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Optimal Pricing for Multiple Services in
Telecommunications Networks Offering

Quality-of-Service Guarantees
Neil J. Keon, Member, IEEE,and G. Anandalingam, Senior Member, IEEE

Abstract—We consider pricing for multiple services offered over
a single telecommunications network. Each service has quality-of-
service (QoS) requirements that are guaranteed to users. Service
classes may be defined by the type of service, such as voice, video,
or data, as well as the origin and destination of the connection pro-
vided to the user. We formulate the optimal pricing problem as a
nonlinear integer expected revenue optimization problem. We si-
multaneously solve for prices and the resource allocations neces-
sary to provide connections with guaranteed QoS. We derive opti-
mality conditions and a solution method for this class of problems,
and apply to a realistic model of a multiservice communications
network.

Index Terms—Economics, network design, pricing, quality of
service (QoS).

I. INTRODUCTION

I N THIS PAPER, we derive a nonlinear mathematical pro-
gramming model for determining optimal prices for multiple

services with guaranteed quality of service (QoS). We solve this
model using an auction algorithm. The traditional distinction be-
tween voice networks, data networks, and cable TV networks is
fast becoming obsolete. In the future, multiple communications
services will be available to users over a single network. These
different services will vary in terms of bandwidth requirements
and tolerate different quality limitations such as loss of data and
delay in transmission. Our model presents a way for network
providers to set prices for these services, and allocate resources
such that these QoS requirements are guaranteed while expected
revenues are maximized.

A. Overview

We consider the problem of using pricing and resource alloca-
tion to manage multiple services networks with QoS guarantees.
Although the arrival rate of connection requests can be fixed by
setting theprice, theobservedarrivals,and thus, theobservedrev-
enue, are assumed to be a stochastic process. Also, the model we
propose in this paper separates demand intoclasses, defined by
service type as well as origin and destination. Our model maxi-
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mizesexpectedrevenue in order to obtain optimal prices and the
resources needed to guarantee QoS for each service class.

The “resources” we consider arebufferspace for temporarily
storing users’ data traffic, andbandwidthfor transmitting the
data through the network. All connections in a particular service
class (e.g., voice, data, video) share the same buffer and band-
width allocation. The resource allocations must be sufficient to
satisfy two QoS guarantees which are defined for every service
class individually. The first QoS guarantee is a restriction on the
probability of data being lost in the network. Data is lost when
resources allocated to a service class based onexpectedtraffic
calculations are insufficient to either transmit (using bandwidth)
or store (using buffer space) all the data that is actually sent to
the network by all users in a service class. The second QoS guar-
antee is a limit on the delay, or time the data is buffered, during
transmission by the network. The two QoS criteria constrain the
problem in terms of buffer space and bandwidth that must be al-
located to each service class for a given level of demand.

The tradeoff between resource allocations among various ser-
vice classes is complicated due to the fact that as the number
of connections in a class increases we observe economies of
scale in bandwidth allocations. This is due to two phenomena:
smoothing of data traffic in buffers and statistical multiplexing
gains. Economies of scale appear by decreasing the marginal
resource allocations to any service class, i.e., by decreasing the
resources required to supply one additional connection.

We construct a distributed search method called the “auction
algorithm” to optimize the revenue by choosing prices, subject to
constraintson theresourceallocations impliedby finite resources
and QoS guarantees. Our search method takes advantage of sev-
eral optimality properties we show for the resource allocations to
each class. Using these properties, we reduce the search space for
the overall problem and calculate optimal solutions.

B. Related Literature

We will briefly classify the related literature into two broad
categories. First, we will discuss the bulk of the literature, which
deals with pricing in best effort networks, such as the Internet.
There has also been some recent work related to pricing con-
nections for networks with QoS guarantees.

1) Pricing for Best Effort Service:The most celebrated
packet-switched network, the Internet, offersbest effort service,
which is prone to unpredictable congestion and delays by
definition. The current flow control scheme in the internet is
called transmission control protocol (TCP) [2], [34]. Modifi-
cations to this scheme have been suggested that would allow
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multiple service classes, and induce users to behave fairly
and efficiently, through simple or randomized packet marking
mechanisms in the network [10], [13], [14], [20]. Usage-based
schemes, which charge based on the actual resources used,
have also been proposed for these types of networks [8], [29].

Priority pricing is another suggestion for allowing multiple
services over best effort networks. The best known work dis-
cusses a second bid auction, whereby it is incentive compatible,
or in the user’s best interests to truthfully reveal their true valua-
tion of service in terms of a priority [22]–[24]. Another bidding
paradigm, which results in a Nash equilibrium among users,
was suggested for the Internet in [5]. A similar approach, again
requiring users to bid for service, was proposed for available
bit rate service, the best effort service offered in asynchronous
transfer mode (ATM) networks [6].

A recent game theoretic model requiring users to choose from
among several routes, each with its own delay, has been shown
to have a stable equilibrium solution where the relative prices
induce the desired operating point of the network operator [16],
[17]. An interesting problem of regulating the arrival of jobs
presented to the network is discussed in [26], and the infor-
mational requirements are relaxed, using an adaptive on-line
method in [25]. Finally, recent results have been offered, based
on dynamic programming that suggest a static price schedule
results in network performance that is near optimal compared
to congestion-dependent pricing [27].

2) Pricing With QoS Guarantees:Typically, a network with
guaranteed QoS, such as the current voice network, must em-
ploy a call admission policy in order to satisfy the guarantees to
users. In an alternative approach to call admission, it has been
suggested that users guarantee their own QoS by purchasing
the required bandwidth and buffer resources for their desired
QoS directly from the network [19], [21]. In [31], an analysis
of a market-based methodology is offered as evidence that
pricing schemes can offer efficient resource allocations in con-
nection-oriented networks offering QoS guarantees (see also
[33]). These models feature a conventional view of pricing per
connection and announcing the price to the public. The paper
by de Vecianaet al. [32] combines the conventional practice
of prices being fixed and announced with the alternative view
of allowing users to guarantee their own QoS by purchasing
bandwidth and buffers directly. Resources are shared among
users, incorporating multiplexing gains. On-line negotiation is
also suggested as a framework for connection setup and alloca-
tion of network resources, using effective bandwidth as a base
for pricing in [11] and [12]. In a related paper that deals with
single link point-to-point ATM networks, the pricing problem
was formulated as a constrained optimal control problem,
and solved using a three-stage solution procedure [35]. The
limitation of the approach is computational tractability.

