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Optimal Pricing for Multiple Services in
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Abstract—We consider pricing for multiple services offered over mizesexpectedevenue in order to obtain optimal prices and the
a single telecommunications network. Each service has quality-of- resources needed to guarantee QoS for each service class.
service (QoS) requirements that are guaranteed to users. Service g “ragources” we consider aafferspace for temporarily
classes may be defined by the type of service, such as voice, V'deOStoring users’ data traffic, andandwidthfor transmitting the
or data, as well as the origin and destination of the connection pro- ’ . : . .
vided to the user. We formulate the optimal pricing problem as a data through the network. All connections in a particular service
nonlinear integer expected revenue optimization problem. We si- class (e.g., voice, data, video) share the same buffer and band-
multaneously solve for prices and the resource allocations neces-width allocation. The resource allocations must be sufficient to
sary to provide connections with guaranteed QoS. We derive opti- gaisfy two QoS guarantees which are defined for every service
mality conditions and a solution method for this class of problems, . . . o
and apply to a realistic model of a multiservice communications /@SS individually. The first QoS guarantee is a restriction on the
network. probability of data being lost in the network. Data is lost when
Index Terms—Economics, network design, pricing, quality of resourges allocated t(? f"‘ servic.e class basleeb(pE'lCtedraffic.

service (QoS). calculations are insufficient to either transmit (using bandwidth)
or store (using buffer space) all the data that is actually sent to
the network by all users in a service class. The second QoS guar-
antee is a limit on the delay, or time the data is buffered, during

N THIS PAPER, we derive a nonlinear mathematical prgransmission by the network. The two QoS criteria constrain the

gramming model for determining optimal prices for multiplgoroblem in terms of buffer space and bandwidth that must be al-
services with guaranteed quality of service (QoS). We solve thiated to each service class for a given level of demand.
model using an auction algorithm. The traditional distinction be- The tradeoff between resource allocations among various ser-
tween voice networks, data networks, and cable TV networksvige classes is complicated due to the fact that as the number
fast becoming obsolete. In the future, multiple communicatio®$ connections in a class increases we observe economies of
services will be available to users over a single network. Theseale in bandwidth allocations. This is due to two phenomena:
different services will vary in terms of bandwidth requirementsmoothing of data traffic in buffers and statistical multiplexing
and tolerate different quality limitations such as loss of data agdins. Economies of scale appear by decreasing the marginal
delay in transmission. Our model presents a way for netwoisource allocations to any service class, i.e., by decreasing the
providers to set prices for these services, and allocate resout@s®urces required to supply one additional connection.
such that these QoS requirements are guaranteed while expectdtle construct a distributed search method called the “auction

. INTRODUCTION

revenues are maximized. algorithm”to optimize the revenue by choosing prices, subjectto
_ constraints onthe resource allocations implied by finite resources
A. Overview and QoS guarantees. Our search method takes advantage of sev-

We consider the problem of using pricing and resource alloc@al optimality properties we shgw for the resource allocationsto
tion to manage multiple services networks with QoS guarante88ch class. Using these properties, we reduce the search space for
Although the arrival rate of connection requests can be fixed Bje overall problem and calculate optimal solutions.
setting the price, the observed arrivals, and thus, the observed rev- .
enue, are assumed to be a stochastic process. Also, the moddpw&elated Literature
propose in this paper separates demanddlassesdefined by ~ We will briefly classify the related literature into two broad
service type as well as origin and destination. Our model maxiategories. First, we will discuss the bulk of the literature, which

deals with pricing in best effort networks, such as the Internet.
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multiple service classes, and induce users to behave faiBgised on the connection requests for each class of service at the
and efficiently, through simple or randomized packet markirgpecified prices, the model estimates optimal buffer and band-
mechanisms in the network [10], [13], [14], [20]. Usage-basesidth allocations to satisfy QoS requirements. Another contri-
schemes, which charge based on the actual resources ubatlpn of this paper is the algorithm we propose to obtain the
have also been proposed for these types of networks [8], [29%ptimal solutions.

Priority pricing is another suggestion for allowing multiple o
services over best effort networks. The best known work di§- Organization of the Paper
cusses a second bid auction, whereby it is incentive compatibleThis paper is organized as follows. In Section II, we will
or in the user’s best interests to truthfully reveal their true valudescribe the network model that we are considering and ex-
tion of service in terms of a priority [22]-[24]. Another biddingamine three important features, call blocking, loss probability,
paradigm, which results in a Nash equilibrium among usersad delay, in some detail. Section Ill contains the complete
was suggested for the Internet in [5]. A similar approach, agawrmulation of the expected revenue maximization model, and
requiring users to bid for service, was proposed for availaljeesents optimality properties. Section IV provides details of the
bit rate service, the best effort service offered in asynchronoasction algorithm used to solve the problem. We present the im-
transfer mode (ATM) networks [6]. plementation of the algorithm to an extensive example in Sec-

Arecent game theoretic model requiring users to choose fraion V. We end the paper with concluding remarks in Section VI.
among several routes, each with its own delay, has been shown
to have a stable equilibrium solution where the relative price$l. M opeL FOROPTIMAL PRICING WITH QOS GUARANTEES
induce the desired operating point of the network operator [16]'|n this section, we will give an overview of the model that we
[17]. An interesting problem of regulating the arrival of jobs . . e g . . .

ill be using to derive optimal prices for the multiple services

presented to the network is discussed in [26], and the inf(%ll\l_atelecommunications network where QoS is guaranteed. We
mational requirements are relaxed, using an adaptive on-Iie " . Q S g '
| first describe an example network that will help us focus

method in [25]. Finally, recent results have been offered, bas\c%/ | thouahts on the particular features that we model. present
on dynamic programming that suggest a static price sched ] ug particu u w P

to congestion-dependent pricing [27]. ) '

2) Pricing With QoS GuaranteesTypically, a network with we will present the complete mathematical model, and in Sec-

guaranteed QoS, such as the current voice network, must é‘%n IV, we will present details of the algorithm to compute the

ploy a call admission policy in order to satisfy the guarantees? timal multiservice prices, based on the optimality conditions

users. In an alternative approach to call admission, it has bél r%he mathematical model.

suggested that users guarantee their own QoS by purchasin
the required bandwidth and buffer resources for their desir?é{‘c'igrhe Network
QoS directly from the network [19], [21]. In [31], an analysis e Will use the ring-type network shown in Fig. 1, only to
of a market-based methodology is offered as evidence thughlight the particular features that we are modeling. Note,
pricing schemes can offer efficient resource allocations in copowever, that all features we consider in our model are found
nection-oriented networks offering QoS guarantees (see al8@ny type of network. At each switch, there are inputs and out-
[33]). These models feature a conventional view of pricing p&#ts of telecommunications traffic. Traffic inputs are from many
connection and announcing the price to the public. The paiﬂgﬁerenttypesof service that either originate at that switch, or
by de Vecianaet al. [32] combines the conventional practic@'se arrive at the switch from other originating nodes through an
of prices being fixed and announced with the alternative vieffcoming bandwidth pipe. Traffic outputs from the switch either
of allowing users to guarantee their own QoS by purchasi§§ along an outgoing bandwidth pipe, or directly to a user con-
bandwidth and buffers directly. Resources are shared amdifgted to that switch.
users, incorporating multiplexing gains. On-line negotiation is Without loss of generality with respect to the network char-
also suggested as a framework for connection setup and alloRgteristics, we assume that buffer space is used at originating
tion of network resources, using effective bandwidth as a baawitches to collect and smooth data traffic, subject to delay con-
for pricing in [11] and [12]. In a related paper that deals witgtraints. The data traffic is then transported in bandwidth pipes
single link point-to-point ATM networks, the pricing prob|emthrough the rest of the path to its destination. We allocate aggre-
was formulated as a constrained optimal control problergate quantities of buffer and bandwidth to connections grouped
and solved using a three-stage solution procedure [35]. TR¥Service type, origin j, and destinatiok. A serviceclassis,
limitation of the approach is computational tractability. therefore, denoted by the triplé, j, k). Each service typehas

