Optimal Projective Three-Level Designs for Factor Screening and Interaction Detection

Hongquan Xu
Department of Statistics
University of California
Los Angeles, CA 90095-1554
(hqxu@stat.ucla.edu)

Shao-Wei Cheng
Institute of Statistical Science
Academia Sinica
Taipei 115, Taiwan
(swcheng@stat.sinica.edu.tw)

C. F. J. Wu
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205
(jeffwu@isye.gatech.edu)

Abstract

Orthogonal arrays (OAs) are widely used in industrial experiments for factor screening. Suppose that only a few of the factors in the experiments turn out to be important. An OA can be used not only for screening factors, but also for detecting interactions among a subset of active factors. In this article a set of optimality criteria is proposed to assess the performance of designs for factor screening, projection, and interaction detection, and a three-step approach is proposed to search for optimal designs. Combinatorial and algorithmic construction methods are proposed for generating new designs. Permutations of levels are used for improving the eligibility and estimation efficiency of the projected designs. The techniques are then applied to search for best three-level designs with 18 and 27 runs. Many new, efficient, and practically useful nonregular designs are found and their properties are discussed.

KEY WORDS: Contamination; Factor sparsity; Generalized minimum aberration; Orthogonal array; Projection aberration; Projection-efficiency criteria.

1. INTRODUCTION

For run size economy, orthogonal arrays (OAs) are widely used in industrial experiments to screen important factors from a large number of potential factors. Traditionally, the design and analysis of screening experiments has been restricted to main effects only by assuming that the interactions are negligible. Hamada and Wu (1992) went beyond the traditional approach and proposed an analysis strategy to demonstrate that some interactions could be identified beyond a few significant main effects.

For illustration, consider an experiment reported by King and Allen (1987) that studied axial lead 4.7-microhenry radio frequency chokes. A radio frequency choke is a circuit element designed to present a high impedance to radio frequency energy while offering minimal resistance to direct current. The objective of the experiment was to identify important factors and best settings in the choke winding operation. In the experiment, an 18-run OA was used to study one two-level factor (A) and seven three-level factors $(B-H)$, and each run had two replicates. The response was a 10 -piece sampling of the self-resonating frequency in mega-Hertz. The design matrix and the responses are given in Table 1.

Motivated by the procedure of Hamada and Wu (1992), we perform a two-stage analysis on this experiment. At the first stage, we fit an ANOVA model for main effects and find that four factors, B, E, G, and H, are significant at the 1% level. At the second stage, we consider models that consist of the main effects of the four significant factors and some of two-factor interactions among them. Because there are six two-factor interactions, each with 4 degrees of freedom, the 18 -run experiment does not have enough degrees of freedom to estimate all
two-factor interactions among them. One possible strategy is to use an iterative stepwise regression procedure to identify significant effects, as was done by Hamada and Wu (1992). Because all factors are quantitative, we take an alternative approach and fit a second-order model with 15 unknown parameters among the four active factors. We find that the individual t tests of all four first-order effects, x_{B}, x_{E}, x_{G}, and x_{H}, and two second-order effects, $x_{E} x_{G}$ and $x_{G} x_{H}$, have p-values less than .01, and other three second-order effects, $x_{E}^{2}, x_{B} x_{E}$, and $x_{E} x_{H}$, have p-values less than .05 . The model with these nine terms and the constant has an R^{2} of .96 , indicating a good fit. Notice that the identification of the four significant interactions is achieved through the projection of the design matrix onto active factors, which serves as a link between screening a larger number of factors and the more intensive study of the response surface over a smaller number of important factors.

The foregoing two-stage analysis was first suggested by Cheng and Wu (2001; henceforth abbreviated as CW). Formally, the two-stage analysis is as follows:

- Stage 1. Perform ANOVA on the main-effect model for factor screening and identify important factors.
- Stage 2. Fit a second-order model to the factors identified in stage 1.

This analysis strategy assumes that only a few factors are active in a factorial experiment, called factor sparsity by Box and Meyer (1986), and that significant interactions appear only
© 2004 American Statistical Association and the American Society for Quality
TECHNOMETRICS, AUGUST 2004, VOL. 46, NO. 3
DOI 10.1198/004017004000000310

Table 1. Design Matrix and Responses, Radio Frequency Chokes Experiment

Run	A	B	C	D	E	F	G	H	Responses	
1	0	0	0	0	0	0	0	0	106.20	107.70
2	0	0	1	1	1	1	1	1	104.20	102.35
3	0	0	2	2	2	2	2	2	85.90	85.90
4	0	1	0	0	1	1	2	2	101.15	104.96
5	0	1	1	1	2	2	0	0	109.92	110.47
6	0	1	2	2	0	0	1	1	108.91	108.91
7	0	2	0	1	0	2	1	2	109.76	112.66
8	0	2	1	2	1	0	2	0	97.20	94.51
9	0	2	2	0	2	1	0	1	112.77	113.03
10	1	0	0	2	2	1	1	0	93.15	92.83
11	1	0	1	0	0	2	2	1	97.25	100.6
12	1	0	2	1	1	0	0	2	109.51	113.28
13	1	1	0	1	2	0	2	1	85.63	86.91
14	1	1	1	2	0	1	0	2	113.17	113.45
15	1	1	2	0	1	2	1	0	104.85	98.87
16	1	2	0	2	1	2	0	1	113.14	113.78
17	1	2	1	0	2	0	1	2	103.19	106.46
18	1	2	2	1	0	1	2	0	95.70	97.93

among these active factors, called strong effect heredity by Chipman (1996) and functional marginality by McCullagh and Nelder (1989, chap. 3). These are empirical principles whose validity has been confirmed in many real experiments. However, the assumption of strong effect heredity can be restrictive in some cases. If a factor's significance is manifested through its interactions with other factors but not through its main effects, then it may be missed in the first-stage analysis. To circumvent this problem, one can use a more elaborate procedure like Bayesian methods for factor screening in the first stage. (See Box and Meyer 1993; Chipman, Hamada, and Wu 1997; Wu and Hamada 2000, chap. 8, for further discussions and examples.)

Standard response surface methodology has three stages: an initial factor screening stage, a stage of sequential experimentation to determine the region of an optimum, and a final stage involving the fitting of a second-order model in this region. Typically, separate experiments and designs are used for different stages. However, it is sometimes difficult or even impossible to perform the experiments sequentially (see Steinberg and Bursztyn 2001 for an example). It is thus desirable to have a methodology that allows factor screening and second-order model fitting (i.e., the first and the third stages in response surface methodology) to be conducted on the same experimental region using one design. CW argued that the two-stage analysis is a useful alternative to the standard response surface methodology when the response surface on the experimental region is appropriate for studying second-order curvatures. Here we should point out that the region may not contain a local optimum even though a second-order model is required to study its response surface. Details on response surface methodology have been given by Box and Draper (1987), Myers and Montgomery (1995), and Khuri and Cornell (1996).

This article considers the design problem associated with the aforementioned two-stage analysis. Assume that only a few of the factors are identified as significant by performing ANOVA for main effects. We can use an OA for factor screening (estimating main effects, including curvature effects), and, by projections, we can also study interactions (in our formulation, the
linear-by-linear interactions) for a subset of active factors. Because experimenters do not know in advance which factors are important and what the final model will be, it is important to choose a screening design that can entertain as many models as possible. Note that the standard optimum design approach does not apply here, because the number of runs is not sufficient to fit a second-order model at the screening stage. Tsai, Gilmour, and Mead (2000) considered a similar problem and studied the projective properties of three-level designs with 18 runs. The approach that we take here is quite different from theirs.
In Section 2 we review the generalized minimum aberration criterion (Xu and Wu 2001) for factor screening and the projection-efficiency criteria (Cheng and Wu 2001) for interaction detection. Then we propose a new criterion to combine these two objectives and a three-step approach for design search. In Section 3 we consider the construction methods of OAs. To construct new and efficient designs, we propose a combinatorial method as an extension of the method of Wang and Wu (1991), an algorithmic search due to Xu (2002), and two versions of a search algorithm for level permutations. We then apply the techniques to search for the best three-level designs with 18 and 27 runs. We find many new, efficient and practically useful nonregular designs, and discuss their properties in Section 4. We provide a discussion and further remarks in Section 5.

2. OPTIMALITY CRITERIA

2.1 The ANOVA Model and Generalized Minimum Aberration Criterion

For factor screening, we adopt the generalized minimum aberration (GMA) criterion (Xu and Wu 2001), which is an extension of the minimum aberration criterion (Fries and Hunter 1980). For a factorial design with N runs and n factors, the (full) ANOVA model is

$$
\begin{equation*}
\mathbf{Y}=\mathbf{X}_{0} \alpha_{0}+\mathbf{X}_{1} \boldsymbol{\alpha}_{1}+\cdots+\mathbf{X}_{n} \boldsymbol{\alpha}_{n}+\boldsymbol{\varepsilon} \tag{1}
\end{equation*}
$$

where \mathbf{Y} is the vector of N observations, α_{0} is the general mean, $\boldsymbol{\alpha}_{j}$ is the vector of j-factor effects, \mathbf{X}_{0} is the vector of 1's, \mathbf{X}_{j} is the matrix of contrast coefficients for $\boldsymbol{\alpha}_{j}$, and $\boldsymbol{\varepsilon}$ is the vector of independent random errors. Note that j-factor effects represent main effects when $j=1$ and interactions when $j \geq 2$. Here we consider only the cases where the contrast coefficient of an j-factor interaction effect is the product of its corresponding contrast coefficients of j main effects. As was done by Xu and Wu (2001), here the main effect contrasts are normalized so that for a full factorial design, all factorial effects have the same variance. In particular, for a two-level factor, the contrast vector of its main effect is coded as $(-1,1)$; for a three-level factor, the contrast vectors of the linear and quadratic main effects are coded as $(-1,0,1) \times \sqrt{3} / \sqrt{2}$ and $(1,-2,1) / \sqrt{2}$. For $j=1, \ldots, n, \mathrm{Xu}$ and $\mathrm{Wu}(2001)$ defined A_{j}, a function of \mathbf{X}_{j}, to measure the overall aliasing (or correlation) between all j-factor effects and the general mean. Specifically, if $\mathbf{X}_{j}=\left[x_{i k}^{(j)}\right]$, where $x_{i k}^{(j)}$ is the i th component of the k th j-factor effect contrast, then let

$$
\begin{equation*}
A_{j}=N^{-2} \sum_{k=1}^{n_{j}}\left|\sum_{i=1}^{N} x_{i k}^{(j)}\right|^{2} \tag{2}
\end{equation*}
$$

where n_{j} is the number of all j-factor effect contrasts. The vector $\left(A_{1}, \ldots, A_{n}\right)$ is called the generalized word-length pattern, because A_{j} is the number of words of length j for a two-level regular design. Xu and Wu (2001) showed that for an OA (of strength 2), $A_{1}=A_{2}=0$. The GMA criterion is to sequentially minimize $A_{1}, A_{2}, A_{3}, \ldots$

Two designs are called combinatorially isomorphic if the design matrix of one design can be obtained from that of the other by permutations of rows, columns, and levels in the columns. Because combinatorially isomorphic designs have the same generalized word-length pattern, they are indistinguishable under the GMA criterion.

