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Optimal Pricing to Manage Electric Vehicles in
Coupled Power and Transportation Networks

Mahnoosh Alizadeh, Hoi-To Wai, Mainak Chowdhury, Andrea Goldsmith, Anna Scaglione, and Tara Javidi

Abstract—We study the system-level effects of the introduc-
tion of large populations of Electric Vehicles on the power
and transportation networks. We assume that each EV owner
solves a decision problem to pick a cost-minimizing charge and
travel plan. This individual decision takes into account traffic
congestion in the transportation network, affecting travel times,
as well as as congestion in the power grid, resulting in spatial
variations in electricity prices for battery charging. We show
that this decision problem is equivalent to finding the shortest
path on an “extended” transportation graph, with virtual arcs
that represent charging options. Using this extended graph, we
study the collective effects of a large number of EV owners
individually solving this path planning problem. We propose a
scheme in which independent power and transportation system
operators can collaborate to manage each network towards a
socially optimum operating point while keeping the operational
data of each system private. We further study the optimal
reserve capacity requirements for pricing in the absence of such
collaboration. We showcase numerically that a lack of attention
to interdependencies between the two infrastructures can have
adverse operational effects.

I. INTRODUCTION: A TALE OF TWO NETWORKS

Large-scale adaptation of Electric Vehicles (EV) will affect

the operation of two cyber-physical networks: power and

transportation systems [1]. Each of these systems has been

the subject of decades of engineering research. However,

in this work, we argue that the introduction of EVs will

couple the operation of these two critical infrastructures. We

show that ignoring this interconnection and assuming that

the location of EV plug-in events follows an independent

process that does not get affected by electricity prices can

lead to instabilities in electricity pricing mechanisms, power

delivery, and traffic distribution. Hence, we propose control

schemes that acknowledge this interconnection and move

both infrastructures towards optimal and reliable operation.

To achieve this goal, we show that an individual driver’s

joint charge and path decision problem can be modeled as a

shortest path problem on an extended transportation graph

with virtual arcs. We use this extended graph to study the

collective result of all drivers making cost-minimizing charge

and path decisions on power and transportation systems. We

then show that two non-profit entities referred to as the

independent power system operator (IPSO) and independent

transportation system operator (ITSO) can collaborate to find

jointly optimal electricity prices, charging station mark-ups,

This work was supported by the NSF CPS Grant 1330081 and by the U.S.
DoE’s Office of Electricity through the Consortium for Electric Reliability
Technology Solutions (administered by LBNL).

P
ow

er
 g

rid
 

T
ra

ns
po

rt
at

io
n 

gr
id

 

G = (V,A)

R = (B,F)

N

Fig. 1. Electric Vehicles affect transportation and power delivery networks.

and road tolls, while keeping the data of each system private.

We show that this collaboration is necessary for correct price

design. We further study the generation reserve requirements

to operate the grid in the absence of such collaboration.

Prior Art: The study of mechanisms for coping with

demand stochasticity and grid congestion is at the core of

power systems research. In particular, EVs are acknowledged

to be one of the primary focuses of demand response (DR)

programs. DR enables electricity demand to become a control

asset for the IPSO. For example, the authors in [2]–[18], and

many others, have proposed control schemes to manipulate

EV charging load using various tools, e.g., heuristic or opti-

mal control, and towards different objectives, e.g., ancillary

service provision, peak shaving, load following. However, a

common feature in [2]–[18] is that the location and time of

plug in for each request is considered an exogenous process

and is not explicitly modeled. Very few works have consid-

ered the fact that, unlike all other electric loads, EVs are

mobile, and hence may choose to receive charge at different

nodes of the grid following economic preferences and travel

constraints. This capability was considered in [19], [20] in

the problem of routing EV drivers to the optimal nearby

charging station after they announce their need to charge. The

authors in [21] consider the case where the operator tracks the

mobility of large fleets of EVs and their energy consumption

and designs optimal multi-period Vehicle-to-Grid strategies.

Here we do not consider the case of fleets and look at a large

population of heterogeneous privately-owned EVs.

Traffic engineering studies mechanisms for coping with

road congestion in the transportation network. At the individ-

ual user level, travel paths are planned to avoid congestion as

much as possible, naturally leading to shortest path problems

[22], [23]. When studying the collective actions of users,
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the so-called Traffic Assignment Problem is concerned with

the effect of individuals’ selection of routes on the society’s

welfare, and studies control strategies to guide the selfish

user equilibrium towards a social optimum, e.g., [24], [25].

Recently, a line of research has emerged to study the effect

of EVs on transportation systems. For example, [26]–[28]

look at the individual path planning problem by minimizing

the energy consumption of EVs, leading to a constrained

shortest path problem. However, the interactions with the

power grid are not modeled. At the system-level, [29], [30]

study efficient solutions for characterizing the redistribution

of traffic due to the charge requirements of EVs (paths are

forbidden if not enough charge is received to travel them).

In contrast to our work, in [29], [30], electricity prices are

respectively not considered and taken as given. Accordingly,

these works are complementary to ours and do not address

the electricity price design aspect that we are interested in

(more details in Remark III.3). To the best of our knowledge,

the only work that considers price design is [31]. In [31],

charge is wirelessly delivered to EVs while traveling. Hence,

EVs can never run out of charge. The authors show that

if a government agency controls the operations of both the

transportation and power networks or can design tolls as

a decentralized control measure, the effect of EVs on the

grid can be optimized by affecting the drivers’ choice of

route. In spite of a somewhat similar set up, [31] and our

work have major differences: 1) Our model is different in

that we assume EVs make stops at charging stations and

the amount of charge received is a choice made by the

driver, leading to a different pricing structure, based on the

concept of virtual charging arcs; 2) We consider the IPSO

and ITSO as two separate entities and look at how they can

design prices if they collaborate together with minimal data

exchange using the principles of dual decomposition. We also

study the adverse effects of the lack of such collaboration;

3) We study how the IPSO can set prices in the absence of

such collaboration through procuring generation reserves.

Remark I.1. To be able to derive analytical results, we have

chosen to remain in a static setting. This means that the

customers’ travel demand, the baseload, and generation costs

are all time-invariant. Our preliminary work published as a

conference paper [32] models this problem under a dynamic

setting. The main contribution of [32] is proposing the

general model of the ESPP and the extended transportation

graph. However, the dynamic model studied in [32] in its

full generality was not amenable to an analytical charac-

terization of the aggregate control problem and hence could

not provide design insights. In contrast, the present work

introduces significant simplifications by considering a static

setting. The static formulation removes the non-convexity of

the problem and allows for a novel analytical treatment.