Our paper belongs to this class of work, but uses a novel
optimization model based on nonlinear mathematical program-
ming. We use an optimal pricing scheme to moderate the de-
mand for connection requests from different classes of service.
Each “class” of service is defined by both the type of service
(e.g., voice, data, video), and by where the telecommunications
flow originates and where it is destined to. Thus, our paper tries
to take into account the use of resources in the entire network.

Based on the connection requests for each class of service at the
specified prices, the model estimates optimal buffer and band-
width allocations to satisfy QoS requirements. Another contri-
bution of this paper is the algorithm we propose to obtain the
optimal solutions.

C. Organization of the Paper

This paper is organized as follows. In Section II, we will
describe the network model that we are considering and ex-
amine three important features, call blocking, loss probability,
and delay, in some detail. Section III contains the complete
formulation of the expected revenue maximization model, and
presents optimality properties. Section IV provides details of the
auction algorithm used to solve the problem. We present the im-
plementation of the algorithm to an extensive example in Sec-
tion V. We end the paper with concluding remarks in Section VI.

II. M ODEL FOROPTIMAL PRICING WITH QOS GUARANTEES

In this section, we will give an overview of the model that we
will be using to derive optimal prices for the multiple services
in a telecommunications network where QoS is guaranteed. We
will first describe an example network that will help us focus
our thoughts on the particular features that we model, present
the characteristics of the model, and then derive the particular
mathematical constructs of these characteristics. In Section III,
we will present the complete mathematical model, and in Sec-
tion IV, we will present details of the algorithm to compute the
optimal multiservice prices, based on the optimality conditions
of the mathematical model.

A. The Network

We will use the ring-type network shown in Fig. 1, only to
highlight the particular features that we are modeling. Note,
however, that all features we consider in our model are found
in any type of network. At each switch, there are inputs and out-
puts of telecommunications traffic. Traffic inputs are from many
different typesof service that either originate at that switch, or
else arrive at the switch from other originating nodes through an
incoming bandwidth pipe. Traffic outputs from the switch either
go along an outgoing bandwidth pipe, or directly to a user con-
nected to that switch.

Without loss of generality with respect to the network char-
acteristics, we assume that buffer space is used at originating
switches to collect and smooth data traffic, subject to delay con-
straints. The data traffic is then transported in bandwidth pipes
through the rest of the path to its destination. We allocate aggre-
gate quantities of buffer and bandwidth to connections grouped
by service type, origin , and destination. A serviceclassis,
therefore, denoted by the triple . Each service typehas
traffic characteristics defined byaveragebandwidth andpeak
bandwidth . For example, voice and video have different av-
erage and peak bandwidth requirements.

B. Overview of the Model

The model is derived from the point of view of the service
provider. The service provider sets prices for the different mul-
tiple services in order to maximize revenue subject to a set of
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Fig. 1. Network (ring) service model at an individual switch.

constraints and conditions that are necessary to ensure both QoS
and flow balance. The problem that the service provider solves
can be summarized as follows.

Maximize expected revenue: This is a product of prices
charged for each service and the demand for each service, taken
to be an arrival rate of connection requeststhat can be accom-
modatedat that price, subject to the following constraints.

• Limited capacity: The network switches have limited ca-
pacity (bandwidth).

• Limit the blocking of connection requests: Given band-
width capacity constraints, there is a limited number of
connections that can be supported in order to guarantee
QoS, and some requests may have to be blocked. We set a
limit on the blocking probability for each service class.
Note that the capacity constraint and the limitation on
blocking probability will in turn affect the number of con-
nection requests that can be accommodated.

• Limit the probability of packet loss: Different services can
tolerate different levels of packet loss and still guarantee
QoS. We set a limit on the “equivalent capacity” (defined
in detail later) allocated to each service in order to limit
the probability of packet loss.

• Limit the maximum delay: Different services can tolerate
different levels of delay and still guarantee QoS. We set a
limit on the maximum allowable delay for each service.

We will now describe each component of the model in greater
detail using quantities illustrated in Fig. 1. We will present the
complete mathematical formulation of the problem in Section II,
and derive optimality conditions.

C. Deriving Demand

The quantity demanded by users, , is taken to be the ar-
rival rate of connection requests for service, with the connec-
tion originating at switch and terminating at switch. This
quantity is determined by a demand function where

is the price charged per unit of time the connection is open.
Based on current empirical results [1], [18], in our model we use
the demand function

(1)

where is the (constant) elasticity of demand for service class
. One important property of (1) is that marginal revenue

with respect to prices will always be negative (meaning lower

prices always increase revenue) provided that . We
assume elasticities in excess of unity for the remainder of the
paper. Again, this is suggested by available research [1], [18].

D. Call Blocking and Expected Revenue

We are modeling a network offering connections with guar-
anteed QoS. Under these conditions, there are a limited number
of connections that can be supported, and some requests may
have to be blocked if resources are already reserved for other
requests. We would like to minimize the blocking of connection
requests, and capture this in our optimization model as a con-
straint.

For each service class, denoted by , we model the
number of ongoing connections as an queue.
The capacity in the queueing model refers to the maximum
number of connections that we will allow to be admitted to a
given service class, a variable we define as . For
consistency with this model, we state a number of assumptions,
as follows. The arrival rate of connection requests for a service
class given by (defined above) characterizes interarrival
times that are independently and identically distributed ex-
ponential random variables. The average holding time of a
connection, , is known and the holding times of individual
connections can occur according to any general distribution,
but are independently and identically distributed for each
connection. The traffic intensity of a class is the product
of arrival rate and average holding time, i.e., .

