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Abstract——With the continuous development of information 
technology, data centers (DCs) consume significant and ever-
growing amounts of electrical energy. Renewable energy sourc‐
es (RESs) can act as clean solutions to meet this requirement 
without polluting the environment. Each DC serves numerous 
users for their data service demands, which are regarded as 
flexible loads. In this paper, the willingness to pay and time sen‐
sitivities of DC users are firstly explored, and the user-side de‐
mand response is then devised to improve the overall benefits 
of DC operation. Then, a Stackelberg game between a DC and 
its users is proposed. The upper-level model aims to maximize 
the profit of the DC, in which the time-varying pricing of data 
services is optimized, and the lower-level model addresses user’s 
optimal decisions for using data services while balancing their 
time and cost requirements. The original bi-level optimization 
problem is then transformed into a single-level problem using 
the Karush-Kuhn-Tucker optimality conditions and strong dual‐
ity theory, which enables the problem to be solved efficiently. Fi‐
nally, case studies are conducted to demonstrate the feasibility 
and effectiveness of the proposed method, as well as the effects 
of the time-varying data service price mechanism on the RES 
accommodation.

Index Terms——Data center (DC), demand response (DR), pric‐
ing strategy, renewable energy source (RES), Stackelberg game.

I. INTRODUCTION

WITH the rapid technological development of renew‐
able energy power generation, economic and efficient 

means of consuming renewable energy sources (RESs) have 
become the focuses of both academy and industry [1], [2]. 
Among many possible solutions, user-side demand response 
(DR), which has received widespread attention [3]-[5], is an 
effective method because of its low cost and high flexibility. 
Some typical DR mechanisms have been proposed in [6], 
[7] to adjust the users’  energy demands and enhance the ca‐
pability of RES accommodation, which guide users in re‐
sponding to prices or incentive signals [8] and create effec‐
tive interactions between the grid and users.

With recent advances in information technology and the 
development of the Internet, major technology companies 
such as Google, Microsoft, and Facebook have built their 
own data centers (DCs) to provide various cloud storage and 
computing services [9]. As the scale of DCs expands, the en‐
ergy consumption has grown rapidly. According to reports, 
China’s DC energy consumption in 2017 was 122.15 billion 
kWh, which exceeded the annual power generation of the 
Three Gorges Dam during that year [10]. In addition, it is es‐
timated that DCs will account for the largest share of global 
energy consumption by 2025 by as much as 33% [11]. How‐
ever, a DC can act as a new type of large-capacity DR re‐
source [12] when real-time response capabilities and the flex‐
ible scheduling characteristics of its loads are considered.

Existing research works on DCs and their DR practices 
have mainly focused on the internal management and load 
distribution strategies of DCs [13]-[16], the load transfers of 
geo-distributed DCs [16]-[18], the optimal scheduling of da‐
ta services that can be delayed [19], [20], and other aspects. 
An efficient resource management policy for virtualized 
cloud DCs, which results in substantial energy savings by 
the dynamic reallocation of virtual machines, is proposed in 
[13]. A cooling-efficiency-enabled demand-management solu‐
tion is proposed in [16], in which a DR management model 
and the virtual-machine live-migration technology are used 
to reduce the electricity costs in DCs. Reference [17] opti‐
mizes a pricing scheme using a two-stage Stackelberg game 
with the workload leveled not only over time but also over 
space by transferring loads between geo-distributed DCs. 
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Reference [19] proposes an approach that divides users’  da‐
ta service demands into real-time delay-sensitive jobs and de‐
ferrable but deadline-oriented jobs, and optimizes the sched‐
uling of the latter to reduce DC operation costs.

In general, existing research works on DC participation in 
DR have mainly focused on optimization within the DC and 
collaborative scheduling among several DCs. However, rela‐
tively few have been conducted on the DR potential of users 
subordinated to DCs. In addition, existing research works on 
the user side have usually focused on the optimal scheduling 
for data service demands of delay-tolerant users (e.g., batch 
workload) while ignoring the DR potential for delay-sensi‐
tive users (e. g., interactive workload). Moreover, compared 
with the practice of electricity retailers in setting prices [21], 
the characteristics of data service and electricity demands 
are different. Thus, it is necessary to establish a data service 
price mechanism and a DR model for DC users. Therefore, 
based on the modeling and analysis of the data service de‐
mand of DC users, this paper establishes a time-varying DC 
data service price mechanism that is different from most 
studies that set the DC data service price to be a constant 
value. A Stackelberg game is proposed in which the DC of‐
fers users a time-varying price of data services to reflect its 
variable energy costs and incentivize users to participate in 
DR. The major contributions of this paper are as follows.