II. OVERVIEW

We study a large network of EV and Internal Combustion

Engine Vehicles (ICEV) owners that optimize their daily trip

ITSO IPSO

EV Gen.

Resrv.

. . .. . . . . .. . .

Demand d

Price p

Toll θPath k Price pGen. power g

Reserve r

Fig. 2. The entities involved in the control problem.

costs, including the path they take to complete a trip as

well as refueling strategies. A short model of the decision

making process by individual EV drivers is first presented in

Section III, mainly to introduce the extended transportation

graph, a novel concept we use in this paper to integrate

individual decisions into system-level control strategies for

coupled infrastructures. The extended graph construct cap-

tures the fact that EVs’ route and charge decisions are

affected by the state of two networks, namely the power and

the transportation networks. The transportation network is

managed by a non-profit ITSO (red circle in Fig. 2), who

knows about the trip patterns of the population and can

impose tolls on public roads to affect the individuals’ routing

decisions. The power network is managed by a non-profit

IPSO (light gray circle), who controls electricity generation

costs (green circle) and is in charge of pricing electricity that

affect individual EV’s charging decisions. Ideally, we would

like to minimize the total transportation delay and electricity

generation cost that the society incurs. However, as the IPSO

and the ITSO are two separate entities, we study whether they

can achieve this goal with or without direct collaboration

under various schemes presented in Section IV (and in Fig

5). We numerically study these schemes in Section VI.

III. THE INDIVIDUAL DRIVER’S MODEL

Let us first focus on the decision making process of an

individual EV driver (the blue circle in Fig 2). In order to

complete a trip, the driver needs to decide on 1) which path

to take to get from his origin to the destination; and 2) the

locations at which he/she should charge the EV battery and

the amount of charge to be received at each location. We

model the cost structure associated with these decisions next.

Notation: We use bold lower case x to indicate vectors

and bold upper case X to indicates matrices. The notation

xI = [xi]i∈I indicates that the elements that comprise a

column vector or a matrix each correspond to a member of

a set I. The symbols � and � denote element-wise ≤ and

≥ inequalities in vectors. The transpose of a column vector
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x is denoted by xT . The all one and all zero row vectors of

size j are denoted by 11×j and 01×j respectively.

TABLE I
TABLE OF NOTATION

V , Set of nodes in the transportation network

A , Set of arcs in the transportation network

N , Set of nodes with charging facilities

G , The transportation graph

K , Set of energy-feasible paths that connect the
origin and destination for an individual user

sk , Length of path k

λa , Flow on arc a of transportation graph

λv , Flow into charging station located at node v
pv = Price of electricity at node v
ev = Energy received at node v

Ev , Set of possible charging amounts at v
θv = Plug-in fee at node v

ρv , Charging rate at node v

τa(λa) , Latency function of traveling on arc a

τv(λv) , Wait time to be plugged in at node v

γ , Value of time to users

sa(λa) , Cost each user incurs for traveling on arc a

sv(ev , λv) , Cost to receive charge of ev at node v

ea , Energy required to travel arc a

Ge , The extended transportation graph

S , Set of nodes in Ge

L , Set of arcs in Ge

Lv , Set of virtual charging arcs for charging sta-
tion at node v

C , Set of all virtual charging station entrance and
bypass arcs

ba , The electricity bill to charge for virtual arc a

Q , Set of different origin-destination clusters q

Kq , Set of feasible paths on Ge for cluster q

mq , Rate of EVs in cluster q

fk
q = rate of cluster q EVs that choose path k ∈ Kq

fq , [fk
q ]k∈Kq

Aq , Arc-path incidence matrix for cluster q
g = Vector of generation outputs at all network

nodes

c(g) , Vector of network generation costs

u , Vector of inelastic non-EV demand at all
network nodes

d = Vector of EV charging demand at all network
nodes

H , The power transfer distribution matrix

c , Line flow limits

M , Matrix that maps virtual link flow to power
system load

sea(λa) = Auxilary cost function for arc a (see (18))

we(λ) = [
∫ λa

x=0
sea(x)dx]a∈L

ξ , Reserve capacity prices at all network nodes

r , Reserve capacity prices at all network nodes

A. Congestion Costs

We model the transportation network through a connected

directional graph G = (V,A), where V and A respectively

denote the set of nodes and arcs of the graph.

Traveling on the transportation network is associated with

a cost for the user since he/she values the time spent en

route. The time to travel between an origin and a destination

node is comprised of the time spent on arcs that connect

Origin Destination

Fast charging station

1

2

3

4

τa(λa), ea

Fig. 3. The transportation graph G.

these two nodes on G. Here we adopt the popular Beckmann

model for the cost of traveling an arc, i.e., a road section

[33]. Accordingly, we assume that the travel time for each

arc a ∈ A only depends on the rate of EVs per time unit

that travel on the arc, which we refer to as the arc flow and

denote by λ = [λa]a∈A. The time it takes to travel arc a
is then represented by a latency function τa(λa), which is

convex, continuous, non-negative, and increasing in λ. The

congestion cost that a user incurs for traveling arc a is given

by:

sa(λa) = γτa(λa), (1)

where γ is the cost of one unit of time spent en route. Hence,

the cost to travel link a is:

total cost to travel link a = sa(λa) + θa, (2)

where θa corresponds to any tolls that the driver should pay

to the ITSO, if any such toll is enforced for link a.

Moreover, traveling each arc a ∈ A requires a certain

amount of energy ea (see Fig. 2). Energy needs to be received

from the power grid and stored in the EV battery. The cost

that the user incurs to receive battery charge is modeled next.

B. Charging Costs

A subset of nodes on the transportation network N ⊆ V
are equipped with battery charging facilities and, hence, the

EV drivers have the choice of charging their batteries at these

locations. Naturally, to be able to provide charging services,

the nodes N are also a subset of the nodes B that constitute

the power grid graph R = (B,F). Each node v ∈ B has an

associated price for electricity pv . Consequently, if the EV

driver chooses to charge at location v, he/she will pay:

electricity cost of charging = pvev + θv, (3)

where ev ∈ Ev is the battery charge amount received at v
chosen from a finite set Ev , and θv corresponds to a one-

time plug-in fee for the charging station at v. Moreover, if v
is not the origin of the trip, the driver needs to spend some

extra time en route in order to receive charge at v. This is due

to any congestion at the fast charging stations (FCS) plus the

time it takes to receive charge. Hence, an extra inconvenience

cost is incurred. If the charging rate at FCS v is ρv , and the
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rate of EVs being plugged in for charge at this location is

denoted by λv , this cost is equal to:

sv(ev, λv)=

{

γ
(

ev
ρv

+ τv(λv)
)

, v is an FCS

0, v is trip origin node
(4)

where τv(λv) denotes the wait time due to congestion, and

is a soft cost model to capture limited station capacity.

