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Optimal Process Design under Uncertainty

A rigorous mathematical formulation is presented for the problem of optimal
design under uncertainty, This formulation involves a nonlinear infinite pro-
gramming problem in which an optimization is performed on the set of design and
control variables, such that the inequality constraints of the chemical plant are
satisfied for every parameter value that belongs to a specified polyhedral region.
To circumvent the problem of infinite dimensionality in the constraints, an

K. P. HALEMANE and
- . E. GROSSMANN

Depariment of Chemical Engineering’
Carnegle-Meilon University
Pittsburgh, PA 15213

equivalence for the feasibility condition is established which leads to a max-min-
max constraint. It is shown that if the inequalities are convex, only the vertices in
the polyhedron need to be considered to satisfy this constraint. Based on this fea-
ture, an algorithm is proposed which uses only a small subset of the vertices in an
iterative multiperiod design formulation. Examples are presented to illustrate the

application to flexible design problems.

Reprinted from AIChE JOURNAL, May 1983

SCOPE.

In the optimal design of chemical processes, it is very often
the case that considerable uncertainty exists in the value of some
of the parameters. For instance, values of transfer coefficients,
physical properties or cost data may not be well established at
the design stage. Furthermore, one can expect that during the
operation of the plant variations will occur in flowrates, com-
positions, pressures and temperatures of the feedstreams of the
process. Therefore, it is clearly very important to consider at the
design stage the effect that uncertain parameters can have on
both the optimality and feasibility of operation of the plant.

To account for the uncertainties in the values of these pa-
rameters, the procedure normally used in practice is to assume
nominal values of the parameters for the optimal design, and
then apply empirical overdesign factors to the resulting sizes
of the units. Since this procedure lacks a firm rational basis, a
number of different methods have been suggested to account
for the uncertainties in a more systematic manner, and a de-
tailed review of these methods can be found in Halemane (1982).

The proposed methods differ mainly in the basic design strat-
egies that are postulated, since in principle the problem of de-
sign under uncertainty is not well defined. However, it should
be pointed out that the major objectives that one would like to
accomplish in this problem are to ensure optimality and feasi-
bility of operation for a given range of parameter values.

It is the purpose of this paper to present for the problem of
optimal design under uncertainty, a new mathematical for-
mulation that can ensure rigorously feasibility of operation of
the plant for a bounded range of parameter values specified by
the designer. The proposed formulation which involves an in-
finite number of constraints and variables is very general and
yields fundamental insight and understanding on how to in-
troduce flexibility in optimal design. A solution algorithm is
proposed to solve this problem for the case when the constraint
functions are convex, and its application is presented through
two design problems.

CONCLUSIONS AND SIGNIFICANCE

This paper has presented a rigorous formulation for the
problem of design under uncertainty. As has been shown, the
crucial aspect in this problem is to guarantee the existence of
feasible regions of operation for the specified range of param-
eter values. The max-min-max constraint provides the required
mathematical framework to handle this aspect. In addition, this
formulation has yielded the following interesting insights and
results:

1. For a given design and fixed parameter value, the max-
min-max problem provides a measure of the size of the feasible
region for operation.

2. The critical parameter value corresponds to the one for

which the feasible region of operation is the smallest.

3. In general there can be more than a single critical point
that must be considered for design to ensure feasible opera-
tion.

4. H the constraints are convex, the critical points must lie
at the vertices of the polyhedral region of parameters.

Based on these results an iterative multiperiod algorithm has
been proposed for solving the problem of design under uncer-
tainty. This algorithm leads to an efficient solution procedure
as has been shown in the two example problems. Furthermore,
the algorithm provides a rational procedure for designing
flexible chemical plants.

INTRODUCTION

In the design of chemical plants, there are usually a number of
parameters for which there is considerable uncertainty in their

actual values. For instance, these parameters can correspond to |

internal process parameters such as transfer coefficients, reaction
constants, efficiencies or physical properties. In addition, the un-
certain parameters can also be external to the process such as

Correspondence concerning this paper should be saddresmsed to 1 E Grossmann K P Halemane
u presently with Westinghoase R4 D Center, Pittsburgh
0001 154]-83-5321-0425-82 00 € The Amencan Institute of Chemical Engineers, 19683

AIChE Journa! (Vol. 29, No. 3)

specifications in the feedstreams, utility streams, environmental
conditions or economic cost data.

To account systematically for the uncertainties in the parameter
values, Grossmann and Sargent (1978) have proposed a design
strategy in which the basic objective is to design a flexible plant as
follows. First, a design should be selected for which it can be en-
sured that the design specifications will be satisfied for a bounded
region of the parameters. This should be accomplished by suitable
manipulation of the control variables for the different realizations
of the parameter values. Secondly, the design should be selected
to optimize the expected value of the investment and operating cost
taken over the specified range of parameter values. The basic idea

May, 1983 Page 425



in this strategy is that advantage should be taken from the fact that
control variables can be adjusted to satisfy the design specifications
during the operation of the plant, as it is only the design of the plant
itself that will remain fixed. The strategy clearly reflects one of the
main concerns of design engineers, which is to ensure feasible
operation of the plant in the region of parameters that has been
specified. In addition, the important point is that this is done while
simultaneously optimizing the design of the chemical plant.
Therefore, this strategy offers the potential of avoiding empirical
overdesign for which neither optimality nor feasibility of operation
can be guaranteed.

