
ANZIAM J. 42 (E) ppC627–C652, 2000 C627

Optimal program execution reversal

Andreas Griewank∗ Andrea Walther∗

(Received 7 August 2000)

Abstract

For adjoint calculations, debugging, and similar purposes one may
need to reverse the execution of a computer program. The simplest
option of recording a complete execution log and then reading it back-
wards requires massive amounts of storage. Instead one may generate
the execution log piecewise by restarting the “forward” calculation
repeatedly from suitably placed checkpoints. Our goal is to minimize
the temporal and spatial complexity as measured by the number of
evaluation repeats and the number of checkpoints, respectively.

∗Institute of Scientific Computing, Technical University Dresden, D-01062 Dresden,
Germany. mailto:awalther@math.tu-dresden.de

0See http://anziamj.austms.org.au/V42/CTAC99/Grie for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

mailto:awalther@math.tu-dresden.de
http://anziamj.austms.org.au/V42/CTAC99/Grie

Contents C628

We present optimal checkpointing schedules for one-step and multi-
step evolutions. These might arise for example as discretizations of
odes by Euler’s methods or multi-step schemes, respectively. Fur-
thermore, we present parallel extensions, where auxiliary processors
perform the repeated forward evaluations such that one processor can
run backward without any interruption. For either case the length
of the evolution that can be reversed is shown to grow exponentially
with the number of checkpoints and either the number of repetitions
or the number of processors.

Contents

1 Introduction and Assumptions C629

2 Forward and Reverse Differentiation C632

3 The Abstract Reversal Problem C634
3.1 Serial Reversal Schedules C635
3.2 Parallel Reversal Schedules C638

4 Optimal Serial Schedules C641
4.1 Schedule Computation by Dynamic Programming C642
4.2 The Uniform One-Step Case C643
4.3 The Multi-Step Case . C644

1 Introduction and Assumptions C629

5 Optimal Parallel Schedules C646

6 Conclusion C650

References C650

1 Introduction and Assumptions

Our main motivation to consider program reversal schedules is the reverse
mode of Algorithmic, or Computational, Differentiation [6]. It involves a for-
ward sweep, where the trajectory of all intermediate states is usually stored,
and a return sweep where this information is used to propagate adjoint states
backward. The gradient of a scalar-valued function is yielded by the reverse
mode for no more than five times the operations count of evaluating the
function itself. This bound is completely independent of the number of in-
dependent variables.

However, the spatial complexity of the basic reverse mode is of the same
order as the temporal complexity of the evaluation of the underlying func-
tion, since the full trajectory of intermediate results need to be recorded.
Therefore, the practical use of the low temporal complexity of the reverse
mode seems to be severely limited by the potentially excessive amount of
memory required. Moreover, even if there is enough disc space to accom-
modatethe full trajectory, storing all intermediates on the way forward and

1 Introduction and Assumptions C630

then retrieving them on the way back may slow the calculations considerably.
Hence one may apply the checkpointing strategies developed below just to
stay within main memory. This may well speed up the overall calculation,
even though the operations count will be formally increased.

Algorithmic Differentiation (ad) is based on the observation that all func-
tion evaluations performed by a procedural language can be conceptionally
viewed as a sequence of transformations

zi = Fi(zi−1) for i = 1, . . . , l with zi ∈ Rn

where the components of zi represent all values in the programs data set at
stage i. In the simplest scenario only one scalar component is computed by
each transformation. We will refer to the loop as an explicit time evolution
on the state space Rn, starting from some initial z0 ∈ Rn. For simplicity,
we will assume here that all Fi are at least once continuously differentiable
at the arguments of interest. For what follows the individual transforma-
tions Fi need not be elementary at all but could represent subroutines whose
evaluation involves millions of arithmetic operations. For example, in an ex-
perimental implementation of checkpointing within the overloading package
adol-c [3] every ten thousand successive operations were combined to form
one time step Fi. Also, the discretization of an initial value problem by Eu-
ler’s method with fixed step size h leads to a recurrence whose time steps
would most likely be rather uniform with regards to computational cost. As
we will see such (near)-uniformity is quite desirable for our reversal purposes.
Possibly for reasons of stiffness one may prefer to use implicit numerical inte-
grators instead of explicit ones like Euler’s method mentioned above. Since

1 Introduction and Assumptions C631

they have to solve a nonlinear system of algebraic equations at each time step
the complexity measures may then vary widely as a function of the number of
iterations taken by the nonlinear solver in any particular time step. In any
case we may assume that the temporal complexity of the overall function
evaluation is roughly proportional to the number of time steps l.