1) We propose a model describing a user’s willingness to 
pay (WTP) and establish a time sensitivity, by which a time-
varying data service pricing mechanism considering users’  
loss is then proposed. The data service price is set to reflect 
the changes in the electricity price in the grid and the pur‐
chase price of RES, thus encouraging price-sensitive users to 
optimize the plans to obtain data services within their adjust‐
able time period.

2) We construct a Stackelberg game between a DC and us‐
ers. At the upper and lower levels, the goals are to maximize 
the profit of the DC and to minimize the users’  data service 
cost, respectively. After the nonlinear terms and 0/1 vari‐
ables in the proposed model are processed, the bi-level opti‐
mization problem is transformed into a single-level one us‐
ing Karush-Kuhn-Tucker (KKT) optimality conditions and 
strong duality theory.

3) The effects of the price mechanism, which plays a vital 
role in both the reduction of DC energy cost and the increase 
in the consumption of RES generation, are fully analyzed. A 
sensitivity analysis is conducted to show the effects of the pro‐
posed mechanism with different quantities of price levels.

The remainder of this paper is organized as follows. The 
modeling of DC and users’  DR are presented in Section II. 
The optimal pricing strategy and solution procedure are de‐
scribed in Section III. Section IV presents case studies and 
simulation results. And finally, conclusions are drawn in Sec‐
tion V.

II. MODELING OF DC AND USERS’  DR 

A. DC Operation Process

The DC operation process and its DR-enabled users are 
presented in Fig. 1. The energy layer includes RESs and the 

grid, which provide power supply and electricity price to the 
DC layer. The DC layer mainly includes a dispatch center 
and servers under control, where the dispatch center assigns 
tasks to the servers according to data service demand and 
provides DR users with the information of day-ahead data 
service price. The DR user layer includes all users participat‐
ing in the DR program. Based on price information, DR us‐
ers can determine their data service time in a more flexible 
manner to balance their cost requirements.

B. Modeling of DC

1)　Energy Consumption of DC
The energy consumption of a DC generally consists of 

servers, communication and storage, air conditioning, and 
other components. In general, servers are flexible in shifting 
loads to accommodate price signals from the energy layer. 
The power usage efficiency (PUE) is used to estimate the en‐
ergy consumption of a DC [17].

P DC
t = nt[ ]P idle + ( )P peak -P idle ut + ( )η - 1 P peak (1)

where P DC
t  is the energy consumption of the DC at time t; 

P peak and P idle are the peak power and idle power of a server, 
respectively; ut =Dt /(nt μ) is the average server utilization, 
Dt is the total incoming workload at time t, nt is the number 
of active servers at time t, μ is the service rate of a server; 
and η is the PUE of the DC. Equation (1) can be rewritten as:

P DC
t = nt P

idle + ( )P peak -P idle Dt /μ + nt ( )η - 1 P peak (2)

2)　Quality of Service (QoS)
It is important for DCs to set a maximum response time 

and provide QoS guarantees to users, which can be indicated 
in the service level agreement (SLA) [22]. In this paper, the 
M/M/1 queuing theory [23] is used to analyze the average re‐
sponse time for interactive workload at a DC, where the de‐
lay constraints are given by:

0 £
1

μ -Dt /nt

£ d max (3)

0 £ nt £ nmax (4)

where d max is the maximum delay time that a request can tol‐
erate; and nmax is the maximum number of servers in the DC.

Energy flow; Information flow

Energy
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layer

Dispatch center

of DC  Servers
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layer

DR users

Electricity price

Task
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Power supply

Optimized user loadData service price

…

RESs Grid

+

…

Fig. 1.　DC operation process and its DR users.
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3)　Server Operation Constraints
The dispatch center of the DC is responsible for schedul‐

ing the servers to capitalize on the flexibility of the DC in 
terms of workload shifting while satisfying the reliability re‐
quirement. As a result, a server cannot be switched on or off 
too frequently [16]. Therefore, it is necessary to establish a 
minimum on-off time constraint on the servers.