The properties of the queueing model are well
known [4]. The probability of blocking a request within any
service class, , is given by the Erlang B formula

(2)

If the number of open connections is equal to the
maximum number permitted for each class ,
when a user’s request for service is received, the connec-
tion will be blocked and lost to the system. Otherwise (i.e.,

), the request will be admitted.
The expected number of busy connections is given by

(3)

We define the expected rate of revenue generation attributable
to a service class, , as the price charged per unit time for
a single connection multiplied by the expected number of
ongoing connections

(4)

E. Probability of Loss and Equivalent Capacity

In the previous section, we modeled the connection level
traffic so we could quantify blocking probability for our model.
Now we model the packet level traffic for the same set of
connections, so we can quantify one of the QoS parameters,
namely probability of lost packets. This will also allow us to
relate the service classes to the necessary resource assignments,
buffer space and bandwidth, to satisfy the QoS. At the switch,
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Fig. 2. Illustration of average bandwidth allocated per connection, using mapping fromNCMAX to BW.

packets from all connections of the same class ( ) share a
first-in-first-out (FIFO) queue of size . Up to
connections, with statistically identical data traffic, may share
the allocated buffer at any time. Packet loss occurs
when there is buffer overflow.

To ensure that the guaranteed loss probability is satisfied for
each service class, we require that the minimum bandwidth allo-
cation per offered connection be at least equal to theequivalent
capacity. Equivalent capacity for a single source (connection)
is defined asthe service rate of the queue that corresponds to a
given (packet) loss [9], [28]. If bandwidth in excess
of the equivalent capacity is assigned to a connection, the ob-
served packet loss is less than . There are two main
effects that determine the equivalent capacity of a single source.
Effective bandwidthrefers to the fact that smoothing of data
traffic in the buffer reduces the bandwidth required to achieve
a prescribed loss rate of packets.Multiplexing gainsrefers to
the gain in bandwidth required due to the statistical effect of
mixing the data traffic of independent connections. We use the
termequivalent capacitywhen referring to the combination of
these two effects on bandwidth assignment (per connection) to
a number of connections with guaranteed QoS. We now state
some general properties of equivalent capacity.

In our model, all connections of a service class share
a single FIFO buffer. Consider a connection of a given ser-
vice type , which is distinct from service “class” where we in-
clude origin–destination information as well. The user is either
sending data at apeaktransmission rate (i.e., theON state)
or is sending no traffic at all (i.e., theOFF state). Theaverage
rate of data transmission for the individual connection is given
by . TheON andOFFperiods are assumed to be exponentially
distributed, with the average length of anON period given by .
QoS requirements for this type of data traffic model have been
well studied, e.g., [9]. The traffic from all connections of the
same type is statistically identical, i.e., all connections classi-
fied as the same type have the same parameters, , and .

Clearly, the equivalent capacity must be greater than or equal
to the mean rate of data traffic and less than or equal to the
peak rate of data traffic

(5)

As Fig. 2 shows, equivalent capacity is decreasing in the
amount of allocated buffer space

(6)

As the number of connections for which we allocate resources
increases, equivalent capacity will decrease, re-

flecting multiplexing gains

(7)

Finally, as we allow greater loss probabilities, , the
equivalent capacity will decrease.

(8)

An in-depth analysis of equivalent capacity is outside the
focus of this paper. Detailed discussions of buffering and mul-
tiplexing gains are given in [2], [9], [28], [32], and [34]. How-
ever, it should be noted that our approach remains unchanged for
anyderivation of equivalent capacity, which satisfies the general
properties for equivalent capacity, given in (5)–(8) above. The
inequalities admit special cases such as constant bit-rate traffic,
with no smoothing or multiplexing gains. As we shall see in the
next section, the data traffic model and equivalent capacity ex-
pressions in (5)–(8) are sufficient for formulating packet loss in
our revenue-maximizing model.

It will become apparent later that we wish to solve buffer as-
signment and bandwidth assignment simultaneously. Therefore,
we now illustrate some extensions of the equivalent capacity
properties when maximum buffer delay is held constant, i.e.,
the buffer is sized according to a constant maximum delay given
by . Fig. 2 shows the general relationship between
equivalent capacity (average bandwidth per connection) and
number of connections when maximum delay in the buffer is
held fixed. This relationship is derived based on (5)–(8) above.
(The service class indices are omitted for clarity.)
Note that equivalent capacity, as illustrated in Fig. 2, gives
the bandwidth required to meet two QoS criteria, namely, loss
probability and maximum delay .
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The average bandwidth allocated per connection, as a result
of the mapping from to given by (5)–(8) is illustrated
by the downward sloping curves in the left panel above. An in-
crease in the number of connections served, from to

, results in the downward shift of the average band-
width assignment per connection. The straight lines represent
the relationship between the bufferand the bandwidth
for fixed maximum delay, i.e., . Since the figure
is drawn in a space representing average bandwidth per connec-
tion, , the shift outward in the slope of the lines
results from the same increase in the number of connections
served, from to . Collecting the solutions
to such a system of two equations in two unknowns yields the
downward sloping curve in the right panel of Fig. 2.

Fig. 2 is conceptual. In our numerical example, we will use
the equivalent capacity results from [9] to calculate the equiva-
lent capacity per connection summarized as

(9)
where

(10)

(11)

(12)

(13)

(14)

The equivalent capacity per connection (9) is calculated as
the minimum of two distinct approximations. The effective
bandwidth is approximated by (10). The second term in the
minimum expression in (9) reflects multiplexing gains. This
approximation is based on the stationary bit rate. To calculate
this expression, we need the additional expression (11), as well
as the mean of the aggregate bit rate (12), the standard deviation
of the aggregate bit rate (13), and an approximate inversion of
the normal distribution (14). The calculations above separate
equivalent capacity into regions dominated by either smoothing
effects in the buffer or multiplexing gains. These expressions are
one example of suggested computational methods for equivalent
capacity that satisfy (5)–(8).

F. Delay

The second QoS parameter that we consider is the maximum
allowable delay for each service class. We ignore transmis-
sion delay and consider only delay in the buffer. Therefore, we
can quite easily set bounds for the potential delay a packet may
experience.

(15)

where is the buffer space and is the bandwidth
allocated to service . The maximum delay any packet
may experience, given by (15), is simply the size of the allocated

buffer space divided by the allocated bandwidth. The buffer is
served on a FIFO basis.