Whereas we can cope with nonuniform step costs we always have to as-
sume that the memory requirement for storing the intermediate states zi

may be considered constant. Otherwise the checkpoint persistence principle
discussed in Section 4 does not apply. In practical application nonuniform
state sizes might come about, for example, through adaptive grid refinements
or through function evaluations that per se do not conform naturally to our
notion of a sequence of transformations on a state space of fixed dimension.
Assuming that the space size is constant we may measure the total mem-
ory requirement of a method in units of checkpoints, where one intermediate
state can be stored.

The paper is organized as follows. In Section 2 we explain why program
executions must be reversed for the efficient calculation of gradients and
adjoints. In Section 3 we formulate the resulting serial and parallel reversal
problem as a discrete optimization task. In Sections 4 and 5 we sketch the
essential characteristics of optimal serial and parallel reversal schedules under
certain assumptions on the problem parameters. The paper ends with a brief
conclusion section.

2 Forward and Reverse Differentiation C632

2 Forward and Reverse Differentiation

Let us denote the composition of the individual transformations Fi as the
function

F ≡ Fl ◦ Fl−1 ◦ · · · ◦ F2 ◦ F1 : Rn 7→ Rn .

From the chain rule it follows directly that

A ≡ ∂F (z)

∂z
= AlAl−1 . . . A2A1 ∈ Rn×n

where the Ai represent the individual Jacobians

Ai ≡ F ′
i (z) ≡ ∂

∂z
Fi(z)

∣∣∣∣
z=zi−1

∈ Rn×n

each of them evaluated at exactly the same point z as Fi(z). Now suppose
we are not interested in calculating the complete sensitivity information rep-
resented by A but only a directional derivative

żl =
d

dt
F (z0 + t ż0)

∣∣∣∣
t=0

.

Again by the chain rule we have to evaluate żi = Ai żi−1 for i = 1, . . . , l. The
intermediate vectors represent the directional derivatives of the intermediate
results with respect to the initial direction ż0. In meteorology this process
is referred to as evaluating the tangent linear model [9]. In ad the same

2 Forward and Reverse Differentiation C633

approach is simply called the forward mode. The final “tangent” żl represents
the sensitivity of all final state components with respect to variations of the
initial state z0 along the direction ż0.

A dual way of obtaining sensitivity information about the overall trans-
formation F is to select an adjoint vector z̄T

l ∈ Rn and then look for the
corresponding gradient

z̄0 =
∂

∂z
z̄l F (z)

∣∣∣∣
z=z0

∈ Rn .

Again using the chain rule we find that z̄i−1 = z̄i Ai for i = l, l− 1, . . . , 1 has
to be calculated. This process is called the reverse mode of ad because the
Jacobians Ai enter into the product in the opposite order in which they are
naturally generated.

Assuming that the given n-vectors ż0 and z̄l are dense and disallowing
exact cancellations we find that in either product evaluation each nonzero
entry of each Ai occurs exactly once as a factor in a multiplication, which
is followed by an addition. Hence the operations count for computing the
gradient z̄0 from z̄l is exactly the same as that for computing the tangent żl

from ż0. Moreover, when all Fi involve only one elementary function, one can
see quite easily that this operations count is only a small multiple of that for
evaluating F without any differentiation. Thus we obtain the truly amazing
result that not only tangents but also gradients have essentially the same
operations count as the underlying vector-function, irrespective of how many
variables there are. This crucial observation is still not widely appreciated.

3 The Abstract Reversal Problem C634

While the operations count of the reverse mode is surprisingly cheap there
is a downside, namely the need to somehow produce the intermediate states
zi in backward order for the evaluation of the local Jacobians Ai. The most
straightforward solution to this problem is to save the data required onto a
global stack. When each Fi involves only one elementary function the number
of double values that need to be stored on the stack is roughly equal to the
operations count. The evaluation of a nontrivial function F can involve an
enormous number of operations so that the size of the stack might grow to
several giga- or even tera-bytes.

