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Abstract-The availabiity of large-scale multitasked parallel archi- 
tectures introduces the following processor assignment problem. We are 
given a long sequence of data sets, each of which is to undergo processing 
by a collection of tasks whose intertask data dependencies form a series- 
parallel partial order. Each individual task is potentially parallelizable, 
with a known experimentally determined execution signature. Recog- 
nizing that data sets can be pipelined through the task structure, the 
problem is to find a “good” assignment of processors to tasks. Two 
objectives interest us: minimal response time per data set, given a 

\ 
L-- throughput requirement, and maximal throughput, given a response time 

I I ) Time 

10-2 
requirement, Our approach is to decompose a series-parallel task system 

10-i into its essential “serial” and “parallel” components; our problem admits 
tbe independent solution and recomposition of each such component. We 
provide algorithms for the series analysis, and use an algorithm due to 
Krislmamurti and Ma for the parallel analysis. For a p processor system 
and a series-parallel precedence graph with n constituent tasks, we give a 
O(np’) algorithm that finds the optimal assignment (over a broad class 
of assigmnents) for tbe response time optimization problem; we find the 
assignment optimizing the constrained throughput in 0( up* log p) time. 
Our techniques are applied to a task system in computer vision. 

Fig. 10. Reliability comparison among DSCCCq(l0, Q’s, 1 5 i 5 5. (The 
dashed curve denotes the DSCCC(9, 8) result.) 

and 2) PE’s in dimension i are equipped with extra links that emulate 
dimensions i - 1 and i - 2 connections. The resulting structure is 

expected to have higher reliability than the DSCCCS, but every PE 

then needs one more extra port, and its layout takes larger area. It 

may be interesting to contrast the cost-effectiveness of these two 
structures. 

In recent years, much research has been devoted to the problem 
of mapping large computations onto a system of parallel processors. 
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multiple tasks, we may exploit parallelism both by pipelining data 
sets through the task structure and by applying multiple processors 

to individual tasks. 

There is a fundamental trade-off between assigning processors 

to maximize the overall throughput (measured as data sets per 
unit time), and assigning processors to minimize a single data 

set’s response time. We manage the trade-off by maximizing one 

aspect of performance subject to the constraint that acertain level 
of performance must be achieved in the other aspect? Under the 
assumptions that each of n tasks is statically assigned a subset 

of dedicated processors and that an individual task’s response- 

time function completely characterizes performance (even when 
using shared resources such as the communication network), we 

show that p processors can be assigned to a series-parallel task 

structure in 0(np2) time to minimize response time while achieving 
a given throughput. We are also able to find the assignment that 

maximizes throughput while achieving a given minimal response 

time, in O(np’ logp) time. 

The assumption of a static assignment arises naturally in real-time 
applications, where the overhead of swapping executable task code in 

and out of a processor’s memory threatens performance. Without this 

assumption, the optimization problem becomes much more difficult. 
Our method involves decomposing a series-parallel graph into 

series and parallel components by using standard methods. We present 

algorithms for analyzing series components and use Krishnamurthy 

and Ma’s [20] algorithm to analyze the parallel components. 
We assume that costs of communication between tasks are com- 

pletely captured in the given response-time functions. Thus, our 

techniques can be expected to work well on compute-bound task 
systems. Our example application is representative of this class, 

having a computation to communication ratio of 100. Our techniques 

may not be applicable when communication costs that depend on 
the particular sets of processors assigned to a task (e.g., contention) 

contribute significantly to overall performance. 

A large literature exists on the topic of mapping workload to 

pcessors (see, e.g., VI, [31, [41, WI, [151, [171, WI, ~231, [241, 
[26], [27], [31], [33]). A new problem has recently emerged: that 
of scheduling tasks on multitasked parallel architectures where each 

task can be assigned a set of processors. Some formulations consider 
scheduling policies with the goal of achieving good average response 

time and good throughput, given an arrival stream of different, 
independent parallel jobs (see, e.g., [28]). Another common objec- 

tive, exemplified in [2], [ll], [20], [25], is to find a schedule of 
processor assignments that minimizes completion time of a single 

job executed once. The problem we consider is different from these, 

specifically because we have a parallel job that is to be repeatedly 
executed. We consider issues arising from our need to pipeline the 

repeated executions to get good throughput, as well as apply parallel 
processing to the constituent tasks to get good per-execution response 

time. Yet another distinguishing characteristic of our problem is an 
underlying assumption that a processor is statically assigned to one 