It is the objective of this paper to present for the above cited
strategy a new mathematical formulation in which feasibility of
operation can be ensured rigorously. This formulation corresponds
to a two-stage nonlinear infinite program (NLIP), for which an
equivalence has been established through a max-min-max con-
straint for satisfying the infinite number of inequality constraints.
The proposed formulation is more general than the one presented
by Grossmann and Sargent (1978) which can fail in some cases to
ensure feasibility as shown by Halemane (1982). The paper also
Presents a solution algorithm for the NLIP problem when the
constraint functions are convex, and its application is illustrated
with two example problems.

MATHEMATICAL FORMULATION

The variables in the design problem of a chemical plant with
uncertainty in parameter values can be partitioned into four
categories. The vector d of design variables is associated with the
sizing of the units. These remain fixed once the design is imple-
mented, and do not vary with the changes in the operation of the
plant. The vector z denotes the control variables that can be ma-
nipulated in the operation so as to meet the specifications and also
to minimize the operating cost. The vector x corresponds to the
state variables which are determined by solving the set of equations
representing the process system. Finally, @ is the vector of inde-
pendent parameters in the design whose values are subject to un-
certainty. Assuming that bounded values of these parameters are
specified, the region T that is defined to contain all possible values
of these parameters, is given by

T =166t <6 <6V} )

where 6L and 6U represent given lower and upper bounds on 6.

To derive the mathematical formulation, it is convenient to
consider the design strategy as being composed of two stages: an
operating stage and a design stage.

Operating Stage

Assuming that a given design d has been selected, it is anticipated
that the plant will be operated optimally while satisfying the
constraints of the process for all possible realizations of the pa-
rameters in T. Hence, the objective in this stage is to select for every
realization 6 € T, a control z which is optimal and feasible.

Clearly, for the given design d and for any value of 8, the state
variables can be expressed as an implicit function of the control z
from the system of equations of the process,

hidz,x,0) =0 = x = x(d z.,6) 2)

Since the control variable z should be selected to satisfy the speci-
fications given by the vector of inequality constraints,

gld.z,1,0) = g{d,z,x(d,2,0),6) = f(d,z,0) <0 @) -

the optimal operation of the plant that minimizes the cost will be
given by the nonlinear program (NLP)

min C(d z,6)

st f(dz,0)<0 .

The solution to this problem defines the cost function Cc*(d.0)
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which corresponds to the optimal operation of the plant for fixed
values of d,6. Moreover, if the optimization is performed for every
realization § € T, the average cost of operation will be given by
the expected value of Esc1 {C*(d,8)).

Detign Stage .

In order to achieve the basic objective of feasibility of operation .
in the region of parameters T, the design variable d must be chosen
to ensure that for every value of 8 the control variable z in the
operating stage can be selected to satisfy the constraints in Eq. 4.
Note that an improper selection of d can lead to infeasible operation
for some realizations of 6 in which case no selection of the control
z will exist to satisfy the inequality contraints in Eq. 4. Further-
more, in order to achieve the optimal design, the design variable
d must be selected to minimize the expected value of the optimal
cost function C*(d,6) over the entire region T.

This strategy can then be expressed mathematically as

. minimize E {C*(d,0)}
’ d T

st. VO € T{3z(V] € JIfy(d.2.0) < O} ©)

where ] ={1,2,... m] s the index set for the components of vector
{. The constraint in Eq. 5 is denoted as the feasibility constraint,
because the existence of a feasible region of operation in the region
T can be ensured if and only if this constraint is satisfied. In fact,
this logical constraint states that for every point § &€ T, in the space
of parameters, there must exist at least one value for the vector z
of control variables, that gives rise to nonpositive values for all the
individual constraint functions. Qualitatively, this means that ir-
respective of the actual values taken by the bounded parameters,
the plant design d has the flexibility of operating to satisfy the
specifications.

Since the objective function in Eq. 5 s itself determined through
the NLP in Eq. 4, the problem of optimal design under uncertainty
can be formulated in its final form as a two-stage programming
problem:

minimize E {min C(d,z,ﬂ)lf(d,z,ﬂ)so}
d T\ =

st. V8 € T{32(Vj E Jif,(d,2.0) < 0))

Note that since there are infinite numbers of possible realizations
for the values of the parameters 8, and since the optimal operation
of the plant is implicitly dependent on 8, the overall number of
decision variables involved in problem (Eq. 6) is infinite. This is
because for every value of 6 an optimal value of the control vari-
ables z is being chosen. Also, note that the feasibility constraint
represents an infinite set of constraints since the inequalities in Eq.
4 are defined for the infinite set of values 8§ € T. Therefore,
problem (Eq. 6) corresponds to a two-stage nonlinear infinite
program. It should be noted that Malik and Hughes (1979) have
also presented a similar two-stage programming formulation_ but
without including explicitly the feasibility constraint.

