP under the condition that the

number of being offloaded tasks is small; however, PSP can

set higher equilibrium prices than ESP with the increase of

the number of to be offloaded tasks. Fig.3 and Fig.4 indicate

that the equilibrium prices of PSP and ESP increase rapidly

with the increase of the number of MUs’ tasks.

FIGURE 3. Equilibrium prices of PSP and ESP versus total task arrival rate
varying in [20, 30].

FIGURE 4. Equilibrium prices of PSP and ESP versus total task arrival rate
varying in [30, 40).

FIGURE 5. Equilibrium arrival rates of tasks of PSP and ESP versus total
task arrival rate.

Fig.5 shows how the arrival rates of offloaded tasks at the

PSP and ESP in equilibrium versus the arrival rate of MUs’

tasks with λ varying in the range [20, 40). From this figure,

we can observe that more MUs tend to select cloud services

from the ESP if the number of tasks ofMUs is small; however,

more MUs will select cloud services from the PSP when the

number of tasks becomes large. This figure demonstrates that

MUs prefer to make use of the service from the public cloud

to execute their tasks if the number of tasks that they run is

large, even if the transmission delay of the public cloud is

long. This is due to the reason that MUs will contend to use

cloud services with the increase of the number of their tasks.

FIGURE 6. Comparison of revenue of PSP and ESP versus total task arrival
rate.

Fig.6 compares the revenues of PSP and ESP versus the

total task arrival rates. As we can see from this figure that

the revenue of ESP is higher than that of the PSP, when the

number of offloaded tasks is small; however, the revenue that

PSP obtains is surpassing the revenue of ESPwith the number

of tasks becoming large. From this figure, it is obviously

observed that the revenues of PSP and ESP increase rapidly

with the number of tasks increasing.

FIGURE 7. Equilibrium task arrival rates of PSP and ESP versus service
rate µ2.

C. IMPACT OF THE SERVICE RATE OF ESP

In this part, we present an analysis of the impact of ESP’s

service rate µe on task arrival rates, and the prices of PSP and

ESP in equilibrium. We set the service rate of PSP as µp =

20 tasks/s and total task arrival rate λ = 30 tasks/s with the

service rate µe varying from 16 to 20 tasks/s. Fig.7 shows the

arrival rates of PSP and ESP in equilibrium varying versus the

service rate of ESPµe. From this figure we can find that more

MUs tend to adopt the cloud service of PSP when the service

rate of ESP µe is small; however, the number of MUs that

chooses the cloud service of ESP increases with the service

rate of ESP µe increasing. Fig.7 suggests that the ESP can

enlarge its cloud capacity to attract more MUs.

Fig.8 shows the prices of PSP and ESP in equilibrium

versus the service rate of ESP µe. From this figure we have

the observation that ESP can set higher prices in equilib-

rium than PSP with the service rate of ESP increasing µe.

Fig.8 indicates that PSP has to decrease the prices of its

VOLUME 7, 2019 43569
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FIGURE 8. Equilibrium prices of PSP and ESP versus service rate µ2.

cloud services when the ESP enlarges the capacity of cloud

resources.

FIGURE 9. Comparison of revenue of PSP and ESP versus service rate µ2.

Fig.9 shows the comparison of the revenue of PSP and ESP

versus the service rate of ESP µe. As we can find from the

figure that the revenue that ESP obtains is less than that of

PSP when the service rate of ESP µe is smaller; however,

the revenue that ESP obtains is growing more than that of

PSP with the service rate of ESP increasing. Figs.7, 8, and

9 show that ESP can improve the competitive advantage by

enlarging the capacity of its cloud resources.

FIGURE 10. Equilibrium task arrival rates of PSP and ESP versus
transmission delay dt .

D. IMPACT OF THE TRANSMISSION DELAY

We then analyze the impact of transmission delay dt on the

arrival rates and revenues of PSP and ESP in equilibrium.

We set µp = 20 tasks/s, µe = 20 tasks/s, and λ = 30 tasks/s.

Fig.10 shows the impact of transmission delay dt on the

equilibrium arrival rates of PSP and ESP. From this figure we

have the observation that more tasks will be offloaded to

the edge cloud with the transmission delay increasing, which

implies that the MUs prefer to choose the cloud services with

better QoS.

VI. CONCLUSIONS AND FUTURE WORK

We have analyzed a mobile cloud architecture, where MUs

make choices on selecting services from PSP and ESP.

We analyzed the interaction between CSPs and MUs by

adopting the Stackelberg game. Especially, we considered the

relationship of the two CSPs in the SPG scenario, in which

PSP and ESP simultaneously determine the prices of their

cloud services. By leveraging the method of backward induc-

tion, we got a unique equilibrium in this game. The numerical

results indicated that when the number of tasks becomes

large, moreMUswill select cloud services fromPSP and ESP,

and the two CSPs can achieve higher prices. In particular,

more MUs will choose the services from the ESP if the

number of tasks to be offloaded is small. Moreover, the ESP

can improve its competition by enlarging the capacity of its

cloud resources. Our numerical results on the transmission

delay showed that MUs prefer to select service from the edge

cloud to execute their tasks if PSP has long transmission

delay.

There are some research directions that can be further dis-

cussed and studied. For example, the static price competition

scenario can be extended to the dynamic case by using the

evolutionary game. In the dynamic price competition sce-

nario, the prices of the cloud services are different in different

time slots, which is more practical. We can also analyze the

cooperation of the PSP and ESP by leveraging the coalition

game [44], where the PSP and ESP cooperate to maximize

their revenues.
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APPENDIX

PROOF OF PROPOSITION 1

It is obvious that the objective functions of Problem1 and

Problem2 are convex functions; therefore, according to the

first derivative of the objective functions,

∂πe
p

∂pp
= λ − µe −

α(pe − dt )

(d + pp − pe)2
= 0 (14)

and

∂πe
e

∂pe
= µe −

α(d + pe)

(d + pp − pe)2
= 0 (15)

we have

pp = pe − d +

√

α(pe − d)

λ − µe
(16)

pe = pp + d −

√

α(d + pp)

µe
(17)

Therefore, the Nash Equilibrium prices of PSP and ESP in

SPG scenario can be computed from the Eqs.(16) and (17),

which are expressed as

pnp =
−A+ µeα + B

D
(18)
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where

A = d(2λ2 − 6λµe + 4µ2
e) (19)

B =

√

8µ3
eαd + µ2

eα − 4λαdµ2
e (20)

D = 2(λ − 2µe)
2 (21)

Substituting Eq.(18) into Eq.(17), we obtain

pne =
−A+ µpµe + B

D
+d−

√

α(Dd − A+ µeα + B)

Dµe
(22)

Substituting Eqs.(18) and (22) into Eqs.(7) and (6) respec-

tively, we have

λnp = λ − µe +

√

Dµeα

Dd − A+ µeα + B
(23)

λne = µe −

√

Dµeα

Dd − A+ µeα + B
(24)

After getting pnp and pne , and λnp and λne , we get the proof of

Proposition 1.
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