Our paper belongs to this class of work, but uses a novJEaffic characteristics defined averagebandwidthr; andpeak
optimization model based on nonlinear mathematical prograR@ndwidthR;. For example, voice and video have different av-
ming. We use an optimal pricing scheme to moderate the d¥age and peak bandwidth requirements.
mand for connection requests from different classes of service. .
Each “class” of service is defined by both the type of servide: Overview of the Model
(e.g., voice, data, video), and by where the telecommunicationsThe model is derived from the point of view of the service
flow originates and where it is destined to. Thus, our paper tripsovider. The service provider sets prices for the different mul-
to take into account the use of resources in the entire netwatikle services in order to maximize revenue subject to a set of
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------------ e SRy prices always increase revenue) provided that > 1. We
11 A e . . .
‘ assume elasticities in excess of unity for the remainder of the

(Connections Originating at this Node)
Bufer paper. Again, this is suggested by available research [1], [18].
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D. Call Blocking and Expected Revenue

We are modeling a network offering connections with guar-
anteed QoS. Under these conditions, there are a limited number
of connections that can be supported, and some requests may
have to be blocked if resources are already reserved for other
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/
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Incoming  pipe |/ requests. We would like to minimize the blocking of connection
B! / requests, and capture this in our optimization model as a con-
"""""""""""""""""""""""""""""""""""" straint.
Fig. 1. Network (ring) service model at an individual switch. For each service class, denoted (bjy'j?k), we model the

number of ongoing connections as af/GI/m/m queue.
constraints and conditions that are necessary to ensure both Qb8 capacity in the queueing model refers to the maximum
and flow balance. The problem that the service provider solvegmber of connections that we will allow to be admitted to a
can be summarized as follows. given service class, a variable we defineNSMAX ;. For
Maximize expected revenu&his is a product of prices consistency with this model, we state a number of assumptions,
charged for each service and the demand for each service, takefollows. The arrival rate of connection requests for a service
to be an arrival rate of connection requesiat can be accom- class given by\;;;. (defined above) characterizes interarrival
modatedht that price, subject to the following constraints.  times that are independently and identically distributed ex-
« Limited capacity The network switches have limited ca-Ponential random variables. The average holding time of a
pacity (bandwidth). connect?onTijk, is known and the holding times of in_div!due}l
« Limit the blocking of connection requestBiven band- COnnections can occur accor_dmg to any _ger_leral distribution,
width capacity constraints, there is a limited number daut are mdependenfcly. and _|dent|cally dlst_nbuted for each
connections that can be supported in order to guaranfnection. The traffic intensity of a clags;, is the product
QoS, and some requests may have to be blocked. We sef @'Tival rate and average holding time, ik = Aijr Ty
limit on the blocking probability for each service class. TNe properties of thé//G1/m/m queueing model are well
Note that the capacity constraint and the limitation oknown [4]. The probability of blocking a request within any
blocking probability will in turn affect the number of con-Service classBP;y., is given by the Erlang B formula

n.ecf[ion requests 'that can be accommodated. . BP,,i, = P (NC,j;, = NCMAX,;})

* Limit the probability of packet los®ifferent services can NCMAX,;. NCMAX:;e
tolerate different levels of packet loss and still guarantee _ Pijk ' Z Pijk )
QoS. We set a limit on the “equivalent capacity” (defined NCMAX; ;! = ol

in detail later) allocated to each service in order to limit

the probability of packet loss. . .
* Limit the maximum delayDifferent services can tolerate M axIMuMm nu,mber permitted fqr er_:\ch Cla.lg\SCMAX”’“’
hen a user’'s request for service is received, the connec-

different levels of delay and still guarantee QoS. We setd . . .
limit on the maximum allowable delay for each service.t“on will be blocked and lost to the system. Otherwise (i.e.,

. . . NC;jr, < NCMAX,;;1), the request will be admitted.
We will now describe each component of the model in greaterp expected number of busy connections is given by

detail using quantities illustrated in Fig. 1. We will present the
complete mathematical formulation of the problemin Section I, E[NCijk] = pijr (1 — BPijr) . 3)
and derive optimality conditions.

If the number of open connectiod$C;;; is equal to the

We define the expected rate of revenue generation attributable
to a service clas® EV 1, as the price charged per unit time for

] ) a single connectiop;;;; multiplied by the expected number of
The quantity demanded by usels;y., is taken to be the ar- 5ngoing connection&[NC; ]

rival rate of connection requests for servi¢eavith the connec-
tion originating at switchj and terminating at switck. This REViji = pije s [NCiji] - (4)
quantity is determined by a demand functifify. (p;,x) where

pijk IS the price charged per unit of time the connection is opeR, Probability of Loss and Equivalent Capacity

Based on current empirical results [1], [18], in our model we use
the demand function

C. Deriving Demand

In the previous section, we modeled the connection level
traffic so we could quantify blocking probability for our model.
Now we model the packet level traffic for the same set of
connections, so we can quantify one of the QoS parameters,
wheres; ;1. is the (constant) elasticity of demand for service clasgmmely probability of lost packets. This will also allow us to

(i, 4, k). One important property of (1) is that marginal revenueelate the service classes to the necessary resource assignments,
with respect to prices will always be negative (meaning lowduffer space and bandwidth, to satisfy the QoS. At the switch,

)\ijk = aijkpi_jiijk (1)



KEON AND ANANDALINGAM: OPTIMAL PRICING FOR MULTIPLE SERVICES IN TELECOMMUNICATIONS NETWORKS 69

BW B Note :

. NCMAX' dNCMAX' ~ NCMAX'<NCMAX"

>
L

»
>

=

BW B [>

= c(NCMAX',B,PLOSS)

Bandwidth per Connection
Bandwidth per Connection

NCMAX"  dNCMAX" BW(NCMAX)
NCMAX
. r
_BW ___ ((Ncmax”, B, PLOSS)
NCMAX
Buffer Space (B) Number of Connections (NCMAX)

Fig. 2. lllustration of average bandwidth allocated per connection, using mapping\aiAX to BW.

packets from all connections of the same clasg, ¢) share a  As Fig. 2 shows, equivalent capacity is decreasing in the
first-in-first-out (FIFO) queue of siz8;;,. Up toNCMAX,;;, amount of allocated buffer spa;

connections, with statistically identical data traffic, may share

the allocated buffer at any time. Packet I&ds0SS; ;;, occurs I (NCMAXijr, Bijk, PLOSS ;1)
when there is buffer overflow. IBiji

To ensure that the guaranteed loss probability is satisfied foras the number of connections for which we allocate resources

each service class, we require that the minimum bandwidth allooniA X, increases equivalent capacity will decrease, re-
cation per offered connection be at least equal teetiigvalent flecting mjultiplexing gains

capacity Equivalent capacity for a single source (connection)
is defined aghe service rate of the queue that corresponds to a 9c (NCMAXjr, Bijk, PLOSSiji) _ 0 7
given (packet) los®LOSS;;[9], [28]. If bandwidth in excess ONCMAX, -

of the equivalent capacity is assigned to a connection, the ob-_. .
served packet loss is less thBROSS; ;. There are two main Finally, as we allow greater loss probabilities, 085z, the

effects that determine the equivalent capacity of a single soured" ivalent capacity will decrease.