Note that the computation of A_{j} according to (2) is cumbersome because it involves all possible projections onto j factors. Alternative efficient computations have been given by Xu and Wu (2001) and Xu (2003).

Example 1. Consider choosing six columns from the commonly used $O A\left(18,3^{7}\right)$ given in Table 2(a) and table 7C. 2 of Wu and Hamada (2000). There are seven possible choices. For illustration, consider three choices. Let $\mathbf{d}_{1}, \mathbf{d}_{2}$, and \mathbf{d}_{3} be the resulting design from omitting the first, second, and third columns. The generalized word-length patterns for the three designs are $(0,0,10,22.5,0,7),(0,0,13,13.5,9,4)$, and $(0,0,13,13.5,9,4)$. Hence \mathbf{d}_{1} is the best according to the GMA criterion. Note that \mathbf{d}_{2} and \mathbf{d}_{3} have the same generalized wordlength pattern, and thus the GMA criterion cannot distinguish between them.

To explain why GMA is suitable for screening out poor designs, consider the estimation of main effects in the presence of two-factor interactions. Specifically, assume that threeand higher-order interactions are negligible. Then the ANOVA model (1) becomes

$$
\begin{equation*}
\mathbf{Y}=\mathbf{X}_{0} \alpha_{0}+\mathbf{X}_{1} \boldsymbol{\alpha}_{1}+\mathbf{X}_{2} \boldsymbol{\alpha}_{2}+\boldsymbol{\varepsilon} \tag{3}
\end{equation*}
$$

which contains the constant effect, main effects, and two-factor interactions. At the screening stage, the degrees of freedom commonly are not sufficient to fit model (3); therefore, a main effects model [i.e., with $\boldsymbol{\alpha}_{2}=\mathbf{0}$ in (3)] is fitted instead. For
a balanced design (i.e., all levels occurring equally often for each factor), an unbiased estimate of the main effects $\boldsymbol{\alpha}_{1}$ is $\hat{\boldsymbol{\alpha}}_{1}=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{Y}$. However, under the true model (3),

$$
E\left(\hat{\boldsymbol{\alpha}}_{1}\right)=\boldsymbol{\alpha}_{1}+\mathbf{C} \boldsymbol{\alpha}_{2},
$$

where $\mathbf{C}=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{X}_{2}$ is the alias matrix (see Box and Draper 1987, sec. 3.10; Wu and Hamada 2000, sec. 8.1, for details). In other words, the estimation of the main effects is contaminated by nonnegligible two-factor interactions (Box and Draper 1987, p. 67). A good design should have small contamination. This leads to the minimum contamination criterion, that is, the minimization of $\|\mathbf{C}\|^{2}=\sum\left|c_{i j}\right|^{2}$ if $\mathbf{C}=\left(c_{i j}\right)$ (Tang and Deng 1999; Xu and Wu 2001; Steinberg and Bursztyn 2001). Xu and Wu (2001) showed that the contamination $\|\mathbf{C}\|^{2}$ is related to the A_{3} value for an OA ,

$$
\begin{equation*}
\|\mathbf{C}\|^{2}=3 A_{3} . \tag{4}
\end{equation*}
$$

Recall that A_{3} measures the overall aliasing between all threefactor interactions and the general mean. Equation (4) holds because a three-factor interaction is the product of a main effect and a two-factor interaction. For an OA with smaller A_{3}, its main effects suffer less contamination when a main effects model is fitted, and thus factor screening is more effective as long as strong effect heredity is present. For this reason, we use the minimization of A_{3} as the criterion for factor screening.

2.2 The Second-Order Model and Projection-Efficiency Criteria

For interaction detection, we consider a second-order model and adopt the projection-efficiency criteria (Cheng and Wu 2001). Assume that all factors are quantitative and are denoted by $x_{1}, x_{2}, \ldots, x_{n}$. Then the second-order model for these factors is given by

$$
\begin{equation*}
y=\beta_{0}+\sum_{i=1}^{n} \beta_{i} x_{i}+\sum_{i=1}^{n} \beta_{i i} x_{i}^{2}+\sum_{1=i<j}^{n} \beta_{i j} x_{i} x_{j}+\epsilon \tag{5}
\end{equation*}
$$

where ϵ is the error term.

Table 2. $O A\left(18,3^{7}\right)$

(a)								(b)								(c)							
Run	1	2	3	4	5	6	7	Run	1	2	3	4	5	6	7	Run	1	2	3	4	5	6	7
1	0	0	0	0	0	0	0	1	0	2	0	0	1	2	2	1	0	1	0	2	1	0	2
2	0	1	1	1	1	1	1	2	1	1	0	1	0	2	1	2	1	0	1	2	0	0	1
3	0	2	2	2	2	2	2	3	2	2	0	1	2	0	0	3	2	2	2	0	1	0	1
4	1	0	0	1	1	2	2	4	0	0	2	0	0	0	0	4	0	0	2	1	1	1	0
5	1	1	1	2	2	0	0	5	1	0	1	1	1	1	0	5	1	1	2	0	0	2	0
6	1	2	2	0	0	1	1	6	2	0	1	2	0	2	2	6	2	0	1	0	2	1	2
7	2	0	1	0	2	1	2	7	0	2	1	2	2	1	1	7	0	2	1	1	0	2	2
8	2	1	2	1	0	2	0	8	1	1	2	2	2	0	2	8	1	1	0	1	2	1	1
9	2	2	0	2	1	0	1	9	2	1	2	0	1	1	1	9	2	2	0	2	2	2	0
10	0	0	2	2	1	1	0	10	0	1	0	2	0	1	0	10	0	0	2	2	2	2	1
11	0	1	0	0	2	2	1	11	1	2	1	0	0	0	1	11	1	0	0	0	1	2	2
12	0	2	1	1	0	0	2	12	2	1	1	0	2	2	0	12	2	1	1	1	1	2	1
13	1	0	1	2	0	2	1	13	0	1	1	1	1	0	2	13	0	1	1	0	2	0	0
14	1	1	2	0	1	0	2	14	1	2	2	2	1	2	0	14	1	2	2	1	2	0	2
15	1	2	0	1	2	1	0	15	2	2	2	1	0	1	2	15	2	1	2	2	0	1	2
16	2	0	2	1	2	0	1	16	0	0	2	1	2	2	1	16	0	2	0	0	0	1	1
17	2	1	0	2	0	1	2	17	1	0	0	0	2	1	2	17	1	2	1	2	1	1	0
18	2	2	1	0	1	2	0	18	2	0	0	2	1	0	1	18	2	0	0	1	0	0	0

Note that the second-order model (5) is different from the ANOVA model (3). For a three-level design, a two-factor interaction has four orthogonal components: linear-by-linear, linear-by-quadratic, quadratic-by-linear, and quadratic-byquadratic, each having 1 degree of freedom. The second-order model includes only the linear-by-linear component of a twofactor interaction, whereas the ANOVA model includes all four components. For n factors with three levels, the secondorder model (5) has $(n+1)(n+2) / 2$ parameters, whereas the ANOVA model (3) has $2 n^{2}+1$ parameters. The main reason for considering the second-order model for interaction detection is that the linear-by-linear active contrasts occur more often in practice than higher-order contrasts. Another reason is that in many cases the degrees of freedom are not sufficient to entertain model (3) but may be sufficient to entertain the second-order model (5). For example, for three factors (with three levels), an 18-run design can entertain model (5) but not model (3); for four factors, a 27-run design can entertain model (5) but not model (3).

Because we do not know in advance which of the components are significant, considering all components in the screening stage seems prudent. A design that does not perform well for model (3) is unlikely to do well for model (5) as long as strong effect heredity is present. Therefore, the GMA criterion can efficiently screen out designs that are not suitable for the dual purposes of factor screening and interaction detection.

Some definitions are now in order. A design for n factors is called a second-order design if all of the parameters in model (5) are estimable. A projected design is said to be eligible if it is a second-order design; otherwise, it is said to be ineligible. A design is called regular if it can be constructed through the defining contrast subgroup among its factors; otherwise, it is called nonregular. The 2^{n-k} and 3^{n-k} series of designs are regular designs, and many mixed-level OAs are nonregular. Details on these concepts and results have been given by Wu and Hamada (2000).

The projection-efficiency criteria proposed by CW are as follows:

1. The number of eligible projected designs should be large, and lower-dimensional projections are more important than higher-dimensional projections.
2. Among the eligible projected designs, the estimation efficiency, as measured by some optimality criterion, should be high.

CW studied three-level designs with 18,27 , and 36 runs using these criteria. A major finding is that nonregular designs are more efficient than regular designs. Apart from studying the three classes of designs, they did not examine the important issue of choosing optimal designs for the dual purposes of factor screening and interaction detection.

For a design of size N, let \mathbf{X} be the model matrix of (5) and $\mathbf{M}=\mathbf{X}^{\prime} \mathbf{X} / N$ be the moment matrix. A D-optimal design maximizes $|\mathbf{M}|$, the determinant of M. Kiefer (1961) and Farrell, Kiefer, and Walbran (1967) showed that the D-optimal continuous design for model (5) is supported on a subset of points of the 3^{n} factorial. Let \mathbf{d}^{*} be the D-optimal continuous design, that is, $\left|\mathbf{M}\left(\mathbf{d}^{*}\right)\right|=\max _{\mathbf{d}}|\mathbf{M}(\mathbf{d})|$. Then the D-efficiency of a design \mathbf{d} is defined as

$$
\begin{equation*}
D_{\mathrm{eff}}=\left(|\mathbf{M}(\mathbf{d})| /\left|\mathbf{M}\left(\mathbf{d}^{*}\right)\right|\right)^{1 / p}, \tag{6}
\end{equation*}
$$

Table 3. Eligible Projections, Estimation Efficiency, Overall A_{3} Values, and Projection Frequencies

Design	E_{3}	E_{4}	E_{5}	\bar{D}_{3}	\bar{D}_{4}	\bar{D}_{5}	Overall A_{3}	Projection A_{3} frequency			
								$\frac{1}{2}$	$\frac{2}{3}$	1	2
d_{1}	20	15	0	. 89	. 74	0	10	20	0	0	0
d_{2}	19	12	0	. 88	. 7	0	13	16	0	3	1
d_{3}	20	15	0	. 87	. 69	0	13	14	0	-	0

where $p=(n+1)(n+2) / 2$ is the number of parameters in model (5).