III. OPTIMIZATION MODEL

A. The Model

Given the derivations above, we are now in a position to
present the complete mathematical formulation of the revenue
maximizationmodel thatwouldyieldoptimalpricesandresource
allocations. We wish to solve for the price for each service
class denoted by , as well as the volume of service offered

. The volume of service offered refers to how many
connections we can serve simultaneously, given the bandwidth

reserved all along the path betweenand , and the
buffer space reserved at the origin switch. We assume that
bandwidth is limited but buffer space is not. The network service
is assumed to be offered using a connection admission policy,
so that the QoS requirements for probability of loss
and delay are satisfied within certain limits. We include the
blockingprobability resulting fromtheuseofaconnection
admission policy to ensure that we have sufficient resources set
aside for service class , such that a satisfactory proportion
of connection requests can be admitted when they are requested.

The total expected revenue from all service connections in the
network is given by . Be-
cause the expected number of connections arrivals is a
function of the arrival rate, the blocking probability, and the av-
erage holding time of a connection, we can replace the objective
function with .

Thus, the revenue optimization model that will yield optimal
prices and resource allocation is given by

(PNet)

(16)

subject to

(17)

(18)

(19)

(20)

if
otherwise

(21)

(22)

integer (23)
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where
rate of revenue generation associated with ser-
vice class ;
equivalent capacity of a single connection;
set of all in the path for classoriginating at
and terminating at , ;
maximum blocking probability for a connection
from service class ;
maximum packet loss probability for a connec-
tion from service class ;
maximum delay for a connection from service
class ;
the capacity (bandwidth) at switch.

In this formulation, the objective function (16) seeks to
maximize the average rate of revenue generation from on-
going connections, which is given by price multiplied by the
expectednumber of connections. The constraints restrict the
performance measures and resource assignments to be within
bounds set outside the problem asnetwork policy. Budgets on
each quantity are denoted by a bar overhead. Constraint (17)
restricts the call-blocking probability for every class below
some prescribed limit. Constraint (18) ensures the probability
of loss for each service class is satisfied. The buffer
delay for each service class is constrained to be less than or
equal to the limit given by the QoS guarantee in constraint
(19). We have a bandwidth capacity constraint at each switch,
(20), but we assume there is no capacity on allocated buffer
space, and there are no link capacities. The capacity at each
switch must accommodate all traffic originating at the switch
as well as traffic originating elsewhere but routed through the
switch. We assume the routes are known and fixed. There is an
indicator function, (21), for every class , which indicates
if any switch is included in the path. There are a number of
nonnegativity constraints, given by (22). Finally, there is an
integrality constraint on the maximum number admitted to each
class given by (23), since connections can only be
admitted in discrete quantities.

We wish to call attention to one limitation of our formulation
of the capacity constraints, which may overassign bandwidth
along the paths followed. The effective bandwidth of the aggre-
gate traffic for the service class may be reduced after
smoothing in the buffer at the originating switch. Our formula-
tion assigns bandwidth all along the path based on the effective

bandwidth at the originating switch and does not take into ac-
count the statistical properties of the output traffic at the origi-
nating switch. The simplicity of the formulation outweighs our
concern regarding excess bandwidth assignments.

B. Optimality Properties

In general, the problem given in (PNet) is a nonlinear non-
convex mixed integer problem. However, there are a number of
necessary conditions for an optimal solution, which we will use
to search for a solution. First, we will discuss necessary condi-
tions related to constraints (17) – (19) in problem (PNet). These
constraints are relatively simple as they apply to each service
class independently of all other service classes. Based on this
first set of necessary optimal conditions, we will then state a
pair of optimality conditions reflecting the marginal values of
each service class in the solution.

1) Resource Allocation to Individual Service Classes:There
are a number of conclusions we can immediately draw about
optimal solutions to the problem (PNet). First, we consider the
resources that must be assigned to each individual service class.

Theorem: Given downward-sloping demand curves and
plentiful buffer space at each originating switch, if an optimal
solution to (PNet) does not coincide with the condition that
marginal revenue equals zero, i.e., the partial derivatives of (1)
with respect to prices are all less than zero at optimality, then
the optimal solution to (PNet) must satisfy the properties given
by (24)–(27), shown at the bottom of the page.

Proof: See the Appendix for proof.
The call-blocking probability for all service classes is set to

its greatest permitted value for all service classes in (24). In-
cidentally, this is the only condition that pertains directly to
prices. The bandwidth assigned to each service class, for the
maximum number of connections admitted, will be equal to the
corresponding equivalent capacity, as stated in (25). The third
condition, (26), states that because connections have to be in-
teger, allocation of the equivalent capacity for any additional
connections would violate feasibility. This means that no further
increases in bandwidth assignments are possible at an optimal
(feasible) solution. Buffer space is assigned for all services orig-
inating at each switch, such that packets for each service may
experience a delay up to the tolerated delay, (27), assuming that
buffer space at each switch is plentiful.

(24)

(25)

(26)

(27)
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The optimal resource allocation is to assign the appropriate
effective bandwith to each service class, (25), and buffer space
proportional to the equivalent capacity (27). Typically, buffer
space is thought of as a parameter in the equivalent capacity
calculation, while we are treating it as a variable (along with
bandwidth), for which we solve a system of two equations in
two unknowns. That is, we solve (25) and (27) for and

(28)

Going back to Fig. 2 which shows equivalent capacity as a
decreasing function of buffer space and the number of connec-
tions served, the optimality property (27) is illustrated with a lin-
early increasing function of buffer allocation, where both sides
of the expression have been divided by . As the
number of connections served increases, the slope of the line
becomes less steep. Based on this simple graphical analysis, the
system of equations (25) and (27) must have a unique solution
and be decreasing in terms of . Note that if there
are no smoothing effects of multiplexing gains, as with constant
bit-rate traffic ( ), then the allocation per connection is
simply a constant value. In all other cases, the total allocation
must, therefore, be increasing, but the allocation per connection
may be decreasing, depending on the properties of the service
class. This shows economies of scale in the optimal resource al-
location.

Using another optimality property from Theorem 1, the call-
blocking constraint will be binding by (24). We can solve for the
the optimal arrival rate for a given , using (1)

(29)

(30)

The arrival rate is determined by the limit on call
blocking. We must first calculate the maximum traffic intensity
for , given in (29), and then calculate the arrival
rate using (30). Because the resource allocation tables are
independent of demand, we have not yet related the arrival
rate to a price. The bid tables, presented in Section IV, will
relate the price required to produce the desired arrival rate

, as well as the marginal valuation at the volume of service
provided .