C. The Extended Transportation Graph with Virtual Arcs

The EV driver’s goal would be to find the least cost

path that connects the origin and the destination on the

transportation graph G while making sure that the EV battery

never runs out of charge1.

Here we show that we can recast the EV driver’s route and

charge problem as a resource-constrained shortest path prob-

lem on a new extended transportation multigraph Ge(S,L).
This definition will help us study and control the aggregate

effect of individual EVs on power and transportation systems.

Definition III.1. A travel path k on the graph G is character-

ized by an ordered sequence of arc indices ak where the head

node of [ak]i is identical to the tail node of [ak]i+1 for all i =
1, . . . , sk−1. The length of path k is sk. Alternatively, if G is

simple, path k can be written as an ordered sequence of sk
node indices vk (excluding the destination node). We further

denote a vector of previously defined quantities associated

with the arcs ak using subscripts, e.g., eak
= [ea]a∈ak

and

sak
(λak

) respectively denote the vectors of charge amounts

and travel time required to travel each arc on path k.

To complete a trip, the driver incurs two forms of costs:

the cost associated with arcs and the cost associated with the

charging decisions taken at nodes. However, we can observe

charging is very similar in nature to traveling: 1) it takes a

certain amount of time (due to both charging rate limitations

and congestion); 2) it has a cost; and 3) it changes the

energy level of the battery. Acknowledging this similarity, we

transform the EV driver’s decision problem to a shortest path

problem by associating charging decisions made at the nodes

v of the transportation graph to a set of new virtual arcs to

be added at each node v ∈ N where charging is possible. At

each origin and destination node where charging is possible,

the following transformation would capture all decisions:

• The decision of how much to charge: a set of virtual

arcs Lv added at node v are each associated with a

specific choice of how much to charge, i.e., ev ∈ Ev .

Hence, the energy gained by traveling each new virtual

arc is set to be one such member of Ev (red arcs in Fig.

4). Equivalently, we can say that the energy required to

travel the virtual arc is negative. Travel time is ev
ρv

.

1Note that with the cost structure we have defined, the EV driver will
reach the destination with minimum-possible leftover charge. An extension
of the analytical framework to include the value of leftover charge at the
destination in the optimization is trivial and has been removed for brevity of
notation. We refer the reader to our conference paper [32] for this extension.

DestinationOrigin 1

2

3

4

don’t stop

stop

virtual links

corresponding to E1

virtual links

corresponding to E3

τa(λa), ea

Fig. 4. The extended graph corresponding to Fig. 2.

At the FCS, these transformations capture all decisions:

• The decision to stop or skip stopping at a charge station

en route: the driver can either take a charging station

entrance arc (labeled “stop” in Fig 3) and plug in

their EV at the station, or skip stopping at the station

via a bypass arc with zero travel time and energy

requirements (green arcs in Fig. 3). Charging station

entrance arcs can be congested;

• The decision of how much to charge if stopping at v: the

charging station entrance arc is connected in series to a

set of virtual arcs Lv capturing the choice of amount of

charge ev ∈ Ev (blue arcs in Fig. 3).

The flow on the charging station entrance arc will capture

the wait time to be plugged in at the station. The set of

all entrance and bypass arcs for all charging stations is C.

The new extended transportation graph with these virtual arcs

would then have the following set of arcs:

L = (∪v∈NLv) ∪ C ∪ A.

Consequently, the transformed problem seeks a shortest

path on this extended graph from the origin to the destination,

with the cost of traveling each arc being the sum of its travel

time cost and all monetary charges such as the electricity bill

or tolls. The travel time costs on Ge(S,L) is given by:

sa(λa) =











γτa(λa), a ∈ A ∪ C
γ ea
ρv
, a ∈ Lv, v ∈ N − origin

0, a ∈ Lv, v = origin

(5)

All other monetary costs can be captured as:

ba =

{

θa, a ∈ A ∪ C
pvea, a ∈ Lv, v ∈ N (6)

and hence, each driver selfishly optimizes their trip plan by

solving the Energy-aware Shortest Path Problem (ESPP):

min
k∈K

11×sk(sak
(λak

) + bak
) (7)

where K is now the set of energy-feasible paths that con-

nect the origin and the destination on the extended graph

Ge(S,L). Energy-feasibility of a path ensures that the battery

will never run out of charge en route. Next, we define energy-

feasibility mathematically.



5

Definition III.2. A path k is energy-feasible on Ge iff ∀j =
1, . . . , sk:

0 ≤ Initial charge − [11×j ,01×(sk−j)]eak
≤ battery capacity.

These two constraints ensure that the EV never runs out of

charge en route if taking path k, and that the battery charge

state never exceeds battery capacity. A vector of dimension

zero is simply empty. Note that with this definition, we can

determine whether a path is energy-feasible independently

of the network congestion mirrored through λak
. Hence, for

system-level control of λak
, the set of energy-feasible paths

can be calculated offline.

Remark III.3. The ESPP (7) can be solved using Dynamic

Programming (DP) algorithms with pseudo-polynomial com-

plexity [34]. Polynomial-time Dijkstra-like algorithms for

solving the shortest path problem cannot be applied due to

the existence of the energy-feasibility constraint (see [26],

[35]). This is mainly because the cost of a path is no longer

just the sum of its arc costs (as energy constraints cannot

be attributed to individual arcs but a sum over multiple

arcs). Proposing efficient solution methods for the ESPP is

beyond the scope of this paper. Instead, our focus is to use

the extended graph to study aggregate control strategies. We

refer the reader to recent papers studying efficient solutions

and search heuristics for variations of ESPP, e.g., [30],

[36]–[38]. For our small numerical experiment, we use a

brute force approach to enumerate all loop-free energy-

feasible paths for all origin-destination pairs on the extended

transportation graph, as often done in the transportation

literature. While for our small experiment the complexity

of this approach does not pose a computational challenge,

in more realistic models this is an issue that needs to be

properly addressed to allow scalability. We will consider this

issue as part of our future work.