Effective bandwidthrefers to the fact that smoothing of data 0c (NCMAX;jk, Bijr, PLOSS; i) <0 8
traffic in the buffer reduces the bandwidth required to achieve OPLOSS,j = (®)
a prescribed loss rate of packetdultiplexing gainsrefers to ) _ ) o _
the gain in bandwidth required due to the statistical effect of An in-depth analysis of equivalent capacity is outside the
mixing the data traffic of independent connections. We use tHeUs of this paper. Detailed discussions of buffering and mul-
term equivalent capacityvhen referring to the combination oftiPléxing gains are given in [2], [9], [28], [32], and [34]. How-
these two effects on bandwidth assignment (per connection2h it should be noted that our approach remains unchanged for
a number of connections with guaranteed QoS. We now staftyderivation of equivalent capacity, which satisfies the general
some general properties of equivalent capacity. properties for equivalent capacity, given in (5)—(8) above. The
In our model, all connections of a service clésg, k) share inéqualities admit special cases such as constant bit-rate traffic,
a single FIFO buffer. Consider a connection of a given séfith no smoothing or multiplexing gains. As we shall see in the
vice typei, which is distinct from service “class” where we in-Next section, the data traffic model and equivalent capacity ex-
clude origin—destination information as well. The user is eith@F€SSions in (5)~(8) are sufficient for formulating packet loss in
sending data at peaktransmission rate; (.., theon state) OUr revenue-maximizing model. _
or is sending no traffic at all (i.e., therF state). Theaverage It Will become apparent later that we wish to solve buffer as-
rate of data transmission for the individual connection is givé#gnmentand bandwidth assignment simultaneously. Therefore,
by r;. TheoN andoFF periods are assumed to be exponentialye NOW illustrate some extensions of thg equivalent capacity
distributed, with the average length ofax period given by,;.  Properties when maximum buffer delay is held constant, i.e.,
QoS requirements for this type of data traffic model have befig bufferis sized according to a constant maximum delay given
well studied, e.g., [9]. The traffic from all connections of théoyd_ = B/BW. Fig. 2 shows the gene_ral relationship b_etween
same type is statistically identical, i.e., all connections classi€duivalent capacity (average bandwidth per connection) and
fied as the same type have the same parametefs, andb;. ~ number of connections when maximum delay in the buffer is
Clearly, the equivalent capacity must be greater than or qugﬂd fixed. This relationship is derived based on (5)—(8) above.

to the mean rate of data traffic and less than or equal to the(The service class indices, j, k) are omitted for clarity.)
peak rate of data traffi®; Note that equivalent capacity, as illustrated in Fig. 2, gives

the bandwidth required to meet two QoS criteria, namely, loss
r, < C(NCMAXUM Bij]“ PLOSS“k) < R;. (5) probabllltyPLOSS”k and maximum dela;lijk.

<0. (6)
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The average bandwidth allocated per connection, as a reguiffer space divided by the allocated bandwidth. The buffer is
of the mapping fronB to BW given by (5)—(8) is illustrated served on a FIFO basis.
by the downward sloping curves in the left panel above. An in-
crease in the number of connections served, flEMAX’ to [ll. OPTIMIZATION MODEL
NCMAX", results in the downward shift of the average ban%— The Model
width assignment per connection. The straight lines represerit
the relationship between the buffBrand the bandwidtiBW  Given the derivations above, we are now in a position to
for fixed maximum delay, i.eBW = d x B. Since the figure Present the complete mathematical formulation of the revenue
isdrawn in a space representing average bandwidth per Conﬁaé)(imization model thatwould yleld Optlmal prices andresource
tion, BW/NCMAX, the shift outward in the slope of the linesallocations. We wish to solve for the pripg;,. for each service
results from the same increase in the number of connectidit@ss denoted by, j., k), as well as the volume of service offered
served, fromNCMAX’ to NCMAX”. Collecting the solutions NCMAX;,. The volume of service offered refers to how many
to such a system of two equations in two unknowns yields tgennections we can serve simultaneously, given the bandwidth
downward sloping curve in the right panel of Fig. 2. BW, ;). reserved all along the path betwegrand k, and the

Fig. 2 is conceptual. In our numerical example, we will usBuffer space3; ;, reserved at the origin switch. We assume that

the equiva|ent Capacity results from [g] to calculate the equ|vaandW|dth is limited but buffer space is not. The network service
lent capacity per connection summarized as is assumed to be offered using a connection admission policy,

f+ao so that the QoS requirements for probability of IG50SS; ;4
and delayd; ;. are satisfied within certain limits. We include the
? blocking probabilityBP; ;. resulting from the use of aconnection
where admission policy to ensure that we have sufficient resources set
2 aside for service clags, j, k), such that a satisfactory proportion
aR; — Bijr + \/(aRz‘ — Bijr)” + 4aBijpr; (10) of connection requests can be admitted when they are requested.

9)

¢ =

2a The total expected revenue from all service connections in the
1 r; network is given by > | Z?I:SI w2 (pij E{NC;j}). Be-
a=In <m> b; <1 - F) (11) cause the expected number of connections arriVélg;;, is a
k ‘ function of the arrival rate, the blocking probability, and the av-
= riNCMAXjp, (12)  erage holding time of a connection, we can replace the objective
function with ie - — kaf )\i"lm BPLk/ Tiint).
7= \/” (R; — i) NCMAX;j 13)  Thus, the rg\:/enlu%:g)p}[imi;atlién Jrnoéeljthat will yieIoJI o}p)timal
prices and resource allocation is given by
o = \/ —21n (PLOSS, 1) — In (27). (14)  (PNe
The equivalent capacity per connection (9) is calculated ¥axp, ., B,;.,BW,;,,NCMAX;
the minimum of two distinct approximations. The effective N NS NS
bandwidth is approximated by (10). The second term in the X ZZZ (pijr f{Nijr> BPijr, Tije})  (16)
minimum expression in (9) reflects multiplexing gains. This i=1 j=1 k=1

approximation is based on the stationary bit rate. To calculajgpject to
this expression, we need the additional expression (11), as well BP.. (\ NCMAX...) < BP
as the mean of the aggregate bit rate (12), the standard deviation - 7% (Aijk (pijk) , Tijk, iji) <BPijk,

of the aggregate bit rate (13), and an approximate inversion of 1<i<N,1<j<NS, 1<k<NS (7)
the normal distribution (14). The calculations above separate A\
equivalent capacity into regions dominated by either smoothing ¢ (NCMAX;jk, Biji, PLOSS i) < NCMAX, 1"
effects in the buffer or multiplexing gqins.These expressiops are 1<i<N,1<j<NS,1<k<NS N (18)
one example of suggested computational methods for equivalent
capacity that satisfy (5)—(8). Bij <d;i,
BWijk -

F. Delay 1<i<N, 1<j < NS,1 < k <NS (19)

The second QoS parameter that we consider is the maximum N NS NS
a_llowable delayl; ;1 f(_)r each service plass. We ignore transmis- Z Z Z BW, IV P <BW,,
sion delay and consider only delay in the buffer. Therefore, we P ot
can qyite easily set bounds for the potential delay a packet may 1<z <NS (20)
experience.

|1, fze VP
disi < Bijk_ (15) IV Pijha = {0./ otherwise

BWiji 1<i<N,1<j<NS 1<k<NS, 1<z<NS (21)
where B, ;;, is the buffer space anBW,;;, is the bandwidth

allocated to servicéi, j, k). The maximum delay any packet
may experience, given by (15), is simply the size of the allocated NCMAX;;, >0, integer (23)

Aijk 2 0, pijr > 0, BWij, > 0,Bg5, >0 (22)
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where bandwidth at the originating switch and does not take into ac-
REV;jk rate of revenue generation associated with sereunt the statistical properties of the output traffic at the origi-
vice class(i, 7, k); nating switch. The simplicity of the formulation outweighs our
() equivalent capacity of a single connection; concern regarding excess bandwidth assignments.
V Pk set of allz in the path for class originating atj
_ and terminating ak, 1 < = < NS; _B. Optimality Properties
BP;jk maximum blocking probability for a connection
from service class$i, j, k); In general, the problem given in (PNet) is a nonlinear non-
PLOSS;j maximum packet loss probability for a conneceonvex mixed integer problem. However, there are a number of
tion from service clas§i, j, k); necessary conditions for an optimal solution, which we will use
d;jk maximum delay for a connection from servicgo search for a solution. First, we will discuss necessary condi-
class(i, j, k); tions related to constraints (17) — (19) in problem (PNet). These
BW; the capacity (bandwidth) at switgh constraints are relatively simple as they apply to each service

