
Reliability
Optimal Processor Assignment for
a Class of Pipelined Computations

1.0 -I - i-l ori-
Alok N. Choudhary, Bhagirath Narahari,

- i-20ri-4 David M. Nicol, and Rahul Simha
- i-3

Abstract-The availabiity of large-scale multitasked parallel archi-
tectures introduces the following processor assignment problem. We are
given a long sequence of data sets, each of which is to undergo processing
by a collection of tasks whose intertask data dependencies form a series-
parallel partial order. Each individual task is potentially parallelizable,
with a known experimentally determined execution signature. Recog-
nizing that data sets can be pipelined through the task structure, the
problem is to find a “good” assignment of processors to tasks. Two
objectives interest us: minimal response time per data set, given a

\
L-- throughput requirement, and maximal throughput, given a response time

I I) Time

10-2
requirement, Our approach is to decompose a series-parallel task system

10-i into its essential “serial” and “parallel” components; our problem admits
tbe independent solution and recomposition of each such component. We
provide algorithms for the series analysis, and use an algorithm due to
Krislmamurti and Ma for the parallel analysis. For a p processor system
and a series-parallel precedence graph with n constituent tasks, we give a
O(np’) algorithm that finds the optimal assignment (over a broad class
of assigmnents) for tbe response time optimization problem; we find the
assignment optimizing the constrained throughput in 0(up* log p) time.
Our techniques are applied to a task system in computer vision.

Fig. 10. Reliability comparison among DSCCCq(l0, Q’s, 1 5 i 5 5. (The
dashed curve denotes the DSCCC(9, 8) result.)

and 2) PE’s in dimension i are equipped with extra links that emulate
dimensions i - 1 and i - 2 connections. The resulting structure is

expected to have higher reliability than the DSCCCS, but every PE

then needs one more extra port, and its layout takes larger area. It

may be interesting to contrast the cost-effectiveness of these two
structures.

In recent years, much research has been devoted to the problem
of mapping large computations onto a system of parallel processors.

REFERENCES Various aspects of the general problem have been studied, including

VI J.-J. Shen and I. Koren, “Yteld enhancement designs for WSI cube
different parallel architectures, task structures, communication issues,

connected cycles,” Proc. ht. Conf: Wafer Scale Integration, 1989, pp. and load balancing [8], [13]. Typically, experimentally observed

289-298. performance (e.g., speedup or response time) is tabulated as a function
[2] F. P. Preparata and J. Vuillemin, ‘The cube-connected cycles: A versatile

network for parallel computation,” Common. ACM, vol. 24, pp. 300-309,
of the number of processors employed, a function sometimes known

May 1981.
as the execution signature [lo], or the response time function. In

[3] M. S. Krishnan and J. P. Hayes, “A normalized-area measure for VLSI this short note, we use such functions to determine the number of

layouts,” IEEE Trans. Compuf-Aided Design, vol. 7, pp. 411-419, Mar. processors to be allocated to each of several tasks when the tasks
1988. are part of a pipelined computation. This problem is natural, given

[4] I. Koren, Z. Koren, and D. K. Pradhan, “Designing interconnection buses
in VLSI and WSI for maximum yield and minimum delay,” ZEEE J.

the growing availability of multitasked parallel architectures, such as

Solid-State Circuits, vol. 23, pp. 859-866, June 1988.
PASM [29], the NC&e system [14], and Intel’s iPSC system [5],

[5] P. Banetjee, “The cubical ring connected cycles: a fault-tolerant parallel in which it is possible to map tasks to processors and allow parallel

computation network,” IEEE Trans. Comput., vol. 37, pp 632-636, May execution of multiple tasks in different logical partitions.
1988.

[6] S.-Y. Kuo and W.K. Fuchs, “Reconfigurable cube-connected cycles
We consider the problem of optimizing the performance of a

architectures,” .I. Parallel Distrib. Computing, vol. 9, pp. l-10, May
complex computation applied to each member of a sequence of data

1990. sets. This type of problem arises, for instance, in imaging systems,

[7] P.R. Lala, Fault Tolerant and Fault Testable Hardware Design. En- where each image frame is analyzed by a sequence of elemental
glewood Cliffs, NJ: Prentice-Hall, 1985. tasks, e.g., fast Fourier transform or convolution. Other applications

[8] N.-F. Tzeng, S. Bhattacharya, and P.-J. Chuang, “Fault-tolerant cube-
connected cycles structures through dimensional substitution,” Proc.

include network software, where packets are pipelined through well-

1990 ht. Conf Parallel Processing, vol. I, Aug. 1990, pp. 4334.
defined functions such as check-sum computations, address decoding,
and framing. Given the data dependencies between the computation’s

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 4, APRIL 1994 439

I. INTR00uC-tt0~

Manuscript received August 3, 1991; revised April 27, 1992, and March 6,
1993. This work was supported in part by the National Science Foundation
(NSF) under Grants MIP-9110810, ASC-8819393, and NCR-8907909, and
in part by the National Aeronautics and Space Administration (NASA) under
Grant NAG-l-995.