(6)

SIMPLIFICATION OF THE NLIP

The nonlinear infinite program in Eq. 6 that represents the
mathematical formulation of the design problem under uncer-
tainty, poses great computational difficulties for numerical solution,
and in fact has a more complex structure than the semi-infinite
programs treated in the literature (Hettich, 1979). A first step in
simplification to make the problem more tractable is to perform
a discretization over the parameter space in order to approximate
the expected cost by a weighted cost function (Grossmann and
Sargent, 1978), which reduces Eq. 6 to

minimize i w'C(d z',8)

dalz? .. gn =]
st fldz'0)<0, i=12 . .n (7)
Vo € T{3z2(vj e JYid.z.8) < 0)
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where the weights w! correspond to discrete probabilities for the
selected finite number of parameter points 8 € T,1=12, .. .n.
With this simplification the number of decision variables in Eq.
7 is finite, since optimization is performed over the vector d of
design variables and the finite number of vectorsz1,22, ... 2" of
control variables. The control variables z! are selected to satisfy the
corresponding constraints f(d,z!,8) < 0 to result in an optimal
feasible operation at the point 8¢ of the parameter space. Note that
despite this discretization, the feasibility constraint is still imposed
to restrict the choice on the design d to guarantee feasible operation
for every point § & T. Thus, the formulation in Eq. 7 is a nonlinear
semiinfinite program (NLSIP), with a finite number of decision
variables and infinite number of constraints.

It is interesting to note that if the feasibility constraint is excluded
in Eq. 7, the resulting structure of the problem is equivalent to that
of a deterministic multiperiod problem, where the plant operates
in each period with the parameter value 8%, and with the length
of period proportional to w'. As discussed by Grossmann and
Halemane (1982), this class of multiperiod design problems can
be solved very efficiently with the projection-restriction strategy
that they have proposed. The question that immediately arises then
is whether a finite number of points in §-space can be selected so
that by ensuring feasibility of the design for those points, one can
guarantee that the feasibility constraint in Eq. 7 will be satisfied.
If such a choice of finite number of parameters values were pos-
sible, one could clearly solve problem (Eq. 7) as an equivalent
deterministic multiperiod design problem. To answer this question,
it is essential to first reformulate the feasibility constraint in Eq.
7 in a more amenable form for analysis.

REFORMULATION OF FEASIBILITY CONSTRAINT

The logical constraint
Vo € T{3z(Vj € JIf,(d,2,6) < O]} (8)

which ensures overall feasibility of the design is the major source
of computational difficulty in numerical solution of the design
problem represented by the NLSIP in Eq. 7. The reason is that it
involves as infinite number of inequality constraints for which
feasibility has to be tested. The following theorem provides a
possibility for circumventing this problem.
Theorem 1

The logical constraint (Eq. 8) and the max-min-max con-
straint,

max min max f;(d,z,0) £0 9)
€T 3z j&
are exactly equivalent.

Proof

The theorem can be proved in two parts, namely, (8) = (9) and
(9) == (8), as given by Polak and Sangiovanni-Vincent.lli (1979)
and Halemane and Grossman (1981). An alternative proof which
is simpler and more direct is given here. By the definition of the
terms and relationships used in Eqs. 8 and 9, the following equiv-
alences apply by considering global max and min operators:

vl € T(32( € Jif;(dz,6) < 0]}
== V0 € T{3z(max f;(d,z,0) < 0))

o~ ¥ 8§ € Timin max f,(d,z,6) < 0}
&y

e mex min max f,(d,z,0) <0 ‘
6T 2 Je)
From these steps, the equivalence of the first and last relations is
established, which is exactly the one stated in the theorem,
ED.

¢ With this alternative and equivalent formulation of the feasi-
bility constraint the optimal design problem in Eq. 7 can be re-
written as
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minimize 3, w'C(d,2,8)
dals?, ... o =1 '

st f(dz'6)<0, $=12,...n

max min max f;(d,z,6) £ 0 (10)
€T 3 4€)

To describe qualitatively the significance of the max-min-max
constraint in Eq. 10, note that the inequality constraintsare satisfied
for nonpositive values of the functions f;(d,z,0), § € J. Hence, the
“worst constraint” function is what is most likely to be violated, and
is denoted by the index § which corresponds to the maximum
valued function f;(d,z,0) for given d,z,0. The control Z that min-
imizes this function f;(d z,6) for any given d,6, corresponds to the
“most feasible” operation for the worst constraint. Then, the critical
parameter value §¢ is that for which the worst constraint fj is
maximized while having the control Z, for a given design d. .
Therefore, if for a design d, a control variable Z can be chosen to
satis{y the constraints at the critical parameter value 8, then the
design d can be guaranteed to have feasible operation at every §
€T
In the formulation given by Eq. 10 the max-min-max constraint
provides the possibility of circumventing the problem of simulta-
neously handling the infinite number of inequality constraints. The
reason is that the max-min-max constraint determines a point §¢
for which the inequalities are most likely to be violated, while re-
quiring that these inequalities be satisfied at that point. However,
this constraint involves solving the subproblem,

max min max f;(d,z,0) (11)

€T 2z €]
which in general is very difficult to solve (Polak and Sangio-
vanni-Vincentelli, 1979). Furthermore, it is not clear under which
circumstances the solution of this subproblem is unique since in
Theorem 1, global max and min operators had to be assumed for
the proof. Therefore, it is desirable as a next step to examine the
properties and interpretation of the max-min-max constraint to
gain a better insight and understanding from it.