In this formulation, the objective function (16) seeks telass independently of all other service classes. Based on this
maximize the average rate of revenue generation from dirtst set of necessary optimal conditions, we will then state a
going connections, which is given by price multiplied by theair of optimality conditions reflecting the marginal values of
expectednumber of connections. The constraints restrict theach service clagg, j, k) in the solution.
performance measures and resource assignments to be withih) Resource Allocation to Individual Service Class@here
bounds set outside the problemrastwork policy Budgets on are a number of conclusions we can immediately draw about
each quantity are denoted by a bar overhead. Constraint (@pjimal solutions to the problem (PNet). First, we consider the
restricts the call-blocking probability for every class belowesources that must be assigned to each individual service class.
some prescribed limit. Constraint (18) ensures the probability Theorem: Given downward-sloping demand curves and
of loss for each service cla®d.0SS;;;, is satisfied. The buffer plentiful buffer space at each originating switch, if an optimal
delay for each service class is constrained to be less tharsolution to (PNet) does not coincide with the condition that
equal to the limit given by the QoS guarantee in constraimarginal revenue equals zero, i.e., the partial derivatives of (1)
(19). We have a bandwidth capacity constraint at each switetith respect to prices are all less than zero at optimality, then
(20), but we assume there is no capacity on allocated buffee optimal solution to (PNet) must satisfy the properties given
space, and there are no link capacities. The capacity at ebyh(24)—(27), shown at the bottom of the page.
switch must accommodate all traffic originating at the switch ~ Proof: See the Appendix for proof.
as well as traffic originating elsewhere but routed through the The call-blocking probability for all service classes is set to
switch. We assume the routes are known and fixed. There isitngreatest permitted value for all service classes in (24). In-
indicator function, (21), for every clags j, k), which indicates cidentally, this is the only condition that pertains directly to
if any switch is included in the path. There are a number gfices. The bandwidth assigned to each service class, for the
nonnegativity constraints, given by (22). Finally, there is amaximum number of connections admitted, will be equal to the
integrality constraint on the maximum number admitted to eacbrresponding equivalent capacity, as stated in (25). The third
classNCMAX; ;. given by (23), since connections can only beondition, (26), states that because connections have to be in-
admitted in discrete guantities. teger, allocation of the equivalent capacity for any additional

We wish to call attention to one limitation of our formulationconnections would violate feasibility. This means that no further
of the capacity constraints, which may overassign bandwidticreases in bandwidth assignments are possible at an optimal
along the paths followed. The effective bandwidth of the aggréfeasible) solution. Buffer space is assigned for all services orig-
gate traffic for the service clags, j, k) may be reduced after inating at each switch, such that packets for each service may
smoothing in the buffer at the originating switch. Our formulaexperience a delay up to the tolerated delay, (27), assuming that
tion assigns bandwidth all along the path based on the effectlwgffer space at each switch is plentiful.

BPji (Aiji (Piji) » Tje, NCMAX;j) = BPyjp, 1<i<N,1<j<NS1<k<NS (24)
BW,jk Straa . .
((NCMAXmlk + 1) Cajk (NCI\/[AXQ:]]C + 17B$]’k,PLOSSm]’k)
N NS
+ Z Z NCMAXL]kCle (NCMAXZ]k Bijk7 PLOSSU]@) >BWJ‘
i=1 k=1

it

1<z<N,1<j5<NS (26)
Biji = dijtBWije, 1<i<N,1<j<NS,1<k<NS (27)
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The optimal resource allocation is to assign the appropridte&vially satisfied, with the following exception, which results
effective bandwith to each service class, (25), and buffer spdoem differentiating the set of constraints (20):

proportional to the equivalent capacity (27). Typically, buffer SREV NS SBW
space is thought of as a parameter in the equivalent capacity —_“—~—'ik _ vy Rk Pijka,
calculation, while we are treating it as a variable (along with ONCMAXj, 4= = ONCMAX,jp
bandwidth), for Which we solve a system of two equations in 1<i<N,1<j<NS,1<k<NS. (31)
two unknowns. That is, we solve (25) and (27) BW,;; and
Bijk Recall that!/V P, in (31) was defined as an indicator pa-
rameter in the problem (PNet). For each service class k),
BW,;x (NCMAX ;%) we divide both sides of (31) byBW,;,/ONCMAX,;, and
BW simplify the necessary optimality conditions
=BW: NCMAX NS
— ¢ (NCMAX 1, dijiBW,1, PLOSS;1,) . (28) Uik = Zl”r[ VBijke,
Going back to Fig. 2 which shows equivalent capacity as a 1<i<N, 1<j<NS, 1<k<NS. (32)

decreasing function of buffer space and the number of connecThe economic interpretation of (32) is as follows. Any service
tions served, the optimality property (27) is illustrated with a linclass must yield a marginal return per unit of bandwidth equal
early increasing function of buffer allocation, where both sidag the sum of the marginal values for all switches for switch
of the expression have been divided NMAX,;;.. As the 1) along the route for the given claés j, k).
number of connections served increases, the slope of the linéncorporating the integrality requirementNCMAX; 5., we
becomes less steep. Based on this simple graphical analysisdéfine marginal values per unit of bandwidth for increasing or
system of equations (25) and (27) must have a unique soluti@iucing the number of connections in the solutiafj, and
and be decreasing in terms BICMAX; ;. Note that if there uz,, respectively
are no smoothing effects of multiplexing gains, as with constan N
bit-rate traffic ®; = r,), then the allocation per connection is  Uij (NCMAXGjp)
simply a constant value. In all other cases, the total allocation REV ;. (NCMAX;j;, + 1) — REV;j, (NCMAX,j3.)
must, therefore, be increasing, but the allocation per connection BW,;, (NCMAX;;;, + 1) — BW,j; (NCMAX ;)
may be decreasing, depending on the properties of the service (33)
Ei:ibws shows economies of scale in the optimal resource al Ui (NCMAX,;1.)
Using another optimality property from Theorem 1, the call- — REVijx (NCMAXji) — REVij (NCMAXjp, — 1),
blocking constraint will be binding by (24). We can solve forthe ~ BWijr (NCMAXj,) = BWj, (NCMAX;j — 1)
the optimal arrival rate\; ;. for a givenNCMAX; ;, using (1) (34)
The marginal valuationsgj & from (33) orujj . from (34), are
pCMAX ' simply the changes in expected revenue divided by the change

* = N ikt p" in bandwidth allocation, for an increase or decrease of one in
Pijk (NCMAXjx) =p : BPjj, = NCMAX;;x gl (29) NCMAX; ;. Note that by definitionu;;k(NCMAXijk) equals
ui_jk(NCMAXijk + 1).

NCMAX,

n=0
P Discrete approximations of the continuous necessary opti-
Aiji. (NCMAX; 1) = Tzlj,k- (30) malty conditions (32) are
13k

NS
The arrival rate),; is determined by the limit on call uj, (NCMAX %) <> v, IV Py < ugjy (NCMAX50,)

blocking. We must first calculate the maximum traffic intensity z=1
for NCMAX,;x, given in (29), and then calculate the arrival 1<i<N,1<j<NS,1<k<NS. (35)

rate using (30). Because the resource allocation tables ar? . . . .
. .—_Instating (35), we assume that marginal revenue is decreasing
independent of demand, we have not yet related the arrival

! _ T o .
rate to a price. The bid tables, presented in Section IV, will CMAX i, L€, > Uijy By (35),itis npt profitable to
: . . . change the bandwidth allocated to any service class. The mar-
relate the price, ;. required to produce the desired arrival rate. . R
. ) . ginal value from an increased allocation is less than the sum of
Aijk, as well as the marginal valuation at the volume of servi

providedNCMAX . marginal values of bandwidth at switches along the path.