Here we quantify the definition of the projection-efficiency criteria to rank designs. Let E_{i} denote the number of eligible i-factor projections and \bar{D}_{i} be the average D-efficiency of all eligible i-factor projections, where the D-efficiency is calculated as in (6). Then the projection-efficiency criteria can be restated as follows:

1. Sequentially maximize the eligibility $E_{3}, E_{4}, E_{5}, \ldots$
2. Among those designs with the same eligibility, sequentially maximize the average D-efficiency of eligible projections $\bar{D}_{3}, \bar{D}_{4}, \bar{D}_{5}, \ldots$

Example 2 (Continued from Example 1). For each design, there are 20 three-factor projections, 15 four-factor projections, and 6 five-factor projections. Table 3 lists the number of eligible projections E_{i}, estimation efficiency \bar{D}_{i}, and some other properties to be explained later. Because the second-order model has 21 parameters for five factors, any five-factor projection of an 18 -run design is ineligible and hence $E_{5}=0$. For \mathbf{d}_{1} and \mathbf{d}_{3}, all 20 three-factor projections and 15 four-factor projections are eligible (i.e., $E_{3}=20$ and $E_{4}=15$). (Whenever this happens, boldface is used for the eligible numbers in the tables.) For \mathbf{d}_{2}, one three-factor projection and three four-factor projections are ineligible (i.e., $E_{3}=19$ and $E_{4}=12$). Furthermore, \mathbf{d}_{1} is better than \mathbf{d}_{3} in terms of \bar{D}_{3} and \bar{D}_{4}. In summary, \mathbf{d}_{1} is the best and \mathbf{d}_{2} is the worst under the projection-efficiency criteria.

The projection-efficiency criteria have one major shortcoming: They are computationally intensive because the computation of D-efficiency for all possible projections is required.

2.3 Projection Aberration Criterion

Here we propose a new criterion to combine factor screening and interaction detection. When a design with n factors is projected onto any three factors, it produces $\binom{n}{3}$ three-factor projected designs. Each of these designs has an A_{3} value, which is called the projected A_{3} value. We use overall A_{3} to denote the A_{3} value calculated from the whole n-factor design. The frequency of the projected A_{3} values is called the projection frequency. Because large projected A_{3} values are deemed undesirable, we propose the projection aberration criterion, which sequentially minimizes the projection frequency starting from the largest projected A_{3} value.

The following lemma explains the relationship among overall A_{3}, projected A_{3}, and projection frequency.

Lemma 1. The overall A_{3} value of a design equals the sum of all of its projected A_{3} values; that is, the sum of distinctive projected A_{3} values multiplied by their corresponding frequencies.

The proof is straightforward and thus is omitted. Lemma 1 suggests that the projected A_{3} values and projection frequency present more detailed information than the overall A_{3}. It is reasonable to expect that a design with a small overall A_{3} value will have low projection aberration. For two-level designs, Deng and Tang (2002) showed that the contamination criterion and the projection aberration criterion are generally consistent in ranking designs. The situation is more complicated for three-level designs. As we discuss in Section 4, the two criteria are consistent for ranking 18 -run designs, but not for ranking 27-run designs.

Example 3 (Continued from Example 1). For each design, there are 20 three-factor projections, each with a projected A_{3} value. The frequencies of projected A_{3} values are listed in Table 3. Among the three designs, \mathbf{d}_{2} is the worst under the projection aberration criterion because one of its three-factor projections has projected $A_{3}=2 ; \mathbf{d}_{1}$ is again the best, because all of its three-factor projections have projected $A_{3}=.5$. The projection aberration criterion and the projection-efficiency criteria produce the same ranking for the three designs, whereas the GMA criterion cannot distinguish between \mathbf{d}_{2} and \mathbf{d}_{3}.

There is a close connection between projected A_{3} values and eligibility. A key finding of CW is that the presence of projections with three-letter words causes low projection efficiency. This is referred to as the curse of three-letter words. The main reason behind the curse is insufficient degrees of freedom for fitting a second-order model, which has 10 parameters for three factors. Three columns form a three-letter word if the level combinations of any two columns completely determine the level of the third column. In other words, the three columns are combinatorially isomorphic to the three-factor regular design with the defining relation $I=A B C$, possibly replicated. For example, columns 1, 3, and 4 of Table 2(a) form a three-letter word. Note that a three-factor projection (with three levels) has only nine distinct runs if the three factors form a three-letter word. The following lemma demonstrates the relationship between projected A_{3} values and the curse of three-letter words, and gives a necessary and sufficient condition for a three-factor projection to be free of three-letter words.

Lemma 2. For an s-level OA, the projected A_{3} value of any three-factor projection is less than or equal to $s-1$, and the equality holds if and only if the three factors form a three-letter word.

The proof is given in the Appendix. From Lemma 2, a threefactor projection of a three-level design is free of three-letter words if and only if its projected A_{3} value is strictly less than 2. Because the projection aberration criterion first minimizes the frequency of projected A_{3} values of 2, optimal designs based on it would have a maximum number of eligible three-factor projections.

CW showed that for regular designs, any three-factor or fourfactor projection is eligible if it is free of any three-letter word. Our study for 18- and 27-run designs suggests that the following statement may be true for general designs: "Any three-factor projection is eligible if it is free of any three-letter word." We have counter examples (see Sec. 4.1) to show that a four-factor projection can be ineligible even if it is free of any three-letter word.

There is also a close relationship between projected A_{3} values and estimation efficiency. The projected A_{3} value captures an important property of three-factor projection, that is, the number of distinct runs.

Example 4. Consider three-factor projections from 18-run OAs. A complete search shows that there are four combinatorially nonisomorphic three-factor projections, which can be obtained by choosing three columns of the OA in Table 2(b). Their A_{3} values, numbers of distinct runs, and average D_{3} values are as follows:

A_{3}	$\frac{1}{2}$	$\frac{2}{3}$	1	2
Distinct runs	18	17	15	9
Average D_{3}	.882	.864	.82	0

Here the average D_{3} is the average D-efficiency of all possible 27 combinatorially isomorphic designs resulting from level permutations (see Sec. 3.1 for a discussion on level permutations). Evidently the A_{3} value completely characterizes the estimation efficiency in this example.

Example 5. Consider three-factor projections from 27 -run OAs. A complete search shows that there are nine combinatorially nonisomorphic three-factor projections. Their A_{3} values, numbers of distinct runs, and average D_{3} values are as follows:

A_{3}	0	$\frac{8}{27}$	$\frac{4}{9}$	$\frac{14}{27}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{20}{27}$	$\frac{10}{9}$	2
Distinct runs	27	23	21	20	19	18	18	15	9
Average D_{3}	.932	.904	.889	.881	.864	.864	.855	.805	0

A 3^{3} full factorial design has 27 distinct runs and $A_{3}=0$, whereas a regular 3^{3-1} design has 9 distinct runs and $A_{3}=2$. A nonregular $O A\left(27,3^{3}\right)$ has an A_{3} value between 0 and 2 . Again, it is evident that the smaller the A_{3} value, the larger the number of distinct runs and hence the higher the estimation efficiency.

2.4 A Three-Step Approach for Design Search

CW noted that combinatorial isomorphism cannot fully discriminate between designs. Through level permutation, a design can be changed to combinatorially isomorphic designs with different geometric structures and thus different eligibility and estimation efficiencies. CW referred to these designs as model nonisomorphic designs. Because combinatorially isomorphic designs have the same generalized word-length pattern, neither GMA nor the projection aberration criterion can discriminate between them. After optimal designs are chosen based on these criteria, the levels of factors of the design should be permuted to further improve eligibility and estimation efficiency. Summarizing the discussions in this section, we propose the following three-step approach to search for optimal projective designs for factor screening and interaction detection among OAs:

Step 1. Use the overall A_{3} value to screen out poor OAs for factor screening.

Step 2. Apply the projection aberration criterion to select a best design among the designs chosen in step 1 . This step sequentially minimizes the frequencies of the A_{3} values among the projected designs, where A_{3} is given in (2).
Step 3. Determine the best level permutations of the design chosen in step 2 for further improvement on eligibility and estimation efficiency under the second-order model (5).

In the three-step approach, various design properties are examined sequentially. For each step, only those designs that are qualified in the previous step are kept for later comparison. As mentioned earlier, the overall A_{3} value and the projection aberration criterion may not be consistent in ranking designs. Designs with large overall A_{3} values but low projection aberration may be screened out in step 1 and thus have no chance to be compared in step 2 . When the computational load is not too heavy or the number of designs for comparison not too large, it is recommended that both criteria be applied to all designs. When the two criteria lead to different rankings, some tradeoff is required. When the number of factors is large, factor screening is probably more important than interaction detection; hence a design with minimum overall A_{3} value is preferred. On the other hand, for a small to moderate number of factors, interaction detection is probably more important, which favors designs with less projection aberration.

3. CONSTRUCTION METHODS FOR NONREGULAR ORTHOGONAL ARRAYS

Traditionally, only a few OAs are used for a given run size, and many commonly used OAs are regular designs. As CW observed, regular designs are not efficient for the dual purposes. Here we consider methods for constructing nonregular OAs. Section 3.1 presents a combinatorial method and level permutations that can produce a large number of nonisomorphic OAs. For a systematic study, Section 3.2 proposes computational algorithms to handle the huge collection of designs. Readers not interested in technical details can skip Section 3.1 and jump to the algorithms in Section 3.2.