A.N. Choudhary is with the Department of Electrical and Computer
Engineering, Syracuse University, Syracuse, NY 13244.

B. Narahari is with the Department of Electrical Engineering and Computer
Science, George Washington University, Washington, DC 20052.

D. M. Nicol and R. Simha are with the Department of Computer Science,
College of William and Mary, Williamsburg, VA 23185.

IEEE Log Number 9215379.

104%9219/94$O4.00 0 1994 IEEE

T’ -

440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 4, APRIL 1994

multiple tasks, we may exploit parallelism both by pipelining data
sets through the task structure and by applying multiple processors

to individual tasks.

There is a fundamental trade-off between assigning processors

to maximize the overall throughput (measured as data sets per
unit time), and assigning processors to minimize a single data

set’s response time. We manage the trade-off by maximizing one

aspect of performance subject to the constraint that acertain level
of performance must be achieved in the other aspect? Under the
assumptions that each of n tasks is statically assigned a subset

of dedicated processors and that an individual task’s response-

time function completely characterizes performance (even when
using shared resources such as the communication network), we

show that p processors can be assigned to a series-parallel task

structure in 0(np2) time to minimize response time while achieving
a given throughput. We are also able to find the assignment that

maximizes throughput while achieving a given minimal response

time, in O(np’ logp) time.

The assumption of a static assignment arises naturally in real-time
applications, where the overhead of swapping executable task code in

and out of a processor’s memory threatens performance. Without this

assumption, the optimization problem becomes much more difficult.
Our method involves decomposing a series-parallel graph into

series and parallel components by using standard methods. We present

algorithms for analyzing series components and use Krishnamurthy

and Ma’s [20] algorithm to analyze the parallel components.
We assume that costs of communication between tasks are com-

pletely captured in the given response-time functions. Thus, our

techniques can be expected to work well on compute-bound task
systems. Our example application is representative of this class,

having a computation to communication ratio of 100. Our techniques

may not be applicable when communication costs that depend on
the particular sets of processors assigned to a task (e.g., contention)

contribute significantly to overall performance.

A large literature exists on the topic of mapping workload to

pcessors (see, e.g., VI, [31, [41, WI, [151, [171, WI, ~231, [241,
[26], [27], [31], [33]). A new problem has recently emerged: that
of scheduling tasks on multitasked parallel architectures where each

task can be assigned a set of processors. Some formulations consider
scheduling policies with the goal of achieving good average response

time and good throughput, given an arrival stream of different,
independent parallel jobs (see, e.g., [28]). Another common objec-

tive, exemplified in [2], [ll], [20], [25], is to find a schedule of
processor assignments that minimizes completion time of a single

job executed once. The problem we consider is different from these,

specifically because we have a parallel job that is to be repeatedly
executed. We consider issues arising from our need to pipeline the

repeated executions to get good throughput, as well as apply parallel
processing to the constituent tasks to get good per-execution response

time. Yet another distinguishing characteristic of our problem is an
underlying assumption that a processor is statically assigned to one

task, with the implication that every task is always assigned at least

one processor.
Two previously studied problems are close to our formulation. The

assignment of processors to a set of independent tasks is considered

in [20]. The single objective is the minimization of the makespan,
which 1) minimizes response time if the tasks are considered to be
part of a single parallel computation, or 2) maximizes throughput

if the tasks are considered to form a pipeline. The problem of

assigning processors to independent chains of modules is considered
in [7]. This assignment minimizes the response time if the component

tasks are considered to be parallel, and maximizes the throughput

if the component chains are considered to form pipelines. Pipeline

TABLE I
EXAMPLE RECWONSE TIME FUNCXONS SHOWING TASKS’

EXECUTION TME AS A FUNIXION OF THE NUMBER OF

PROFESSORS USED (in s)

tasks

Number of processors

12345678

t1 29 16 11 9 7 6 4.5 4

t2 90 50 20 15 12 10 9 9.5

t3 80 43 18 14 11 9 8 8.5

t4 20 12 10 9 8 7 6 5

t5 15 10 7 5 4 3.5 3 2.5

computations are also studied in [19], [30]. In [30], heuristics
are given for scheduling planar acyclic task structures; in [19], a
methodology is presented for analyzing pipeline computations using
Petri nets together with techniques for partitioning computations.

We have not discovered treatments that address optimal processor
assignment for general pipeline computations, though our solution

approach (dynamic programming) is related to those in [3] and [33].
This short note is organized as follows. Section II introduces

notation and formalizes the response-time problem and the throughput

problem. Section III presents our algorithms for series systems, and

Section IV shows how to optimally assign processors to series-parallel
systems. Section V shows how the problem of maximizing throughput

subject to a response-time constraint can be solved by using solutions
to the response-time problem. Section VI discusses the application of

our techniques to an actual problem, and Section VII summarizes
this work.

II. PROBLEM DEFINITION

We consider a set of tasks, to, ti, . . . , t,+i, that comprise a

computation to be executed by using up to p identical processors
on each of a long stream of data sets. Every task is applied to every

data set. We assume that the tasks have a series-parallel precedence

relation constraining the order in which we may apply tasks to a
given data set. Tasks unrelated in the partial order are assumed to
process duplicated copies (or different elements) of a given data set.