2) Resource Allocation Tradeoffs Between Service
Classes: The optimality properties, from Section III-A-1,
reduce the problem to choosing the optimal values for

. For now, consider alinear relaxationto (PNet),
eliminating the integrality constraints on . For
solutions satisfying the optimality properties given by (24)
– (27), the Karush–Kuhn–Tucker necessary conditions are

trivially satisfied, with the following exception, which results
from differentiating the set of constraints (20):

(31)

Recall that in (31) was defined as an indicator pa-
rameter in the problem (PNet). For each service class ,
we divide both sides of (31) by , and
simplify the necessary optimality conditions

(32)

The economic interpretation of (32) is as follows. Any service
class must yield a marginal return per unit of bandwidth equal
to the sum of the marginal values for all switches (for switch

) along the route for the given class .
Incorporating the integrality requirement in , we

define marginal values per unit of bandwidth for increasing or
reducing the number of connections in the solution, and

, respectively

(33)

(34)

The marginal valuations, from (33) or from (34), are
simply the changes in expected revenue divided by the change
in bandwidth allocation, for an increase or decrease of one in

. Note that by definition, equals
.

Discrete approximations of the continuous necessary opti-
malty conditions (32) are

(35)

In stating (35), we assume that marginal revenue is decreasing
in , i.e., . By (35), it is not profitable to
change the bandwidth allocated to any service class. The mar-
ginal value from an increased allocation is less than the sum of
marginal values of bandwidth at switches along the path.

IV. NETWORK AUCTION ALGORITHM

The search procedure for the global network solution seeks to
identify the marginal valuations of bandwidth at all switches
that will maximize expected revenue. Based on the optimality
conditions (24)–(26), it is clear that the search will have to test
and adjust marginal values at each switch until a solution is
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found that allocates bandwidth fully at each switch in order to
satisfy the optimality conditions.

A. Storage of Problem Data in Bid Tables

We can exploit the first set of necessary optimality properties
(24)–(27) to simplify the search space for the the problem
(PNet). These properties dictate that optimal allocations of

can be calculated from (28) based on the values of
. There is a unique arrival rate of connection

requests, , associated with , according to the
call-blocking property (29). In turn, prices are related to
values of through the arrival rate , given by
the demand functions (1). This gives us a reduced space of
problem data, where all other problem variables are calculated
as functions of , which are integer-valued vari-
ables. Furthermore, we have defined marginal values of service
classes and for any value of in (33) and
(34).

We can calculate all the variables referred to above off-line
and summarize the search space of the problem in tables indexed
by the integer-valued variables (Table I). We call
Table I abid tablebecause the marginal values (or )
represent the maximum amount a rational agent would bid (or
accept) per unit of bandwidth to add (or remove) a connection of
service class . Note that the bid table contains much less
information than all the feasible values of , ,

, and , thus, making it much faster to solve (PNet).

B. Retrieval of Problem Data From Bid Tables

For any given set of marginal bandwidth valuations, we
look up the “bid” and the associated number of connections and
resource allocations. Strictly speaking, we select
for a given according to the following rule:

(36)

We search from the bottom of the bid tables and take the first
(and largest) value of for which .
For relatively small values of , the values
may be increasing due to large multiplexing gains. Since we
are interested in revenue maximization, (36) selects the largest
value of which satisfies the optimality property
(35). The simplest way to find this value is by looking up the
bid table data starting from the bottom of the table. We will now
present a method called theauction algorithmfor ensuring that
the chosen satisfies the optimality conditions.

C. Bounds on Marginal Value of Bandwidth

For convenience in describing the search procedure, we de-
fine bounds on theoptimal set of marginal valuationsof band-
width for all switches, as follows:

(37)

TABLE I
DEFINITION OF BID TABLE

where
optimal marginal valuation at switch;
lower bound on the value of at switch ;
upper bound on the value of at switch .

Clearly, using the bid table and (37), we can guarantee that a
set of marginal valuesis either an upper bound or a lower bound
on an optimal set of marginal values

(38)

(39)

A set of marginal values that undervalues the bandwidth at
all switches results in an overassignment of bandwidth at all
switches and is infeasible. Thus, we can use such a set of mar-
ginal values as alower boundon the set of optimal marginal
values. Likewise, a set of marginal values which overvalues the
bandwidth at all switches will be feasible and can be used as
an upper bound on an optimal set of marginal values. Note that
while we offer bounds on the optimal value of in (37), we
claim only to be seeking bounds for a local optimal solution
to the problem (PNet), which is nonconvex and contains in-
teger-valued variables.

D. Search Procedure

Our search method begins with arbitrary bounds on the op-
timal marginal valuation of bandwidth at each switch which sat-
isfy (38) and (39). In each iteration, we decrease the Euclidean
distance between the two sets of bound and change the direction
of the line segment between the two sets of bounds in the mar-
ginal value space. When the upper and lower bounds are very
near to each other, and we have a feasible solution that fully as-
signs capacity at all switches, we terminate the search and obtain
a near-optimal solution, where capacity is fully assigned and
revenue is very close to optimal. The infeasible solution given
by the lower bounds on marginal value of bandwidth at each
switch will also provide a bound on the distance from a local
optimal solution.

The search algorithm is as follows.

Step 1 Initialization : For initialization, we simply

require an initial set of bounds on the optimal

marginal values as defined in (38) and (39).
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Step 2 Identifying Undervalued (and Overvalued)

Bandwidth : We wish to identify the best feasible

and worst infeasible solutions that lie along the

line segment between the current upper and lower

bounds on marginal value. The bid table data is

calculated according to optimality properties on

resource assignments, and the constant elasticity

of demand model implies higher revenue for lower

prices and more connections provided. Therefore,

the best feasible solution along the line segment

between the upper and lower bounds on marginal

value is where the largest number of connections

are provided by assigning the maximum possible ca-

pacity. This, in turn, is obtained at the lowest

feasible marginal values. Similarly, the worst in-

feasible solution along the line segment is found

with the highest marginal values along that line,

for which the capacity assignment is infeasible at

every switch. We solve the following line search

problems to obtain these two cases:

(P- feasible )

Max� (40)

subject to

BW

� (�v � �m ; �v � �m ; . . . ; �v � �m ) IV P

< BW ; 8x: (41)

(P- infeasible )

Max� (42)

subject to

BW

� (v + �m ; v + �m ; . . . ; v + �m ) IV P

> BW 8x (43)

where

m =
�v � v

�v � v

(44)

0 <�; � < �v � v : (45)

The line segment between the current set of lower

bounds and upper bounds is given by (45). The max-

imum revenue feasible solution along this line is

given by the set of marginal values �v � � m . The

minimum revenue infeasible solution is given by

�v + � m . We will use these solutions in the next

step of the algorithm to determine which bounds

should be changed before the next iteration of the

algorithm.