3.1 A Combinatorial Method and Level Permutations

Here we present a general construction method, which is an extension of the difference matrix method of Wang and Wu (1991). Let G be an additive group of s elements denoted by $\{0,1, \ldots, s-1\}, s$ being a prime number. An $n \times k$ matrix with elements from G, denoted by $\mathbf{D}_{n, k ; s}$, is called a difference matrix if, among the differences, modulus s of the corresponding elements of any two columns, each element of G occurs exactly n / s times. For two matrices \mathbf{U} of order $n_{1} \times m_{1}$ and $\mathbf{V}=\left(v_{i j}\right)$ of order $n_{2} \times m_{2}$, define their Kronecker sum to be $\mathbf{U} \oplus \mathbf{V}=\left(\mathbf{U}^{v_{i j}}\right)$, a matrix of order $\left(n_{1} n_{2}\right) \times\left(m_{1} m_{2}\right)$, where each partition $\mathbf{U}^{v_{i j}}=\left(\mathbf{U}+v_{i j}\right) \quad(\bmod s)$ is a matrix of order $n_{1} \times m_{1}$. It is known (e.g., Wang and Wu 1991) that the Kronecker sum $\mathbf{U} \oplus \mathbf{V}$ is an $O A\left(N M, s^{l k}\right)$ if \mathbf{U} is an $O A\left(N, s^{l}\right)$ and \mathbf{V} is a difference matrix $\mathbf{D}_{M, k ; s}$. Here we generalize the Kronecker sum as follows. For two $n \times m$ partitioned matrices
$\mathbf{U}=\left[\mathbf{U}_{i j}\right]$ and $\mathbf{V}=\left[\mathbf{V}_{i j}\right]$, define the generalized Kronecker sum to be $\mathbf{U} \otimes \mathbf{V}=\left[\mathbf{U}_{i j} \oplus \mathbf{V}_{i j}\right]$. Let

$$
\mathbf{U}_{i}=\left(\mathbf{U}_{i 1}, \ldots, \mathbf{U}_{i m}\right) \quad \text { and } \quad \mathbf{V}_{j}=\left(\begin{array}{c}
\mathbf{V}_{1 j} \\
\vdots \\
\mathbf{V}_{n j}
\end{array}\right)
$$

Suppose that $\mathbf{U}_{i j}$ is an $O A\left(N, s_{j}^{l_{j}}\right), \mathbf{U}_{i}$ is an $O A\left(N, s_{1}^{l_{1}} \cdots s_{m}^{l_{m}}\right)$ and \mathbf{V}_{j} is a difference matrix $\mathbf{D}_{M, k_{j} ; s_{j}}$ for $i=1, \ldots, n$ and $j=1, \ldots, m$. It can be shown, by following the proof of Wang and $\mathrm{Wu}(1991)$, that $\mathbf{U} \otimes \mathbf{V}$ is an $O A\left(N M, s_{1}^{l_{1} k_{1}} \ldots s_{m}^{l_{m} k_{m}}\right)$. It is important to note that both row and column partitions are allowed for the matrix \mathbf{U}, whereas in Wang and Wu's original construction, only column partitions are allowed for the matrix \mathbf{U}. Therefore, their method is a special case with $n=1$. Following Wang and Wu (1991), we can enlarge the OAs by adding $\mathbf{0}_{N} \oplus \mathbf{L}_{M}$ to $\mathbf{U} \otimes \mathbf{V}$, where $\mathbf{0}_{N}$ is the $N \times 1$ vector of 0 's and \mathbf{L}_{M} is an OA of M runs. Many combinatorially nonisomorphic OAs can be constructed by choosing various difference matrices for each column of the OAs or by choosing different OAs for each row of the difference matrix.

This generalization allows the construction of nonregular OAs such as $O A\left(27,3^{13}\right)$ in Table 4(a). The key step is to choose a different OA for each row of the difference matrix. This is illustrated in the following example.

Example 6. Let $\mathbf{a}=(0,0,0,1,1,1,2,2,2)^{\prime}, \mathbf{b}=(0,1,2$, $0,1,2,0,1,2)^{\prime}, \mathbf{c}=\mathbf{a}+\mathbf{b}, \mathbf{d}=\mathbf{a}-\mathbf{b}, \mathbf{U}_{1}=(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$, $\mathbf{U}_{2}=(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}+\mathbf{2}, \mathbf{d}+\mathbf{1}), \mathbf{V}_{1}=(0,0,0), \mathbf{V}_{2}=(0,1,2)$, and $\mathbf{V}_{3}=(0,2,1)$, modulus 3. Then

$$
\left[\left(\begin{array}{l}
\mathbf{U}_{1} \\
\mathbf{U}_{1} \\
\mathbf{U}_{1}
\end{array}\right) \otimes\left(\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2} \\
\mathbf{V}_{3}
\end{array}\right), \mathbf{0}_{9} \oplus \mathbf{L}_{3}\right]=\left[\begin{array}{lll}
\mathbf{U}_{1} \oplus \mathbf{V}_{1} & \mathbf{0}_{9} \\
\mathbf{U}_{1} \oplus \mathbf{V}_{2} & \mathbf{1}_{9} \\
\mathbf{U}_{1} \oplus \mathbf{V}_{3} & \mathbf{2}_{9}
\end{array}\right]
$$

and

$$
\left[\left(\begin{array}{l}
\mathbf{U}_{1} \\
\mathbf{U}_{2} \\
\mathbf{U}_{1}
\end{array}\right) \otimes\left(\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2} \\
\mathbf{V}_{3}
\end{array}\right), \mathbf{o}_{9} \oplus \mathbf{L}_{3}\right]=\left[\begin{array}{lll}
\mathbf{U}_{1} \oplus \mathbf{V}_{1} & \mathbf{0}_{9} \\
\mathbf{U}_{2} \oplus \mathbf{V}_{2} & \mathbf{1}_{9} \\
\mathbf{U}_{1} \oplus \mathbf{V}_{3} & \mathbf{2}_{9}
\end{array}\right]
$$

are two nonisomorphic $O A\left(27,3^{13}\right)$'s, where $\mathbf{L}_{3}=(0,1,2)^{\prime}$ and \mathbf{i}_{9} is the 9×1 vector of \mathbf{i} 's. It is more convenient to rewrite these two designs in the following form:

$$
\left(\begin{array}{ccccccccc}
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \\
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{a}+\mathbf{1} & \mathbf{b}+\mathbf{1} & \mathbf{c}+\mathbf{1} & \mathbf{d}+\mathbf{1} \\
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{a}+\mathbf{2} & \mathbf{b}+\mathbf{2} & \mathbf{c}+\mathbf{2} & \mathbf{d}+\mathbf{2} & \\
& & & & \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{0}_{9} \\
& & & & \mathbf{a}+\mathbf{2} & \mathbf{b}+\mathbf{2} & \mathbf{c}+\mathbf{2} & \mathbf{d}+\mathbf{2} & \mathbf{1}_{9} \\
& & & & \mathbf{a}+\mathbf{1} & \mathbf{b}+\mathbf{1} & \mathbf{c}+\mathbf{1} & \mathbf{d}+\mathbf{1} & \mathbf{2}_{9}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cccccccc}
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \\
\mathbf{a} & \mathbf{b} & 2 \mathbf{c}+\mathbf{2} & \mathbf{d}+\mathbf{1} & \mathbf{a}+\mathbf{1} & \mathbf{b}+\mathbf{1} & 2 \mathbf{c} & \mathbf{d}+\mathbf{2} \\
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{a}+\mathbf{2} & \mathbf{b}+\mathbf{2} & \mathbf{c}+\mathbf{2} & \mathbf{d}+\mathbf{2} \\
& & & \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{0}_{9} \\
& & \mathbf{a}+\mathbf{2} & \mathbf{b}+\mathbf{2} & 2 \mathbf{c}+\mathbf{1} & \mathbf{d} & \mathbf{1}_{9} \\
& & \mathbf{a}+\mathbf{1} & \mathbf{b}+\mathbf{1} & \mathbf{c}+\mathbf{1} & \mathbf{d}+\mathbf{1} & \mathbf{2}_{0}
\end{array}\right) \quad(\bmod 3) .
$$

It is easy to see that the first design is isomorphic to a regular design, whereas the second design, given in Table 4(a), is not.

Table 4. $O A\left(27,3^{13}\right)$

(a)														(b)													
Run	1	2	3	4	5	6	7	8	9	10	11	12	13	Run	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	0
2	0	1	1	2	0	1	1	2	0	1	1	2	0	2	0	1	1	2	2	2	2	2	2	2	1	0	0
3	0	2	2	1	0	2	2	1	0	2	2	1	0	3	0	2	2	2	1	2	1	0	0	0	1	2	1
4	1	0	1	1	1	0	1	1	1	0	1	1	0	4	0	0	1	1	2	1	0	1	1	0	1	1	1
5	1	1	2	0	1	1	2	0	1	1	2	0	0	5	0	1	2	2	0	1	1	1	1	1	2	0	2
6	1	2	0	2	1	2	0	2	1	2	0	2	0	6	0	2	0	0	2	2	0	2	1	1	0	2	2
7	2	0	2	2	2	0	2	2	2	0	2	2	0	7	0	0	0	1	0	0	1	2	2	2	2	2	1
8	2	1	0	1	2	1	0	1	2	1	0	1	0	8	0	1	2	1	1	0	0	0	2	1	0	1	0
9	2	2	1	0	2	2	1	0	2	2	1	0	0	9	0	2	1	0	1	0	2	1	0	2	2	1	2
10	0	0	2	1	1	1	0	2	2	2	1	0	1	10	1	0	1	2	1	1	0	2	0	1	2	2	0
11	0	1	1	0	1	2	2	1	2	0	0	2	1	11	1	1	0	0	1	2	0	1	2	0	2	0	1
12	0	2	0	2	1	0	1	0	2	1	2	1	1	12	1	2	1	2	0	0	0	0	1	2	0	0	1
13	1	0	1	2	2	1	2	0	0	2	0	1	1	13	1	0	2	2	2	0	2	1	2	0	0	2	2
14	1	1	0	1	2	2	1	2	0	0	2	0	1	14	1	1	0	1	1	1	2	0	1	2	1	2	2
15	1	2	2	0	2	0	0	1	0	1	1	2	1	15	1	2	0	1	2	0	1	1	0	1	1	0	0
16	2	0	0	0	0	1	1	1	1	2	2	2	1	16	1	0	1	0	0	2	1	0	2	1	1	1	2
17	2	1	2	2	0	2	0	0	1	0	1	1	1	17	1	1	2	0	2	1	1	2	0	2	0	1	1
18	2	2	1	1	0	0	2	2	1	1	0	0	1	18	1	2	2	1	0	2	2	2	1	0	2	1	0
19	0	0	0	0	2	2	2	2	1	1	1	1	2	19	2	0	0	2	1	2	1	1	1	2	0	1	0
20	0	1	1	2	2	0	0	1	1	2	2	0	2	20	2	1	1	0	2	0	1	0	1	0	2	2	0
21	0	2	2	1	2	1	1	0	1	0	0	2	2	21	2	2	2	0	0	1	0	1	2	2	1	2	0
22	1	0	1	1	0	2	0	0	2	1	2	2	2	22	2	0	2	1	2	2	0	0	0	2	2	0	2
23	1	1	2	0	0	0	1	2	2	2	0	1	2	23	2	1	1	1	0	2	2	1	0	1	0	2	1
24	1	2	0	2	0	1	2	1	2	0	1	0	2	24	2	2	0	2	2	1	2	0	2	1	2	1	1
25	2	0	2	2	1	2	1	1	0	1	0	0	2	25	2	0	2	0	1	0	2	2	1	1	1	0	1
26	2	1	0	1	1	0	2	0	0	2	1	2	2	26	2	1	0	2	0	0	0	2	0	0	1	1	2
27	2	2	1	0	1	1	0	2	0	0	2	1	2	27	2	2	1	1	1	1	1	2	2	0	0	0	2

NOTE: Column (a) was constructed via the combinatorial method given in Section 3.1; column (b), via the algorithmic method given in Section 3.2 .