3 The Abstract Reversal Problem

From now on we will represent the intermediate states zi simply by their
counters i ∈ N. Suppose at any stage of our calculation we have a finite
set Z ⊂ N of states that are stored somewhere in memory. In the situation
discussed above we can evaluate the state i whenever its predecessor i− 1 is
known and thus a member of the current Z. In view of multi-step methods
for the numerical integration of odes we consider the more general situation
where not just one but q ≥ 1 immediate predecessors [i − q, i− 1] ≡ [i − q, i)
must be contained in Z in order to allow the evaluation and thus the inclusion
of state i into Z. We refer to this action as advance to state i and associate
with it a certain cost τi. To get going at all we assume that the initial state
set is the interval Z0 = [0, q). Here and throughout [i, j] denotes a contiguous

3 The Abstract Reversal Problem C635

range of integers and [i, j) ≡ [i, j − 1].

The only other important action we may take is the removal of the last
and thus largest element m = max(Z) provided b ≥ 1 of its intermediate
predecessors are in Z. We call this action return at m and assume normally
b ≤ q. The inequality b < q arises for example in adjoints of multi-step
recurrences that depend only linearly on some of the previous states. The
cost associated with individual step reversals will be denoted by τ̄i. The aim
of the calculation is to return back to the beginning. Hence we require that
at the end always Z = [0, b).

At any stage we may release elements from the state set Z in order to
ensure that a certain uniform bound q + c on its cardinality |Z| is not ex-
ceeded. One may think of c as the number of checkpoints in “external”
memory while q reside in “internal” memory to facilitate the current compu-
tation. In order to force proper returns we disallow release of the currently
largest element of m = max(Z). Without loss of generality we may perform
all releases immediately after the states concerned are used for the last time
as arguments, i.e., as one of the q or b predecessors required in advances and
returns, respectively.

3.1 Serial Reversal Schedules

Any Z̃ that can be obtained from a given Z by performing an advance or a
return will be called a serial successor of Z. This relation will be denoted by

3 The Abstract Reversal Problem C636

Z → Z̃ and the associated cost cost(Z, Z̃) must be equal either to τi or to
τ̄i. A chain of such successions connecting the initial [0, q) to the final [0, b)
will be called a feasible serial reversal schedule

[0, q) ≡ Z0 → Z1 → · · · → Zk−1 → Zk ≡ [0, b)

with l ≡ max{i ∈ Zj | 0 ≤ j ≤ k} . The corresponding cost is naturally

t ≡
k−1∑
j=0

cost(Zj , Zj+1) .

Now we formulate the following optimization task.

For given q, b, c, l and the advancing costs τi for i = 1, . . . , l
find a reversal schedule Z0 → · · · → Zk = [0, b) that mini-
mizes t.

(1)

Here we have not mentioned the returning costs τ̄i because any optimal re-
versal schedule returns each step i for i = l, l−1, . . . , 1 exactly once. Further-
more in any optimal reversal schedule the maximal element mj = max(Zj) is
at first monotonically increasing towards its maximum l ≡ max(Zvertex) and
then it decreases (weakly) monotonically towards zero. Here we have labelled
the first state distribution at which l is attained as vertex set Zvertex and one
may assume also, that its immediate successor is obtained by the return at
l. An optimal reversal for the situation l = 16 and c = 3, b = 1 = q, with
uniform step complexity τi = τ̄i = 1 is displayed in Figure 1.

3 The Abstract Reversal Problem C637

1

1

16

10

20 40 60

l

t

Figure 1: Optimal Serial Schedule for c = 3 and l = 16

The solid horizontal lines represent checkpoints and the slanted ones ad-
vances. The dotted hooks at the end represent the last advance and the
subsequent return, both also requiring unit time by assumption. The vertex
distribution is Zvertex = {0, 7, 12, 16}, which here as always contains the max-
imal number of possible elements c+ q = 3+1 = 4. It is also typical even for
the parallel scenario considered later that the vertex distribution is reached
in an uninterrupted forward sweep of l advances that leaves c intermediate
states behind as checkpoints. The difficulty of the general combinatorial op-
timization problem (1) depends strongly on the parameters q, b, and whether
the advance costs τi are uniform or not. The simplest case q = b = 1 and
τi = τ was considered already by Griewank [4] and Grimm et al. [7]. The

3 The Abstract Reversal Problem C638

cases q = b = 1 with τi nonuniform or 1 ≤ b ≤ q with τi = τ have recently
been resolved quite satisfactorily in the thesis [10].