Under these assumptions, we may pipeline the computation so that
different tasks are concurrently applied to different data sets.

Each task is potentially parallelizable. For each t,, we let fi (m) be
the execution time of t; using rr identical processors. fi is called a

response-time function (also known as an execution signature [lo]).

We assume that fa and fn+i are dummy tasks that serve, respectively,
to identify the initiation and completion of the computation. Corre-
spondingly, we take fa(n) = f”+i(n) = 0 for all 7~. fi(0) = co,
however, for all i = l,... , n. These conditions ensure that no

processor is ever assigned to to or t,+i , and that at least one processor
is assigned to every other task.

An example of the response-time functions for a computation with

five tasks on up to eight processors is shown in Table I. Each row
of the table is a response-time function for a particular task. Observe
that individual functions need not be convex or monotonic.

We may describe an assignment of numbers of processors to each

task by a function A. A(i) gives the number of processors statically

and exclusively allocated to t,. A feasible assignment is one where
Cy=‘=, A(i) 5 p and A(i) > 0 for i = 1,. . . , n.

Given A, t, ‘s execution time is fZ (A(i)), and the maximal data

set throughput is A(A) = max;{f;(A(i))-l}. The response time for

a data set is obtained by computing the length R(A) of the longest

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 4, APRIL 1994 441

TABLE II
RESPONSE-TIME FLJNCUON Fl FOR PARALLEL TASK q

Number of processors
Function

1 2 3 4 5 6 I 8

fz (for task tz) 90 50 20 15 12 10 9 9.5

f3 (for task tg) 80 43 18 14 11 9 8 8.5

Fl (for task ~1) co 90 80 50 43 20 18 15

Fig. I. Example of series-parallel task system T.

path through the graph where each t, is a node weighted by f,(A(i))
and the edges are defined by the series-parallel precedence relation.

Given some throughput constraint X and processor count q, we
define 5 (q) to be the set of all feasible assignments A that use no
more than q processors, and achieve A(A) 2 X. The response-time
problem is to find FA (p), the minimum response time over all feasible

assignments in Ix(p), that is, the response time for which there is
an assignment A for which R(A) is mimimal over all assignments

with p or fewer processors that achieve throughput X or greater. This

problem arises when data sets must be processed at least as fast
as a known rate X to avoid losing data. We wish to minimize the

response time among all those assignments that achieve throughput
X. Similarly, given response time constraint y and processor count

q. we define R-,(q) to be the set of all feasible assignments A using
no more than q processors and achieving R(A) 5 y. The throughput
problem is to find A E R,(p) for which A(A) is maximized. This

problem arises in real-time control applications, where each data set
must be processed within a maximal time frame in order to meet
processing deadlines. We focus on solutions to the response-time
problem first, and later show how these may be used to solve the

throughput problem.
Because a response-time function completely defines a task, el-

emental or composite, we also use the term “task” to refer to

compositions of the more elemental tasks t;. Let T; denote such a
composite task, and let F, be its optimal response-time function. Our
general approach is illustrated by an example. Consider the series-
parallel task T in Fig. 1 with the response-time functions given in

Table I (here, to and &j are dummy tasks). We may think of tz and
ts as forming a parallel subtask. Call it 71. Given the response-time
functions for tz and ts, we will construct an optimal response-time

function called Fl for 71, after which we need never explicitly

consider tl or tz separately from each other; FI completely captures
what we need to know about both of them. Next we view 71 and
tl as a series task. Call it rz, and compute the optimal response-

time function for 7~. The process of identifying series and parallel

subtasks and constructing response-time functions for them continues
until we are left with a single response-time function that describes
the optimal behavior of T. By tracking the processor assignments

necessary to achieve the optimal response times at each step, we

are able to determine the optimal processor allocations for T. A
solution method for parallel tasks has been given in [20]. We present

algorithms for series tasks.
We will assume that every response-time function is monotone

nonincreasing, because as argued in [20], any other response-time
function can be made decreasing by disregarding those assignments
of processors that cause higher response times. Also, observe that

response-time functions may include inherent communication costs

due to parallelism, as well as the communication costs that are suf-
fered by communicating with predecessor and successor tasks. These

assumptions are reasonable when the communication bandwidth is

sufficiently high for us to ignore effects due to contention between
pairs of communicating tasks. Our methods may not produce good
results when this assumption does not hold.

III. INDIVIDUAL PARALLEL TASKS AND SERIES TASKS

The problem of determining an optimal response-time function for
parallel tasks has already essentially been solved in the literature [20].

We describe this solution briefly. Let tl, . . . , tk be the tasks used to
compose a parallel task 7. For each t,, we know UX(&), the minimum
number of processors needed so that every elemental task involved in

t; has a response time no greater than l/X. We initialize by allocating

us processors to each t;. If we run out of processors first,

then no processor allocation can meet the throughput requirement.
Otherwise, the initial allocation uses the fewest possible number of

processors that do meet this requirement.. We then incrementally add
the remaining processors to tasks in such a way that at each step,
the response time (the maximum of task response times) is reduced
maximally. This algorithm has an O(p log n) time complexity.