task, with the implication that every task is always assigned at least 

one processor. 
Two previously studied problems are close to our formulation. The 

assignment of processors to a set of independent tasks is considered 

in [20]. The single objective is the minimization of the makespan, 
which 1) minimizes response time if the tasks are considered to be 
part of a single parallel computation, or 2) maximizes throughput 

if the tasks are considered to form a pipeline. The problem of 

assigning processors to independent chains of modules is considered 
in [7]. This assignment minimizes the response time if the component 

tasks are considered to be parallel, and maximizes the throughput 

if the component chains are considered to form pipelines. Pipeline 

TABLE I 
EXAMPLE RECWONSE TIME FUNCXONS SHOWING TASKS’ 

EXECUTION TME AS A FUNIXION OF THE NUMBER OF 

PROFESSORS USED (in s) 

tasks 

Number of processors 

12345678 

t1 29 16 11 9 7 6 4.5 4 

t2 90 50 20 15 12 10 9 9.5 

t3 80 43 18 14 11 9 8 8.5 

t4 20 12 10 9 8 7 6 5 

t5 15 10 7 5 4 3.5 3 2.5 

computations are also studied in [19], [30]. In [30], heuristics 
are given for scheduling planar acyclic task structures; in [19], a 
methodology is presented for analyzing pipeline computations using 
Petri nets together with techniques for partitioning computations. 

We have not discovered treatments that address optimal processor 
assignment for general pipeline computations, though our solution 

approach (dynamic programming) is related to those in [3] and [33]. 
This short note is organized as follows. Section II introduces 

notation and formalizes the response-time problem and the throughput 

problem. Section III presents our algorithms for series systems, and 

Section IV shows how to optimally assign processors to series-parallel 
systems. Section V shows how the problem of maximizing throughput 

subject to a response-time constraint can be solved by using solutions 
to the response-time problem. Section VI discusses the application of 

our techniques to an actual problem, and Section VII summarizes 
this work. 

II. PROBLEM DEFINITION 

We consider a set of tasks, to, ti, . . . , t,+i, that comprise a 

computation to be executed by using up to p identical processors 
on each of a long stream of data sets. Every task is applied to every 

data set. We assume that the tasks have a series-parallel precedence 

relation constraining the order in which we may apply tasks to a 
given data set. Tasks unrelated in the partial order are assumed to 
process duplicated copies (or different elements) of a given data set. 

Under these assumptions, we may pipeline the computation so that 
different tasks are concurrently applied to different data sets. 

Each task is potentially parallelizable. For each t,, we let fi (m) be 
the execution time of t; using rr identical processors. fi is called a 

response-time function (also known as an execution signature [lo]). 

We assume that fa and fn+i are dummy tasks that serve, respectively, 
to identify the initiation and completion of the computation. Corre- 
spondingly, we take fa(n) = f”+i(n) = 0 for all 7~. fi(0) = co, 
however, for all i = l,... , n. These conditions ensure that no 

processor is ever assigned to to or t,+i , and that at least one processor 
is assigned to every other task. 

An example of the response-time functions for a computation with 

five tasks on up to eight processors is shown in Table I. Each row 
of the table is a response-time function for a particular task. Observe 
that individual functions need not be convex or monotonic. 

We may describe an assignment of numbers of processors to each 

task by a function A. A(i) gives the number of processors statically 

and exclusively allocated to t,. A feasible assignment is one where 
Cy=‘=, A(i) 5 p and A(i) > 0 for i = 1,. . . , n. 

Given A, t, ‘s execution time is fZ (A(i)), and the maximal data 

set throughput is A(A) = max;{f;(A(i))-l}. The response time for 

a data set is obtained by computing the length R(A) of the longest 
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TABLE II 
RESPONSE-TIME FLJNCUON Fl FOR PARALLEL TASK q 

Number of processors 
Function 

1 2 3 4 5 6 I 8 

fz (for task tz) 90 50 20 15 12 10 9 9.5 

f3 (for task tg) 80 43 18 14 11 9 8 8.5 

Fl (for task ~1) co 90 80 50 43 20 18 15 

Fig. I. Example of series-parallel task system T. 

path through the graph where each t, is a node weighted by f,(A(i)) 
and the edges are defined by the series-parallel precedence relation. 