∑
n = 1

nmax

X server
nt = nt    "tÎ[1T] (5)

K server
nt + 1 =X server

nt + 1 -X server
nt     "tÎ[1T - 1] (6)

SXnt0
= ∑

t = t0 + 1

t0 + T d

X server
nt     "t0Î[1T - T d ] (7)

T d - ( )1 -K server
nt + 1 M £ SXnt £ T d + ( )1 -K server

nt + 1 M
"tÎ[1T - T d ] (8)

0 - ( )1 +K server
nt + 1 M £ SXnt £ 0 + ( )1 +K server

nt + 1 M
"tÎ[1T - T d ] (9)

where X server
nt  is a binary variable that describes the start/stop 

status of server n at time t during T time periods; K server
nt  

takes the values of -1, 0, and 1 to describe the change in 
the status of server n at time t; T d is the shortest interval be‐
fore a server can be stopped or started; SXnt is the sum of 
the statuses of server n for a duration of T d starting from 
time t + 1; and M is a sufficiently large positive number.

When server n is started at time t, i.e., K server
nt = 1, this serv‐

er cannot be shut down within the duration of T d, as im‐
posed by (8). Similarly, when server n is shut down at time 
t, i.e., K server

nt =-1, the server cannot be started within the du‐
ration of T d, as imposed by (9).

C. Modeling of User’ s DR Characteristics

1)　Analysis of DR Behavior
All DC users have different WTPs for the service and dif‐

ferent time sensitivities for task delays. These two character‐
istics are critical to the success of a DR program. As shown 
in Figs. 2 and 3, given a large number of DC users, it is as‐
sumed that the WTP and time sensitivity (in terms of delay 
tolerance) of users follow normal distributions, as denoted 
by N p (μp(σ p )2 ) and N t (μ t (σ t )2 ), where μp, σp, μt, and σ t 
are the expectations and standard deviations of users’  WTP 
and delay tolerance distributions, respectively.

Note that the two distributions shown in Figs. 2 and 3 are 
plotted with respect to the price and delay policies of the 
DC. When a users’  WTP for the data service is higher than 

the price range set by the DC, this user can be regarded as a 
price-insensitive user. Likewise, when a user’s delay toler‐
ance is lower than the range specified by the DC, this user 
is regarded as a time-sensitive user. The other extreme sides 
of these two distributions are the users who may not afford 
the service and have great tolerance for time delay, and they 
are not ideal users for the DR program. Instead, the DR pro‐
gram mainly targets the users who sit in the middle of both 
distributions, i. e., both price-sensitive and time-insensitive; 
these users are willing to save some money in exchange for 
some task delays. Although the sensitivities on both price 
and time matter, the time insensitivities are more important 
than these users’  WTP for the health of the DR program, as 
the DR program relies on users’  time insensitivities to shift 
loads for better outcomes.

It should be mentioned that interactive workloads for DC 
users are considered. In other words, the DC must respond 
within a short time period after a data service demand is 
lodged. This situation is more realistic. For this type of us‐
ers, the DC cannot use the time delay strategy for schedul‐
ing as proposed in many existing research works. Instead, a 
time-varying price mechanism is more suitable for this type 
of service, which will be discussed in detail in Section III.
2)　Modeling of DR Pricing Considering Users’  DR Charac‐
teristics

Let us assume that the DC announces the data service 
price C data

t  (e.g., hourly) for the next day. Here, C data
t  is deter‐

mined by the optimization discussed in Section III. It is also 
assumed that the WTP of user j is C max

j , with an initial data 
service time at t initial

j . The following pricing rule is applied to 
the users based on their DR intentions.

Let the price offered to user j be denoted by C deal
j . If user 

j is not willing to participate in the DR program, the time of 
the user’s data service task will not be changed, and the fee 
will be charged at the price corresponding to the original 
time, i.e.,

C deal
j =C data

t (10)

t = t initial
j (11)

These users are time-sensitive. However, for those partici‐
pating in the DR program, their data service may be 
changed from t initial

j  to sometime earlier or later with the time 
change capped by t max

j . The service rate is the minimum 
price during a possible period, i.e.,

C deal
j =min{C data

t | t initial
j - t max

j £ t £ t initial
j + t max

j } (12)

Regardless of the time sensitivity, the WTP of these users 
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users are willing to pay

Price-insensitive
users

Price-sensitive
users

Users do not exist

or can be ignored

C
min

C
max0

Price range of DC
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Fig. 2.　Users’  WTP distribution.
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is affected by the price of data services. Therefore, they can 
be called price-sensitive users.