2) Resource Allocation Tradeoffs Between Service
Classes: The optimality properties, from Section IlI-A-1,
reduce the problem to choosing the optimal values for The search procedure for the global network solution seeks to
NCMAX; . For now, consider $inear relaxationto (PNet), identify the marginal valuations of bandwidth at all switches
eliminating the integrality constraints oNCMAX;;,. For that will maximize expected revenue. Based on the optimality
solutions satisfying the optimality properties given by (243onditions (24)—(26), it is clear that the search will have to test
— (27), the Karush—Kuhn—Tucker necessary conditions aaad adjust marginal values at each switch until a solution is

IV. NETWORK AUCTION ALGORITHM
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found that allocates bandwidth fully at each switch in order to TABLE |
satisfy the optimality conditions. DEFINITION OF BID TABLE

A. Storage of Ryblem Data in Bid Tables NCMAX BWy By i Py i e
ijk
We can exploit the first set of necessary optimality propertie " a @8 eq@7) (G0 call) eq;(33) eq'_(34)
(24)—(27) to simplify the search space for the the probler ! BWu() By () puu®)  wp)  w0)
(PNet). These properties dictate that optimal allocations « , BV, B2 4, pu@) un@) )

BW,;, can be calculated from (28) based on the values «
NCMAX;;,. There is a unique arrival rate of connection
requests\; i, associated wittiNCMAX;;;, according to the
call-blocking property (29). In turn, pricgs;, are related to
values ofNCMAX;; through the arrival rate\;;;, given by ’ . . . .
the demand functions (1). This gives us a reduced space of; ~ OPtimal marginal valuation at switch
problem data, where all other problem variables are calculated’i lower bound on the value af*;j at switchy;

as functions of NCMAX,;;, which are integer-valued vari- Y7 UPP€T bound on the value of j at switchy.

ables. Furthermore, we have defined marginal values of serviceC Ief:arly, gsw:g trlle .b'd .t?]ble and (37),bwe %an gularantie th?jt a
classemi_jk andu;;.k for any value ofNCMAX,;; in (33) and seto marginal values eit er an upper bound or a lower boun
(34) on an optimal set of marginal values

where

We can calculate all the variables referred to above off-line N Ns Ns
and summarize the search space of the problem in tables indexeM _ > > " BW,jy (v;, 0, . - ., vxg) IV Pijia >BW, Va
by the integer-valued variabl@CMAX;;;, (Table I). We call i=1 j=1k=1
Table | abid tablebecause the marginal valueg.k (oru; ;) (38)
represent the maximum amount a rational agent would bid (or N NS NS o
accept) per unit of bandwidth to add (or remove) a connection ofz Z Z BWijk (01,02, ...,9xs) IV Pjjr. <BW,Vz.
service clas$i, j, k). Note that the bid table contains much less i=1 j=1 k=1
information than all the feasible valuesMCMAX; 1., BW ., (39)

B, andp; ., thus, making it much faster to solve (PNet). . .
gk STEPijk g (PNey A set of marginal values that undervalues the bandwidth at

all switches results in an overassignment of bandwidth at all
. . ) ) switches and is infeasible. Thus, we can use such a set of mar-
For any given set of marginal bandwidth valuatians we  ginal values as éower boundon the set of optimal marginal

look up the “bid” and the associated number of connections ajgies. Likewise, a set of marginal values which overvalues the
resource allocations. Strictly speaking, we selCtMAXijr  pandwidth at all switches will be feasible and can be used as
for a giveny; according to the following rule: an upper bound on an optimal set of marginal values. Note that
while we offer bounds on the optimal value @f in (37), we
claim only to be seeking bounds for a local optimal solution

B. Retrieval of Problem Data From Bid Tables

NCMAXuk (Ul7 Vo, ... 7UNS)

’

NS . . . .
_ to the problem (PNet), which is nonconvex and contains in-
— ot E : » '
= max (NCMAX”k FUie S - VeIV Pijke < ulk) teger-valued variables.
1=

(36) D. Search Procedure

We search from the bottom of the bid tables and take the firstOur search method begins with arbitrary bounds on the op-
(and largest) value df CMA X ;. for which u;;k <vj < Uy timal marginal valuation of bandwidth at each switch which sat-
For relatively small values dRCMAX; ;x,, thew™ /u™t values isfy (38) and (39). In each iteration, we decrease the Euclidean
may be increasing due to large multiplexing gains. Since wkstance between the two sets of bound and change the direction
are interested in revenue maximization, (36) selects the largekthe line segment between the two sets of bounds in the mar-
value of NCMAX;;, which satisfies the optimality property ginal value space. When the upper and lower bounds are very
(35). The simplest way to find this value is by looking up th&ear to each other, and we have a feasible solution that fully as-
bid table data starting from the bottom of the table. We will no&igns capacity at all switches, we terminate the search and obtain
present a method called thection algorithmfor ensuring that a near-optimal solution, where capacity is fully assigned and

the choseNCMAX satisfies the optimality conditions. revenue is very close to optimal. The infeasible solution given
by the lower bounds on marginal value of bandwidth at each
C. Bounds on Marginal Value of Bandwidth switch will also provide a bound on the distance from a local

For convenience in describing the search procedure, we gg_tlhmal squtrl]onI. ithm i foll
fine bounds on theptimal set of marginal valuationsf band- The search algorithm is as follows.

width for all switches, as follows:
Step 1 Initialization . For initialization, we simply

{v1,09,...,uns} < {v7,03,...v8s} < {01,72,...,0ns} require an initial set of bounds on the optimal
(87)  marginal values as defined in (38) and (39).
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Step 2 Identifying Undervalued (and Overvalued)
Bandwidth : We wish to identify the best feasible

and worst infeasible solutions that lie along the

line segment between the current upper and lower
bounds on marginal value. The bid table data is
calculated according to optimality properties on
resource assignments, and the constant elasticity

of demand model implies higher revenue for lower
prices and more connections provided. Therefore,

the best feasible solution along the line segment
between the upper and lower bounds on marginal
value is where the largest number of connections
are provided by assigning the maximum possible ca-
pacity. This, in turn, is obtained at the lowest
feasible marginal values. Similarly, the worst in-
feasible solution along the line segment is found
with the highest marginal values along that line,

for which the capacity assignment is infeasible at
every switch. We solve the following line search
problems to obtain these two cases:

(P- feasible )

Maxa (40)

subject to

N NS NS

)L

imlj—1k—1
(01 —amy, U —ama, ..., 0ns — amns) IV P,

< BW,, V. (41)
(P- infeasible )
Maxg (42)

subject to

N NS NS
HH L
i=1j=1k=1

(v, + By, v, + Pmo, . ugs + Bns) IV P

> BW, v (43)
where
my = (44)
2 Uy,
z=1
NS
0<a, B< Z D, — v, (45)
r=1

The line segment between the current set of lower
bounds and upper bounds is given by (45). The max-
imum revenue feasible solution along this line is
given by the set of marginal values v; —
minimum revenue infeasible solution is given by
v; + B*m,;. We will use these solutions in the next
step of the algorithm to determine which bounds
should be changed before the next iteration of the
algorithm.