Given some throughput constraint X and processor count q, we 
define 5 (q) to be the set of all feasible assignments A that use no 
more than q processors, and achieve A(A) 2 X. The response-time 
problem is to find FA (p), the minimum response time over all feasible 

assignments in Ix(p), that is, the response time for which there is 
an assignment A for which R(A) is mimimal over all assignments 

with p or fewer processors that achieve throughput X or greater. This 

problem arises when data sets must be processed at least as fast 
as a known rate X to avoid losing data. We wish to minimize the 

response time among all those assignments that achieve throughput 
X. Similarly, given response time constraint y and processor count 

q. we define R-,(q) to be the set of all feasible assignments A using 
no more than q processors and achieving R(A) 5 y. The throughput 
problem is to find A E R,(p) for which A(A) is maximized. This 

problem arises in real-time control applications, where each data set 
must be processed within a maximal time frame in order to meet 
processing deadlines. We focus on solutions to the response-time 
problem first, and later show how these may be used to solve the 

throughput problem. 
Because a response-time function completely defines a task, el- 

emental or composite, we also use the term “task” to refer to 

compositions of the more elemental tasks t;. Let T; denote such a 
composite task, and let F, be its optimal response-time function. Our 
general approach is illustrated by an example. Consider the series- 
parallel task T in Fig. 1 with the response-time functions given in 

Table I (here, to and &j are dummy tasks). We may think of tz and 
ts as forming a parallel subtask. Call it 71. Given the response-time 
functions for tz and ts, we will construct an optimal response-time 

function called Fl for 71, after which we need never explicitly 

consider tl or tz separately from each other; FI completely captures 
what we need to know about both of them. Next we view 71 and 
tl as a series task. Call it rz, and compute the optimal response- 

time function for 7~. The process of identifying series and parallel 

subtasks and constructing response-time functions for them continues 
until we are left with a single response-time function that describes 
the optimal behavior of T. By tracking the processor assignments 

necessary to achieve the optimal response times at each step, we 

are able to determine the optimal processor allocations for T. A 
solution method for parallel tasks has been given in [20]. We present 

algorithms for series tasks. 
We will assume that every response-time function is monotone 

nonincreasing, because as argued in [20], any other response-time 
function can be made decreasing by disregarding those assignments 
of processors that cause higher response times. Also, observe that 

response-time functions may include inherent communication costs 

due to parallelism, as well as the communication costs that are suf- 
fered by communicating with predecessor and successor tasks. These 

assumptions are reasonable when the communication bandwidth is 

sufficiently high for us to ignore effects due to contention between 
pairs of communicating tasks. Our methods may not produce good 
results when this assumption does not hold. 

III. INDIVIDUAL PARALLEL TASKS AND SERIES TASKS 

The problem of determining an optimal response-time function for 
parallel tasks has already essentially been solved in the literature [20]. 

We describe this solution briefly. Let tl, . . . , tk be the tasks used to 
compose a parallel task 7. For each t,, we know UX(&), the minimum 
number of processors needed so that every elemental task involved in 

t; has a response time no greater than l/X. We initialize by allocating 

us processors to each t;. If we run out of processors first, 

then no processor allocation can meet the throughput requirement. 
Otherwise, the initial allocation uses the fewest possible number of 

processors that do meet this requirement.. We then incrementally add 
the remaining processors to tasks in such a way that at each step, 
the response time (the maximum of task response times) is reduced 
maximally. This algorithm has an O(p log n) time complexity. 

Series task structures are interesting in themselves, because many 

pipelines are simple linear chains [ 191. We first describe an algorithm 
that constructs the optimal response-time function FA for a linear 

task structure T when each function f;(x) is convex in Z. Although 
convexity in elemental functions is intuitive, nonconvex response- 

time functions arise from parallel task compositions. Consequently, 

a different algorithm for series compositions of nonconvex response- 
time functions is developed later. 

Like the parallel composition algorithm, we first assign the minimal 
number of processors needed to meet the throughput requirement. 

The mechanism for this is identical. Suppose that this step does 
not exhaust the processor supply. Define Z; to be the number of 
processors currently assigned to t;, initialize Z; = ux (t;), and define 
y = Cy=‘=, L; to be the total number of processors already allocated. 