Any user whose WTP is lower than all service rates dur‐

ing the possible period, i. e., C max
j <min{C data

t | t initial
j - t max

j £ t £

}t initial
j + t max

j , is considered to be lost.

3)　Modeling of Lost Users
As indicated previously, some users may leave without us‐

ing the data service if their WTP is too low. Therefore, giv‐
en the distributions of user WTP and delay tolerance as 
shown in Figs. 2 and 3, respectively, the lost users must be 
taken into account. The actual user’s demand of the DC at 
time t can be expressed as:

N final
t =N basic

t -N A1
t +N A2

t -N A0
t (13)

N user =∑
t = 1

T

N final
t (14)

where N final
t  is the number of user demands; N basic

t  is the num‐
ber of users who do not participate in the DR program; N A1

t  
is the number of time-insensitive users transferred to other 
time periods from time t; N A2

t  is the number of time-insensi‐
tive users transferred from other time periods to time t; N A0

t  
is the number of lost users; and N user is the total number of 
users during T time periods.

III. OPTIMAL PRICING STRATEGY AND SOLUTION 
PROCEDURE 

Figure 4 presents the scheme of the proposed optimal pric‐
ing problem of the DC modeled as a Stackelberg game. In 
other words, the DC anticipates and accounts for the optimal 
reactions from its users in its optimization. The goal of the 
upper-level problem is to maximize the revenue by setting 
optimal data service price schedules to induce DR behaviors, 
and the goal of the lower-level problem is to minimize the 
data service cost of the users through DR.

In the subsequent solving process, the upper-level problem 
is transformed into a mixed-integer linear programming 
(MILP) problem, and the lower-level problem is transformed 
into an integer linear programming (ILP) problem. Thus, it 
can be simply proven that an equilibrium point exists in the 
proposed Stackelberg game using the method described 
in [24].

A. Upper-level Problem

In this subsection, the DC optimization problem is formu‐
lated. Given the energy prices and user’s DR characteristics, 
the DC sets data service prices with the goal of maximizing 
profits to optimize the demand for data services during each 
time period.
1)　Objective Function

The objective of the DC is to maximize its profit, which 
consists of two components, as described by:

max u1 =
     
∑
t = 1

T

C data
t DtDt

Revenue of providing data services

-

                                 

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú

    
∑
t = 1

T

C e
t P e

t Dt

Electricity cost of grid

+
       
∑
t = 1

T

C RES P RES
t Dt

Cost of RES

+          C GC( )W 0 -W RES

Cost of GC

Energy purchase cost

(15)

where u1 is the objective function of the DC; Dt is the time 
interval; C e

t  is the electricity price at time t; P e
t  is the power 

of electricity that the DC purchases from the grid at time t; 
C RES is the price of the RES; P RES

t  is the amount of RES 
power consumed by the DC at time t; C GC is the price of the 
green certificate (GC); W 0 is the required consumption of 
RES generation over a period of time; and W RES is the actu‐
al consumption of RES generation during a time period.
2)　Constraints for Energy Purchase

In this paper, it is assumed that the DC, as a large local 
energy consumer, is given priority in purchasing electricity 
from a renewable generation company (RGC). In addition, 
the DC purchases electricity from the grid only when the 
power supply of the RGC is insufficient. Furthermore, the 
DC is committed to collecting a certain number of genera‐
tion companies (GCs) and must purchase additional GCs 
when the accommodation of RES generation is insufficient.

P DC
t =P RES

t +P e
t (16)

W RES =∑
t = 1

T

P RES
t (17)

0 £P RES
t £P RESmax

t (18)

0 £P e
t £P DC

t (19)

where P RESmax
t  is the maximum power output of the RES at 

time t.
3)　Constraints of Server Scheduling

The constraints on server scheduling within the DC are 
given in (2)-(9), including the calculation of DC energy con‐
sumption, SLA, and operating constraints of the server.
4)　Constraints of Data Service Price

The data service price mechanism is constructed using the 
DC through the following constraints. Equations (20) - (24) 
describe how the DC service pricing C data

t  is represented as a 
step function at time t. This step function contains N c steps 
(levels), whose values are S data

1 > S data
2 > ... > S data

N c . Equation 

(23) ensures that the difference between adjacent price levels 
is sufficiently large for price discrimination.