Step 3 Adjusting Lower and Upper Bounds on Marginal

Value : Along the line segment between the upper and

lower bounds, we wish to identify the switch for

which the bandwidth which is most undervalued. That

is, the switch (or switches) for which marginal

value of bandwidth is “too low” at the solution �

to the revenue maximization problem (P- feasible ),

yielding the most assigned bandwidth. Similarly, we

wish to select the switch (or switches) for which

bandwidth is most overvalued, or the switch for

which the lower bound is “too high” at the solu-

tion � to the problem (P- infeasible ), yielding the

least assigned bandwidth. These values are defined

mathematically as follows:

x

= argmin BW

(�v � � m ; . . . ; �v � � m ) IV P (46)

x

= argmax BW

(v + � m ; . . . ; v + � m ) IV P : (47)

The determination of which switches are over- or

undervalued in terms of their marginal values of

bandwidth is the same as simply choosing the switch

with the highest assigned bandwidth from the so-

lution to (P- feasible ) and that with the lowest

assigned bandwidth to (P- infeasible ). For example,

if one switch is 100% assigned at the solution to

(P- feasible ) while all others are less than 50%

assigned, the marginal value of bandwidth at the

fully assigned switch is relatively too low for an

optimal solution, since capacity should be fully

assigned at all switches. Note that ties are per-

mitted so that there may be more than one under- or

overvalued switch.

To effectively raise the marginal value of bandwidth

when solving (P- feasible ), we will increase the

lower bound on marginal value at that switch. When

we then repeat the line search to solve (P- fea-

sible ) in the next iteration, a higher marginal

value will result at that switch relative to the

other switches. Similarly, we will decrease the

upper bound on marginal value for the switch that

has the lowest infeasible assignment at the optimal

solution to (P- infeasible ), e.g., lower the upper

bound at a switch with 101% assignment when all

others are � 150% assigned. This effectively lowers

the marginal value calculated in the nest iteration

where we solve (P- infeasible ) again.

�v := �v �� m (48)

v := v +� m : (49)

We raise the lower bound on marginal value for the

undervalued switch to the value given by the so-

lution to (P- infeasible ), as given in (49). Sim-

ilarly, we decrease the upper bound on marginal

value for the overvalued switch by taking the value
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in the solution to (P- feasible ), as given by (48).

Note the use of an assignment operator, “ :=” in

(49) and (48). The value to the left of “ :=” is the

new value being calculated, while the value to the

right of “ :=” is based on the previous quantities.

Step 4 Termination Test : When the line search be-

tween the bounds yields a solution to (P- feasible )

where capacity is fully assigned at all switches,

we terminate the algorithm, and assign the values

found in the line search problem (P- feasible ) as

the solution.

If

BW

� (�v � � m ; . . . ; �v � �� m ) IV P

� BW ; 8x (50)

then

v = �v � � m ; 8j: (51)

Terminate the search.

Else

Go to Step 2.

There are a couple of things to note about this iterative al-
gorithm. First, the algorithm is really abisection searchas de-
scribed in Step 3, where the gap between the lower and upper
bounds reduces at every step. It is well known that bisection
searches are guaranteed toconverge. We also show this numer-
ically (see Fig. 4). Next, because our search space is contained
in the bid tables described earlier, which are indexed by integer
variables , our search space is “lumpy.” As such,
“fully assigned” means an arbitrarily chosen level of capacity
utilization such as 99% assigned capacity at every switch. This
is why we use the notation approximately equal,, rather than
requiring strict equality, .

The final line search problem (P-infeasible) yields an upper
bound on the objective value. That is, for the local optimum
given by (51) and the solution to (P-infeasible), we can calculate
the expected revenues and state the duality gap for the local
near-optimal solution is given as follows:

(52)

V. EXAMPLE PROBLEM

We will now present a simple real-world problem with two
service classes and show how to set optimal prices and resource
allocations using the model presented in Section III along with
the search method presented in Section IV.

A. Network Structure and Service Classes

Consider a single network offering voice and video connec-
tion to users via a set of five switches. We consider a bidirec-

Fig. 3. Two service networks with a single video server.

tional ring network (Fig. 3). The voice connections can be ei-
ther local, i.e., routed through a single switch, or long distance to
anywhere in the network, i.e., routed from any origin to any des-
tination switch. The video connections originate from a single
switch (labeled “1” in the figure), where a video server is avail-
able and may be routed to any switch in the network, including
the originating node. The connections are all routed using the
minimum-hop routing.

Switch capacities are chosen as follows. Switch “0” is in-
cluded in the path for every video connection and has 5000 Mb/s
capacity, or five times as much capacity as switches “2” and “3,”
which are each included in one fifth of the paths for video con-
nections. Similarly, switches “1” and “4” have two times the
capacity of “2” and “3.” The network services offered are voice
and video. The service class definitions are given in Table II,
which also provides traffic data.

Voice service is a reflection of traditional voice service, which
does not have a high peak bandwidth, and has relatively short
periods of bursts. In terms of QoS, relatively high loss rates of
packetized voice may be acceptable, but large delays cannot be
tolerated. Voice connections are typically of short duration (e.g.,

min), which results in a lower average number of
connections in use for any arrival rate of requests, as defined by
(3). Video is intended to reflect bursty sources of data traffic,
where the bursts, such as action scenes, can be a high peak and
continue for prolonged periods. The peak and mean data rates
are defined conservatively, based on MPEG-1 trace data in [29].
The length of the idle/busy period is chosen based on a sugges-
tion in [34] that video sessions see busy periods in the order of
10 s. For users with buffer space at the client end, a modest delay
in the transmission of packets is acceptable. Some packet loss
can be concealed, but a higher degree of reliability is required
than for voice.