Now, imagine that every EV owner in the society solved

(7) to plan their trips. These users share two infrastructures:

the transportation network, and the power grid. Hence, col-

lectively, EVs give rise to a traffic and load pattern, deter-

mining which roads and grid buses are congested and hence,

will have longer travel times and higher electricity prices.

Through this interaction, individuals affect each other’s cost,

leading to the system-level problem that we are interested in.

IV. SYSTEM LEVEL MODEL

At the system level, the extended transportation graph

helps us study the collective effect of individual drivers on

traffic and energy loads as a network flow problem. Here

virtual arcs are added at all potential origins and FCSs.
At the aggregate level, the system variables, i.e., the flow

rate of vehicles on arcs λa, the price of electricity pv , and

the tolls θa can no longer be considered as variables imposed

upon the system but rather as variables to be jointly optimized

by system operators.
If a single entity was in charge of monitoring the state

of both networks and controlling all EVs’ charge and route

decisions, they can maximize the social welfare by solving

for the optimum route and charge plan for each individual

such the the total transportation congestion and generation

costs that the society incurs is minimized. In doing so, this

entity needs to ensure that the constraints of the transportation

and power systems are not violated. The power system’s

constraints ensure the balance of supply and demand in the

grid and that the physical limits of transmission lines are not

violated. The transportation system constraints ensure that

every driver will be able to finish their travel.

In reality, power and transportation systems are operated

by the IPSO and the ITSO respectively, and their operational

data is not shared. The IPSO is in charge of optimizing

generation costs subject to power system constraints, and the

ITSO is in charge of optimizing transportation costs subject

to transportation system constraints. Also, individuals’ route

and charge decisions can only be affected through prices.

We first study the ITSO and IPSO strategies separately in

Subsections IV-A and IV-B and their optimal pricing. Then

we look at how they interact (and possibly achieve the

socially optimal outcome) in Section V.

A. The ITSO’s Charge and Traffic Assignment Problem

We assume that drivers belong to a finite number of

classes q ∈ Q. Vehicles in the same class share the same

origin and destination. Vehicles could include both EVs as

well as ICEVs. A given class q would contain either EVs

or ICEVs but not both. Drivers of the same class q are

represented by a set of feasible paths Kq , each of which

allows them to to finish their trip on the extended graph. For

EVs, this is equivalent to the set of energy-feasible paths

given in Definition II.2 and can be enumerated offline for

each class. For ICEVs, we can assume these paths simply

include transportation arcs in A that connect the origin and

destination, and do not enter charging stations. Clearly, any

other path selection method that considers more realistic

constraints can also be applied. We leave the study of optimal

clustering mechanisms that assign heterogeneous users to a

finite of number of classes to future work.

Each customer directly affects the flow of the arcs that

constitute his/her path. To model this effect, we define:

• mq as the travel demand rate (flow) of EVs in cluster

q. This demand is taken as deterministic and given;

• fk
q as the rate of cluster q EVs that choose path k ∈ Kq .

We define fq = [fk
q ]k∈Kq

.

Naturally, since every driver has to pick one path, the

following conservation rule holds:

1T fq = mq. (8)

Given the path decisions of all EV drivers, i.e., the fk
q ’s,

the flow of EVs on arc a is given by λa =
∑

q∈Q,k∈Kq
δkaf

k
q ,

where δka is an arc-path incidence indicator (1 if arc a is on

path k and 0 otherwise). This is written in matrix form as:

λ =
∑

q∈Q Aqfq, (9)



6

where λ = [λa]a∈L denotes the vector of network flows and

Aq is a |L| × |Kq| matrix such that [Aq]a,k = δka .

The flow on the virtual arcs of the extended graph leads to

a power load. We denote the charging demand at each node

v ∈ B of the grid as a vector d = [dv]v∈B, given by:

d = Mλ, (10)

where M is a |B| × |L| matrix given by:

[M]v,a =

{

ea, a ∈ Lv, v ∈ N
0, else

(11)

Let s(λ) = [sa(λa)]a∈L. If an ITSO is in charge of

determining the optimal path and charge schedule for each

EV such that the aggregate cost is minimized, it can solve

a modified version of the classic static traffic assignment

problem [39] on the extended graph, which we refer to as

the charge and traffic assignment problem (CTAP):

min
fq,q∈Q

λTs(λ) + pTd (12)

s.t. (⋆)











fq � 0, ∀q ∈ Q,

1T fq = mq, ∀q ∈ Q,

λ =
∑

q∈Q Aqfq, d = Mλ,

where p = [pv]v∈B.

B. The IPSO’s Economic Dispatch Problem

To serve the charging demand of EVs, a set of gener-

ators are located at different nodes of the power network

R = (B,F). For brevity, let us assume that a single merged

generator is located at each node of the grid. Assuming

that the generation at each node is denoted by a vector

g = [gv]v∈B and the baseload (any load that does not serve

EVs) by a vector u = [uv]v∈B, there are three constraints that

define a feasible generation mix g in the power grid. First of

all, gv must be within the capacity range of the generator at

node v, i.e., gmin � g � gmax. Second, the demand/supply

balance requirement of the power grid should be met, i.e.,

1T (d+ u− g) = 0. (13)

Third and last, the transmission line flow constraints of the

grid under the DC approximation [40] translate into:

H(d+ u− g) � c, (14)

where the matrix H is the power transfer distribution matrix

of the grid, explicitly defined in [40], and c = [cf ]f∈F is a

vector containing arc (line) flow limits (in both directions).

In most power grids, one such feasible generation mix g is

picked by an IPSO to serve demand. We assume that at least

one feasible generation mix always exists for every possible

load profile. The IPSO’s objective is to pick the cheapest

feasible generation mix. Let us denote the cost of generating

gv units of energy at node v ∈ B as a strongly convex and

continuous function cv(gv), and the vector of generation costs

as c(g) = [cv(gv)]v∈B. Given a demand d from EVs, the

IPSO solves an economic dispatch problem to decide the

optimal generation dispatch g∗ [41]:

g∗ = argming1
T c(g) (15)

s.t. gmin � g � gmax, 1T (d+ u− g) = 0,

H(d+ u− g) � c.