Equation (24) imposes a constraint such that the average 

Upper
level

Lower
level

Optimized user workloadData service price

Maximize the revenue of DC

Minimize the data service cost of each user

Energy
purchase

Server
scheduling

Data service
pricing

Parameter
sampling

Differentiated  

DR
User loss

Fig. 4.　Scheme of proposed optimal pricing problem of DC modeled as a 
Stackelberg game.
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price of data services should be equal to the fixed price 
C fixed before applying the new pricing scheme. This ensures 
that the variability of the proposed nonlinear pricing scheme 
is limited.

C data
t =∑

iÎN c

X data
ti S data

i (20)

∑
iÎN c

X data
ti = 1 (21)

C datamin £ S data
i £C datamax (22)

S data
i - S data

i + 1 ³DC    iÎ[1N c - 1] (23)

1
T∑t = 1

T

C data
t =C fixed (24)

where X data
ti  is a binary variable to designate the specific lev‐

el i at time t from the step function; C datamax and C datamin are 
the maximum and minimum data service prices, respective‐
ly; and DC is the minimum difference between adjacent 
price levels.

B. Lower-level Problem

In this subsection, the DR model of DC users is estab‐
lished to respond to the time-varying pricing scheme of the 
DC.
1)　Objective Function

The objective is to minimize users’  total cost of the data 
service with the given data service price.

min u2 =∑
j = 1

N user

C deal
j Dfix (25)

where u2 is the objective function of the users; and Dfix is 
the data service demand of each user (it is assumed that vari‐
ous users have the same load demand of the data service).
2)　Constraints

The constraints on user DR in the DC are given in (10)-
(14), which mainly include the user’s WTP, delay tolerance, 
and the condition of lost users.
3)　Transformation of Problem

To convert the bi-level optimization model into a single-
level one, the lower-level problem, which includes (10)-(14) 
and (25), is rewritten into (26)-(31) to eliminate the non-con‐
tinuous 0/1 variables in the model.

min u͂2 =
                             
∑
j = 1

N avail

é

ë
êêêê

ù

û
úúúú∑

t = 1

T ( )C data
t + εjt Davail

jt Dt + ( )C max
j + εmax Dloss

j

Price - sensitive users that can be scheduled

+

       
∑
t = 1

T

C data
t Dbase

t Dt

Price - insensitive users

(26)

where N avail is the total number of price-sensitive users that 
can be rescheduled; εjt is the user preference of price-sensi‐
tive user j at time t; Davail

jt  is the data service demand of 
price-sensitive user j at time t; εmax is the maximum prefer‐
ence of the user; Dloss

j  is the data service demand of user j 
that is lost by the DC; and Dbase

t  is the total demand of price-
insensitive users at time t, which is the basic workload.

The relevant constraints are expressed as:

Dt =∑
j = 1

N avail

Davail
jt +Dbase

t (27)

Davail
jt = T avail

jt Da
jt (28)

Dloss
j +∑

t = 1

T

Davail
jt =Dfix (29)

0 £Davail
jt £Dfix (30)

0 £Dloss
j £Dfix (31)

where T avail
jt  is the status variable indicating whether user j is 

within the adjustable time range at time t; and Da
jt is an in‐

termediate variable of price-sensitive user j at time t.
Equations (26) and (29) - (31) ensure that when the data 

service price is given, users will choose the time period with 
the lowest price while meeting the time requirement. Equa‐
tion (28) ensures that users choose data service prices only 
in an adjustable range of time.

Note that εjt is designed to help users make choices when 
the price is the same during several time periods, and εmax is 
used to ensure that users choose to accept the price of data 
services at time t instead of user losses.

C. Solution Procedure of Bi-level Problem

After the lower-level problem is converted to a continuous 
optimization one, its KKT optimality conditions can then be 
obtained to transform the original bi-level problem into a sin‐
gle-level one. However, it is difficult to solve the single-lev‐
el problem because of the nonlinearity in (15), where C data

t  
and Dt are both decision variables. As shown in (32) and 
(33), the product terms can be replaced by linear compo‐
nents based on the KKT optimality conditions obtained in 
the lower-level problem using the strong duality theory [25].