Series task structures are interesting in themselves, because many

pipelines are simple linear chains [191. We first describe an algorithm
that constructs the optimal response-time function FA for a linear

task structure T when each function f;(x) is convex in Z. Although
convexity in elemental functions is intuitive, nonconvex response-

time functions arise from parallel task compositions. Consequently,

a different algorithm for series compositions of nonconvex response-
time functions is developed later.

Like the parallel composition algorithm, we first assign the minimal
number of processors needed to meet the throughput requirement.

The mechanism for this is identical. Suppose that this step does
not exhaust the processor supply. Define Z; to be the number of
processors currently assigned to t;, initialize Z; = ux (t;), and define
y = Cy=‘=, L; to be the total number of processors already allocated.

We then set ;F~(z) = 03 for all z < y to reflect an inability to meet
the throughput requirement, and set F,J(Y) = cy=‘=, fi(~%). Next,
for each t;, compute d(i,ri) = f;(ei + 1) - f;(~;), the change in

response time achieved by allocating one more processor to t, . Build

442 IEEETRANSACTIONS ON PARALLELANDDISTRIBUTED SYSTEMS,VOL.5,NO.4,APRIL 1994

a max-priority heap [16] where the priority of ti is]d(i,xi)]. Finally,

enter a loop where, on each iteration, the task with highest priority
is allocated another processor, its new priority is computed, and the
priority heap is adjusted. We iterate until all available processors have

been assigned. Each iteration of the loop allocates the next processor
to the task that stands to benefit most from the allocation. When the
individual task response functions are convex, then the response-time

function FA greedily produced is optimal: The algorithm above is

essentially one due to Fox [121 as reported in [32]. Simple inspection

reveals that the algorithm has an O(p log n) time complexity. Unlike
the similar algorithm for parallel tasks, correctness here depends on
convexity of component task response times.

The need to treat nonconvex response-time functions arises from
the behavior of composed parallel tasks. Return to our example in
Fig. 1, and consider the parallel composition 71 of elemental tasks

tz and t3, with throughput requirement X = 0.01. The response-time
function FI is shown in Table II. Note that FI is not convex, even
though fa and f3 are. This nonconvexity is due to the peculiar nature
of the maximum of two functions and cannot be avoided when dealing

with parallel task compositions. We show below that nonconvexity
can be handled, with an additional cost in complexity.

We begin as before, allocating just enough processors so that the
throughput constraint is met. Assuming so, for any j = 1, ... , n,

we denote the subchain comprised of tl, . . . , tj as task T3, and
compute its optimal response-time function, Cj, subject to throughput

constraint X. By using the principle of optimality [9], we write a
recursive definition for ux (Ti) and C,(Z).

ux(Tj) =

{

uA(tl) ifj = 1

ux(tj) + ux(TJ--l) otherwise

C,(x) =

1

fl (xl ifj = 1

uA(tj)ji$tuA(Tjel) UAi) + C~-I(X - 91 oh+e.

The dynamic programming equation is understood as follows.
Suppose that we have already computed the function C, _ 1. This

implicitly asserts that we know how to optimally allocate any number
y 5 p processors to Tj-1. Next, given 2 processors to distribute

between tasks t, and T3-l, we try every combination subject to
the throughput constraints: i processors for t,, and x - i processors

for Tj--1. The principle of optimality tells us that the least-cost
combination gives us the optimal assignment of I processors to Tj.

Because the equation is written as a recursion, the computation will
actually build response time tables from the bottom up, starting with

task tl in the first part of the equation.
This procedure requires O(np’) time. We have been unable to find

a solution that gives better worst-case behavior in all cases. Some of
the difficulties one encounters may be appreciated by study of our
previous example. Consider the construction of TZ, comprised of the

series composition of t i and ri . As before, let FI denote the response-
time function for ri. Table III gives the values of fi(t~) + FI (u)
for all 1 5 u, v < 8 with u + u 5 8. The set of possible sums
associated with allocating a fixed number of processors x lie on

an assignment diagonal moving from the lower left (assign z - 1

processors to 71, and assign one to ti) to the upper right of the table
(assign one processor to rl, and assign z - 1 to tl), illustrated by
use of a common typeface on a diagonal. Brute force computation

of TZ(X) consists of generating all sums on the associated diagonal

and choosing the allocation associated with the least sum. In the
general case, this is equivalent to looking for the minimum of a

function known to be the sum of a function that decreases in i (e.g.,

fi (i)) and one that increases (e.g., FI (Z - i)). Unlike the case when

TABLE III
SUM OF REWINSE TIME FUNCTIONS fl AND Fl

fl(l) h(2) h(3) h(4) h(5) h(6) h(7)
29 16 11 9 7 6 4.5

FI(l)=ca cc ca co co 0~) co 03

FI(2) = 90 119* 106' 101 99 97 96

Fl(3) = 80 109 96 91 89 87

Fl(4) = 50 79* 66* 61 59

F](5) = 43 72 59 54

FI (6) = 20 49’ 36*

Fl(7) = 18 47

* = minimum value on each assignment diagonal.