Step 3 Adjusting Lower and Upper Bounds on Marginal
Value : Along the line segment between the upper and
lower bounds, we wish to identify the switch for

a*m;. The
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which the bandwidth which is most undervalued. That

is, the switch (or switches) for which marginal

value of bandwidth is “too low” at the solution a*
to the revenue maximization problem (P- feasible ),
yielding the most assigned bandwidth. Similarly, we

wish to select the switch (or switches) for which

bandwidth is most overvalued, or the switch for

which the lower bound is “too high” at the solu-

tion 3* to the problem (P- infeasible ), yielding the
least assigned bandwidth. These values are defined
mathematically as follows:

ZLundervalued
N NS NS

= argiin Z Z ZBV\‘TUA»

i=1j—1lhk—1
(01 —a*my,...,Ons — @*mys) IV P, (46)

Lovervalued
N NS NS

= argmax Z Z EB\’Vijk

i=1j=1k=1

(v, + 8" my, ..., vng + B mns) IV P, 47)

The determination of which switches are over- or
undervalued in terms of their marginal values of
bandwidth is the same as simply choosing the switch
with the highest assigned bandwidth from the so-
lution to (P- feasible ) and that with the lowest
assigned bandwidth to (P- infeasible ). For example,
if one switch is 100% assigned at the solution to
(P- feasible ) while all others are less than 50%
assigned, the marginal value of bandwidth at the
fully assigned switch is relatively too low for an
optimal solution, since capacity should be fully
assigned at all switches. Note that ties are per-
mitted so that there may be more than one under- or
overvalued switch.

To effectively raise the marginal value of bandwidth
when solving (P- ), we will increase the
lower bound on marginal value at that switch. When
we then repeat the line search to solve (P- fea-
sible ) in the next iteration, a higher marginal
value will result at that switch relative to the

feasible

other switches. Similarly, we will decrease the

upper bound on marginal value for the switch that
has the lowest infeasible assignment at the optimal
solution to (P- infeasible ), e.g., lower the upper
bound at a switch with 101% assignment when all

others are  ~ 150% assigned. This effectively lowers
the marginal value calculated in the nest iteration
where we solve (P- infeasible ) again.
Vi gyervalued "= PZovervalued ~ & Meovervalued (48)
p— 3%
Yo indervalued ~— Leundervalued +5 Mz yndervalued * (49)

We raise the lower bound on marginal value for the
undervalued switch to the value given by the so-
lution to (P- infeasible ), as given in (49). Sim-
ilarly, we decrease the upper bound on marginal
value for the overvalued switch by taking the value
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in the solution to (P- feasible ), as given by (48).

Note the use of an assignment operator, “ :="in

(49) and (48). The value to the left of ;=" is the

new value being calculated, while the value to the

right of © :=" is based on the previous quantities.

Step 4 Termination Test : When the line search be- 9
tween the bounds yields a solution to (P- feasible )

where capacity is fully assigned at all switches,
we terminate the algorithm, and assign the values

found in the line search problem (P- feasible ) as
the solution. D
If .
N NS NS Switch Switch
DD BWik
i=1j=1k=1
'(1?‘1—05"7711....7’L_7NS—Q’Q’mes)IVYPq'jkI v X
~BW., Ve (50) Do C]O
0 O
then

v =0, —atm;, Vi (51) Fig. 3. Two service networks with a single video server.
J ?

Terminate the search.
Else
Go to Step 2.

tional ring network (Fig. 3). The voice connections can be ei-
therlocal, i.e., routed through a single switch, or long distance to
anywhere in the network, i.e., routed from any origin to any des-
. . . tination switch. The video connections originate from a single
T_here are a couple O.f th|r!gs to not_e ab_out this iterafive witch (labeled “1” in the figure), where a video server is avail-
gor.|thm._ First, the algorithm is really isection searcias de- able and may be routed to any switch in the network, including
scribed in Step 3, where the gap petween the lower apd UPHE originating node. The connections are all routed using the
bounds reduces at every step. It is well known that b'secn?ﬂnimum-hop routing.
_searches are guaranteedsinvergeWe also show this_numer-_ gwitch capacities are chosen as follows. Switch “0” is in-
ically (see Fig. 4). Next, because our search space is Contalré?uded in the path for every video connection and has 5000 Mb/s

in the bid tables described earlier, which are indexed by inteq:ea{ acitv. or five times as much capacity as switches “2” and “3.”
variablesNCMAX;, ., our search space is “lumpy.” As such pacty, pacty '

Which are each included in one fifth of the paths for video con-

“fully assigned” means an arbitrarily chosen level of CapaCitXections. Similarly, switches “1” and “4” have two times the

0 0 : . :
_utlllzatlon such as 99% _aSS|gned c_apamty at every switch. T@gpacity of “2" and “3.” The network services offered are voice
is why we use the notation approximately equalrather than

requiring strict equalit and video. The service class definitions are given in Table I,
9I'he fi?wal line gearcr:'roblem (iAfeasiblg yields an upper which also provides traffic data.
bound on the objectivepvalue That is. for ¥he local osgmu@ Voice service is areflection of traditional voice service, which
. S ) oes not have a high peak bandwidth, and has relatively short
given by (51) and the solution to (Rfeasibly, wecan calculate %Sfi()ds of bursts. Ir? te?ms of QoS, relatively high loss ra)t/es of
;heeafzpzfr:?sgﬁgﬁ: aicgnsi[ioﬂg e\.\Ng.uallty gap for the IOpacketized voice may be acceptable, but large delays cannot be
P 9 ' tolerated. Voice connections are typically of short duration (e.qg.,

N 3535 Tyoice = 3.0 min), which results in a lower average number of
ZZZ (REVijk (01 + B ma, ..., uxs + Fmns) connections in use for any arrival rate of requests, as defined by
i=lj=1k=1 (3). Video is intended to reflect bursty sources of data traffic,

—REViji (01 + "m1, ..., Ons + a"mns))  where the bursts, such as action scenes, can be a high peak and
>0 (52) continue for prolonged periods. The peak and mean data rates

are defined conservatively, based on MPEG-1 trace data in [29].
The length of the idle/busy period is chosen based on a sugges-
tion in [34] that video sessions see busy periods in the order of
We will now present a simple real-world problem with twol0 s. For users with buffer space at the client end, a modest delay
service classes and show how to set optimal prices and resourcthe transmission of packets is acceptable. Some packet loss
allocations using the model presented in Section Il along wittan be concealed, but a higher degree of reliability is required

V. EXAMPLE PROBLEM

the search method presented in Section IV. than for voice.
, We assume constant elasticity of demand for both services,
A. Network Structure and Service Classes with the elasticity values taken from [18] (Table I11). Note that