We assume constant elasticity of demand for both services,
with the elasticity values taken from [18] (Table III). Note that
the elasticity of video is higher than that of voice. This means
that the revenue associated with video connections increases
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TABLE II
SERVICE CLASS DEFINITIONS. DATA TRAFFIC PARAMETERS AND

OTHER PARAMETERS

TABLE III
DEMAND FOR SERVICES

more rapidly as the price is lowered than for voice connections.
We have chosen the scaling factor in the functions to be 1 and
2, respectively. This means that at the price 1 (or a normalized
price), the arrival rate of requests for video is twice as high,
which reflects the higher value of a connection with video than
that with simply voice.

B. Illustration of Solution Algorithm

Figs. 4 and 5 provide details of the search steps when we im-
plemented the algorithm for the example problem above. As we
can observe, the search starts with lower and upper bound values
at vectors0 and1, respectively, and, through a number of bisec-
tion steps, converges to the “best” (i.e., near-optimal) solutions
at iteration 8. All other variables also converge. To clarify ex-
actly how the tight bounds are generated by the search method,
we explain the step through an iteration in the Fig. 4 example,
before continuing with the interpretation of the solution to the
same example.

Single Iteration of the Search Algorithm:At iteration “0”,
Fig. 4 shows the starting upper and lower bounds on node
marginal values. Recall from (32) that the marginal revenue
per unit of bandwidth ( ) for a given service class must
offset the sum of marginal value(s) of bandwidth () at every
along the path assigned to the service class. At each estimate
of node marginal value, bandwidth assignments, etc., will be
obtained from the bid table. Thus, at the upper bounds on
node marginal values, resource assignments will be very small
and feasible. Conversely, at the lower bounds there will be
infeasibleoverassignment of resources. This is shown in Fig. 5.

Fig. 4. Search algorithm steps: Convergence of marginal values.

Fig. 5. Search algorithm steps: Convergence of capacity assignments.

At the initial upper bounds (1,1,1,1,1), bandwidth assignments
at each node are (26.42%, 2.66%, 5.32%, 5.32%, 2.66%) of
available capacity. At the lower bounds on node marginal
values (0, 0, 0, 0, 0), the assignments are (899.32%, 988.73%,
1137.74%, 1137.74%, 988.73%) of available capacity. (These
are not shown because they are outside the scale of Fig. 5).

At iteration “1,” a bisectionalong the line segment joining
(0, 0, 0, 0, 0) and (1, 1, 1, 1, 1) is obtained. If feasibility is
not important, the maximum distance found along that line seg-
ment yields node marginal values to be (0.40, 0.40, 0.40, 0.40,
0.40); see Fig. 4. In this case, the bandwidth assignments are
(285.73%, 150.39%, 100.01%, 100.01%, 150.39%) of capacity
(shown in Fig. 5). When feasibility has to be maintained, the bi-
section search yields node marginal values of (0.64, 0.64, 0.64,
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0.64, 0.64), for which the bandwidth assignments are (99.98%,
43.04%, 8.10%, 8.10%, 43.04%); see Fig. 5.

Given the broad range of capacity assignments (from 8.10%
to 99.98% of node capacity in the feasible case and from
100.01% to 285.73% of node capacity in the infeasible case),
we have an intuition that the bounds on the node marginal
value either underassigns and overassigns bandwidth at certain
nodes in a relative sense. Node 0 with an infeasible assignment
of 285.73% of capacity in this iteration is most overassigned,
or what we now call “undervalued.” Therefore, we raise the
marginal value for node 0 relative to all the other nodes by
resetting the lower bounds from (0, 0, 0, 0, 0) to (0.40, 0, 0, 0,
0). Likewise, the assignment at the tightest feasible solution is
most underassigned or “overvalued” at nodes 2 and 3, where
only 8.10% of available capacity is included in the current
feasible solution. Therefore, we lower the relative marginal
value of nodes 2 and 3 by resetting the upper marginal value
bounds from (1, 1, 1, 1, 1) to (1, 1, 0.64, 0.64, 1). The new
bounds are passed to the algorithm for the next iteration and
define the bounds at the beginning of iteration 2 in Fig. 4. The
bisection search along the line segment between bounds on
marginal values proceeds as above until convergence.

C. Solution Interpretation

The solution is found when the algorithm converges to a set
of marginal values on individual node bandwidth, which occurs
after eight iterations in Fig. 4. The final marginal values of the
nodes selected for the near-optimal solution, i.e., the final so-
lution to (P-feasible), as discussed in Step 4 of Section IV, are
(0.97, 0.14, 0.20, 0.20, 0.14). The expected revenue at this so-
lution is 11 046.03. The duality gap, calculated by comparing
the solution to (P-feasible) with the solution to (P-infeasible),
is roughly 0.24%; i.e., the best feasible solution we found was
within 0.24% of the optimal solution. The bandwidth assign-
ments at every switch are in excess of 99%; the criteria we used
for termination in S4, i.e., the optimality conditions, are, more
or less, satisfied. Given the marginal values above, the optimal
prices are simply looked up in the bid tables and are given in
Table IV.

The prices reflect relative scarcity of bandwidth at switch 1,
due to the location of the video server. Relative to switch 1, local
(same origin and destination) voice connections are priced inex-
pensively elsewhere in the network. The long-distance connec-
tions must yield much higher marginal values than local con-
nections to be profitable, since the long-distance connections
must outweigh the marginal value of local bandwidth all along
the path of the connection. High marginal values correspond
to higher prices and relatively smaller allocations. The video
connections at switch 1 are the least expensive. Video connec-
tions at switch 1 use only resources at switch 1, while all other
video connections must use this resource plus more resources
at other switches. Consequently, the volume of video connec-
tions at switch 1 must also be the highest anywhere in the net-
work. However, the cheaper video service comes at the price of
expensive voice service through this switch, because the voice
connections over this switch must use resources with a very high
marginal value relative to the other switches.

TABLE IV
OPTIMAL PRICE PERUNIT TIME FOR A CONNECTION OFSERVICE (i; j; k)

Fig. 6. Comparison of per-hop pricing with optimal pricing.