INTERPRETATION AND PROPERTIES OF MAX-MIN-MAX
CONSTRAINT

The max-min-max constraint can be written as a constrained
max-min problem, by introducing an extra variable u:

max min {ulu 2 f;(d,2,0),vj € J} S 0 (12)
€T 3

It then follows that for a given point § & T the value ¥(d,6) de-
termined by ‘

¥(d.0) = min {ulu 2 f,(d.2.0), Vi € ]} (13)

indicates the extent of (in)feasibilty of operation of the design d
for that single point 6. A negative value of ¥/(d 0) indicates a finite
region of feasibility and a positive value indicates infeasibility.
Thus, the value y/(d ) can be interpreted to be a good measure of
(in)feasibility of operation at the chosen point # & T. Since the
constraint in Eq. 12 Jeads to a point ¢ which maximizes y{d f),6¢
corresponds to critical point in the parameter space for which the
design d has either the smallest degree of feasibility (if y(d,8¢) <
0), or the largest degree of infeasibility (if Y(d,6¢) > 0).

To illustrate these ideas consider the following set of two con-
straints which involve one control variable z and one parameter

8.
fi=—z+ 0 <0
fo=z2-20+2-d=<0 (14)
, 1<fs2
Figure 1a shows a plot of the feasible region on = ~ 6 space, for a

design corresponding to d = 0.5. As can be observed in the figure,
the size of the feasible region increases as 6 increases, with 8 = 1
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Figure 1. Feasible region and \/(d,0) for constratnts (Eg. 14) with d = 0.5.

being infeasible, § = 1.5 being feasible at one point of z, and § =
2 having a finite region of feasibility. y(d,f) is determined by
solving ford = 0.5, 1 £ 8 < 2, the problem

¥(d,0) = minu
st u2fi=—z+0
u2fo=2—-20+2~-d (15)

and its results are plotted in Figure 1b. Note thaty =0for§ =15
which has a single point of feasibility, Figure la. Also, negative
values o { corresponid to finite regions of feasibility as for instance
at 8 = 2, and positive values of y are associated with infeasibility

(A
T

N Perm e cavcma

— -

(a) Feasible region

asin @ = 1, which is the critical point where the maximum of  is
attained. Note also that { decreases monotonically with increasing
B, since the feasible region gets expanded. From these observations,
it is clear that —y can be interpreted as a measure of the size of the
feasible region for operability. This region corresponds to the
projection of the actual overall feasible region in thed —z — 6
space onto the z-space for fixed values of d and 6.

To study the effect of changes in d, the region of feasibility of
Eq. 14 is shown in Figure 2a for d = 1, and the corresponding
values of  are shown in Figure 2b. By changing d from 0.5 to0 1.0,
overall feasibility has been achieved for all values of 6 in the
specified range 1 < 6 < 2. Again, it is clear from Figures 2a that
6 = 1 is a critical point, since it corresponds to the smallest size of

y(d,8)

Y
)

Ll

-0.25

T

-0.%

(b) y(d,8) versus 8

Figure 2. Feasible region and J(d,0) for constraints (Eq. 14) wihh d = 1.
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Figure 3. Feasibie region and Y(d,0) for constraints (Eq. 18) with d = 1.

feasible region in the z-space for the specified range 1 < 0 < 2.
Thus, the design d = 1, which is feasible for the critical point § =
1, is found to be also feasible for the entire range 1 <6 < 2.

The example above would suggest that feasible operation in the
design can be guaranteed by considering one single critical f-point.
In fact, this may not be true in the general case, as is easily observed
if a third constraint is considered together with the two others in
Eq. 14 to give:

fi=—z+ 8 <0

f2= z2—-20+2—~d=<o0

f3=—z+60—-9d <0 (16)
1<6x2

The feasible region for this set of constraints is shown in Figure 3a
for d = 1, and the corresponding function ¥ is shown in Figure 3b.
Note that { is nondifferentiable at # = 9/5, and that it exhibits two
local maxima at @ = 1 and § = 2. It is clear from Figure 3a that the
size of the feasible region decreases at both extreme points, 6 = 1
and 6 = 2, and gets enlarged towards the interior point § = 9/5.
Thus, there are in this case two critical points to be considered for
design, which are in fact the two extreme points of the specified
range 1 < 6 < 2. This observation on the location of critical points
can be generalized for the case of a set of nonlinear convex con-
straint functions through the following theorem.
Theorem 2

I the constraint functions f,(d,z,8) are jointly convex in z and
6, the problem

max min max f;(d,z,8) (17)
"$T 2 JEJ i
has its global solution 0¢ at an extreme point of the polyhedral re-
gion T = [f{L < § < 9V},
Proof :
This theorem is proved in three parts as follows:
Property 1. I for every f € J, f;(d 2,) is jointly convex in z and
6, ¢(d,z.0) = max;e; f;(d,z,8) is also jointly convex in z and 0.
Proof

AIChE Journal (Vol. 29, No. 3)

Since for any d,f;(d,z,0) is jointly convex in 3 and 8, the epi-
graph

Epilfy(d,2.0)} = ly.2.0]y 2 f,(d,2.0)}

is a convex set, for every j € J. Hence, Mycy Epilf;(d,z,8)} is also
a convex set. (See, e.g., Stoer and Witzgalf, 1970; Rockefellar,
1970.)
But,

M Epilfy(d,z,0} = ly,2.0]y = f,(d.2.0),vj € ]}

i€l

= {y,z,ﬁly 2 maxj'j(d,zﬁ)] = Epi {max f,(d,zﬁ)}
i€l 1€J

= Epil¢(d,z,0)}

which is, therefore, a convex set. From this, it follows that the
function ¢(d,2,8) is also jointly convex in z and 6.