Consider a single network offering voice and video connethe elasticity of video is higher than that of voice. This means
tion to users via a set of five switches. We consider a bidirethat the revenue associated with video connections increases
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TABLE I Search Illustration
SERVICE CLASS DEFINITIONS. DATA TRAFFIC PARAMETERS AND Bounds on Marginal Values
OTHER PARAMETERS =
=
= 1.00 jueide ENMAG Wo & B> & m E I I l
(a) Data Traffic Parameters _E | ' . .
Mean. Rate Peak. Rate Average Burst § 0.80 1 ' E ] '
(Mbps) (Mbps) ) A o ! ;
5 - MO DA m !
Service Class Ti R ; © 0.60 X
[} K
Voice 0.032 0.064 1.0 % 040 -o o0 e e
Video 1.0 10.0 10.0 > o %a® A s oM !
E L 88 i M
2 0.20 - . . . . . . .
] Y N :33:“:&
(b) Other Parameters 5 : . , . . , .
Average 2 0.00
Packet Loss Blocking Holding 0 1 2 3 4 5 6 7 8
Probability ~ Probability ~ Delay (s) Time (s) Iteration
i ; BP; d T, ® Bounds @ 0 O After Bisection @ 0
Seljwce Class PLOSS '5 op ¢ Bounds @ 1 © After Bisection @ 1
Voice 10.0x10° 0.01 0.0 30 A Bounds @2 A After Bisection % 2
i 9 A Bounds @ 3 A After Bisection @ 3
Video 10010 001 >0 200 o Bounds @ 4 o After Bisection @ 4
TABLE Il Fig. 4. Search algorithm steps: Convergence of marginal values.
DEMAND FOR SERVICES
Service Class Demand Search I“‘.lStratm.n
= Bounds on Capacity Assignments
Voice (Vj,k) Avoicejk=1.0p™"
Video (j= 1) Jnideoi = 2.0p%° g 300% o ¢ | :
Video (j # 1) 0 £ 250% 1 - e M
= . ,
S 200% 1 ! M
more rapidly as the price i_s lowered _than for voipe connection’s 500, | o oD ' . . .
We have chosen the scaling factor in the functionstobe 1 a & ‘o 0B m ; ! a
2, respectively. This means that at the price 1 (or a normalizi § 100% 1 o pas” o Fpls mevo owe i @
price), the arrival rate of requests for video is twice as higl 5 ! : - w M |
. . . . . = 50% - o o :O 4 . u HE 2K 3N
which reflects the higher value of a connection with video tha 2 - mp m IR -
that with simply voice. < 0% Lohhy | M @
_ _ _ 0o 1 2 3 4 5 6 1 8
B. lllustration of Solution Algorithm Iteration
. . . . ® Bounds @ 0 O A fter Bisection @ 0
Figs.4and 5 prov_lde details of the search steps when we i o Bounds @ 1 o After Bisection @ |
plemented the algorithm for the example problem above. Asv A Bounds @ 2 A After Bisection @ 2
can observe, the search starts with lower and upper bound vali : goungs @i A ﬁger g!SCCt!On @i
at vectord and1, respectively, and, through a number of bisec ounds @ o After Bisection @

tion steps, converges to the "best” (i.e., near-optimal) SOIUtiOEi%] 5. Search algorithm steps: Convergence of capacity assignments
at iteration 8. All other variables also converge. To clarify ex-~" ™ ' '
actly how the tight bounds are generated by the search method,
we explain the step through an iteration in the Fig. 4 exampl&t the initial upper bounds (1,1,1,1,1), bandwidth assignments
before continuing with the interpretation of the solution to that each node are (26.42%, 2.66%, 5.32%, 5.32%, 2.66%) of
same example. available capacity. At the lower bounds on node marginal
Single Iteration of the Search AlgorithmAt iteration “0”, values (0, O, 0, 0, 0), the assignments are (899.32%, 988.73%,
Fig. 4 shows the starting upper and lower bounds on nodli&37.74%, 1137.74%, 988.73%) of available capacity. (These
marginal values. Recall from (32) that the marginal revenaae not shown because they are outside the scale of Fig. 5).
per unit of bandwidth «¢*) for a given service class must At iteration “1,” a bisectionalong the line segment joining
offset the sum of marginal value(s) of bandwidil) at every (0, 0, 0, 0, 0) and (1, 1, 1, 1, 1) is obtained. If feasibility is
along the path assigned to the service class. At each estimaieimportant, the maximum distance found along that line seg-
of node marginal value, bandwidth assignments, etc., will lmeent yields node marginal values to be (0.40, 0.40, 0.40, 0.40,
obtained from the bid table. Thus, at the upper bounds 06m40); see Fig. 4. In this case, the bandwidth assignments are
node marginal values, resource assignments will be very sm@B5.73%, 150.39%, 100.01%, 100.01%, 150.39%) of capacity
and feasible Conversely, at the lower bounds there will béshown in Fig. 5). When feasibility has to be maintained, the bi-
infeasibleoverassignment of resources. This is shown in Fig. Section search yields node marginal values of (0.64, 0.64, 0.64,
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0.64, 0.64), for which the bandwidth assignments are (99.98%, TABLE IV

43.04%, 8.10%, 8.10%, 43_04%); see Fig. 5. OPTIMAL PRICE PERUNIT TIME FOR A CONNECTION OFSERVICE (i, J, k)
Given the broad range of capacity assignments (from 8.1C"’S — o —

to 99.98% of node capacity in the feasible case and fro “°"'¢c "Ype  Origin Destination (k)

100.01% to 285.73% of node capacity in the infeasible cass V((:?ce 01) 0.176 028 126 1_‘:)6 o.f;s
we have an intuition that the bounds on the node margin 2 088 010 024 040  1.00
value either underassigns and overassigns bandwidth at cer 3 1.06 024 014 029 0.40
nodes in a relative sense. Node 0 with an infeasible assignm 4 1.06 040 029  0.14 0.24
of 285.73% of capacity in this iteration is most overassigne , 5 088 100 040 024  0.10
or what we now call “undervalued.” Therefore, we raise th——Y19% 1 165 191 232 232 191
marginal value for node O relative to all the other nodes by
resetting the lower bounds from (0, 0, 0, 0, 0) to (0.40, 0, 0, O, . .
0). Likewise, the assignment at the tightest feasible solution is Fl])te;r:aslf fn,ExPeCtedge:,e n:lepw,'t?
most underassigned or “overvalued” at nodes 2 and 3, where at Rate Tricing versus Optimal Fricing
only 8.10% of available capacity is included in the current 5 40.00% -
feasible solution. Therefore, we lower the relative marginal &  3500% -
value of nodes 2 and 3 by resetting the upper marginal vaIueE 80 30.00% -
bounds from (1, 1, 1, 1, 1) to (1, 1, 0.64, 0.64, 1). The new E Zg 25.00% -
bounds are passed to the algorithm for the next iteration and 2 & L
define the bounds at the beginning of iteration 2 in Fig. 4. The & E 2000%
bisection search along the line segment between bounds or% g 1500% -
marginal values proceeds as above until convergence. = O 10.00% -
5 500% -
C. Solution Interpretation ~ 0.00% ———————— T .
0 2 4 6 8 10 12 14 16 18 2

The solution is found when the algorithm converges to a set Ratio of Prices Per Connect6ion °

of marginal values on individual node bandwidth, which occurs (Video/Voice)