When level permutations are also considered, more modelnonisomorphic OAs can be constructed. For simplicity, we consider only three-level designs here. The extension to general levels is obvious. Table 5 shows six different level permutations for a three-level factor, which can also be expressed through modulo operation: $p_{0}(x)=x, p_{1}(x)=x+1, p_{2}(x)=x+2$, $p_{3}(x)=2 x, p_{4}(x)=2 x+1$, and $p_{5}(x)=2 x+2(\bmod 3)$ for $x=0,1,2$. It is easy to see from Table 5 that p_{5}, p_{4}, and p_{3} are reflections of p_{0}, p_{1}, and p_{2}. That is, p_{5} (resp. p_{4} and p_{3}) becomes p_{0} (resp. p_{1} and p_{2}) if levels 0 and 2 are exchanged. Because reflection of a factor (around level 1) does not change the geometric structure of a design, the projection properties, such as E_{i} 's and \bar{D}_{i} 's, are unchanged under reflection. Therefore, we consider only p_{0}, p_{1}, and p_{2} among the six permutations.

Example 7. In the set up for Example 6, consider an $O A\left(27,3^{8}\right)$,
$\mathbf{d}_{4}:\left(\begin{array}{cccc}\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \\ \mathbf{a} & \mathbf{b} & 2 \mathbf{c}+\mathbf{2} & \mathbf{d}+\mathbf{1} \\ \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d}\end{array}\right.$

$$
\left.\begin{array}{cccc}
\mathbf{a} & \mathbf{c} & \mathbf{b} & \mathbf{d} \\
\mathbf{a}+\mathbf{1} & 2 \mathbf{c} & \mathbf{b}+\mathbf{2} & \mathbf{d} \\
\mathbf{a}+\mathbf{2} & \mathbf{c}+\mathbf{2} & \mathbf{b}+\mathbf{1} & \mathbf{d}+\mathbf{1}
\end{array}\right)
$$

Table 5. Six Level Permutations for a Three-Level Factor

	Permutations					
Level	p_{0}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
0	0	1	2	0	1	2
1	1	2	0	2	0	1
2	2	0	1	1	2	0

which is a subdesign (columns $1-5,7,10$ and 12) of Table 4(a). Applying p_{3} on the columns 6 and 8 , we obtain

$$
\mathbf{d}_{5}:\left(\begin{array}{cccccc}
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \\
\mathbf{a} & \mathbf{b} & 2 \mathbf{c}+\mathbf{2} & \mathbf{d}+\mathbf{1} \\
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & & \\
& & \mathbf{a} & 2 \mathbf{c} & \mathbf{b} & 2 \mathbf{d} \\
& & \mathbf{a}+\mathbf{1} & \mathbf{c} & \mathbf{b}+\mathbf{2} & 2 \mathbf{d} \\
& & \mathbf{a}+\mathbf{2} & 2 \mathbf{c}+\mathbf{1} & \mathbf{b}+\mathbf{1} & 2 \mathbf{d}+\mathbf{2}
\end{array}\right) \quad(\bmod 3),
$$

which is the nonregular design constructed by CW via a different (but related) method. Applying p_{1} on columns 6 and 8 and p_{2} on column 7 of \mathbf{d}_{4}, we obtain

$$
\mathbf{d}_{6}:\left(\begin{array}{cccccc}
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \\
\mathbf{a} & \mathbf{b} & 2 \mathbf{c}+\mathbf{2} & \mathbf{d}+\mathbf{1} \\
\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \\
& 8 & \mathbf{a} & \mathbf{c}+\mathbf{1} & \mathbf{b}+\mathbf{2} & \mathbf{d}+\mathbf{1} \\
& & \mathbf{a}+\mathbf{1} & 2 \mathbf{c}+\mathbf{1} & \mathbf{b}+\mathbf{1} & \mathbf{d}+\mathbf{1} \\
& & \mathbf{a}+\mathbf{2} & \mathbf{c} & \mathbf{b} & \mathbf{d}+\mathbf{2}
\end{array}\right) \quad(\bmod 3) .
$$

These three designs are combinatorially isomorphic; therefore, they are equivalent under the GMA or projection aberration criterion. However, they are not model-isomorphic and they have different eligibilities. All three-factor and four-factor projections are eligible for the three designs, but the numbers of ineligible five-factor projections for $\mathbf{d}_{4}, \mathbf{d}_{5}$, and \mathbf{d}_{6} are 3,1 , and 0 . This example shows that a large number of modelnonisomorphic designs can be constructed through level permutations for some columns. The question of finding best level settings will be discussed in Section 3.2.

3.2 Computational Algorithms

Although the previous combinatorial method has the advantage that the properties and structures of its constructed designs can be studied theoretically, there are other and sometimes better nonregular designs that cannot be obtained from using this method. Our second construction method is via computational algorithms.

To generate more OAs efficiently, we adopt an efficient algorithm due to Xu (2002), downloadable at http://www.stat. ucla.edu/haxu. This algorithm enables us to construct many 18- and 27-run OAs with different projection properties efficiently. For example, we found an $O A\left(27,3^{13}\right)$ [given in Table 4(b)] that has 100% eligible three-, four-, and five-factor projections. To our knowledge, none of the combinatorial methods described by Dey and Mukerjee (1999) and Hedayat, Sloane, and Stufken (1999) can produce such a design. Indeed, any 27 -run design constructed by the combinatorial method described in the previous section must contain some three-factor projections that form three-letter words if the design has more than eight factors. Therefore, some of the three-, four-, fivefactor projections would be ineligible.

We also propose algorithms to determine the best level permutations. As mentioned in Section 3.1, we need to consider three permutations for a three-level factor. For n factors, there are 3^{n} possible level permutations. When n is not large, a complete search can be performed to determine the best level permutation. Otherwise, the following two columnwise greedy methods can be used.

Method I (Sequential greedy). Start with the first column and permute three levels in that column with other columns fixed. Find and fix the best level setting for that column. Go to the next column or the first column if it is the last column. Repeat this procedure until no improvement is seen for n consecutive times.

Method II (Random greedy). Randomly select one column and permute three levels in that column with other columns fixed. Find and fix the best level setting for that column. Repeat this procedure until no improvement is seen for some consecutive times, say $k=10$.

Example 8. Consider the level permutation of \mathbf{d}_{4} in Example 7. The results are given in Table 6. The original design \mathbf{d}_{4} has 3 (out of 56) ineligible five-factor projections (see $E_{5}=53$ in the row "no permutation"). Three methods find three different combinations of level permutations, which are listed in the column "level permutation." In a combination, each permutation is applied to a column in \mathbf{d}_{4}. For example, in Table 6 the best combination of level permutations in the complete search is $\left(p_{0}, p_{0}, p_{0}, p_{0}, p_{0}, p_{1}, p_{2}, p_{1}\right)$. This means that no level permutation is required for columns $1-5$, columns 6 and 8 should
be permuted by p_{1}, and column 7 should be permuted by p_{2}. The design found by the complete search is the same as \mathbf{d}_{6} constructed in Example 7. All methods succeed in finding level permutations such that all 56 five-factor projections are eligible (i.e., $E_{5}=56$). After level permutations, the estimation efficiencies also increase (e.g., \bar{D}_{3} increases from .891 to .892). The complete search takes more than 200 minutes on a Sun Sparc workstation with 400 M CPU , whereas the sequential or random greedy search takes only about 1 minute.

4. OPTIMAL DESIGNS

In this section we use the combinatorial and algorithmic methods to construct many new OAs with 18 and 27 runs, and then apply the three-step procedure to compare and rank them.

4.1 18-Run Designs

An 18-run OA can screen up to seven three-level factors. CW studied the commonly used OA given in Table 2(a) under the projection-efficiency criteria. A question is whether the design is optimal within a broader class of OAs.

First, using Xu's (2002) algorithm, we generate 1,000 $O A\left(18,3^{7}\right)$'s randomly. All these OAs have the same generalized word-length pattern $(0,0,22,34.5,27,31,6)$; therefore, the GMA criterion cannot distinguish between them. Then we apply the projection aberration criterion and find that they fall into three classes. For illustration, in Table 2 we list three OAs, each representing one class. The design in Table 2(a) is from standard textbooks (e.g., Wu and Hamada 2000, p. 335), and the other two constructed via the algorithm are chosen arbitrarily.

Table 7 gives the overall A_{3} 's, projection frequencies, E_{i} 's, and \bar{D}_{i} 's for the three arrays given in Table 2. All three arrays have one three-factor projection that has nine distinct runs (i.e., $A_{3}=2$). The projection aberration criterion would choose array (c) because it has no projection with $A_{3}=1$, whereas the other two arrays have at least two projections with $A_{3}=1$ (which has 15 distinct runs). However, the difference is not substantial.

Because all arrays have one three-letter word (i.e., $A_{3}=2$), they have the same number of eligible three-factor projections (i.e., $E_{3}=34$). Both arrays (a) and (c) have 31 (out of 35) eligible four-factor projections, whereas array (b) has 28. As explained in CW, for 18-run designs, the degrees of freedom are not sufficient to entertain any second-order model with five factors; therefore, any five-factor projection is ineligible. Level permutations can increase the eligibility and estimation efficiency of the projections.