Property 2. If ¢(d,z,0) is jointly convex in z,0,y(d.f) =
min, ¢(d,z,8) is convex in 6.
Proof

Let ¥(d,6°) = min, ¢(d,z,0%) = ¢(d,23,6%).

Let 81,02 & T be two distinct points that are different from 63,
and 0 < A <1 such that 6% = (1 — M)8! + 62,

Let ¥(d,0') = min,¢(d,2,0') = ¢(d,z},8") and Y(d 62) =
min ;¢(d.z,02) = ¢(d,z2,62).

Since ¢(d,z,6) is jointly convex in z and 8,

(1 = No(d,z1,0') + Ap(d,2202) = $(d,z12,69),
where 212 = (1 — A)z! + Az2
But,
¢(d,212,0%) = ming(d,z,0%) = ¢(d,23,6%)
therefore,
(1= Neo(d,21,0") + Agp(d,22,62) > ¢(d,23,6%)
or,

(1= ANAd,61) + AY(d,0%) 2 Y(d.6%).
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!‘Jo{;ing that 6% = (1 — A)8! + A82, it is clear that Y/(d,0) is convex
in#.
Property 3. If Y{(d.8) is convex in 8, every local solution 8° of the

problem

max y(d,f)
CET
lies at an extreme point of the convex region T.
Proof
Assume that 8¢ is a nonextreme point of the region T, and let
1,62 € T be two distinct points in the neighborhood of #° and 0
0< A <1such that #2 = (1 ~ A)B! + A62. Since Y(d,6) is convex in

(1 = AWAd.0") + AA(d.62) 2 Y(d,6°).

That is, A[Y(d,6%) ~ ¥(d,0")] Z ¥(d,0°) — Y(d.0").
Since 6! and 62 can be chosen in the neighborhood of 69 so as to
make the lefthand side negative, the above inequality gives

y(d,fe)~¢d b)) <0

which is a contradiction since §2 maximizes locally the function
¥(d,0). Hence, the assumption that §2 is a nonextreme point of the
r;%ion T must be incorrect, and this proves the resuft stated
above.

Froperty 4. If the region T is a polyhedron defined as in Eq. 1,
the global solution @¢ must lie at a corner point (vertex) of this
polyhedron, unless the solution is degenerate.

This result is obvious from the fact that the vertices are the only
extreme points for a polyhedral region, and that all boundary points
(as well as the interior points) can be expressed as a convex com-
bination of the extreme points (vertices). Therefore, any local so-
lution to the problem (Eq. 18), and hence its global solution 8¢, must
lie at a vertex of the polyhedral region T. Thus, the result stated
in Theorem 2 is proved QED.

DISCUSSION

Since there are a finite number of vertices for the polyhedron
T, Theorem 2 provides an answer to the question as to whether a
finite number of points can be considered for design to ensure
feasibility for all the points in the polyhedron T. It follows from
Theorem 2 that if the constraints are convex, feasibility of operation
for every value of € T can be guaranteed by considering in the
design all the vertices of the polyhedron T, since any of them will
correspond to the critical parameter 6¢. Also, since Eq. 17 repre-
sents a maximization of a convex function as shown in Property 3
of Theorem 2, there can be multiplicity of local solutions for Eq.
17, and hence a number of different critical points. This result
contradicts the common notion of considering only a single “worst”
parameter value for design.

It should also be clear that the assumption of convexity on the
constraint functions in Theorem 2 is a sufficient condition for the
location of critical points at the vertices of the polyhedron T.
Therefore, there can also be cases when even if nonconvex con-
straint functions are involved, the critical points correspond to
vertices. However, it is clear that this will not always necessarily

be true.

SOLUTION ALGORITHMS

In solving the design problem (Eq. 10), it is essential to satisfy
the max-min-max constraint to guarantee feasibility of operation
of the plant for every § € T. As was proved in Theorem 2, if the
inequality constraint functions are convex, then the critical points
must lie at any of the vertices of the polyhedron T. Since there are
a finite number of vertices in T, a design obtained by considering
all these vertices will be feasible for any other point in the poly-
hedron. This would then suggest the following algorithm-
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Algorithm 1

Step 1. Include ull the vertices in the set T, = {§*]|6" isa vertex -
of T,i=12... N} : .
Step 2. Solve the problem

minimize Co(d) + 3- wiC(d.2%.6°)
k=1

dalss, . . N

st fdz'8)<0 (=12,... N (18)
T, )
with the projection-restriction strategy (Grossmann and Halemane,
1982) 50 as to obtain the design d°.

Since T, includes all N vertices of the polyhedron T, every
critical point 6¢ corresponding to the above design d° will also be
included in T,. Therefore, the design d® will be feasible for its
critical points, and hence it will also be feasible for every § &
T.