We then set ;F~(z) = 03 for all z < y to reflect an inability to meet 
the throughput requirement, and set F,J(Y) = cy=‘=, fi(~%). Next, 
for each t;, compute d(i,ri) = f;(ei + 1) - f;(~;), the change in 

response time achieved by allocating one more processor to t, . Build 
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a max-priority heap [16] where the priority of ti is ]d(i,xi)]. Finally, 

enter a loop where, on each iteration, the task with highest priority 
is allocated another processor, its new priority is computed, and the 
priority heap is adjusted. We iterate until all available processors have 

been assigned. Each iteration of the loop allocates the next processor 
to the task that stands to benefit most from the allocation. When the 
individual task response functions are convex, then the response-time 

function FA greedily produced is optimal: The algorithm above is 

essentially one due to Fox [ 121 as reported in [32]. Simple inspection 

reveals that the algorithm has an O(p log n) time complexity. Unlike 
the similar algorithm for parallel tasks, correctness here depends on 
convexity of component task response times. 

The need to treat nonconvex response-time functions arises from 
the behavior of composed parallel tasks. Return to our example in 
Fig. 1, and consider the parallel composition 71 of elemental tasks 

tz and t3, with throughput requirement X = 0.01. The response-time 
function FI is shown in Table II. Note that FI is not convex, even 
though fa and f3 are. This nonconvexity is due to the peculiar nature 
of the maximum of two functions and cannot be avoided when dealing 

with parallel task compositions. We show below that nonconvexity 
can be handled, with an additional cost in complexity. 

We begin as before, allocating just enough processors so that the 
throughput constraint is met. Assuming so, for any j = 1, ... , n, 

we denote the subchain comprised of tl, . . . , tj as task T3, and 
compute its optimal response-time function, Cj, subject to throughput 

constraint X. By using the principle of optimality [9], we write a 
recursive definition for ux (Ti) and C,(Z). 

ux(Tj) = 

{ 

uA(tl) ifj = 1 

ux(tj) + ux(TJ--l) otherwise 

C,(x) = 

1 

fl (xl ifj = 1 

uA(tj)ji$tuA(Tjel) UAi) + C~-I(X - 91 oh+e. 

The dynamic programming equation is understood as follows. 
Suppose that we have already computed the function C, _ 1. This 

implicitly asserts that we know how to optimally allocate any number 
y 5 p processors to Tj-1. Next, given 2 processors to distribute 

between tasks t, and T3-l, we try every combination subject to 
the throughput constraints: i processors for t,, and x - i processors 

for Tj--1. The principle of optimality tells us that the least-cost 
combination gives us the optimal assignment of I processors to Tj. 

Because the equation is written as a recursion, the computation will 
actually build response time tables from the bottom up, starting with 

task tl in the first part of the equation. 
This procedure requires O(np’) time. We have been unable to find 

a solution that gives better worst-case behavior in all cases. Some of 
the difficulties one encounters may be appreciated by study of our 
previous example. Consider the construction of TZ, comprised of the 

series composition of t i and ri . As before, let FI denote the response- 
time function for ri. Table III gives the values of fi(t~) + FI (u) 
for all 1 5 u, v < 8 with u + u 5 8. The set of possible sums 
associated with allocating a fixed number of processors x lie on 

an assignment diagonal moving from the lower left (assign z - 1 

processors to 71, and assign one to ti) to the upper right of the table 
(assign one processor to rl, and assign z - 1 to tl), illustrated by 
use of a common typeface on a diagonal. Brute force computation 

of TZ(X) consists of generating all sums on the associated diagonal 

and choosing the allocation associated with the least sum. In the 
general case, this is equivalent to looking for the minimum of a 

function known to be the sum of a function that decreases in i (e.g., 

fi (i)) and one that increases (e.g., FI (Z - i)). Unlike the case when 

TABLE III 
SUM OF REWINSE TIME FUNCTIONS fl AND Fl 

fl(l) h(2) h(3) h(4) h(5) h(6) h(7) 
29 16 11 9 7 6 4.5 

FI(l)=ca cc ca co co 0~) co 03 

FI(2) = 90 119* 106' 101 99 97 96 

Fl(3) = 80 109 96 91 89 87 

Fl(4) = 50 79* 66* 61 59 

F](5) = 43 72 59 54 

FI (6) = 20 49’ 36* 

Fl(7) = 18 47 

* = minimum value on each assignment diagonal. 