A complete search is performed for each array. The best level permutations are $\left(p_{0}, p_{0}, p_{0}, p_{0}, p_{0}, p_{0}, p_{0}\right),\left(p_{2}, p_{0}, p_{2}, p_{1}\right.$,

Table 6. A Comparison of Algorithms for Level Permutations

Method	E_{3}	E_{4}	E_{5}	\bar{D}_{3}	\bar{D}_{4}	\bar{D}_{5}	Seconds	Level permutation
No permutation	$\mathbf{5 6}$	$\mathbf{7 0}$	53	.891	.767	.595	0	$p_{0} p_{0} p_{0} p_{0} p_{0} p_{0} p_{0} p_{0}$
Sequential greedy	$\mathbf{5 6}$	$\mathbf{7 0}$	$\mathbf{5 6}$.892	.772	.609	58	$p_{2} p_{2} p_{2} p_{0} p_{0} p_{0} p_{0} p_{0}$
Random greedy	$\mathbf{5 6}$	$\mathbf{7 0}$	$\mathbf{5 6}$.89	.769	.001	74	$p_{0} p_{2} p_{0} p_{1} p_{0} p_{1} p_{0} p_{0}$
Complete search	$\mathbf{5 6}$	$\mathbf{7 0}$	$\mathbf{5 6}$.892	.772	.609	12,801	$p_{0} p_{0} p_{0} p_{0} p_{0} p_{1} p_{2} p_{1}$

Table 7. Comparison of $O A\left(18,3^{7}\right)$

Array	Overall A_{3}	Projected A_{3} frequency				E_{3}	E_{4}	E_{5}	\bar{D}_{3}	\bar{D}_{4}	\bar{D}_{5}
		$\frac{1}{2}$	$\frac{2}{3}$	1	2						
(a)	22	28	0	6	1	34	31	0	. 876	. 704	0
(b)	22	20	12	2	1	34	28	0	. 871	. 684	0
(c)	22	16	18	0	1	34	31	0	. 876	. 689	0

$\left.p_{0}, p_{0}, p_{0}\right)$, and $\left(p_{2}, p_{0}, p_{2}, p_{2}, p_{1}, p_{0}, p_{2}\right)$ for arrays (a), (b), and (c) (see Table 8, $n=7$). After level permutations, they have the same eligibility ($E_{3}=34, E_{4}=31$, and $E_{5}=0$) and similar estimation efficiency. For array (a), there is no improvement (because no permutation is done); for array (b), \bar{D}_{3} increases from .871 to .881 and \bar{D}_{4} increases from .684 to .694 ; and for array (c), \bar{D}_{4} increases from .689 to .692 . Therefore, after level permutations, these three arrays are competitive under the projection-efficiency criteria. It is interesting to point out that the three four-factor projections $(2,4,5,6),(2,4,5,7)$, and $(3,5,6,7)$ from array (b) are ineligible even though they are free of three-letter words. They become eligible after level permutation (i.e., E_{4} increases from 28 to 31).

We next consider subdesigns from these arrays. For each array, we search for the best n-factor subdesigns by applying the three-step procedure for all n with $3 \leq n \leq 7$. In the construction, step 1 keeps all subdesigns with smallest overall A_{3} values, step 2 selects one best design under the projection aberration criterion, and step 3 uses a complete search. Table 8 gives the chosen designs, the projection properties, and level permutations for each n. For example, if a four-factor design is required from array (c), we should choose columns 1, 3, 5, and 6 according to Table 8(c). These four columns form an $O A\left(18,3^{4}\right)$ that has a minimum overall A_{3} value of 2 and a minimum projection aberration. Its levels should be permuted as $\left(p_{0}, p_{1}\right.$, $\left.p_{0}, p_{2}\right)$. After the level permutations, its eligibility and efficiency are $E_{3}=4$ and $E_{4}=1$ and $\bar{D}_{3}=.89$ and $\bar{D}_{4}=.74$.

From Table 8, we observe that the best subdesigns (for $3 \leq n \leq 6$) can always be found from array (a) for all of the criteria. Indeed, this is supported by a theoretical result. Applying theorem 2 and corollary 4 of Xu (2003), it can be shown that any subdesign not containing the first column of Table 2(a)
has GMA and minimum projection aberration among all possible designs. In addition, all three- and four-factor projections not containing the first column are eligible and have the same estimation efficiencies.

In summary, the commonly used OA given in Table 2(a) and its subdesigns not containing the first column are recommended, because any subdesign not containing the first column is optimal under the GMA and projection aberration criteria.

4.2 27-Run Designs

A 27-run OA can screen up to 13 three-level factors. CW studied the commonly used 27 -run regular designs under the projection-efficiency criteria. They showed that minimum aberration designs are optimal among regular designs. They also gave an example to illustrate that nonregular designs may have higher projection efficiency and are thus better than regular designs. Here we apply the construction methods in Section 3 and the three-step procedure in Section 2 to search for optimal designs in a much broader class of OAs.
First, we arbitrarily generate $100 O A\left(27,3^{13}\right)$'s by applying the construction methods in Section 3. According to Xu and Wu (2001), all these (saturated) OAs have the same generalized word-length pattern $(0,0,104,468, \ldots)$; thus, they are indistinguishable under the GMA criterion. Next we consider the projection-aberration and projection-efficiency criteria. For illustration, we compare three designs: the regular 3^{13-10} design, the nonregular $O A\left(27,3^{13}\right)$ constructed in Example 6, and a nonregular $O A\left(27,3^{13}\right)$ constructed via Xu's algorithm. The two nonregular designs are given in Table 4 and referred to as nonregular designs (a) and (b). Table 9 gives the projection properties for the three arrays. The regular design has a simple projection pattern: A three-factor projection is either a 3^{3} full factorial (i.e., projected $A_{3}=0$) or a replicated 3^{3-1} design (i.e., projected $A_{3}=2$). Among the 286 three-factor projections, the regular design has 52 projections with three-letter words (i.e., projected $A_{3}=2$) and thus has 52 ineligible threefactor projections (and $E_{3}=234$); the nonregular design (a) has 16 projections with three-letter words and therefore has 16 ineligible three-factor projections (and $E_{3}=270$); the nonregular design (b) has no projection with three-letter words and therefore has no ineligible three-factor projection (and $E_{3}=286$).

Table 8. 18-Run Optimal Designs From Table 2

Array	n	Overall A_{3}	Projected A_{3} frequency				E_{3}	E_{4}	E_{5}	\bar{D}_{3}	\bar{D}_{4}	\bar{D}_{5}	Columns	Level permutation
			$\frac{1}{2}$	$\frac{2}{3}$	1	2								
(a)	3	. 5	1	0	0	0	1	0	0	. 89	0	0	234	$p_{0} p_{0} p_{0}$
(a)	4	2	4	0	0	0	4	1	0	. 89	. 74	0	2345	$p_{0} p_{0} p_{0} p_{0}$
(a)	5	5	10	0	0	0	10	5	0	. 89	. 74	0	23456	$p_{0} p_{0} p_{0} p_{0} p_{0}$
(a)	6	10	20	0	0	0	20	15	0	. 89	. 74	0	234567	$p_{0} p_{0} p_{0} p_{0} p_{0} p_{0}$
(a)	7	22	28	0	6	1	34	31	0	. 88	. 70	0	1234567	$p_{0} p_{0} p_{0} p_{0} p_{0} p_{0} p_{0}$
(b)	3	. 5	1	0	0	0	1	0	0	. 89	0	0	125	$p_{0} p_{0} p_{1}$
(b)	4	2	4	0	0	0	4	1	0	. 89	. 74	0	2346	$p_{0} p_{0} p_{0} p_{1}$
(b)	5	5.67	6	4	0	0	10	5	0	. 89	. 71	0	23456	$p_{0} p_{0} p_{1} p_{0} p_{2}$
(b)	6	11.33	12	8	0	0	20	15	0	. 89	. 71	0	234567	$p_{0} p_{1} p_{0} p_{0} p_{2} p_{2}$
(b)	7	22	20	12	2	1	34	31	0	. 88	. 69	0	1234567	$p_{2} p_{0} p_{2} p_{1} p_{0} p_{0} p_{0}$
(c)	3	. 5	1	0	0	0	1	0	0	. 89	0	0	124	$p_{0} p_{0} p_{0}$
(c)	4	2	4	0	0	0	4	1	0	. 89	. 74	0	1356	$p_{0} p_{1} p_{0} p_{2}$
(c)	5	6	4	6	0	0	10	5	0	. 88	. 71	0	12345	$p_{1} p_{1} p_{0} p_{2} p_{2}$
(c)	6	12	8	12	0	0	20	15	0	. 88	. 71	0	123456	$p_{1} p_{0} p_{0} p_{1} p_{1} p_{2}$
(c)	7	22	16	18	0	1	34	31	0	. 88	. 69	0	1234567	$p_{2} p_{0} p_{2} p_{2} p_{1} p_{0} p_{2}$

Table 9. Comparison of $O A\left(27,3^{13}\right)$

Array	Overall A_{3}	Projected A_{3} frequency								E_{3}	E_{4}	E_{5}	\bar{D}_{3}	\bar{D}_{4}	\bar{D}_{5}
		0	$\frac{8}{27}$	$\frac{4}{9}$	$\frac{14}{27}$	$\frac{2}{3}$	$\frac{20}{27}$	$\frac{10}{9}$	2						
Regular	104	234	0	0	0	0	0	0	52	234	234	0	. 93	. 86	0
Nonregular (a)	104	162	0	54	0	27	0	27	16	270	567	693	. 90	. 79	. 61
Nonregular (b)	104	78	0	156	0	52	0	0	0	286	715	1287	. 90	. 78	. 62

The numbers of eligible three-, four-, and five-factor projections are $234(82 \%), 234(33 \%)$, and $0(0 \%)$ for the regular design; 270 (94%), 567 (79%), and $693(54 \%)$ for the nonregular design (a); and 286 (100\%), 715 (100\%), and 1,287 (100\%) for the nonregular design (b). Therefore, under both the projection aberration and projection-efficiency criteria, the regular design is the worst and the nonregular design (b) is the best. The nonregular design (b) has the property that all of its three-, four-, and five-factor projections are eligible and the estimation efficiencies are $\bar{D}_{3}=.90, \bar{D}_{4}=.78$, and $\bar{D}_{5}=.62$. Now consider level permutations. For the regular design, the eligibility cannot be improved because of its three-letter words; for the nonregular design (a), the eligibility of five-factor projection is improved from $E_{5}=693$ to $E_{5}=714$ after the level permutations given in Table 10(a) under $n=13$; for the nonregular design (b), the eligibility cannot be improved (because it is already maximized), whereas the estimation efficiency \bar{D}_{5} is slightly improved from .62 to .63 after the level permutations given in Table 10(b) under $n=13$.