The drawback in this algorithm is that the number of vertices
N to be considered for design increases exponentially with the
number of parameters p, since N = 2P, Thus, for a problem in-
volving ten uncertain parameters (p = 10), the design problem has
to consider 210 = 1,024 vertices, which would lead to an extremely
large problem in Eq. 18. Because of this fact, it is desirable that the
above algorithm be modified so as to reduce the number of vertices
that have to be considered in Step 2. An algorithm that can be used
for this purpose is as follows:

Algorithm il

Step 1. Set k = 0. Choose an initial set T, consisting of N,, ver-
tices where N, < 27,

This can be achieved with small computing requirements, using
the procedure suggested by Grossmann and Sargent (1978), in
which each constraint is maximized individuially by assuming
monotonicity. The gradients df;/ 30 of each constraint function
f5.1 =1.2,...m, with respect to the parameters 8, k = 1,2, . . .p,
are computed at initial values of d and z, and the signs of these
gradients are analyzed. If for the constraint function f;, the gradient
df,/ 86y > 0, the upper bound 6f is selected for the parameter 63,
whereas if 9f,/ 30k < 0 the lower bound 6f is selected. Clearly, for
zero gradients either choice of the bounds is possible. Since each
constraint may lead to a different vertex, the set of vertices obtained
for all constraints is finally merged into the smaller set of vertices
T, by using a set covering formulation.

Step 2. Solve the problem

N
minimize C°(d) + Zf w'C(d z',0) (19)
dati=12, .. .Ni =1

st. fdz8)<0 1=12.. N

to obtain the design d*.
Step 3. Determine the critical parameter value 8<%, by solving
for every vertex 8 not included in T}, the problem

¥(d* 6 = minfu|u = fy(d* 2,00, € Ji (20)

The vertex that gives rise to the maximum value of { is then de-
termined and is denoted by 6<% If Y(d*,6<*) < 0, stop; otherwise
go to Step 4.

Step 4. Define Ty, = Te Ui}, Ny = [Ths].

Set k = k + ] and interate from Step 2.

Note that at the termination of this algorithm the design will
necessarily be feasible for all values of parameters, because it will
be feasible for the critical parameter values. Also, the algorithm
has to terminate in a finite number of iterations since there are only
a finite number of critical parameter points to be considered. The
initial vertices predicted in Step 1 by the method of Grossmann and
Sargent (1978) will often yield very good guesses for which only
one iteration in Algorithm Il may be required. Similarly asin Al-
gorithm 1, problem (Eq. 19) in Step 2 can be solved with the pro-
jection-restriction strategy (Grossmann and Halemane, 1982). Also,
note that the minimizations in Eq 20 may not have to be per-
formed until completion for all vertices, as they can be stopped
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Figure 4. Heat exchanger network of Example 1.

when { reaches a negative value in which case the existence of a
nonempty feasible region is detected. Thus, by the above consid-
erations Algorithm II will provide in general a much more efficient
method of solution than Algorithm 1.

However, there are two features in Algorithm 11 which would
require further investigation. One of them is the number of pa-
rameter points considered for design, which in turn determines the
size of problem (Eq. 19) in Step 2. This number will increase at each
iteration since a new parameter point will be added. The question
is whether this number can be kept small throughout by elimi-
nating some of the previous points while adding new ones. This
elimination can probably be performed on the basis of the value
of . A second question is whether it is possible to determine the
critical parameter point in Step 3 without explicitly analyzing each
of the individual vertices and solving for {. If this were possible,
it would certainly enhance the efficiency of the above solution
strategy when dealing with a large number of parameters.

To illustrate the application of Algorithm II described above,
two example problems are presented below.

Example 1

In this example, the heat exchanger network 45P1 of Lee et al.
{1970) with outlet temperatures specified as inequalities is con-
sidered (Grossmann and Sargent, 1978). The flowsheet consists of
five heat exchangers, one of which is a steamn heater and another
being a cooler using cooling water, and with two hot streams and
two cold streams as shown in Figure 4. Table 1 gives the data for
the problem. The overall heat transfer coefficients U;, 4 = 1,2,. . .5,
were considered to be the parameters with £20% uncertainty in
their nominal values. The design problem then consists in selecting
the areas A, { = 1,2, .. .5 so that irrespective of the actual values
of the heat transfer coefficients (within the £20% range), the
specifications on the outlet steam temperatures should be satisfied
by suitable choice of the cooling water outlet temperature Tg and
the steam temperature T,3. Apart from the equality constraints
representing the heat balance and design equations for the network,
the following inequality constraints on the temperatures of various
streams have to be satisfied. :

Ts 2 534 K
Te 2 434
Tio < 411
T\, < 367
Ts—~Tg<0
Ts— Ti3 2 0.55 (22)
Ty, ~ Ts 2 055
T7~ Ty 2 055
Te— Te 2 0.55

Te— T15 = 0.55
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‘TABLE 1. DATA FOR EXAMPLE 1

Nomina! Values of Uncertain Parameters
U] b U, = U3 = Us = 3,066 kJ/m&h-K
Uy = 4,088 k] /m®h-K