these functions are known to be convex as well, in general, their 
sum does not have any special structure that we can exploit; the 
minimum can be achieved anywhere, implying that we have to look 

for it everywhere. It would seem, then, that dynamic programming 

may offer the least-cost solution to the problem. 
We note in passing that a straightforward optimization may reduce 

the running time, but does not have a better asymptotic complexity. 
If both functions being summed are convex, then the minimum 

values on adjacent assignment diagonals must be adjacent in a row 
or column. This fact can considerably accelerate the solution time, 
because, given the minimum on the x-processor assignment diagonal, 

we can find the minimum on the (x + 1)-processor diagonal by 
generating and comparing only two additional entries, (This is a 

consequence of the greedy algorithm described earlier.) Although 
we cannot, in general, assume that both functions are convex, we 

can view them as being piecewise convex. Thus, if tl is convex 
over [a, 211, and if 71 is convex over [c, d], then tl + ~1 is convex 

over [a, b] x [c, d], and we can efficiently find minima on assignment 
diagonals restricted to this subdomain. Working through the details, 

which are straightforward, one finds that the complexity of this 

approach is O(rnp), where r is the maximum number of convex 
subregions spanned by any given assignment diagonal. Of course, in 
the worst case T = O(p), leaving us still with an O(np’) algorithm. 

IV. SERIES-PARALLEL TASKS 

Algorithms for the analysis of series and parallel task structures 

can be used to analyze task structures whose graphs form series- 
parallel directed acyclic graphs. We show that the response-time 
function for any such graph (with n nodes) can be computed in 
O(np’) time. A number of different but equivalent definitions of 

series-parallel graphs exist. The one we use is taken from [34], in 

which a series-parallel directed acyclic graph (DAG) can be parsed 

as a binary decomposition tree (BDT) in time proportional to the 
number of edges. The leaves of such a tree correspond to the DAG 

nodes themselves, and internal tree nodes describe either parallel (P) 
or series (S) compositions. Fig. 2 illustrates the BDT (labeling S and 
P nodes by task names used in discussion) corresponding to the task 
in Fig. 1. 

The structure of a BDT specifies the precise order in which we 

should apply our analyses. The idea is to build up the overall optimal 
response-time function from the bottom up. Conceptually, we mark 
every BDT node as being computed or not, with leaf nodes being 
the only ones marked initially. We then enter a loop where in each 

iteration, we identify an unmarked BDT node, whose children are 
both marked. We apply a series composition or parallel composition 

to those childrens’ response-time functions, depending on whether 

the node is of type S or P, and mark the node. The algorithm ends 

when the root node is marked. 
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TABLE IV 
COMPLE~ON TIMES FOR INDIVIDUAL TASKS ON THE INTEL iPSC/2 OF VARIOUS SIZES (in s) 

Number 

of 
Response times for individual tasks 

Processes Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 

2 

4 

8 

16 

32 

64* 

128* 

256* 

109.00 6.15 

54.16 3.07 

27.51 1.58 

13.88 0.81 

7.01 0.40 

3.78 0.20 

2.12 0.11 

1.25 0.06 

0.77 0.04 

0.32 

0.16 

0.081 

0.042 

0.022 

0.012 

0.007 

24.67 109.0 6.15 0.320 129.02 1 18.20 

12.52 54.76 3.07 0.160 67.70 9.15 
6.32 27.51 1.58 0.081 34.22 4.58 

3.22 13.88 0.81 0.042 17.50 2.39 

1.76 7.07 0.40 0.042 10.30 1.52 

1.01 3.78 0.20 0.012 6.36 1.01 

0.61 2.12 0.11 0.007 4.13 0.71 

0.38 1.25 0.06 0.004 2.81 0.52 

0.26 0.77 0.77 0.040 0.002 0.40 

* indicates extrapolated values. 

P(74) 

s (72) t4 

A 

t1 p (71) 

/y 

t2 t3 

Fig. 2. Binary decomposition tree. 

In the example, ~1’s response-time function is generated by using 
the parallel algorithm on t2 and t3; the series composition is applied 

to tl and ~1 (for composite task TZ), which is then composed via 

another series composition with t4. creating 5; and, finally, t5 is 

combined via a parallel composition with 7s to create the response- 
time function for the overall task structure. At each step, one must 
record the actual number of processors assigned to each task in order 

to compute the optimal assignment. This is straightforward and needs 
no discussion. 

From the above, we see that the cost of determining the optimal 

assignment from a BDT is O(np2), because every response-time 

function composition has a worst-case cost of O(p2) and there are 
n - 1 such compositions performed. 