Next, we consider subdesigns from the two nonregular OAs. For each array, we search for the best n-factor subdesigns by applying the three-step procedure for all n with $4 \leq n \leq 13$. In the construction, step 1 keeps all subdesigns with smallest overall A_{3} values, step 2 selects one best design under the projection aberration, and step 3 uses a complete search if $n<9$ and either a sequential or a random greedy search (with $k=10$
tries) if $n \geq 9$. Table 10 gives the chosen designs, the projection properties, and level permutations for each n. For example, if an eight-factor design is required from Table 4(b), then we choose columns $1-4,6,7,11$, and 13 according to Table 10(b). The eight columns form an $O A\left(27,3^{8}\right)$ that has the smallest overall A_{3} value of 19.11 and minimum projection aberration [among all eight-factor subdesigns from Table 4(b)]. Among its 56 three-factor projections, 17 projections are full factorials (i.e., $A_{3}=0$), 31 projections have an A_{3} value of $4 / 9$, and eight projections have an A_{3} value of $2 / 3$. From Table $10(\mathrm{~b})$, the level permutations are ($p_{0}, p_{1}, p_{0}, p_{1}, p_{2}, p_{0}, p_{0}, p_{1}$). The projection efficiency of the resulting design is $E_{3}=56, E_{4}=70, E_{5}=56$, $\bar{D}_{3}=.90, \bar{D}_{4}=.79$, and $\bar{D}_{5}=.64$. Note that this design has less projection aberration and higher projection efficiency than all of the $O A\left(27,3^{8}\right)$'s considered in Examples 7 and 8.

It is interesting to compare the chosen designs in Table 10(a) and (b). For $n=4$, the two designs are equivalent (to a regular 3^{4-1} design). For $n=11,12,13$, the designs from both tables have the same overall A_{3} values, and the designs from Table 10 (b) have less projection aberration and better projection efficiency than those from Table 10(a). Therefore, designs from Table 10(b) are recommended. For $5 \leq n \leq 10$, the situation is more complicated. The designs from Table 10(b) have larger overall A_{3} values, less projection aberration, and better projection efficiency than those from Table 10(a). The choice of these designs depends on the objective. If factor screening is the primary task, then we choose designs from Table 10(a), because

Table 10. 27-Run Optimal Designs From Table 4

Projected A_{3} frequency														
		$\begin{aligned} & \text { Derara } \\ & A^{2} \end{aligned}$	0	$\frac{8}{27} \frac{4}{9}$	$\frac{14}{27} \frac{2}{3}$			$2 E_{3}$			$\bar{D}_{3} \bar{D}_{4}$	\bar{D}_{5}	Columns	Level permutation
(a)	4	0	4	00	00	0	0	0	1	0	. 93.880		1256	$p_{0} p_{0} p_{0} p_{1}$
(a)	5	2	6	03	01	0	0	010	5		. 91.83	. 70	124713	$p_{0} p_{0} p_{0} p_{1} p_{1}$
(a)	6	4	18	00	00	0	0	218	9		. 93.880		1256910	$p_{0} p_{0} p_{0} p_{1} p_{0} p_{2}$
(a)	7	10	22	00	012	0	0	134	31	15	. 91.81	. 65	1245689	$p_{0} p_{0} p_{1} p_{1} p_{0} p_{2} p_{1}$
(a)	8	16	36	00	018	0	0	254	60	36	. 91.81	. 65	124568910	$p_{0} p_{0} p_{2} p_{1} p_{0} p_{1} p_{2} p_{0}$
(a)	9	24	54	00	027	0	0	381	108	81	. 91.81	. 65	12456891012	$p_{0} p_{0} p_{1} p_{2} p_{0} p_{2} p_{1} p_{0} p_{0}$
(a)	10	42	63	018	027	0	9	3117	189	180	. 90.79	. 62	123456891012	$p_{0} p_{1} p_{1} p_{0} p_{0} p_{0} p_{0} p_{0} p_{0} p_{1}$
	11	60	81	036	027	0	18	3162	306	367	. 90.78	. 61	1234567891012	$p_{0} p_{0} p_{1} p_{0} p_{0} p_{1} p_{1} p_{0} p_{0} p_{0} p_{1}$
(a)		80	108	054	027	0	27	4216	459	633	. 90.78	. 61	123456789101112	$p_{0} p_{0} p_{0} p_{1} p_{0} p_{0} p_{0} p_{1} p_{0} p_{1} p_{0} p_{0}$
(a)		104	162	054	027	0	27	16270	567	714	. 90.79	. 61	12345678910111213	$p_{0} p_{0} p_{0} p_{0} p_{2} p_{1} p_{0} p_{0} p_{2} p_{0} p_{0} p_{0} p_{1}$
(b)	4	0	4	00	00	0	0	0	1		. 93.880		1278	$p_{0} p_{0} p_{0} p_{0}$
(b)	5	2.44	5	04	1	0	0	010	5		. 92.83	. 71	12378	$p_{0} p_{1} p_{2} p_{2} p_{1}$
(b)	-	6	8	09	3	0	0	020	15		. 91.81	. 65	123489	$p_{0} p_{2} p_{2} p_{2} p_{0} p_{2}$
(b)	7	11.33	12	018	05	0	0	035	35	21	. 90.8	. 65	12348911	$p_{2} p_{0} p_{0} p_{1} p_{0} p_{0} p_{0}$
	8	19.11	17	031	08	0	0	056	70	56	. 90.79	. 64	1234671113	$p_{0} p_{1} p_{0} p_{1} p_{2} p_{0} p_{0} p_{1}$
(b)	9	29.33	24	048	012	0	0	084	126	126	. 90.79	. 64	12345671113	$p_{1} p_{0} p_{0} p_{0} p_{0} p_{1} p_{1} p_{0} p_{1}$
	10	43.33	33	066	021	0	0	0120	210	252	. 90.79	. 63	123456781012	$p_{1} p_{0} p_{1} p_{0} p_{1} p_{0} p_{0} p_{0} p_{2} p_{0}$
	11	60	45	090	030	0	0	0165	330	462	. 90.78	. 63	1234567891011	$p_{2} p_{0} p_{0} p_{0} p_{2} p_{0} p_{0} p_{0} p_{0} p_{0} p_{0}$
(b)		80	60	0120	040	0	0	0220	495	792	. 90.78	. 63	123456789101112	$p_{0} p_{2} p_{0} p_{0} p_{2} p_{2} p_{0} p_{0} p_{1} p_{0} p_{1} p_{0}$
(b)		104	78	0156	052	0	0	0286	715	1,287	. 90.78	. 63	12345678910111213	$p_{0} p_{0} p_{0} p_{0} p_{1} p_{1} p_{0} p_{1} p_{1} p_{0} p_{0} p_{0} p_{0}$

they have smaller overall A_{3} values. If interaction detection is the primary task, then we choose designs from Table 10(b), because all of their three-, four-, and five-factor projections are eligible and have high efficiency.

While preparing this manuscript, we learned that there are exactly 68 combinatorially-nonisomorphic $O A\left(27,3^{13}\right.$)'s (Lam and Tonchev 1996). Therefore, we further searched for optimal designs from all these 68 arrays. We found that the nonregular design (b) given in Table 4(b) has minimum projection aberration and that the designs given in Table 10(a) have GMA among all possible subdesigns from these 68 saturated OAs.

Because many 27-run OAs are not part of any saturated OA, we used algorithms to search for optimal designs. For each n, $4 \leq n \leq 12$, we constructed $1,000 O A\left(27,3^{n}\right)$'s using Xu's algorithm and ranked them according to their overall A_{3} values and projected A_{3} values. We observed that their overall A_{3} values are always larger than or equal to those given in Table 10(a) In other words, the designs given in Table 10(a) have minimum contamination. We also found many new OAs that are not part of any saturated OA and have less projection aberration than those given in Table 10 for $5 \leq n \leq 10$. Table 11 lists the best $O A\left(27,3^{n}\right)$ under the projection aberration criterion for each n, and Table 12 shows their projection properties. Level permutation algorithms have been applied to improve the projection efficiency. Compared with the designs given in Table 10(b), these new designs have slightly larger (i.e., worse) overall A_{3} values, less (i.e., better) projection aberration, the same eligibility, and similar efficiency.

In summary, Table 4(b) and its subdesigns given in Table 10 (b) are recommended, because all of their three-, four-, and five-factor projections are eligible and have high efficiencies.

5. SUMMARY AND FURTHER REMARKS

For factor screening and interaction detection, we propose computationally efficient criteria for ranking three-level designs. We show that the generalized word-length pattern is closely related to various design properties, including contamination, eligibility and estimation efficiency. In the three-step approach, these criteria are combined to sequentially search for optimal designs. Although we focus on three-level designs, this approach can be applied to designs with any number of levels, because the generalized word-length pattern is not restricted to three levels. To obtain more OAs for comparison, we propose both combinatorial and algorithmic construction methods, and present two versions of a search algorithm for level permutations. Some 18 - and 27 -run optimal designs are found.

Here we use only A_{3} values (overall and projected) in ranking designs. For designs with small run size, using the A_{3} values suffices for discriminating and ranking designs. Because lower-dimensional projections are more important than higherdimensional projections, there is no need to use A_{4} values when A_{3} can do the job. However, for large run size (e.g., 81), there are many designs with zero overall and projected A_{3} values. These designs are equally good under the current contamination and projection aberration criteria. In this case, the projection aberration criterion should be modified and extended to A_{4} values. The extension of projection frequency to A_{4} values is
straightforward. Because the overall A_{4} value is not related to the aliasing between main effects and two-factor interactions, there is no need to extend the contamination criterion to A_{4}. Therefore, step 1 in the three-step approach should be dropped.

For constructing OAs, the algorithmic approach in Section 3.2 is very flexible and effective for small run sizes, such as 18 and 27 , and outperforms the combinatorial method. However, it is computationally prohibitive (or even infeasible) for a larger run size, such as 81 . In this situation, combinatorial construction should be used until the algorithm can be further improved.

ACKNOWLEDGMENTS

S.-W. Cheng's research was supported by the National Science Council of Taiwan, ROC, C. F. J. Wu's research was supported by National Science Foundation (NSF) grants DMS-00-72489 and DMS-03-05996 and National Security Agency grant MSPR-00G-091, and H. Xu's research was supported by NSF grant DMS-02-04009. H. Xu is grateful to Professor Clement Lam for sending the list of 68 27-run orthogonal arrays. The authors thank the editor, the associate editor, and the referees for their criticism and valuable comments that contributed to the improvement of the article.