Other Process Parameters

FC, = 21912 kj/h-K T, =389K
FC, = 27.461k]J/hX T, =333K
FC; = 38,009 k]/h-X T) = 434K
FCyy = 81,674 k] /h K Ty =311K

Cost Function
5 8
C=1456 3 A+ 3 w(185F! + 0.923 F,)
{=] {m]
w;=06,w=011{=2345

Scaling Factor for Constraints: 1.8
Bounds on Control Variables: 314 < T)5 < 355K;534 < T)3 £ 556K

TABLE 2. PARAMETER VALUES FOR DESIGN IN EXAMPLE 1

U) Ug Ua U4 US

1 N N N N N

2 U U U U N

3 L 4) 4 U N

4 U L L L L

5 L U L U N
N = pominal, L = lower bound, U = upper bound

TABLE 3. RESULTS FOR EXAMPLE 1
Heat Exchange Areas, m*

A Ag A Ay As Cost, $/yr

30.8 62.2 45.58 39 29 11,758

CPU time (DEC-20) for obtaining the design using the projection-restriction strategy 1675
Test for Feasibility at Vertices

v{d.f) Number of Vertices
0.0 24

~0.679 Nominal Point

~2.452 4

~3.775 4

CPU-timme (DEC-20) for checking feasibility and determining y at the vertices 18.05
Values of Y(d,6) for Individual Vertices

w(d.0) Vertex Number, o
0.0 0-15, 24-31
~2.452 20-23
~3.775 16-19
5 0 if U=Ut
= 5—~1 =
¢ i)-:x o2, o {1 if Us=UY

Here the first four constraints correspond to specifications on the
outlet temperatures, and-the last five on the minimum temperature
approach. Table 2 gives the initial set of vertices considered for
design, which were obtained by analyzing the signs of gradients
of individual constraints as suggested by Grossmann and Sargent
(1978). Note that this set consists of the nominal point and four
extreme points. The design corresponding to these five parameter
points was found to be feasible for all the 32 vertices. The results
are given in Table 3, from which it is clear that the values of { are
non-positive at all the vertices, thus ensuring feasibility. Note that
the actual value of ¢ is dependent on the scaling factors used for
the constraint functions, which are given in Table 1 for this prob-
lem. As long as the scaling factors are positive, any arbitrary choice
can be selected for detecting the (in)feasibility of a given design.
The total CPU-time required to solve this problem was only 34.7
s (DEC-20). Optimization was performed in each case with the
variable metric projection algorithm of Sargent and Murtagh
{1973). In this example problem the optimal feasible solution to the
design problem was obtained with a single iteration through Al-
gorithm 11, without the need for considering additional vertex
points This may not always be the case as can be seen from the
second example below.
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Figure 5. Reactor-cooler system of Example 2.

TABLE 4. DATA FOR EXAMPLE 2
Nominal Values of Uncertain Parameters

kg = 0.6242 m3/kmol-h U = 1,635 kj/m2-h-K
£, = 45.36 kmol/h T, = 333K

Toi = 300K

Other Process Parameters
E/R =5556K
Cao = 32.04 kmol/m?

—AH,p, = 23,260 k] /kmol
Cp = 167.4 kj/kmol

Cost Function ($/yr)

C=(691.2VOT 4 8736 A%) + I w(1.76 FL, + 7.056 F{)
=]

w! =05 w!'=05/(n—-1) §=23,...n
Scaling Factors for Constraints

(a) 3.531 (b) 100 (c) 1.8

(d). (e), (f). (g} 18.0

Bounds on Control Variables

311 =T, <389K
311 £ Ty 389K
301 £ Ty 355K

TABLE 5 PARAMETER VALUES FOR DESIGN IN EXAMPLE 2

kn U Fo Ta Twl
1 N N N N N
2 L U L L L
3 v L U U U
4 U L u u L
S L L U U U

Initul set of pounts 1 to 4
Second set of points 1ta5
N = norunal L = jower bound, U = upper bound

Exampie 2

Figure 5 shows the flowsheet consisting of a reactor-and a heat
exchanger, used to handle a first-order exothermic reaction A —
B, for which the problem data is given in Table 4. The parameters
considered to have uncertainty in their values are: (i} F,, the feed
flow rate (£10%), (ii) T,, the temperature of the feed stream

(£2%), (iii) T, the inlet temperature of cooling water (£3%), (iv)

kg, the Arrhenius rate constant (£10%), and (v) the overall heat
transfer coefficient for the heat exchanger U (£10%). Among these
five parameters, the first three are associated with inlet streams to
the units while the latter two correspond to internal parameters of
the process The conversion is specified to be not less than 90%, and
the temperature of the reactor must be lower than the specified
upper bound, 389 K. The design problem consists in selecting the
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TABLE6. RESULTS OF EXAMPLE 2, FIRST ITERATION WITH
ALGORJITHM 11

Design Obtained for Parameter Points in Table 3a
V=53ms
A =105m?
Cost = 10,820 $/yr
CPU-time (DEC-90) for sixainlog the design wting the projection-restriction stratogy: 9.2 2.