these functions are known to be convex as well, in general, their
sum does not have any special structure that we can exploit; the
minimum can be achieved anywhere, implying that we have to look

for it everywhere. It would seem, then, that dynamic programming

may offer the least-cost solution to the problem.
We note in passing that a straightforward optimization may reduce

the running time, but does not have a better asymptotic complexity.
If both functions being summed are convex, then the minimum

values on adjacent assignment diagonals must be adjacent in a row
or column. This fact can considerably accelerate the solution time,
because, given the minimum on the x-processor assignment diagonal,

we can find the minimum on the (x + 1)-processor diagonal by
generating and comparing only two additional entries, (This is a

consequence of the greedy algorithm described earlier.) Although
we cannot, in general, assume that both functions are convex, we

can view them as being piecewise convex. Thus, if tl is convex
over [a, 211, and if 71 is convex over [c, d], then tl + ~1 is convex

over [a, b] x [c, d], and we can efficiently find minima on assignment
diagonals restricted to this subdomain. Working through the details,

which are straightforward, one finds that the complexity of this

approach is O(rnp), where r is the maximum number of convex
subregions spanned by any given assignment diagonal. Of course, in
the worst case T = O(p), leaving us still with an O(np’) algorithm.

IV. SERIES-PARALLEL TASKS

Algorithms for the analysis of series and parallel task structures

can be used to analyze task structures whose graphs form series-
parallel directed acyclic graphs. We show that the response-time
function for any such graph (with n nodes) can be computed in
O(np’) time. A number of different but equivalent definitions of

series-parallel graphs exist. The one we use is taken from [34], in

which a series-parallel directed acyclic graph (DAG) can be parsed

as a binary decomposition tree (BDT) in time proportional to the
number of edges. The leaves of such a tree correspond to the DAG

nodes themselves, and internal tree nodes describe either parallel (P)
or series (S) compositions. Fig. 2 illustrates the BDT (labeling S and
P nodes by task names used in discussion) corresponding to the task
in Fig. 1.

The structure of a BDT specifies the precise order in which we

should apply our analyses. The idea is to build up the overall optimal
response-time function from the bottom up. Conceptually, we mark
every BDT node as being computed or not, with leaf nodes being
the only ones marked initially. We then enter a loop where in each

iteration, we identify an unmarked BDT node, whose children are
both marked. We apply a series composition or parallel composition

to those childrens’ response-time functions, depending on whether

the node is of type S or P, and mark the node. The algorithm ends

when the root node is marked.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 4, APRIL 1994 443

TABLE IV
COMPLE~ON TIMES FOR INDIVIDUAL TASKS ON THE INTEL iPSC/2 OF VARIOUS SIZES (in s)

Number

of
Response times for individual tasks

Processes Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

2

4

8

16

32

64*

128*

256*

109.00 6.15

54.16 3.07

27.51 1.58

13.88 0.81

7.01 0.40

3.78 0.20

2.12 0.11

1.25 0.06

0.77 0.04

0.32

0.16

0.081

0.042

0.022

0.012

0.007

24.67 109.0 6.15 0.320 129.02 1 18.20

12.52 54.76 3.07 0.160 67.70 9.15
6.32 27.51 1.58 0.081 34.22 4.58

3.22 13.88 0.81 0.042 17.50 2.39

1.76 7.07 0.40 0.042 10.30 1.52

1.01 3.78 0.20 0.012 6.36 1.01

0.61 2.12 0.11 0.007 4.13 0.71

0.38 1.25 0.06 0.004 2.81 0.52

0.26 0.77 0.77 0.040 0.002 0.40

* indicates extrapolated values.

P(74)

s (72) t4

A

t1 p (71)

/y

t2 t3

Fig. 2. Binary decomposition tree.

In the example, ~1’s response-time function is generated by using
the parallel algorithm on t2 and t3; the series composition is applied

to tl and ~1 (for composite task TZ), which is then composed via

another series composition with t4. creating 5; and, finally, t5 is

combined via a parallel composition with 7s to create the response-
time function for the overall task structure. At each step, one must
record the actual number of processors assigned to each task in order

to compute the optimal assignment. This is straightforward and needs
no discussion.

From the above, we see that the cost of determining the optimal

assignment from a BDT is O(np2), because every response-time

function composition has a worst-case cost of O(p2) and there are
n - 1 such compositions performed.

V. THE THROUGHPUT PROBLEM

Real-time applications often require that the processing of every

data set meet a response-time deadline. At system design time, it

becomes necessary to assess the maximal throughput possible under
the constraint. This is our throughput problem. In this section, we

show how solutions to the response-time problem can be used to

solve this new problem in O(np2 log p) time. Our approach depends

on the fact that minimal response times behave monotonically with
respect to the throughput constraint.

Lemma 5.1 For any pipeline computation, let FA (p) be the min-

imal possible response time using p processors, given throughput
constraint X and the assumption of static processor-to-task mapping.
Then, for every fixed p, FA (p) is a monotone nondecreasing function

of x.