Note that the optimal traffic and generation schedules

determined through (12) and (15) minimize the total cost

to society. However, they do not necessarily minimize the

cost of each individual entity that is involved, e.g., the EV

drivers or the generators. Hence, one cannot merely ask these

selfish users to stick to the socially optimal schedule. An

economic mechanism is necessary to align selfish behavior

with socially optimal resource consumption behavior. The

use of pricing mechanisms is a way of achieving this goal in

a distributed and incentive-compatible fashion. We highlight

pricing mechanisms that can be used for (12) and (15) next.

C. Pricing Mechanism for Electric Power

To incentivize profit-maximizing generators to produce at

an output level gv , we apply the principle of marginal cost

pricing. The principle states that the electricity price at node

v, i.e., pv , must satisfy:

∂cv(gv)

∂gv
= pv → ∇g1

T c(g) = p. (16)

Let us introduce Lagrange multipliers γ and µ respectively

for the balance and line flow constraints in (15). Writing the

KKT stationarity condition for (15) then leads to:

p = γ1+HTµ, (17)

commonly referred to as Locational Marginal Prices (LMP)

in the power system literature. The reader should note that

this is the same price vector p that is fed into the ITSO

optimization (12) and would affect the charging demand at

different nodes of the grid, i.e., d in (15), which would in

turn affect the price p again. This feedback loop highlights

the coupling between smart power and transportation systems

that we are interested in, further studied in Section V.

D. Tolls to Align Selfish User Behavior with Social Optimum

In the transportation network, if every user solves an ESPP

given in (7) and no tolls are imposed by the ITSO (θa =
0, ∀a ∈ A ∪ C), the aggregate flow would be determined

based on a state of user-equilibrium. This user equilibrium

flow is most likely not equivalent to the social optimal flow in

(12). To mathematically characterize this equilibrium, define

an auxilary modified cost function se(λ) = [sea(λa)]a∈L for

the extended transportation graph’s arcs as:

se(λ) = s(λ) +MTp, (18)

with s(λ) and M given by (5) and (11). Moreover, let

we(λ) = [
∫ λa

x=0
sea(x)dx]a∈L. Then, according to the well-

known Wardrop’s first principle [42], the user equilibrium
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flow would be the solution of the optimization problem:

min
fq

1Twe(λ) (19)

s.t. Constraints (⋆) in (12)

So how can the ITSO get the individual drivers to follow

the socially optimal flow calculated in (12)? We present the

answer in Theorem IV.1.

Theorem IV.1. (Marginal congestion pricing) The aggregate

effect of individual route and charge decisions made by EV

drivers, i.e., the solution of (19), will be equivalent to the

optimal social charge and route decision in (12) iff the ITSO

imposes a toll ϑ = [ϑa]a∈L at each arc of the extended graph

equal to the externality introduced by each user that travels

the arc on the other users’ costs, i.e.,

ϑ = ∇(diag(λ)s(λ))− s(λ). (20)

Proof: Using the definition of the modified cost vector

se(λ), (12) can be written as a classic traffic assignment

problem:

min
fq

λTse(λ) (21)

s.t. Constraints (⋆) in (12)

The result then follows from applying classic results on

Wardrop’s first and second principles [42] to the extended

graph, acknowledging that ∇(diag(λ)b) = b.

Remark IV.2. (Congestion Mark-up at Charging Stations)

The arc toll θa on the virtual charging station entrance arcs

would correspond to a congestion mark-up (plug-in fee) for

all EVs stopping at each station. This captures the user

externality introduced by limited charging station capacity.

The spots at FCSs located at busy streets and highways or

ones that allow a user to take less congested routes are

coveted by many drivers and thus have higher plug-in fees.

V. INTERACTIVE NETWORK OPERATION

For scalability reasons, the IPSO cannot be expected to

consider detailed models of the transportation system demand

flexibility when calculating the prices p. However, we next

show that completely ignoring the interconnection between

the two infrastructures (the status-quo) can have adverse

effects on both infrastructures. This motivates us to introduce

a collaborative pricing scheme using dual decomposition. The

schemes we study for interactions between the IPSO and

ITSO towards network operation are highlighted in Fig. 5.

A. Greedy pricing

Let us look at the scenario that would happen if no

corrective action is taken in regards to how the grid is

operated today and hence, smart transportation and energy

systems are operated separately. In this disjoint model, the

IPSO ignores the fact that the load due to EV charge requests

can move from one grid bus to another in response to posted

Fig. 5. The different network operation schemes studied

prices. Instead, LMPs are designed assuming that charge

events will happen exactly as in the last period (this could

be the previous day, the average of the previous month, etc.).

On the other hand, the ITSO ignores the effect of EV charge

requests on electricity prices, and takes electricity prices as

a given when designing road and FCS congestion tolls.

Claim: Under this greedy pricing scheme, the congestion

and electricity prices θ and p could oscillate indefinitely.

We substantiate this claim through a numerical example in

Section VI. This, along with the loss of welfare experienced

when our infrastructure is operated at a suboptimal state,

motivates us to look into schemes which can allow the ITSO

and IPSO to operate their networks optimally and reliably.

B. Collaborative pricing

Proposition V.1. An efficient market clearing LMP p can

be posted through a ex-ante collaboration between the IPSO

and ITSO following a dual decomposition algorithm.

Proof: A market clearing price is efficient (maximizes

social welfare) if the flow and generation values λ∗ and g∗

are the solution of:

min
fq,g

λTs(λ) + 1T c(g) (22)

s.t.











fq � 0,

1T fq = mq,

λ =
∑

q∈Q Aqfq,











gmin � g � gmax,

1T (Mλ+ u− g) = 0,

H(Mλ+ u− g) � c.

The last two constraints contain both decision variables

and couple the IPSO and ITSO optimization problems. Let

us introduce Lagrange multipliers γ and µ respectively for

the balance and line flow constraints. The partial Lagrangian

of (22) considering only the coupling constraints is:

L(fq|q∈Q,g, γ,µ)=λTs(λ)+1T c(g)+γ1T (Mλ+ u− g)

+ µT (H(Mλ+ u− g)− c) (23)

with µ � 0. Since L(fq|q∈Q,g, γ,µ) is separable, we can

minimize over fq|q∈Q and g in two separate subproblems, al-

lowing us to use standard dual decomposition with projected

subgradient methods to find the optimal price. Consider a

sequence {γ(k)} and {µ(k)} of Lagrange multipliers gen-

erated by the iterative decomposition scheme. Then, at the

k-th iteration, the ITSO solves for the optimal extended graph
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flow λ(k) through a subproblem that has the same structure

as (12), with electricity prices at iteration k, p(k), set as:

p(k) = γ(k)1+HTµ(k). (24)

On the other hand, the subproblem solved by the IPSO is:

g(k) = argming1
T c(g)− (γ(k)1+HTµ(k))Tg (25)

s.t. gmin � g � gmax.