3.2 Parallel Reversal Schedules

When there is more than one processor available it seems natural to have
them perform some of the repeated advances concurrently. In contrast the
returns themselves cannot be parallelized, because they must happen in the
prescribed reverse order. However, it is sometimes possible to perform cer-
tain preparatory calculations that do not depend on the adjoints z̄i+1 and in
most cases one is forced to save certain intermediate quantities during the
last advancing step to i. Therefore, this last advance to any particular i is
sometimes called the recording step and its computational cost τ̂i may be
significantly higher than τi. If there are sufficiently many auxiliary proces-
sors we can organize a just-in-time delivery of the intermediate states i − 1.
Some of the processors perform the recording steps to i such that one special
processor can perform the returning steps at i for i = l, . . . , 1 without any
interruption. Thus the total runtime is given by

t =
l∑

i=1

τi +
l∑

i=1

τ̄i + max
j≤l

(
τ̂j −

l∑
i=j

τi

)
. (2)

The maximum in the last term will usually be equal to τ̂l − τl so that the
time is taken up by an advancing sweep to the state l − 1, the recording

3 The Abstract Reversal Problem C639

step to the final state l and a subsequent returning sweep from l down to
1. In particular this must be the case if we assume uniform step costs in
that for three constants τ , τ̄ , and τ̂ we have τi = τ , τ̂i = τ̂ and τ̄i = τ̄ for
all i. Without this simplifying assumption it seems quite hard to coordinate
the various advances such that they are performed concurrently by a limited
number of processors. Then we may assign dτ̂ /τ̄e of them to do nothing
but the recording steps and eliminate them from further consideration in the
following sense.

In Section 5 we will discuss optimal parallel reversal schedules under
the assumption τ̂ = τ̄ , in which case one dedicated processor can perform
the recording steps in sync with the returning specialist already mentioned
above. Then the minimal reversal time (2) has the simple value l(τ + τ̄)
and can be achieved as will be seen in Section 5. These same schedules
may also be applied in the general uniform situation with dτ̂ /τ̄ − 1e extra
processors dedicated to recording duties. As shown in [10] this approach is
almost optimal in that l can only be increased by at most dτ̂ /τ̄ e − 1 if the
extra processors are made available for other tasks before they settle down
to their recording duties.

Hence we have essentially dispensed with the recording issue, except that
we may realistically expect the crucial ratio τ̄ /τ to be quite small when the
recording steps perform a lot of preparatory simplifications. While fast return
steps reduce the overall run-time l(1+ τ̄ /τ)τ the no-interruption requirement
becomes the harder to satisfy the smaller the ratio τ̄ /τ is. Here harder means
that the number % of required processors or checkpoints becomes much larger.

3 The Abstract Reversal Problem C640

Since for τ̄ /τ ≤ 1 the reduction of l(1 + τ̄ /τ)τ is limited to a factor of 2
compared to τ̄ /τ = 1 it is perhaps acceptable that our theory caters as yet
only for the cases where τ̄ /τ is a positive integer. In other words we use
besides q, b, and l, a fourth problem parameter a ≡ dτ̄ /τe. In fact we have
so far only worked through the one-step scenario q = b = 1 so that there are
only the two problem parameters l and a in our current theory.

The cases a = 1 and a = 2 are probably most important for current
applications. When a = 1 the uninterrupted backward sweep recedes exactly
at the same speed as the original forward sweep, so that one may imagine
a video tape running in reverse, at its normal speed. The situation a = 2
is typical for the evaluation of adjoints even through there is a variability in
designing pairs of recording and returning steps.

It turns out that determining the maximal problem sizes l ≡ l% for given
% = p + c is both doable and sensible under the no-interruption condition.
The fact that we throw the maximal number of processors p and checkpoints
c together may seem at first a little surprising. The resulting resource number
% = p + c represents a bound on the cardinality of the state distributions Zj .
Now each transition from Zj to Zj+1 may involve up to p advances until
we have reached Zvertex and one advance less afterwards, because then one
processor must be assigned to perform the uninterrupted returning run. To
distinguish parallel from serial successors we write Zj ⇒ Zj+1 rather than
Zj → Zj+1 as before. For simplicity we use the shared memory model of
parallelism. Hence we may formulate the general parallel reversal problem

4 Optimal Serial Schedules C641

formally as

With k ≡ l(1+a) for given l, a, b, and q find a parallel reversal
schedule [0, q) = Z0 ⇒ · · · ⇒ Zk = [0, b) that minimizes
% = p + c.