Proof: Let p be fixed. As before, let us be the minimum

number of processors required for all elemental tasks comprising

t, to meet throughput constraint X. For every t,, u,~(&) is clearly
a monotone nondecreasing function of X. Recall that Ix(p) is the

set of all assignments that meet the throughput constraint X using no
more than p processors. Whenever X1 < X2, we must have 7~~ (p) C

7~~ (p), because of the monotonicity of each us. Because F,J((P)
is the minimum cost among all assignments in Ix(p), we have
.?=A~ (p) 5 3x, (p). This result can be viewed as a generalization of

Bokhari’s [4] graph-based argument for monotonicity of the minimal
“sum” cost, given a “bottleneck” cost. 0

Suppose that for a given pipeline computation, we are able to solve

for FAX(P), given any X. The set of all possible throughput values

is {l/fZ(~)I i = l,...,n;x = l,...,p}. O(pnlog(pn)) time is

needed to generate and sort them. Given response time constraint 5
and tentative throughput X, we may determine whether F,I((P) 5 5.

Because FA(P) is monotone in X, we use a binary search to identify
the greatest X = X* for which FA* (p) 5 9. The associated processor

assignment maximizes throughput (by using p processors), subject
to response-time constraint +. Because there are O(logp) solutions
of the response-time problem, the complexity for the throughput

problem is O(np’ log p).

VI. AN APPLICATION

In this section, we report the results of applying our methods to a

motion estimation system in computer vision. Motion estimation is

an important problem in which the goal is to characterize the motion

of moving objects in a scene. From a computational point of view,
continually generated images from a camera must be processed by a
number of tasks. A primary goal is to ensure that the computational
throughput meets the input data rate. Subject to this constraint, we

desire that the response time be as small as possible. The application
itself is described in detail in [8], [21]. It should be noted that there are
many approaches to solving the motion estimation problem. We are

interested only in an example, and therefore the following algorithm is
not presented as the only or best way to perform motion estimation. A

comprehensive digest of papers on the topic of motion understanding
can be found in [22]. The following subsection briefly describes the

underlying computations.

A Motion Estimation System

Our example problem is a linear pipeline with nine stages, with
each stage being a task. The data sets input to the task system are

a continuous stream of stereo image pairs of a scene containing
the moving vehicles. The tasks perform well-known vision com-

__..
----I- -

IEEETRANSACTIONS ON PARALLEL ANDDISTFUBUTED SYSTEMS,VOL.5,NO.4,APRIL 1994

TABLE V
AN EXAMPLE PROCESSOR ALLOCATION FOR MINIMIZING RF-WINSE TIME FOR SEVERAL SIZES OF INTEL iPSCR

Multiprocessor size (number of processors)

32 64 128 256

Task

Number

processor

assignment
Time (in s)

processor Procesor

assignment
Time (in s)

Processor

assignment
Time (in s)

assignment
Time (in s)

1 8 13.88
2 1 6.15

3 1 0.32

4 2 12.52

5 8 13.88

6 1 6.15

7 1 0.32

8 8 17.50

9 2 9.15

16

2

6

16

2

1

16 I

4

7.07 32 3.78 64 2.12

3.07 8 0.81 16 0.40

0.32 1 0.32 2 0.16

4.77 8 3.22 16 1.76

7.07 32 3.78 64 2.12

3.07 6 1.19 12 0.60

0.32 1 0.32 2 0.16

10.30 32 6.36 64 4.13

4.58 8 2.39 16 1.52

MRT 79.87 40.57 22.18 12.98

MRT = minimum response time.

Specified throughput = 0.05 frames/s.

Number of processors allocated to individual tasks are shown.

putations such as 2-D convolution, extracting zero crossings and

feature matching, similar to computations in the Image Understanding

Benchmark [35]. All nine tasks were implemented on a distributed
memory machine, the Intel iPSU2 hypercube [5]. We applied the

system above to a problem using outdoor images [8]. The relevant
response-time functions are shown in Table IV for selected processor

sizes. Measurements include all overheads, computation times, and
communication times.

Experimental Results

We applied the series task algorithm using Table IV, for a range
of possible throughput constraints. As an example of the output
generated by the algorithm, Table V shows the processor assignment

for individual tasks for various sizes of the Intel iPSC/2. The last row
of the table also shows the minimum response time, given constraint

X = 0.05 frames/s. The response times shown are those predicted

by our algorithms. Nevertheless, observed response times using the

computed allocations were observed to be in excellent agreement
with these figures: The relative error rate was less than 5% in all
measurable cases.

The processor allocation behavior is intuitive. Tasks ti, t5, and

ts have much larger response times than the others. As increasingly

more processors are allocated to the problem, these three tasks receive
the lion’s share of the additional processors.

Fig. 3 illustrates the tension between response time and throughput
by plotting the minimal response-time function for the entire pipeline

computation as a function of the throughput constraint. For any
problem, there will be a throughput Xmin achieved when processors

are allocated entirely to minimize response time. The flat region of the

curve lies over throughput constraints X 5 Xmin. The response-time
curve turns up, sometimes dramatically, as the throughput constraint
moves into a region where response time must be traded off for

increased throughput.