The IPSO then updates the balance and congestion compo-

nents of the LMP, i.e., γ(k) and µ(k), through:

(

γ(k+1)

µ(k+1)

)

=

(

γ(k) + αk(1
T (Mλ(k) + u− g(k)))

{µ(k) + αk(H(Mλ(k) + u− g(k))− c)}+

)

(26)

It is shown that with a small enough step size, the dual

decomposition method converges to the solution of (22)

[43]. Hence, if the electricity price p is γ⋆1 + HTµ⋆ =
limk→∞ γ(k)1+HTµ(k), the market clears and the generator

outputs and system flow will be equal to g∗ and λ∗.

C. Optimal reserve capacity for trial-and-error pricing

In theory, the above algorithm can eliminate the need

for the existence of an ex-ante2 ITSO collaboration for

calculating electricity prices. Instead, imagine that the IPSO

can actually post electricity prices according to (26) and

gradually find the optimal market clearing LMP by observing

the charging demand of the actual transportation system3.

When dealing with unknown demand functions in commodity

pricing, this is referred to as the trial-and-error approach,

see, e.g., [44], for prior use of such approaches in toll design.

Implementing this approach has two requirements:

1) The IPSO should be willing to move away from the

greedy pricing scheme in order to eventually maximize

societal welfare (even though the extra welfare generated

might not be easily quantifiable and the operating point might

not correspond to minimum generation costs);

2) More importantly, primal feasibility is most likely

violated when using Lagrangian relaxation to handle coupling

constraints in (22). This means that when posting prices

according to (26), the IPSO should expect the balance and

flow constraints to be violated in order for the algorithm to

converge, and plan accordingly. In power grids, any unpre-

dictable violation of reliable system operation is referred to

as a contingency (a threat to the security of the system) and

is handled through generation reserves.

Definition V.2. (Reserves) In power grids, a generation re-

serve capacity of r = [rv]v∈B allows the IPSO to compensate

for any demand-supply imbalances after market clearing as

long as yv ∈ [−rv, rv] , or equivalently −r � y � r. This is

2The term ex-ante refers to actions that are adjusted as a result of
forecasting user behavior and not actual observations, while ex-post refers
to actions that are based on actual observations rather than forecasts.

3Note that this is only possible if the time-scale at which the network
flow λ reaches its new equilibrium in response to new posted prices p and
tolls θ is much smaller that the time-scale at which electricity costs or travel
demands change.

typically done by adjusting the output of an already online

generator either upward or downward. Given a reserve

capacity of r, the balance equation will become:

1T (d+ u− g − y) = 0, − r � y � r (27)

where y can be chosen at the IPSO’s discretion after observ-

ing the demand d. The reserve capacity r should be procured

in advance.

Note that the dispatched reserve generation y affects the

line flows and hence the flow constraint becomes:

H(d+ u− g − y) � c. (28)

Here we will use bounds on primal infeasibility to deter-

mine the reserve capacity r that needs to be procured by the

IPSO in this type of ex-post LMP adjustment. For simplicity,

we consider a constant step size rule such that αk = α for

all k. Note that in this scheme, after each price adjustment

iteration p(k), the approximate primal solutions, which are

the last iterate λ(k) and g(k), are actually implemented.

Assume that the IPSO knows that during the k-th iteration,
(

|1T (d(k) + u− g(k))|
H(d(k) + u− g(k))− c

)

�
(

ak
wk

)

, (29)

where d(k) = Mλ(k). For dual first order algorithms such

as dual gradient and dual fast gradient methods (any of

which can be employed by the IPSO for price update), such

bounds were recently provided by [45]. For example, for dual

gradient methods, one possible bound is given by:

(

ak
wk

)

=

3

∥

∥

∥

∥

(

γ(0)

µ(0)

)

−
(

γ⋆

µ⋆

)
∥

∥

∥

∥

2

α
√
k

1, (30)

where α = αk ≤ 1/Ld, ∀k and Ld is the Lipschitz constant

for the dual problem of (22). We now need to show that the

bound in (30) is well-defined.

Lemma V.3. The dual problem of (22) has finite Lipschitz

constant and bounded optimal dual variables, i.e., Ld < ∞
and ‖(γ⋆,µ⋆)‖ < ∞.

Proof: The finiteness of Ld is a consequence of the

strong convexity of the objective function4 of (22) [45].

Furthermore, we see that (22) is a convex problem with linear

inequality constraints and its optimal objective value is finite

(as we have assumed that at least one feasible generation

mix exists for every possible load profile). Consequently,

strong duality holds for (22) and there exists a set of bounded

optimal dual variables.

To calculate (30), the IPSO has to access to the set of

potentially optimal energy and congestion prices γ and µ.

Without access to travel patterns, an estimate of the upper

bound to ‖(γ⋆,µ⋆)‖2 can be evaluated using many methods.

For example, we can calculate these bounds by a) performing

4Recall that sa(λa) is non-negative, convex and increasing (cf. (1)),
therefore the product λasa(λa) is strongly convex.
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Monte-Carlo simulations by setting d to different values be-

tween its upper and lower bounds given the limited capacity

of charging stations (charging stations operating anywhere

until full capacity) [46]; b) studying critical load levels as

suggested in [47]; c) solving a Mathematical Program with

Equilibrium Constraints (MPEC) [48]. We chose to solve an

MPEC to find this bound; see Appendix A.
Given (29), the IPSO needs to ensure that (27) and (28)

hold by appropriately choosing a reserve capacity rk to be

procured for each future k to ensure system security.

Proposition V.4. (Security-Constrained Ex-post Price Ad-

justments) Given unit reserve capacity prices ξk at each node

of the power grid for iteration k, the optimal reserve capacity

r⋆k to be procured at different grid buses for iteration k of

the price adjustment algorithm is given by:

r⋆k = argmin
rk

ξTk rk (31)

s.t. max
ηj ,∀j,θi,∀i

−θi11
Tηj + (Hηj − c)Tθi

2 − rTk (θ
i
3 + θi

4) ≤ 0,

where the constraint is a piecewise-linear function of rk, and

the numbers (θi,ηj), i = 1, . . . , I, j = 1, . . . , J are given.