(3)

As we will see one can get by with only p = d(%+1)/2e advances per transition
so that roughly half of the % resources may actually be checkpoints rather
than processors. Since l% grows always exponentially as a function of % = p+c
the parameters p ≈ c ≈ %/2 can stay in the single digits except for extremely
large problem sizes l. Therefore, we may also assume that one checkpoint
stays in the local memory of each processor rather than being shipped out to
an external mass storage device. Given any size l with l%−1 < l ≤ l% we might
apply the schedule for l% after suitably modifying its initial phase. Hence we
have optimality with respect to the maximal number of resources used at
any one time.

4 Optimal Serial Schedules

The key property that allows us to cut down the enormous variety of feasible
reversal schedules is the principle of checkpoint persistence. In the one-step
case q = 1 = b we will call any element of Z other than the currently maximal
state m = max(Z) and possibly its immediate predecessor m−1 a checkpoint,
because it was shown in [6] that

4 Optimal Serial Schedules C642

Lemma 1 (Checkpoint Persistence) Any reversal schedule can be mod-
ified without a reduction of the length l or an increase in the temporal cost t
such that: once left behind by the release of their immediate successor j+1 all
checkpoints j stay fixed until they are reversed. Moreover, during the “life-
span” of j between the advance to j and the return at j, all actions occur to
the right, i.e. concern only states k ≥ j.

4.1 Schedule Computation by Dynamic Programming

Now suppose the overall reversal schedule is optimal in that it achieves the
minimal time t ≡ t(0, l, c). Then checkpoint persistence implies that the
subschedule consisting of all actions to the right of a checkpoint j must also
be time-optimal. Any reversal schedule for a subrange [i, k] must keep the
initial state i until its reversal at the very end of the calculation. Now let
part(i, k, c) denote the smallest number and thus the first intermediate state
at which any reversal schedule that minimizes t(i, k, c) sets a checkpoint.
Then after the return to j = part(i, k, c) the corresponding overall schedule
must start the reversal of the remaining subrange [i, j] from scratch but
having the full set of c checkpoints available. Therefore we find that as an
immediate consequence of the persistence principle

t(i, k, c) = min
i<j<k

{ j−1∑
s=i

τs+1 + t(j, k, c − 1) + t(i, j, c)

}
. (4)

4 Optimal Serial Schedules C643

It is shown in [10] that the partition function has the monotonicity property

part(i, k − 1, c) ≤ part(i, k, c) ≤ part(i + 1, k, c) , (5)

which can be used to limit the range of j over which the right hand side
of (4) needs to be minimized to the interval with the bounds (5). Then
it follows from the telescoping argument used by Knuth [8] in the context
of binary search trees that t(0, l, c) and an optimal reversal schedule can
be computed in O(c l2) operations rather then the O(c l3) that we needed
without exploitation of monotonicity.

The values of part(i, k, c) specify unambiguously how optimal reversal
schedules can be put together recursively from optimal schedules over sub-
ranges. Omitting the details of this transcription and noticing again that the
return step times τ̄i enter only trivially into t we summarize

Time optimal reversal schedules for one-step evolutions over l
time steps with c checkpoints can be determined by dynamic
programming in O(cl2) operations.

4.2 The Uniform One-Step Case

For the uniform one-step case it is possible to show in addition [7] that

4 Optimal Serial Schedules C644

Proposition 2 When the step costs are uniform in that τi = τ the cost
t(i, k, c) depends only on the integer pair l ≡ (k − i), c and can be obtained
explicitly as

t(l, c) ≡ t(0, l, c) = l r − β(r, c + 1)

where r is the unique integer satisfying

β(r − 1, c) < l ≤ β(c, r) with β(c, r) ≡
(

c + r

r

)

Using Stirlings formula one can show that asymptotically

lim
l→∞

t(l, c)

l1+1/c
=

c
√

c! ≈ c

e
. (6)

By comparison the spatial and temporal complexity of the basic version of
the reverse mode are both of order l. Thus we see that checkpointing allows
a reduction of the spatial complexity by the factor of size c/l at the expense
of an increase in the temporal complements of size c

√
l, which seems a very

good deal.