VII. SUMMARY

In this short note, we consider performance optimization of series-

parallel pipelined computations. The problem arises when a system of

individually parallelizable tasks is to be applied repeatedly to a long
sequence of data sets. Given a large supply of processors, parallelism

Comparison of response times for
128 and 256 pmcessor hypemubes

30-

.~ . - ,//@ --a-! P=128

- P=256

P
20-

B .

lo! .,.,.,.I
0.0 0.1 0.2 0.3 0.4

specified throughput

Fig. 3. Minimal response time as a function of the throughput constraint.

can be exploited, both by pipelining the data sets through the task
structure and by allocating multiple processors to individual tasks.
We treat the dual problems of minimizing response time subject

to a throughput constraint and maximizing throughput subject to a

response-time constraint.
We showed that problems with p processors and n tasks satisfying

series-parallel precedence constraints can be solved in low-order

polynomial time: response time (subject to a throughput constraint)
is minimized in O(np*) time, and throughput (subject to a response
time constraint) is maximized in O(np* logp) time. To place the

work in a realistic setting, we evaluated the performance of our

assignment algorithms on the problem of stereo image matching. The

results predicted by our analysis were observed to be very close to
results measured on actual systems.

Future endeavors include the provision of algorithms for general
task structures and investigation of dynamic assignment algorithms.

Also, we believe that our results can be extended to task models that
include “branching,” such as those encountered with CASE state-

ments. This feature essentially forces us to treat response times and

throughputs as being stochastic. We also believe that our approach can

be extended to consider the effects of certain types of communication
contention.

IEEETRANSACTIONS ONPARALLELANDDISTRIBUTEDSYSTEMS,VOL.5,NO.4.APRIL 1994

Ul

[31

[41

PI

161

r71

181

191

UOI

1111

WI

1131

[I41

1151

1161

u71

WI

1191

[201

[211

r221

[231

r241

[251

[261

REFEXENCES

M. J. Berger and S. H. Bokhari, “A partitioning strategy for nonuniform
problems on multiprocessors,” IEEE Trans. Cornput., vol. C-36, pp.
570-580, May 1987.
J. Blazewicz, M. Drabowski, and J. Welgarz, “Scheduling multipro-
cessor tasks to minimize schedule length,” IEEE Trans. Compur., vol.
C-35, pp. 389-393, May 1986.
S. H. Bokbari, “A shortest tree algorithm for optimal assignments across
space and time in a distributed processor system,” IEEE Trans. Sofrware
Eng., vol. SE-7, no. 6, pp. 583-589, Nov. 1981.

“Partitioning problems in parallel, pipelined, and distributed
GpLting,” IEEE Trans. Cornput., vol. 37, pp. 48-57, Jan. 1988.
L. Bomans and D. Roose, “Benchmarking the (iPSCR] hypercube
multiprocessor,” Concurrency: Practice and Experience, vol. 1, pp.
3-18, Sept. 1989.
M. Y. Chan and F.Y.L. Chin, “On embedding rectangular grids in
hypercubes,” IEEE Trans. Compuf., vol. 37, pp. 1285-1288, Oct.
1988.
H-A. Choi and B. Narabari, “Algorithms for mapping and partitioning
chain structured parallel computations,” Proc. 1991 lnt. Conj: Parallel
Processing, 1991, pp. 625-628.
A.N. Choudhary and J. H. Patel, “Parallel architectures and parallel
algorithms for integrated vision systems” (video images obtained from
the Army Research Office). Boston: Kluwer, 1990.
E. Denardo, “Dynamic Programming: Models and Applications. En-
glewood Cliffs, NJ: Prentice-Hall, 1982.
K. Dussa, B. Carlson, L. Dowdy, and K.-H. Park, “Dynamic partitioning
in a transputer environment,” Proc. 1990 ACM SIGMETRICS Conf,
1990, pp. 203-213.
J. Du and Y-T. Leung, “Complexity of scheduling parallel task sys-
tems,” SIAM J. Discrete Math. vol. 2, pp. 473-487, Nov. 1989.
B. Fox, “Discrete optimization via marginal analysis,” Management
Sci., vol. 13, pp. 909-918, May 1974.
G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker,
Solving Problems on Concurrent Processors, Vols. I and II. Englewood
Cliffs, NJ: Prentice-Hall, 1990.
J. P. Hayes, T.N. Mudge, Q. F. Stout, and S. Colley, “Architecture of
a hypcrcube supercomputer,” Proc. 1986 lnt. Con& Parallel Processing,
1986, pp. 653-660.
C.-T. Ho and S. L. Johnsson, “On the embedding of arbitrary meshes in
Boolean cubes with expansion two dilation two,” Proc. 1987 In?. Conf:
Parallel Processing, 1987, pp. 188-191.
E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Ch.
2. New York: Computer Science Press, 1985.
0. H. Ibarra and S. M. Sohn, “On mapping systolic algorithms onto the
hypercube,” IEEE Trans. Parallel Distrib. Syst., vol. 1, pp. 48-63, Jan.
1990.
R. K&aid, D. M. Nicol, D. Shier, and D. Richards, “A multistage linear
array assignment problem,” Operations Res., vol. 38, pp. 993-1005,
Nov.-Dec. 1990.
C.-T. King, W.-H. Chou, and L. M. Ni, “Pipelined data-parallel algo-
rithms,” IEEE Trans. Parallel Distrib. Syst., vol. 1, pp. 470-499, Oct.
1990.
R. Krishnamurti and Y. E. Ma, “The processor partitioning problem in
special-purpose partitionable systems,” Proc. 1988 lnt. Conf: Parallel
Processing, 1988, vol. 1, pp. 434-443.
M.K. Leung and T. S. Huang, “Point matching in a time sequence
of stereo image pairs,” Tech. Rep., CSL, Univ. of Ill. at Urbana-
Champaign, Urbana, IL, 1987.
W.N. Martin and J.K. Aggarwal, I?&.. Motion Understanding, Robot
and Human &ion. Boston: Kluwer, 1988.
R.G. Melhem and G.-Y. Hwang, “Embedding rectangular grids into
square grids with dilation two,” IEEE Trans. Cornput., vol. 39, pp.
1446-1455, Dec. 1990.
D. M. Nicol and D. R. O’Hallaron, “Improved algorithms for mapping
parallel and pipelined computations,” IEEE Trans. Cornput., vol. 40, pp.
295-306, Mar. 1991.
C. D. Polychronopoulos, D. J. Kuck, and D.A. Padua, “Utilizing multi-
dimensional loop parallelism on large scale parallel processor systems,”
IEEE Trans. Cornput., vol. 38, pp. 1285-1296, Sept. 1989.
P. Sadayappan and F. Ercal, “Nearest-neighbor mapping of finite