Proof: The optimal reserve capacity rk is equal to the

cheapest possible nodal reserve capacity combination that can

restore the network balance and flow constraints under any

possible amount of feasibility violation specified in (29), i.e.,

we have the following robust optimization problem:

r∗k = argminrk
ξTk rk (32)

s.t.∀ η ∈ N , ∃y : |y| � rk :

{

1T (η − y) = 0

H(η − y) � c

where η = d+ u− g and

N = {η : |1Tη| ≤ ak, Hη − c � wk,ηmin � η � ηmax},
where ηmin and ηmax denotes the minimum/maximum pos-

sible η. Problem (32) is equivalent to:

r∗k = argminrkξ
T
k rk (33)

s.t. ∀ η ∈ N : Q(η, rk) is feasible

where

Q(η, rk) =min
y

0 (34)

s.t. 1Ty = 1Tη, −Hy � c−Hη

− rk � y � rk

If Q(η, rk) is feasible, its dual problem Q∗(η, rk) is bounded

and the dual optimum will be 0. Thus, we can write (33) as:

r∗k = argminrkξ
T
k rk (35)

s.t. ∀ η ∈ N : max
θ∈T

F (η,θ, rk) = 0,

where

T = {θ = (θ1,θ2,θ3,θ4)|θ2,θ3,θ4 � 0, (36)

θ11−HTθ2 − θ3 + θ4 = 0},
F (η,θ, rk) =− θ11

Tη + (Hη − c)Tθ2 − rTk (θ3 + θ4).

Since 0 ∈ T , this is equivalent to:

r∗k = argminrk
ξTk rk (37)

s.t. max
η∈N ,θ∈T

F (η,θ, rk) ≤ 0.

Note that F (η,θ, rk) is neither convex nor concave in η and

θ (bilinear). The constraint set η ∈ N ,θ ∈ T is a polyhedron

and hence, the optimal solution of maxη∈N ,θ∈T F (η,θ, rk)
is one of the extreme points (θi,ηj), i = 1, . . . , I, j =
1, . . . , J of the polyhedrons T and N . This shows that the

constraint is a convex piecewise linear function in rk.

Remark V.5. In general, we have no knowledge of

the extreme points of N and T , and computing

maxη∈N ,θ∈T F (η,θ, rk) is non-trivial. Hence, proper ap-

proximation algorithms need to be studied for solving (31).

However, this is out of the scope of this paper. See [49] for

the treatment of a somewhat similar problem, where the use

of an outer approximation algorithm is proposed. Instead,

in our numerical results, we resort to a sample/scenario-

approximation method [50, Chapter 2.6]. For example, we

replace the set T × N by a finite set {(θi,ηi), i =
1, ..., Ns} ⊆ T ×N . In this case, (37) will be turned into a

convex program with a finite number of linear inequalities.

VI. NUMERICAL EXAMPLES

This section investigates the need for the joint EV man-

agement scheme we propose through numerical analysis of

system performance. We focus on the system level optimiza-

tion. We assume that charging stations are publicly owned

infrastructure for the sake of simplicity. This means that we

assume electricity is sold at wholesale prices to EV drivers5.

The transportation network G is shown in Fig. 6. For each

arc (road section), we define the latency function as:

τa(λa) = Ta + λa/10
4, (38)

where Ta is the minimum time required to travel through arc

a. We set γ = $10−3/minute for the cost spent en route.

Note that this might seem like a rather low number but it

would be scaled up by a factor of 10 if electricity is traded

at retail prices instead of wholesale. The power network R
is modeled using the line and generation cost parameters of

the IEEE 9-bus test case, except that several more buses are

modeled as load buses where EVs can charge; also see Fig. 6.

The intermediate nodes, i.e., Winters, Fairfield, Mountain

View and Fremont, are equipped with an FCS. Each FCS

is capable of supplying 1 kWh to an EV every 5 minutes,

and the available charging options are {0, 1, 2, 3} kWh (the

same charging options hold for the origin). It is assumed that

each EV consumes 1 kWh of energy to travel 25 miles, and

5In reality, EV drivers may purchase flat rate charging services from for-
profit entities that trade with the wholesale market and can use appropriate
economic incentives (similar to the tolls discussed in this paper) and
recommendation systems to guide the customers towards optimal stations.
This is beyond the scope of this work.
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Fig. 6. (Left) The transportation network G for the trip from Davis to San
Jose. The value next to each arc denotes the minimum travel time Ta (in
minutes); (Right) The power network R. The base load uv at each node is
denoted in italic. Each of the intermediate node is equipped with an FCS.

the battery capacity is 6 kWh for all EVs. There are two O-

D pairs considered in the network. Specifically, 50% of the

drivers are traveling from Davis, CA to Mountain View, CA;

and 50% of the drivers are traveling from Davis to San Jose,

CA. At the origin, i.e., Davis, the EVs have an initial charge

of 4 kWh. As such, there are |Q| = 2 classes of users.

In the first numerical example, we study how the total

number of EVs can affect the IPSO/ITSO’s decision. We

assume full IPSO/ITSO cooperation such that the social

optimal problem (22) can be exactly solved. As seen in Fig. 7,

the traffic pattern changes as we gradually increase the total

number of EVs per epoch. For instance, more EVs are routed

through Winters, instead of going to Fairfield from Davis

directly; similar observations are also made for the Fairfield-

Mountain View-San Jose path. This is due to the fact that the

power/transportation network has become more congested,

leading to a different traffic pattern.

Our next step is to study the scenario with ex-ante

IPSO/ITSO cooperation. We compare the myopic pricing

scheme to the dual decomposition approach. The first task

is to investigate the behavior of the system under the my-

opic pricing scheme. The total number of EVs is fixed at

2.26×104 per epoch. In this case, we initialize the electricity

price at each site at $50 per MWh to solve (12). The traffic

pattern against iteration number of this disjoint optimization

is shown in Table II. We observe that the system oscillates

between two traffic patterns, one having the lower average

traveling time and the other one with a lower electricity cost.

As described in Section V-A, this oscillation behavior is due

to the lack of cooperation between the IPSO and ITSO.

We see that at iteration i = 2n, the electricity prices are

the same across the charging stations, therefore the ITSO

Fig. 7. Comparing the traffic pattern against the total number of EVs
per epoch. (Top) Percentage of electricity consumed at each site; (Bottom)
Percentage of traffic leaving from each site.

TABLE II
OSCILLATION OF TRAFFIC PATTERNS WITH THE GREEDY METHOD.