V. THE THROUGHPUT PROBLEM 

Real-time applications often require that the processing of every 

data set meet a response-time deadline. At system design time, it 

becomes necessary to assess the maximal throughput possible under 
the constraint. This is our throughput problem. In this section, we 

show how solutions to the response-time problem can be used to 

solve this new problem in O( np2 log p) time. Our approach depends 

on the fact that minimal response times behave monotonically with 
respect to the throughput constraint. 

Lemma 5.1 For any pipeline computation, let FA (p) be the min- 

imal possible response time using p processors, given throughput 
constraint X and the assumption of static processor-to-task mapping. 
Then, for every fixed p, FA (p) is a monotone nondecreasing function 

of x. 

Proof: Let p be fixed. As before, let us be the minimum 

number of processors required for all elemental tasks comprising 

t, to meet throughput constraint X. For every t,, u,~(&) is clearly 
a monotone nondecreasing function of X. Recall that Ix(p) is the 

set of all assignments that meet the throughput constraint X using no 
more than p processors. Whenever X1 < X2, we must have 7~~ (p) C 

7~~ (p), because of the monotonicity of each us. Because F,J((P) 
is the minimum cost among all assignments in Ix(p), we have 
.?=A~ (p) 5 3x, (p). This result can be viewed as a generalization of 

Bokhari’s [4] graph-based argument for monotonicity of the minimal 
“sum” cost, given a “bottleneck” cost. 0 

Suppose that for a given pipeline computation, we are able to solve 

for FAX(P), given any X. The set of all possible throughput values 

is {l/fZ(~)I i = l,...,n;x = l,...,p}. O(pnlog(pn)) time is 

needed to generate and sort them. Given response time constraint 5 
and tentative throughput X, we may determine whether F,I((P) 5 5. 

Because FA(P) is monotone in X, we use a binary search to identify 
the greatest X = X* for which FA* (p) 5 9. The associated processor 

assignment maximizes throughput (by using p processors), subject 
to response-time constraint +. Because there are O(logp) solutions 
of the response-time problem, the complexity for the throughput 

problem is O( np’ log p). 

VI. AN APPLICATION 

In this section, we report the results of applying our methods to a 

motion estimation system in computer vision. Motion estimation is 

an important problem in which the goal is to characterize the motion 

of moving objects in a scene. From a computational point of view, 
continually generated images from a camera must be processed by a 
number of tasks. A primary goal is to ensure that the computational 
throughput meets the input data rate. Subject to this constraint, we 

desire that the response time be as small as possible. The application 
itself is described in detail in [8], [21]. It should be noted that there are 
many approaches to solving the motion estimation problem. We are 

interested only in an example, and therefore the following algorithm is 
not presented as the only or best way to perform motion estimation. A 

comprehensive digest of papers on the topic of motion understanding 
can be found in [22]. The following subsection briefly describes the 

underlying computations. 

A Motion Estimation System 

Our example problem is a linear pipeline with nine stages, with 
each stage being a task. The data sets input to the task system are 

a continuous stream of stereo image pairs of a scene containing 
the moving vehicles. The tasks perform well-known vision com- 

__.. 
----I- - 
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TABLE V 
AN EXAMPLE PROCESSOR ALLOCATION FOR MINIMIZING RF-WINSE TIME FOR SEVERAL SIZES OF INTEL iPSCR 

Multiprocessor size (number of processors) 

32 64 128 256 

Task 

Number 

processor 

assignment 
Time (in s) 

processor Procesor 

assignment 
Time (in s) 

Processor 

assignment 
Time (in s) 

assignment 
Time (in s) 

1 8 13.88 
2 1 6.15 

3 1 0.32 

4 2 12.52 

5 8 13.88 

6 1 6.15 

7 1 0.32 

8 8 17.50 

9 2 9.15 

16 

2 

6 

16 

2 

1 

16 I 

4 

7.07 32 3.78 64 2.12 

3.07 8 0.81 16 0.40 

0.32 1 0.32 2 0.16 

4.77 8 3.22 16 1.76 

7.07 32 3.78 64 2.12 

3.07 6 1.19 12 0.60 

0.32 1 0.32 2 0.16 

10.30 32 6.36 64 4.13 

4.58 8 2.39 16 1.52 

MRT 79.87 40.57 22.18 12.98 

MRT = minimum response time. 

Specified throughput = 0.05 frames/s. 