element graphs onto processor meshes,” IEEE Trans. Cornput., vol. 36,
no. 12, pp. 1408-1424, Dec. 1987.

[27] D. S. Scott and R. Brandenburg, “Minimal mesh embeddings in binary
hypercubes,” IEEE Trans. Cornput., vol. 37, pp. 1284-1285, Oct. 1988.

[28] K. Sevcik, “Characterizations of parallelism in applications and their
use in scheduling,” Proc. 1989 ACM SIGMETRICS Con$, 1989, pp.
171-180.

[29] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, H. E. Smalley,
and S.D. Smith, “PASM: A partitionable SlMD/MIMD system for
image processing and pattern recognition,” IEEE Trans. Cornput., vol.
C-30, no. 12, pp. 934-947, Dec. 1981.

[30] C.V. Stewart and C.R. Dyer, “Scheduling algorithms for PIPE
(pipelined image-processing engine),” J. Parallel Distrib. Computing,
vol. 5, pp. 131-153, 1988.

[31] H. Stone, “Multiprocessor scheduling with the aid of network flow
algorithms,” IEEE Trans. Sofhoare Eng., vol. SE-3, no. 1, pp. 85-93,
Jan. 1977.

[32] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal partitioning of cache
memory,” IEEE Trans. Cornput., vol. 41, pp. 1054-1068, Sept. 1992.

[33] D. Towsley, “Allocating programs containing branches and loops within
a multiple processor system,” IEEE Trans. Software Eng., vol. SE-12,
no. 10, pp. 1018-1024, Oct. 1986.

[34] J. Valdes, R. E. Tarjan, and E. L. Lawler, “The recognition of series
parallel digraphs,” SIAM J. Cornput., vol. 11, no. 2, pp. 298-313, May
1982.

[35] C. Weems, A. Hanson, E. Riseman, and A. Rosenfeld, “The DARPA
image understanding benchmark for parallel computers,” J. Parallel
Distrib. Computing, vol. 11, no. 1, pp. l-7, Jan. 1991.

Allocating Tree Structured Programs in a Distributed
System with Uniform Communication Costs

Alain Billionnet

Abstract- We study the complexity of the problem of allocating m
modules to n processors in a distributed system to minimize total com-
munication and execution costs. When the communication graph is a
tree, Bokhari has shown that the optimum allocation can be determined
in O(mr?) time. Recently, this result has been generalized by FernBndez-
Baca, who has proposed an allocation algorithm in O(mnk+‘) when the
communication graph is a partial k-tree. We show that in the case where
communication costs are uniform, the module allocation problem can be
solved in O(mn) time if the communication graph is a tree. This algorithm
is asymptotically optimum.

Index Terms-Algorithm, complexity, computer network, distributed
system, optimization, task allocation, tree

I. INTRODUCTION

An important problem arising in distributed computer systems is

the so-called task allocation problem. We are given a program with

m modules, each of which must be assigned to one of n nonidentical

processors. We assume that modules are numbered from 1 to m

and that processors are numbered from 1 to n. Together with the

set of modules, we have an undirected, connected graph called the
communication graph, whose vertices are the modules of the program

and which is such that there is an edge between two vertices if the
corresponding modules communicate.

Manuscript received February 9, 1993.
The author is with CEDRIC, Institut d’Informatique d’Enterprise, 91025

Evry cedex, France.
IEEE Log Number 9215380.

1045-9219/94$04.00 0 1994 IEEE