∑
t = 1

T

C data
t DtDt =∑

j = 1

N avail∑
t = 1

T

C data
t Davail

jt Dt +∑
t = 1

T

C data
t Dbase

t Dt (32)

∑
j = 1

N avail∑
t = 1

T

C data
t Davail

jt Dt =-∑
j = 1

N avail

λ12
j Dfix -∑

j = 1

N avail∑
t = 1

T

μ12
jt Dfix -

∑
j = 1

N avail

μ14
j Dfix -∑

j = 1

N avail∑
t = 1

T

εjt D
avail
jt -∑

j = 1

N avail

( )C max
j + εmax Dloss

j (33)

where λ12
j  is the dual variable of (29); and μ12

jt  and μ14
j  are 

the dual variables of (30) and (31), respectively.
Thus, the objective function of the single-level problem 

can be rewritten as:

max u͂1 =-∑
j = 1

N avail

λ12
j Dfix -∑

j = 1

N avail∑
t = 1

T

μ12
jt Dfix -∑

j = 1

N avail

μ14
j Dfix -

∑
j = 1

N avail∑
t = 1

T

εjt D
avail
jt -∑

j = 1

N avail

( )C max
j + εmax Dloss

j +∑
t = 1

T

C data
t Dbase

t Dt -

∑
t = 1

T

C e
t P e

t Dt -∑
t = 1

T

C RES P RES
t Dt -C GC( )W 0 -W RES (34)

Equation (34) is subject to constraints (2) - (9), (16) - (24), 
and the linearized KKT conditions (26)-(31) of the lower-lev‐
el problem. Finally, the preceding nonlinear problem is trans‐
formed into an MILP problem.

The GUROBI solver in MATLAB is employed to solve 
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the MILP problem, similar to the method employed in [26]. 
The decision variables are summarized as follows.

1) Upper-level problem: C data
t , C data

i , K server
nt , nt, P DC

t , P e
t , 

P RES
t , SXnt, W

RES, X server
nt , and X data

ti .
2) Lower-level problem: Dt, D

avail
jt , Dloss

j , and Da
jt.

IV. CASE STUDIES AND SIMULATION RESULTS

A. Case Description

To validate the effectiveness of the proposed approach, a 
case study is employed that includes a DC and its users in 
the USA. An hourly interval is employed in the day-ahead 
optimization, and it is assumed that data service demand ar‐
rives hourly. The DC processes 0.9 million requests every 
minute during peak periods, as assumed in [27]. As shown 
in Fig. 5, the real-time pricing (RTP) data of Illinois is used 
as the predicted day-ahead electricity price. As shown in 
Fig. 6, a local RGC is set to provide a DC of up to 19 MW 
of photovoltaic (PV) output. The normalized original work‐
load of the DC is shown in Fig. 7, which is based on a real-
world Google workload trace [28]. Detailed parameters of 
the DC and its users are listed in Table I [22], [27], [29] and 
Table II [27], [28], respectively, and the other parameters are 
listed in Table III.

It should be noted that the DC does not require all data of 
users, but mainly collects two key sets of user data, includ‐

ing the user data service period and WTP. The method of da‐
ta collection can include user questionnaires or a limited col‐
lection of historical data after obtaining users’  authorization. 
In addition, the DC is obliged to keep the collected data con‐
fidential and to prevent leakage. In the process of data analy‐
sis, data desensitization is required, i.e., some sensitive infor‐
mation is deformed through desensitization rules to achieve 
the reliable protection of sensitive and private data.

The following four scenarios are considered for compari‐
son.

1) Scenario 1: the DC provides a fixed price for data ser‐
vices without RES accommodation.

2) Scenario 2: the DC provides a fixed price for data ser‐
vices while giving priority to RES accommodation.
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TABLE I
DC PARAMETERS

Symbol

P peak

P idle

μ

η

d max

nmax

T d

N c

C fixed

C datamax

C datamin

DC

Parameter

Peak power of a server (W)

Idle power of a server (W)

Service rate of a server

PUE of DC

The maximum delay time (s)

The maximum number of servers

The shortest interval between start and stop 
of servers (hour)

Number of data service price levels

Fixed data service price ($)

The maximum data service price ($)

The minimum data service price ($)

The minimum difference between adjacent 
price levels ($)

Value

750

400

4

1.75

0.35

20000

2

3

6 × 10-5

8 × 10-5

4 × 10-5

1 × 10-6
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Fig. 7.　Normalized original workload of DC.