4.3 The Multi-Step Case

The reversal schedules discussed above have been implemented in the soft-
ware routine [5] and they can be generalized to the uniform multi-step sit-
uation 1 < q ≥ b, because the checkpoint persistence principle still applies.

4 Optimal Serial Schedules C645

Now checkpoints consist of q consecutive states [q − i, i) that are needed to
advance repeatedly towards i and beyond. When b < q the extra linearity
helps a little but does not effect the leading term in the temporal complexity.
More specifically, we have as a consequence of Theorem 3.1 in [10]

lim
l→∞

t(l, b, q, c)

l1+q/c
=

[
(c/q)!

q

]q/c

≈ c

e q(1+q/c)
. (7)

This is exactly the same asymptotic complexity that can be achieved by the
uniform one-step reversal schemes discussed above if they are adopted in the
following way.

Suppose the 1 + l original time steps are interpreted as 1 + l/q mega-
time steps between mega-states comprising q consecutive states [qi, qi + q)
for i = 0, . . . , l/q. Here one may have to increase l formally to the next
integer multiple of q. While the number of time steps is thus divided by q,
the complexity of a mega-step is of course q times that of a normal step. The
linearity properties signalled by b < q are ignored. Since the dimension of
the state space has also grown q-fold we have to assume that the number of
checkpoints c is divisible by q so that we can keep up to 1 + c/q mega-states
in memory. Then replacing t by t/q, l by l/q and c by c/q in (6) yields
exactly (7). Hence one may conclude that directly exploiting multi-step
structure and special linearity properties is only worthwhile for comparatively
small problems. Otherwise, interpreting multi-step evolutions as one-step
evolutions on mega-states yields nearly optimal results.

5 Optimal Parallel Schedules C646

5 Optimal Parallel Schedules

The construction of optimal parallel reversal schedules is in our experience a
lot harder than the same task in the serial case. First we wrote an exhaustive
search procedure for implicitly enumerating all possible reversal schedules
given c and p with the aim of maximizing l. The most efficient implementa-
tion of this approach yielded maximal values of l for c + p ≤ 10 on one node
of the Origin 2000 in a few hours of computing time. The first observation
was that the values of l for p ≥ c dependent only on the “resource number”
% = p + c. One such optimal schedule is displayed in Figure 2.

As before horizontal lines represent checkpoints and slanted lines repre-
sent running processes of which there may now be more than one in any
transition. Not very surprisingly the resource usage reaches a maximum at
and near the vertex, i.e., at the end of the forward and the beginning of
the return sweep. During the warm-up and cool-down phase on the other
hand some checkpoints and processors are idle, which happens quite often in
parallel scheduling.

To detect the structure of efficient parallel schedules the exhaustive search
program was made to find amongst the schedules reaching the maximal l
a representative that was minimal with respect to the needed resources in
each transition. Then recursive patterns could be discerned, which lead to
a theoretical analysis whose principal results are sketched below. First we
have the following generalization of Lemma 1 [10].

5 Optimal Parallel Schedules C647

1

1

1

10

5

t

t

l

%

Figure 2: Optimal Parallel Reversal Schedule for % = 5

5 Optimal Parallel Schedules C648

Lemma 3 (Checkpoint and Processor Persistence) Suppose there ex-
ists only a bound on % = c + p, which means that checkpoints are convertible
to processors and vice versa. Then any reversal schedule can be modified
without loss of efficiency such that a checkpoint at a state i stays until i is
returned, and an advancing process keeps running without interruption until
the last state it reached is returned.

Geometrically, we may interpret Lemma 3 as saying that the horizontal
and slanted lines running to the right may bifurcate from each other but never
merge or throw hooks until they reach the unique dashed line. An immediate
consequence of Lemma 3 is that the first checkpoint set to a state i > 0 and
the second process started from the initial state partition the schedule into
a left and a right subschedule that include the initial state and the vertex,
respectively. In Figure 2 this is true for the checkpoint at i = 5 and the
process starting in transition Z6. While this decomposition is reminiscent of
the serial situation, the big difference is that now we have a region of overlap,
where one has to ensure that the sum of the two (suitably shifted) resource
profiles does not exceed the common bound %. We did not succeed in casting
the resource constraints in such a way that dynamic programming could be
applied. Nevertheless, it is could be shown in [10] that

Proposition 4 The maximal l = l% fulfils the recursion l% ≤ l%−1 + a l%−2.