after eight iterations in Fig. 4. The final marginal values of the
nodes selected for the near-optimal solution, i.e., the final SMg. 6. Comparison of per-hop pricing with optimal pricing.
lution to (Pfeasiblg, as discussed in Step 4 of Section IV, are
(0.97, 0.14, 0.20, 0.20, 0.14). The expected revenue at this so- . .
lution is 11 046.03. The duality gap, calculated by comparing’ Comparison to Flat-Rate Pricing Approaches
the solution to (P-feasible) with the solution to (P-infeasible), To evaluate the usefulness of our approach, we compared op-
is roughly 0.24%; i.e., the best feasible solution we found waisnal pricing with two flat-rate pricing approaches, per-hop and
within 0.24% of the optimal solution. The bandwidth assigrper-connection pricing. In the current U.S. voice market, pricing
ments at every switch are in excess of 99%; the criteria we uggel connection regardless of origin and destination is very pop-
for termination in S4, i.e., the optimality conditions, are, morelar. Pricing-per-hop is another flat-rate pricing scheme that has
or less, satisfied. Given the marginal values above, the optintelen proposed, and mimics the use of prices proportional to link
prices are simply looked up in the bid tables and are given urse.
Table IV. For both of these pricing approaches, we need only choose a
The prices reflect relative scarcity of bandwidth at switch Jrice for each service type in the network, a total\dfrices.
due to the location of the video server. Relative to switch 1, locBecause we have only two service types, we assume a ratio be-
(same origin and destination) voice connections are priced inéween the voice price and video price and then simply solve for
pensively elsewhere in the network. The long-distance conndice smallest voice price that achieves feasibility at all switches.
tions must yield much higher marginal values than local coliVe will use the bid tables with the resource allocations satis-
nections to be profitable, since the long-distance connectidigig optimality properties and find the smallest feasible flat rate
must outweigh the marginal value of local bandwidth all alongrice for voice, subject to the assumed ratio between voice and
the path of the connection. High marginal values corresponileo prices. Results are summarized in Figs. 6 and 7.
to higher prices and relatively smaller allocations. The video The optimal pricing mechanism provided greater revenue
connections at switch 1 are the least expensive. Video conndwn either flat-rate pricing approach. The revenue increase
tions at switch 1 use only resources at switch 1, while all otheras upward of 20% in all cases. In general, pricing per hop
video connections must use this resource plus more resounpgexduces higher revenue than pricing per connection in the
at other switches. Consequently, the volume of video conneeasonable ranges for relative video and voice prices. In this
tions at switch 1 must also be the highest anywhere in the nethge, the expected revenue is relatively insensitive to the
work. However, the cheaper video service comes at the pricerafio between the prices for the two services. The pricing per
expensive voice service through this switch, because the voammnection shows the highest profit when voice and video
connections over this switch must use resources with a very higgnnections are charged at the same rate. The prices essentially
marginal value relative to the other switches. fill the network bandwidth with video connections, which are
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Decrease in Expected Revenue with tion, but obtain perfect instantaneous information from the other
Pricing Per Hop versus Optimal Pricing switches on node marginal values and demand for bandwidth.
40.00% - However, if there is partial information and/or a significant time
g 35.00% - lag for the communications protocol to yield up-to-date perfect
- information, a simultaneous implementation of the model by all
= o0 30.00% - : ; . . .
@ = switches might not yield a globally optimal solution.
£ 2 2500% - i : ice prici
© E H07% We are currently working on multiple service pricing mech-
£ = 20.00% - anisms for decentralized networks. We are also working on ob-
E‘ E 15.00% - taining good demand projections, which is a further limitation
- S of this paper that assumes that all parameters of the stochastic
= O 10.00% - : : L
3 arrival process is known. The beginning of such work was re-
E 5.00% - ported in [15].
0.00% mm ™ ———————————————
0 2 4 6 8 10 12 14 16 18 20 APPENDIX

Ratio of Prices Per Hop (Video/Voice) OPTIMALITY THEOREM

We argue for each of the optimality properties in the theorem
Fig. 7. Comparison of per-connection pricing with optimal pricing. individually.

Property 1: Assume there is an optimal solution with prices
highly elastic and generate significant revenue as prices &fd resource allocations such that the call-blocking constraint is
lowered. However, users are unlikely to accept a voice rate @nbinding, for at least one service class
reason, the soluions wih farger ratos between the video prige > 7 (7t (k) ijes NOMAX;) < BPij. (53
and voice price are probably more practical. These solutiotigollows that for this class the network operator could allow

earn significantly less revenue. a higher rate of connection requests and still satisfy the call-
blocking constraint
VI. CONCLUDING REMARKS AN, (Péjk) > Xijk (Dijn)

This paper presents a mathematical programming model : BPyjk ()\;jk (ngk) 7Tijk-/NCMAXijk) Sﬁ”k_ (54)
for optimal pricing, and bandwidth and buffer allocation for ) ) ] )
multiple services with QoS guarantees in a connection-orientg§mand is downward sloping, and marginal revenue with re-
network. We also present a novel solution methodology. \WEECt 10 prices is less than zero by assumption, so that the price
show, using numerical experiments, that flat-rate pricin%orrespondlng to the higher rate of requests must be lower and

(whether by connection or hop) is inferior to the multiservicEVenue must be higher

pricing obtained from our model. Our model provides a very dXijk (Pijk) 0.1 55
powerful mechanism for pricing multiple services in commu- dpiji < U, Pijr <Pijk (55)
nications networks. BP.j1, (Aiji (pij1) » Tijr, NCMAX, 1) :ﬁﬁk. (56)

In order to implement our pricing scheme in a practical real-
world setting, the first decision to be made is whether one usEgerefore, for (53) an optimal solution cannot exist. The optimal
a centralized architecture or a decentralized one. In either ca8@ution must be such that call-blocking is binding [see (24)].
a processor has to use demand (i.e., connection request) irAssume there exists an optimal solution such that the alloca-
formation to make projections of future demand for the difion of bandwidth to a particular class is greater than the equiv-
ferent types of services. In a centralized architecture, the magi@nt capacity for that class
switch will directly get information about capacity availabil- BW,jx
ities at each switch. Using this and the demand projections, ¢ (NCMAX;jx, Bijr, PLOSS;;i) < NoMAx . ©7
the master switch will calculate node marginal values for each ) ) . ar )
switch, and will determine the prices to be set and the resourdd¥e"® must exist a feasible allocation of less bandwidth, ac-
to be allocated for each service class, updating it at reasondfffding to constraint (18) in (PNet) (the smallest feasible assign-

time intervals. The model presented in this paper is particulafReNt IS €qual to equivalent capacity at the maximum permitted
useful in this setting. loss probability) for the particular class such that the QoS is still

In a decentralized architecturgach switchwill also have to Satisfied

calculate the prices and resources needed for each class 0f§B'W,’L- . < BW
vice. In order to have globally optimal solutions, each switch !

will have to communicate information pertaining to itself tothe  : ¢ (NCMAXx,, Bijx, PLOSS; ;1) = W (58)

rest of the switches. Depending on whether the communication ijk

is sent only to neighboring switches, or to all of the switcheShe reassignment given by (58), where equivalent capacity
the actual calculations at any point in time might differ. The; is minimized by selecting the loss probability equal to its
model we have presented in this paper will still work, if all omaximum permitted value, may make it possible to assign
the decentralized switches use it for pricing and resource allot@ndwidth for an additional connection, lower the price of

ijk
BW’
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such a class, and increase revenue. Even if admitting more
connections is not possible due to the reassignment in (58),
revenue cannot decrease from the reassignment. Therefore, thg
assumption that bandwidth is excess of effective bandwidth,
(57), makes no sense and the optimal solution is invalid. We
must have assigned bandwidth equal to equivalent capacity2]
[see (25)]. [
Property 2: Assume that a solution is optimal and possesses
the following property for at least one local service class, e.g.,[4l

(.4, 4):

3]

[5]
(NCMAX,;j; + 1) ¢ (NCMAX,j; + 1,B,j;, PLOSS,.;;) (6]
[71
N NS
i
<BW,. 9 P
For the particular service clags;, j,j) we can allocate re- [10]

sources for an additional connection and tolerate a higher
arrival rate of requests at a lower price, while satisfying all
constraints

=DV

i

[11]

(P;jj) > Aojj (Pajj) 7p;cjj < Pajj [12]
: all constraints satisfied (60)

- . o [13]
Similar to the above, a lower price results in increased revenue.

Therefore, (59) is false and capacity must be fully allocated [seE4]
(26)].

We first assume that there exists an optimal solution that sati5]
isfies the following property for a single service cldssj, k),
which contradicts condition (27) in Theorem 1

Bijrdijr < BWjp.

[16]
(61)

For this service class, as we increase the buffer allocétion
the equivalent capacity, or minimum bandwidth assignment
per connection, falls with the increased buffer space
9c(B;;

C( /Jk) < 0

OBk
Therefore, there exist buffer and bandwidth allocations differenfz0]
from those given in (61), for which the bandwidth assignment
is lower [21]

3IBj;; > Bijie, BW); = ¢; (B}) < BW, : Bj;; = ;s BW).
(63)
If the difference in bandwidth is sufficiently large, there may be3
a revenue increasing solution, by (26), meaning the current so-
lution cannot be optimal. On the other hand, if the bandwidtt}24]
allocation does not yield an improvement in revenue, the rev-
enue cannot be decreased by the reallocation described above.
Therefore, the optimal solution must satisfy (27). [25]

[17]
(18]

(62) [19]

(22]
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