TABLE II
USER PARAMETERS

Symbol

C max
j

t max
j

Dfix

Parameter

The maximum of WTP of user j ($)

The maximum of time adjustment of user j 
(hour)

Data service demand of each user

Percentage of price-sensitive users (%)

Percentage of price-insensitive users (%)

Percentage of time-sensitive users among 
price-sensitive users (%)

Percentage of time-insensitive users among 
price-sensitive users (%)

Value

N(7.5, 22)×10-6

N(1.5, 22)

1

53.0

47.0

25.3

74.7

TABLE III
OTHER PARAMETERS

Symbol

C RES

C GC

W 0

Parameter

Price of RES ($/MWh)

Price of a GC ($)

Required consumption of RES generation (MWh/day)

Value

40

20

150
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3) Scenario 3: the DC provides a time-varying price for 
data services without RES accommodation.

4) Scenario 4: the DC provides a time-varying price for 
data services while giving priority to RES accommodation.

B. Simulation Results

The time-varying data service price and energy consump‐
tion optimization results of the DC are shown in Figs. 8-12 
and Tables IV and V, in which the effects of data service 
price are analyzed in detail. Comparisons between scenarios 
are presented as below.

1)　Transmission from RTP to Data Service Price
Comparisons between Scenarios 1 and 3 are shown in 

Figs. 8 and 9, where the transmission effects of data service 
prices on RTP are analyzed.

As shown in Fig. 8, the peak and low value periods of the 
data service price in Scenario 3 are basically consistent with 
RTP, which is the result of the DC weighing user DR and us‐
er loss. The price-sensitive users in Scenario 3 change the 
time of the data service demand from the peak-price to the 
low-price period of the RTP to minimize the cost, as shown 
in Fig. 9. This also verifies the effectiveness of the DR mod‐
el.

It can be concluded from the optimization results that the 
proposed time-varying data service price can effectively 
transfer the signals of variable energy prices to the users by 
setting a reasonable data service price. In addition, the opti‐
mized data service price can enable price-sensitive users to 
change their data service time and realize the DR potential 
of the users effectively.
2)　Impact on RES Accommodation

Figures 10 and 11 show the effects of the proposed time-
varying data service price mechanism on the RES accommo‐
dation when comparing Scenarios 2 and 4.

In Scenarios 2 and 4, the DC considers the purchase of 
RES and electricity from the grid when the RES falls short. 

TABLE IV
REVENUE, COST DETAILS, AND OTHER ECONOMICS OF DC OPERATION

Scenario

1

2

3

4

Total revenue 
($/day)

56751.8

56751.8

56585.0

57171.2

Total cost 
($/day)

26793.1

19436.7

23788.1

18963.5

Profit ($/day)

29958.7

37315.1

32796.9

38207.7

Electricity purchase cost 
from the grid ($/day)

26793.1

13985.8

23788.1

13263.1

RES cost 
($/day)

4901.8

5400.8

GC cost 
($/day)

549.1

299.6

RES accommodation 
ratio (%)

75.2

82.8

User loss 
(%)

0

0

8.88

5.13
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Fig. 9.　RTP and workload in Scenarios 1 and 3.
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Therefore, the optimized data service price in Scenario 4 
is similar in part to the equivalent energy price shown in 
Fig. 10, which combines the RTP and the RES price. The 
low-price period of data services is set when the RES con‐
sumption is insufficient or the RTP is low. Considering the 
effects of RES and GC, the optimized data service price 
shown in Fig. 11 increases the length of the low-price period 
at noon compared with the data service price shown in Fig. 
8. This change encourages users to use data services as 
much as possible during the peak period of RES output, 
which increases the RES accommodation ratio from 75.2% 
to 82.8%.

With the expansion of the data service price range in the 
future, the proportion of price-sensitive users will continue 
to rise, which is currently at only 53.0%. This will further 
enhance the DC capability for RES recommendation.
3)　Analysis of Economics

The revenue, cost details, and other economics of DC op‐
eration as reflected in Scenarios 1-4 are analyzed and pre‐
sented in Table IV. It is noted that the DC maintenance and 
management costs and other fixed expenses are not calculat‐
ed in this paper, as they are hardly affected by the price 
mechanism.

A comparison of Scenarios 1 and 3 reveals that the pro‐
posed time-varying data service price mechanism has a rela‐
tively small effect on the total revenue. However, it has sig‐
nificantly reduced the energy costs by as much as 11.2%, 
thus increasing the DC’s profit. The main reason for the 
change in profit is that the DC always achieves a balance be‐
tween increasing the price of data services and avoiding user 
losses. The reduction in total cost is due to the fact that 
more price-sensitive users choose to use data services during 
the low-price period of RTP after optimization.