Number of processors allocated to individual tasks are shown. 

putations such as 2-D convolution, extracting zero crossings and 

feature matching, similar to computations in the Image Understanding 

Benchmark [35]. All nine tasks were implemented on a distributed 
memory machine, the Intel iPSU2 hypercube [5]. We applied the 

system above to a problem using outdoor images [8]. The relevant 
response-time functions are shown in Table IV for selected processor 

sizes. Measurements include all overheads, computation times, and 
communication times. 

Experimental Results 

We applied the series task algorithm using Table IV, for a range 
of possible throughput constraints. As an example of the output 
generated by the algorithm, Table V shows the processor assignment 

for individual tasks for various sizes of the Intel iPSC/2. The last row 
of the table also shows the minimum response time, given constraint 

X = 0.05 frames/s. The response times shown are those predicted 

by our algorithms. Nevertheless, observed response times using the 

computed allocations were observed to be in excellent agreement 
with these figures: The relative error rate was less than 5% in all 
measurable cases. 

The processor allocation behavior is intuitive. Tasks ti, t5, and 

ts have much larger response times than the others. As increasingly 

more processors are allocated to the problem, these three tasks receive 
the lion’s share of the additional processors. 

Fig. 3 illustrates the tension between response time and throughput 
by plotting the minimal response-time function for the entire pipeline 

computation as a function of the throughput constraint. For any 
problem, there will be a throughput Xmin achieved when processors 

are allocated entirely to minimize response time. The flat region of the 

curve lies over throughput constraints X 5 Xmin. The response-time 
curve turns up, sometimes dramatically, as the throughput constraint 
moves into a region where response time must be traded off for 

increased throughput. 

VII. SUMMARY 

In this short note, we consider performance optimization of series- 

parallel pipelined computations. The problem arises when a system of 

individually parallelizable tasks is to be applied repeatedly to a long 
sequence of data sets. Given a large supply of processors, parallelism 

Comparison of response times for 
128 and 256 pmcessor hypemubes 

30- 

.~ . - ,//@ --a-! P=128 

- P=256 

P 
20- 

B . 

lo! .,.,.,.I 
0.0 0.1 0.2 0.3 0.4 

specified throughput 

Fig. 3. Minimal response time as a function of the throughput constraint. 

can be exploited, both by pipelining the data sets through the task 
structure and by allocating multiple processors to individual tasks. 
We treat the dual problems of minimizing response time subject 

to a throughput constraint and maximizing throughput subject to a 

response-time constraint. 
We showed that problems with p processors and n tasks satisfying 

series-parallel precedence constraints can be solved in low-order 

polynomial time: response time (subject to a throughput constraint) 
is minimized in O(np*) time, and throughput (subject to a response 
time constraint) is maximized in O(np* logp) time. To place the 

work in a realistic setting, we evaluated the performance of our 

assignment algorithms on the problem of stereo image matching. The 

results predicted by our analysis were observed to be very close to 
results measured on actual systems. 

Future endeavors include the provision of algorithms for general 
task structures and investigation of dynamic assignment algorithms. 

Also, we believe that our results can be extended to task models that 
include “branching,” such as those encountered with CASE state- 

ments. This feature essentially forces us to treat response times and 

throughputs as being stochastic. We also believe that our approach can 

be extended to consider the effects of certain types of communication 
contention. 
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Allocating Tree Structured Programs in a Distributed 
System with Uniform Communication Costs 

Alain Billionnet 

Abstract- We study the complexity of the problem of allocating m 
modules to n processors in a distributed system to minimize total com- 
munication and execution costs. When the communication graph is a 
tree, Bokhari has shown that the optimum allocation can be determined 
in O(mr?) time. Recently, this result has been generalized by FernBndez- 
Baca, who has proposed an allocation algorithm in O(mnk+‘) when the 
communication graph is a partial k-tree. We show that in the case where 
communication costs are uniform, the module allocation problem can be 
solved in O(mn) time if the communication graph is a tree. This algorithm 
is asymptotically optimum. 

Index Terms-Algorithm, complexity, computer network, distributed 
system, optimization, task allocation, tree 

I. INTRODUCTION 

An important problem arising in distributed computer systems is 

the so-called task allocation problem. We are given a program with 

m modules, each of which must be assigned to one of n nonidentical 

processors. We assume that modules are numbered from 1 to m 

and that processors are numbered from 1 to n. Together with the 

set of modules, we have an undirected, connected graph called the 
communication graph, whose vertices are the modules of the program 

and which is such that there is an edge between two vertices if the 
corresponding modules communicate. 
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