D. Comparison to Flat-Rate Pricing Approaches

To evaluate the usefulness of our approach, we compared op-
timal pricing with two flat-rate pricing approaches, per-hop and
per-connection pricing. In the current U.S. voice market, pricing
per connection regardless of origin and destination is very pop-
ular. Pricing-per-hop is another flat-rate pricing scheme that has
been proposed, and mimics the use of prices proportional to link
use.

For both of these pricing approaches, we need only choose a
price for each service type in the network, a total ofprices.
Because we have only two service types, we assume a ratio be-
tween the voice price and video price and then simply solve for
the smallest voice price that achieves feasibility at all switches.
We will use the bid tables with the resource allocations satis-
fying optimality properties and find the smallest feasible flat rate
price for voice, subject to the assumed ratio between voice and
video prices. Results are summarized in Figs. 6 and 7.

The optimal pricing mechanism provided greater revenue
than either flat-rate pricing approach. The revenue increase
was upward of 20% in all cases. In general, pricing per hop
produces higher revenue than pricing per connection in the
reasonable ranges for relative video and voice prices. In this
range, the expected revenue is relatively insensitive to the
ratio between the prices for the two services. The pricing per
connection shows the highest profit when voice and video
connections are charged at the same rate. The prices essentially
fill the network bandwidth with video connections, which are
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Fig. 7. Comparison of per-connection pricing with optimal pricing.

highly elastic and generate significant revenue as prices are
lowered. However, users are unlikely to accept a voice rate as
high as would be necessary for a video connection. For this
reason, the solutions with larger ratios between the video price
and voice price are probably more practical. These solutions
earn significantly less revenue.

VI. CONCLUDING REMARKS

This paper presents a mathematical programming model
for optimal pricing, and bandwidth and buffer allocation for
multiple services with QoS guarantees in a connection-oriented
network. We also present a novel solution methodology. We
show, using numerical experiments, that flat-rate pricing
(whether by connection or hop) is inferior to the multiservice
pricing obtained from our model. Our model provides a very
powerful mechanism for pricing multiple services in commu-
nications networks.

In order to implement our pricing scheme in a practical real-
world setting, the first decision to be made is whether one uses
a centralized architecture or a decentralized one. In either case,
a processor has to use demand (i.e., connection request) in-
formation to make projections of future demand for the dif-
ferent types of services. In a centralized architecture, the master
switch will directly get information about capacity availabil-
ities at each switch. Using this and the demand projections,
the master switch will calculate node marginal values for each
switch, and will determine the prices to be set and the resources
to be allocated for each service class, updating it at reasonable
time intervals. The model presented in this paper is particularly
useful in this setting.

In a decentralized architecture,each switchwill also have to
calculate the prices and resources needed for each class of ser-
vice. In order to have globally optimal solutions, each switch
will have to communicate information pertaining to itself to the
rest of the switches. Depending on whether the communication
is sent only to neighboring switches, or to all of the switches,
the actual calculations at any point in time might differ. The
model we have presented in this paper will still work, if all of
the decentralized switches use it for pricing and resource alloca-

tion, but obtain perfect instantaneous information from the other
switches on node marginal values and demand for bandwidth.
However, if there is partial information and/or a significant time
lag for the communications protocol to yield up-to-date perfect
information, a simultaneous implementation of the model by all
switches might not yield a globally optimal solution.

We are currently working on multiple service pricing mech-
anisms for decentralized networks. We are also working on ob-
taining good demand projections, which is a further limitation
of this paper that assumes that all parameters of the stochastic
arrival process is known. The beginning of such work was re-
ported in [15].

APPENDIX

OPTIMALITY THEOREM

We argue for each of the optimality properties in the theorem
individually.

Property 1: Assume there is an optimal solution with prices
and resource allocations such that the call-blocking constraint is
nonbinding, for at least one service class

(53)

It follows that for this class the network operator could allow
a higher rate of connection requests and still satisfy the call-
blocking constraint

(54)

Demand is downward sloping, and marginal revenue with re-
spect to prices is less than zero by assumption, so that the price
corresponding to the higher rate of requests must be lower and
revenue must be higher

(55)

(56)

Therefore, for (53) an optimal solution cannot exist. The optimal
solution must be such that call-blocking is binding [see (24)].

Assume there exists an optimal solution such that the alloca-
tion of bandwidth to a particular class is greater than the equiv-
alent capacity for that class

(57)

There must exist a feasible allocation of less bandwidth, ac-
cording to constraint (18) in (PNet) (the smallest feasible assign-
ment is equal to equivalent capacity at the maximum permitted
loss probability) for the particular class such that the QoS is still
satisfied

(58)

The reassignment given by (58), where equivalent capacity
is minimized by selecting the loss probability equal to its

maximum permitted value, may make it possible to assign
bandwidth for an additional connection, lower the price of
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such a class, and increase revenue. Even if admitting more
connections is not possible due to the reassignment in (58),
revenue cannot decrease from the reassignment. Therefore, the
assumption that bandwidth is excess of effective bandwidth,
(57), makes no sense and the optimal solution is invalid. We
must have assigned bandwidth equal to equivalent capacity
[see (25)].

Property 2: Assume that a solution is optimal and possesses
the following property for at least one local service class, e.g.,

:

(59)

For the particular service class we can allocate re-
sources for an additional connection and tolerate a higher
arrival rate of requests at a lower price, while satisfying all
constraints

all constraints satisfied (60)

Similar to the above, a lower price results in increased revenue.
Therefore, (59) is false and capacity must be fully allocated [see
(26)].

We first assume that there exists an optimal solution that sat-
isfies the following property for a single service class ,
which contradicts condition (27) in Theorem 1

(61)

For this service class, as we increase the buffer allocation,
the equivalent capacity, or minimum bandwidth assignment
per connection, falls with the increased buffer space

(62)

Therefore, there exist buffer and bandwidth allocations different
from those given in (61), for which the bandwidth assignment
is lower

(63)
If the difference in bandwidth is sufficiently large, there may be
a revenue increasing solution, by (26), meaning the current so-
lution cannot be optimal. On the other hand, if the bandwidth
allocation does not yield an improvement in revenue, the rev-
enue cannot be decreased by the reallocation described above.
Therefore, the optimal solution must satisfy (27).
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