The construction of reversal schedules that attain this upper bound is by
no means trivial, especially since some of the subschedules are not optimal

5 Optimal Parallel Schedules C649

themselves.

In the case a = 1 there exists a one parameter family of parallel sched-
ules using % resources whose lengths l% satisfy the Fibonacci recurrence
l% = l%−1 + l%−2 starting from l1 = 1, l2 = 2. For a = 2 another family
of parallel schedules using % resources exists whose length satisfy the gener-
alized Fibonacci recurrence l% = l%−1 + 2 l%−2. Correspondingly the optimal
schedules with % resources can be decomposed into one using %− 1 resources
and two using % − 2 resources. When a > 2 the recurrence l% = l%−1 + a l%−2

could still be constructively verified, but again a decomposition into optimal
subschedules could not be found.

At first one might think that demanding at least as many processors,
namely p, as patches of memory for checkpoints, namely c is asking a little
much. On the other hand it was found that having more that p ≈ %/2
processors does not help at all so that p ≈ c is indeed enough. Moreover,
one may derive from the linear difference equation l% = l%−1 + a l%−2 that
asymptotically

l% ≈
[
1 +

√
(1 + 4a)/2

]%

,

which means that l = l% grows exponentially as a function of % ≈ 2p and
conversely that p ≈ c grows logarithmically as a function of l. For example
we find that 8 processors and 8 checkpoint patches are sufficient to reverse
9104 time steps when a = 1 and 32768 time steps when a = 2. For a > 3
these values of l% are larger so that the case p < c seems only important
for machines with just two or four processors. Of course these subdiagonal

6 Conclusion C650

situations should also be resolved.

6 Conclusion

Schedules for reverting an evolution over l time steps within memory for c
intermediate state vectors can be optimized on serial or parallel systems with
respect to the total runtime t or the number of processors p, respectively. In
the parallel scenario we demanded that the elapsed time attains its minimum,
which requires that one processor can run backward without interruption. If
c has significant size the serial runtime t or the number of processors p grow
very slowly as a function on l. Conversely, l grows very rapidly as a function
of l/t or p, respectively. Hence we can conclude that evolutions over very
many time steps can be reverted at a reasonably cost in terms of memory
and runtime or processors. Thus one can base parameter identification and
design optimization on accurate gradient values even when the computer
model in question involves simulations over very long periods of discrete or
continuous time.

References

[1] Ch. Bennett. Logical reversibility of computation. IBM J. Research
and Development, 17:525–532, 1973.

References C651

[2] A. Griewank and G.F. Corliss (eds.). Automatic Differentiation of
Algorithms: Theory, Implementation, and Application, SIAM, Phil.,
1991. C651, C652

[3] A. Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the
automatic differentiation of algorithms written in C/C++. ACM
Trans. Math. Soft., 22:131–167, 1996. C630

[4] A. Griewank. Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optimization Methods
and Software, 1(1):35–54, 1992. C637

[5] A. Griewank and A. Walther. Revolve: An Implementation of
Checkpointing for the Reverse or Adjoint Mode of Computational
Differentiation. TOMS 26(1), 2000.

[6] A. Griewank. Evaluating Derivatives, Principles and Techniques of
Algorithmic Differentiation. Frontiers in Appl. Math. 19, Phil., 2000.
C644 C629, C641

[7] J. Grimm, L. Potter, and N. Rostaing-Schmidt. Optimal time and
minimum space-time product for reversing a certain class of programs.
In [2], pages 95–106. C637, C643

[8] D.E. Knuth. The Art of Computer Programming. Computer Science
and Information Processing 3, Addison-Wesley, MI, 1976. C643

References C652

[9] O. Talagrand. The use of adjoint equations in numerical modelling of
the atmospheric circulation. In [2], pages 169–180. C632

[10] A. Walther. Program Reversal Schedules for Single- and
Multi-processor Machines. Ph.D. thesis, Inst. of Sci. Comp., TU
Dresden, 1999.

	Introduction and Assumptions
	Forward and Reverse Differentiation
	The Abstract Reversal Problem
	Serial Reversal Schedules
	Parallel Reversal Schedules

	Optimal Serial Schedules
	Schedule Computation by Dynamic Programming
	The Uniform One-Step Case
	The Multi-Step Case

	Optimal Parallel Schedules
	Conclusion
	References