Regarding the scenarios with RES, as can be observed 
from the results of Scenarios 2 and 4, the costs of purchas‐
ing electricity from the grid and GC are drastically reduced 
by 5.2% and 45.4%, respectively, which contribute to a re‐
duction in the total cost and an increase in RES accommoda‐
tion.

C. Sensitivity Analysis of Price Mechanism

A sensitivity analysis for the number of price levels is pre‐
sented in this subsection, which greatly affects the ability of 
a DC to schedule users. The maximum number of data ser‐
vice price levels is set to be 5, as more price levels will re‐
sult in difficulties in DC decision-making and increase the 

risk derived from the forecasting errors of DR. The optimiza‐
tion results are presented in Fig. 12 and Table V.

As shown in Fig. 12, with an increase in the number of 
data service prices, the similarity between data service prices 
and RTP continues to rise, which allows DCs to have a 
more flexible means of scheduling users with a WTP. In ad‐
dition, the RES accommodation ratio as shown in Table V 
reveals that more price-sensitive users are scheduled to use 
data services during the peak period of RES output under 
the time-varying data service price mechanism with more 
price levels.

When the optimization results in Fig. 12 and Table V are 
combined, it can be concluded that the proposed time-vary‐
ing data service price plays a positive role in improving the 
economic performance and environmental sustainability of 
the DC operation. Specifically, when the number of price 
levels increases from 3 to 5, the cost of purchasing electrici‐
ty from the grid continues to decrease, while the RES ac‐
commodation ratio continues to increase. It is shown that 
when a DC has a greater number of price levels, it can for‐
mulate a more reasonable data service price mechanism 
based on the distribution of user’s WTP to ensure the bene‐
fits of the DC and the RES accommodation ratio.

It should be noted that in our case studies, the total reve‐
nue and electricity purchase cost from the grid decrease si‐
multaneously when the number of price levels increases 
from 1 to 2. This can be explained as follows. When the da‐
ta service price involves only two price levels, the DC has 
to use a higher price to drive users’  demands to the peak pe‐
riod of RES output where the lower data service prices are 
set. This leads to 7.63% user loss and 4.9% more RES ac‐
commodation ratio. In addition, as shown in Table V, when 
the number of price levels continues to increase (e.g., from 3 
to 5), the price range of data services inevitably increases, 
which leads to a small increase in user losses and a small de‐
crease in the total revenue of DC.

V. CONCLUSION

In this paper, a time-varying pricing scheme for a DC da‐
ta service considering DR and RES accommodation is pre‐
sented. Under the proposed price mechanism, the user price 
and time sensitivities can be analyzed and used to design a 
DR program, which help the DC schedule its workload more 
flexibly in managing its energy costs. A Stackelberg game 
between the DC and the users is also developed in this pa‐
per, where the upper- and lower-level problems aim to maxi‐
mize the profit of the DC and to minimize the user data ser‐
vice cost, respectively. The bi-level optimization problem is 
transformed into a single-level MILP problem using KKT op‐
timality conditions and the strong duality theory to solve the 
problem more efficiently. Case studies are conducted in four 
scenarios in a daily time range. Simulation results show that 
the proposed time-varying data service price mechanism 
plays a vital role in the economics of DC operation and in 
RES accommodation. DCs should set price levels for appro‐
priate quantities to balance the economic and environmental 
benefits as well as user losses more effectively.

In fact, this paper shows that the users’  WTP and time 

TABLE V
OPTIMIZATION RESULTS WITH DIFFERENT NUMBERS OF PRICE LEVELS

Number of 
price levels

1

2

3

4

5

Total reve‐
nue ($/day)

56752

55531

57171

56687

56391

Electricity pur‐
chase cost from 

grid ($/day)

13986

12315

13263

12619

12510

RES accommo‐
dation ratio (%)

75.2

80.1

82.8

84.1

85.1

User 
loss (%)

0

7.63

5.13

7.62

8.88
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sensitivity cannot be decoupled completely, which means 
that a user’s adjustable time range may also change with the 
prices. Future works will focus on the coupling relationship 
between user WTP and time sensitivity to ensure that the 
price mechanism is more reasonable and effective. In addi‐
tion, the uncertainty of the RES output and DR will be ana‐
lyzed.
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