SO DO (i = 2n) DO (i = 2n+ 1)

Davis 67.80 MWh 67.80 MWh 67.80 MWh
@$57.38/MWh @$57.38/MWh @$58.04/MWh

Winters 12.56 MWh 7.227 MWh 15.87 MWh

@$57.38/MWh @$57.38/MWh @$54.50/MWh
Fairfield 49.88 MWh 57.32 MWh 43.52 MWh

@$57.38/MWh @$57.38/MWh @$66.59/MWh
Fremont 22.56 MWh 20.83 MWh 25.23 MWh

@$57.38/MWh @$57.38/MWh @$65.09/MWh
Mtn. View 5.392 MWh 5.031 MWh 5,781 MWh

@$57.38/MWh @$57.38/MWh @$61.73/MWh

Fr. Winters 7,533 7,534 7,936

Fr. Fremont 8,475 8,409 9,375

Fr. Mtn View 2,825 2,825 3,125

Travel time 188.36 min. 188.36 min. 188.39 min.
Objective $30,332.55 $30,364.61 $30,333.06

assigns the traffic by simply minimizing the travel time.

This decision, however, leads to an uneven distribution in

energy consumption across the power network R. At iteration

i = 2n+1, the IPSO lowers the electricity price at Winters;

and increases the price at Fairfield, Fremont and Mountain

View. This motivates the ITSO to re-assign the traffic pattern.

An interesting point to note is that the disjoint optimization

may even lead to an infeasible IPSO decision when the total

number of EVs considered is large. This is an extreme case of

the example considered in Table I. In this case, the inability of

the greedy pricing method to correctly model the response of

the EV population to posted prices would result in an unsafe

increase of load at locations where the grid is congested and

hence the load needs to be shed to keep transmission lines

as well as transformers safe.

The above example demonstrates that applying myopic

pricing may result in an unstable system. Next, we inves-

tigate the performance of the dual decomposition algorithm

(cf. Proposition V.1), which describes a systematic method



11

Iteration number
10

0
10

1
10

2
10

3

P
ri
m

a
l 
in

fe
a
s
ib

ili
ty

10
-3

10
-2

10
-1

10
0

10
1

10
2

Upper bound (30)
Primal infeasibility

Iteration number
0 200 400 600 800 1000

O
b
je

c
ti
v
e
 v

a
lu

e

×10
4

2.8

3

3.2

3.4

3.6

3.8

4

Dual obj.+Reserve
Dual objective
Social Optimal

Fig. 8. (Left) Infeasibility against the iteration number. Notice that primal
infeasibility refers to the ℓ2-norm ‖(ak,wk)‖2. (Right) Objective value of
dual decomposition against the iteration number.

for cooperation between the IPSO and ITSO. Here, the total

number of EVs is fixed at 2.5 × 104 per epoch. The dual

decomposition is initialized by setting γ(0) = 57.5 and

µ0 = 0. As the dual decomposition algorithm is known to

converge to the social optimum, we are interested in studying

its convergence speed with the violation in infeasibility. We

set the step size as αk = 20 for all k and apply the

algorithm on the same scenario as before. For the constant

‖(γ(0),µ(0)) − (γ⋆,µ⋆)‖2 in (30), we upper bound it by

solving an MPEC using an approach similar to [48].

We compare both infeasibility measures against the iter-

ation number in Fig. 8 (Left). We can see that the dual

decomposition algorithm converges in approximately 100
iterations, and it returns a solution that is approximately

feasible. We observe a O(1/
√
k) decaying trend with the

actual infeasibility.

Lastly, we study the effects of ex-post IPSO price adjust-

ment based on the estimated (wk, ak) in (30). The reserve

procurement problem (31) is approximated using a sample-

approximation method, where the candidate η points for N
are selected randomly within the bound [ηmin,ηmax]. We

assume that the reserve capacity is purchased at a price of

$55.00 per MWh at all sites. Here, an interesting comparison

is the overall cost needed to purchase such reserve capacity

and the cost to operate the system under (the estimated)

infeasibility, i.e., the dual objective value. The overall cost

is shown in Fig. 8 (Right) as ‘Dual obj.+Reserve Cost’.

We observe that such cost is always higher than the social

optimum cost due to a possible mismatch between the

electricity cost per unit in purchasing the reserve capacity;

yet the difference decreases as the iteration number grows.

VII. CONCLUSIONS AND FUTURE WORK

The implications of large-scale integration of EVs on

power and transportation networks, leading to an inter-

dependency between the two infrastructures, were studied

under a static setting. We saw that a collaboration between

the IPSO and the ITSO can lead EVs towards a socially

optimal traffic pattern and energy footprint, and highlighted

the adverse effects of ignoring the interconnection between

the two infrastructures. We further analyzed the reserve

capacity requirements of operating the grid without a direct

collaboration between the IPSO and ITSO. These results

were obtained under an ideal static setting and in the absence

of retail markets. Important issues remain to be studied in

future work. For example, EV charging facilities are expected

to be privately-owned, and hence pricing decisions would

be left to profit-maximizing entities competing against each

other to attract EV drivers to their station. This would affect

the IPSO’s ability to impose taxes on many arcs in the

extended transportation graph and would lower the IPSO’s

ability to maximize social welfare. The impact of hourly

dynamics of electricity prices and travel patterns is another

important aspect that requires further analysis. In this case,

non-convexities of the dynamic traffic assignment problem

would extend to the IPSO’s price design problem.

APPENDIX A

MPEC FOR FINDING (γ⋆,µ⋆) IN (30)

To compute the bound (30), we need an upper bound on

‖(γ∗,µ∗)‖2. To calculate such a bound, we use an MPEC

to enumerate all the possible EV demand valus and their

corresponding optimal dual variables (γ∗,µ∗):

max
d,γ,µ,zL,zU

‖(γ,µ)‖2
s.t. 0 ≤ zL ≤ δ1, 0 ≤ zU ≤ δ1,

dmin ≤ d ≤ dmax,

ming 1T c(g)
s.t. zU : g ≤ gmax, zL : −g ≤ −gmin

γ : 1T (d+ u− g) = 0
µ : H(d+ u− g) ≤ m,

where dmin,dmax are lower/upper bounds to the electricity

demand d requested by the EVs and δ > 0 is a regularization

parameter for the power generation constraints. As seen in

(17), the lower-level minimization problem finds the optimal

dispatch g and hence the optimal dual variables (γ,µ) for

each of the possible demand profiles dmin ≤ d ≤ dmax.
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