Test for Feasibility at Vertices

v(d,0) No. of Vertices
+1.280 8

0.0 16 + Nominal Point
~-1.151 8

CPU-time (DEC-20) for checking feasibility and determining ¢ at the vertices. 85.8 5.
Values of Y/(d 6) for Indtvidual Vertices

¥(d.9) Vertex Number, v
+1.28 4-7,12-15

0.0 0-8, 8-11, 20-23, 28-31
-1.151 16-19, 24-27

$ 0 if 0,=0{“
= 95—~ =
P o {1 i 0, =6y

01=kp,03=U,03=F,,0,=T,, 0s= Ty

TABLE 7. RESULTS OF EXAMPLE 2, SECOND ITERATION WITH
ALGORITHM 11

Design Obtained for Parameter Points in Table 3b
V=65md
A=97m?
Cost = 10,902 $/yr
CPU-time (DEC-20) for obtaining the design using the projection-restriction strategy. 12.8 5.

Test for Fedsibility at Vertices

¥(d.0) No. of Vertices
0.0 8

—1.220 16 + Nominal Point

-2.323 8

CPU-time (DEC-20) for checking feasibility and determining ¥ at the vertices 7385
Values of y(d.9) for Individual Verstices

¥(d.6) Vertex Number, v

0.0 4-7,12-15
-1.22 0-3, 8-11, 20-23, 28-31
-2.323 16-19, 24-27

optimal sizes for the reactor and heat exchanger so that the speci-
fications can be satisfied by suitable choice of the temperatures
T, T3, Ty, in Figure 5, irrespective of the actual values of the
parameters. The material and heat balance equations and design
equations for the reactor and heat exchanger represent the equality
constraints of the design problem, and are given in Grossmann and
Halemane (1982). Other specifications to be satisfied are expressed
by the following inequality constraints:

{a) vVzv

{b) (Cao— Ca1)/Cao 2 0.90

(©) 311 < T, < 389

d) T,-T,20 (23)
(e) Twe—~Tu1 20

o T) = Tus = 11-1

(g) Ty— Tyr 2 111

The initial set of parameter points consists of the nominal point
and three vertices, obtained by analyzing the gradient of the
constraints, as given in Table 5a. The design corresponding to these
four points is given in Table 6a. This design is found to be infeasible
for eight of the thirty-two vertices as indicated in Table 6b by the

. positive values of Y for these eight vertices. Since the value of { is

found to be the same for all these eight vertices, one among them
is chosen to be added to the initial set of vertex points considered
in design. This new set of five parameter points is given in Table
5b and the resulting design shown in Table 7a. This design is fea-
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TABLE 8. RESULTS OF EXAMPLE 2 WITH DIFFERENT CHOICES OF

WEIGHTS
w; vV, ms A, m? Annual Cost, $/yr
0.0 6.5 10.22 11,396
0.1 6.5 10.13 11,302
02 6.5 10.02 11,206
0.3 6.5 9.91 11,108
04 6.5 8.79 11,007
0.5 6.5 8.66 10,802
0.6 6.5 9.51 10,793
0.7 6.5 9.35 10,678
08 6.5 9.14 10,553
0.9 6.5 8.86 10,409
1.0 6.5 8.11 10,160

Weight nominal point w!
Weghts verbioes w'= (1 —w!)/4,1=2,...5

sible for all the 32 vertices as shown by the non-positive values of
Y given in Table 7b. Here again, these values of ¥ correspond to
the scaling factors given in Table 4 for the constraints of the
~-~tlar This example illustrates the need for analyzing the
max-min-max constraint as a means to achieve feasibility of op-
eration for the specified set of parameter values. The CPU-time
needed to obtain the design in each of the two iterations through
Algorithm 11 is also given, in Tables 6a and 7a respectively. Tables
6c and 7c give the CPU-time for checking feasibility and deter-
mining Y for all the vertex points. It took a total of 162 sec (DEC-
20) for the complete solution using the variable-metric projection
algorithm of Sargent and Murtagh (1973).

Finally, Table § shows the sensitivity of results with different
choices of weights in the second iteration for this example. Ascan
be seen, the reactor volume remains unchanged, whereas the area
of the cooler and the total annual cost show some significant vari-
ation Note that for the choice w; = 1, the plant is optimized ex-
clusively for the nominal point, and for w, = @, it is optimized for
only the four vertices. However, in all cases the designs are feasible
for the specified range of parameter values.
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NOTATION

A = area of heat exchanger, m?

C = annual cost, $/yr

Ca = concentration of component A, kmol/m?3
C, = heat capacity, k]/kmol-K

AIChE Journat (Vol. 29, No. 3)

d = vector of design variables

E/R = ratio of activation energy to the gas constant, K
= flowrate, kmol/h

F, = flowrate of steam, kg/h

Fo = flowrate of cooling water, kg/h

FC = heat capacity flowrate, kJ/h-K

fe = vector of inequality constraint functions

h = vector of equality constraint functions

AH,., = heat of reaction, kj/kmol

J = index set for the inequalities

kg = reaction rate constant, h™!

m = dimension of vector

N = number of vertices

T = region of uncertain parameters

T, = temperature of stream {, K

Tew = temperature of cooling water, K

U = heat transfer coefficient, kj/m2-h-K

v = reaction volume for operation, m®

\% = design volume of reactor, m3

wy’ = weight for parameter 8+

x = vector of state variables

z = vector of control variables

(] = vector of uncertain parameters
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