APPENDIX: PROOF OF LEMMA 2

Let d be a three-factor projection of an OA with N runs and s levels, denoted by $0,1, \ldots, s-1$. For $i, j, k=0,1, \ldots, s-1$, let $f(i, j, k)$ be the number of times that the level combination (i, j, k) appears in d. It is clear that $\sum_{k=0}^{s-1} f(i, j, k)=N s^{-2}$ for $i, j=0, \ldots, s-1$, because \mathbf{d} is an OA. Then

$$
\begin{aligned}
\sum_{i=0}^{s-1} \sum_{j=0}^{s-1} \sum_{k=0}^{s-1} f(i, j, k)^{2} & \leq \sum_{i=0}^{s-1} \sum_{j=0}^{s-1}\left[\sum_{k=0}^{s-1} f(i, j, k)\right]^{2} \\
& =\sum_{i=0}^{s-1} \sum_{j=0}^{s-1}\left[N s^{-2}\right]^{2}=N^{2} s^{-2}
\end{aligned}
$$

where the equality holds if and only if for each pair of i, j there is a unique k such that $f(i, j, k)=N s^{-2}$. In other words, the equality holds if and only if the factor levels of the first two columns completely determine the factor level of the third column; that is, the three factors form a three-letter word. On the other hand, let $B_{0}=N^{-1} \sum_{i=0}^{s-1} \sum_{j=0}^{s-1} \sum_{k=0}^{s-1} f(i, j, k)^{2}$. By applying some fundamental results from coding theory, Xu and Wu (2001) showed that B_{0} is a linear combination of the generalized word-length pattern. Specifically, for a design of N runs and three s-level factors, $B_{0}=N s^{-3}\left(1+A_{1}+A_{2}+A_{3}\right)$. From Xu and Wu (2001), $A_{1}=A_{2}=0$ for an OA. Therefore, $A_{3}=N^{-1} s^{3} B_{0}-1 \leq s-1$, where the equality holds if and only if the three factors form a three-letter word.
[Received February 2002. Revised March 2004.]

Table 11. $O A\left(27,3^{n}\right)$

OA27.5									OA27.6										OA27.7										
Run	1		2	3		4	5		Run	1		2	3		4	5	6		Run		1	2	3		4	5		6	7
1	0		0	2		1	1		1	0		0	1		0	0	1		1		0	0	1		2	2		0	1
2	0		1	0		1	2		2	0		1	1		2	2	1		2		0	1	0		1	2		1	0
3	0		2	0		2	0		3	0		2	2		2	0	1		3		0	2	2		0	2		1	2
4	0		0	2		2	2		4	0		0	0		0	2	2		4		0	0	0		0	1		2	0
5	0		1	1		2	1		5	0		1	0		1	0	0		5		0	1	1		2	1		2	2
6	0		2	2		1	0		6	0		2	1		0	1	0		6		0	2	1		0	0		0	0
7	0		0	0		0	1		7	0		0	2		2	1	2		7		0	0	2		1	0		2	1
8	0		1	1		0	0		8	0		1	2		1	2	0		8		0	1	2		2	0		0	2
9	0		2	1		0	2		9	0		2	0		1	1	2		9		0	2	0		1	1		1	1
10	1		0	0		1	0		10	1		0	0		2	0	0		10		1	0	0		2	2		1	2
11	1		1	2		0	2		11	1		1	2		0	1	1		11		1	1	2		0	1		1	1
12	1		2	2		2	1		12	1		2	2		0	2	2		12		1	2	2		2	2		2	1
13	1		0	0		2	2		13	1		0	2		1	1	0		13		1	0	0		0	0		0	1
14	1		1	2		0	1		14	1		1	1		1	0	2		14		1	1	0		2	0		2	0
15	1		2	0		0	1		15	1		2	0		2	2	0		15		1	2	1		1	1		0	2
16	1		0	1		2	0		16	1		0	1		1	1	1		16		1	0	1		1	0		1	2
17	1		1	1		1	0		17	1		1	1		2	2	2		17		1	1	2		1	1		0	0
18	1		2	1		1	2		18	1		2	0		0	0	1		18		1	2	1		0	2		2	0
19	2		0	1		0	2		19	2		0	0		1	2	1		19		2	0	1		2	1		1	0
20	2		1	0		2	2		20	2		1	2		0	0	0		20		2	1	1		0	0		1	1
21	2		2	1		2	1		21	2		2	1		1	0	2		21		2	2	0		2	1		0	1
22	2		0	1		1	1		22	2		0	1		0	2	0		22		2	0	2		0	1		2	2
23	2		1	2		2	0		23	2		1	0		0	1	2		23		2	1	0		0	2		0	2
24	2		2	0		0	0		24	2		2	2		1	2	1		24		2	2	0		1	0		2	2
25	2		0	2		0	0		25	2		0	2		2	0	2		25		2	0	2		1	2		0	0
26	2		1	0		1	1		26	2		1	0		2	1	1		26		2	1	1		1	2		2	1
27	2		2	2		1	2		27	2		2	1		2	1	0		27		2	2	2		2	0		1	0
OA27.8									OA27.9										OA27.10										
Run	1	2	3	4	5	6	7	8	Run	1	2	3	4	5	6	7	8	9	Run	1	2	3	4	5	6	7	8	9	10
1	0	0	0	2	0	2	0	1	1	0	0	2	2	1	2	2	1	1	1	0	0	0	0	1	0	0	2	2	1
2	0	1	0	0	1	2	2	2	2	0	1	2	1	0	1	1	0	2	2	0	1	2	0	1	0	1	0	0	0
3	0	2	2	1	0	0	2	0	3	0	2	0	2	0	2	0	2	2	3	0	2	0	1	2	2	1	2	0	0
4	0	0	1	0	0	1	1	1	4	0	0	1	1	2	0	0	2	2	4	0	0	1	1	0	2	0	0	0	1
5	0	1	1	1	2	0	0	1	5	0	1	1	0	2	1	2	0	1	5	0	1	2	1	2	0	2	1	2	2
6	0	2	2	0	2	2	0	0	6	0	2	1	0	0	0	1	1	1	6	0	2	0	0	0	1	1	1	1	2
7	0	0	2	2	2	0	1	2	7	0	0	0	0	1	2	1	0	0	7	0	0	2	2	0	2	2	1	1	0
8	0	1	1	2	1	1	2	0	8	0	1	0	1	1	0	2	2	0	8	0	1	1	2	1	1	2	2	1	1
9	0	2	0	1	1	1	1	2	9	0	2	2	2	2	1	0	1	0	9	0	2	1	2	2	1	0	0	2	2
10	1	0	2	1	1	1	0	2	10	1	0	1	2	2	1	1	2	0	10	1	0	2	2	1	2	1	0	2	2
11	1	1	2	2	0	2	2	2	11	1	1	0	2	1	1	1	1	2	11	1	1	0	2	1	1	0	1	0	0
12	1	2	1	0	1	0	2	1	12	1	2	0	2	2	0	2	0	1	12	1	2	0	1	1	2	2	1	2	1
13	1	0	0	0	1	0	0	0	13	1	0	2	1	0	0	2	1	0	13	1	0	1	0	2	0	1	1	1	1
14	1	1	1	1	2	2	1	0	14	1	1	2	0	2	2	2	2	2	14	1	1	0	1	0	0	0	0	1	2
15	1	2	1	2	2	1	0	2	15	1	2	2	0	1	0	0	0	2	15	1	2	1	2	0	0	1	2	2	0
16	1	0	0	1	2	2	2	1	16	1	0	0	1	0	1	0	0	1	16	1	0	2	1	2	1	0	2	1	0
17	1	1	2	0	0	1	1	1	17	1	1	1	0	0	2	0	1	0	17	1	1	1	0	0	2	2	2	0	2
18	1	2	0	2	0	0	1	0	18	1	2	1	1	1	2	1	2	1	18	1	2	2	0	2	1	2	0	0	1
19	2	0	1	2	1	2	1	0	19	2	0	0	0	2	0	1	1	2	19	2	0	1	1	1	1	1	1	0	2
20	2	1	0	1	0	1	0	0	20	2	1	2	2	0	0	1	2	1	20	2	1	1	0	2	2	0	1	2	0
21	2	2	0	2	2	1	2	1	21	2	2	2	1	2	2	1	0	0	21	2	2	1	1	1	0	2	0	1	0
22	2	0	2	0	2	1	2	0	22	2	0	1	2	0	2	2	0	2	22	2	0	0	2	2	0	2	2	0	2
23	2	1	2	2	1	0	0	1	23	2	1	0	1	2	2	0	1	1	23	2	1	0	2	2	2	1	0	1	1
24	2	2	1	0	0	2	0	2	24	2	2	1	1	1	1	2	1	2	24	2	2	2	0	1	2	0	2	1	2
25	2	0	1	1	0	0	2	2	25	2	0	2	0	1	1	0	2	1	25	2	0	0	0	0	1	2	0	2	0
26	2	1	0	0	2	0	1	2	26	2	1	1	2	1	0	0	0	0	26	2	1	2	1	0	1	1	2	2	1
27	2	2	2	1	1	2	1	1	27	2	2	0	0	0	1	2	2	0	27	2	2	2	2	0	0	0	1	0	1

NOTE: Constructed via the algorithmic method given in Section 3.2.

Table 12. 27-Run Optimal Designs From Table 11

n	Overall A_{3}	Projected A_{3} frequency								E_{3}	E_{4}	E_{5}	\bar{D}_{3}	\bar{D}_{4}	\bar{D}_{5}	Array
		0	$\frac{8}{27}$	$\frac{4}{9}$	$\frac{14}{27}$	$\frac{2}{3}$	$\frac{20}{27}$	$\frac{10}{9}$	2							
5	3.11	0	9	1	0	0	0	0	0	10	5	1	. 92	. 82	. 69	OA27.5
6	7.56	0	9	11	0	0	0	0	0	20	15	6	. 91	. 81	. 68	OA27.6
7	12.3	1	21	9	4	0	0	0	0	35	35	21	. 90	. 80	. 65	OA27.7
8	20.37	5	24	10	17	0	0	0	0	56	70	56	. 90	. 79	. 64	OA27.8
9	30.3	10	32	23	14	5	0	0	0	84	126	126	. 90	. 79	. 64	OA27.9
10	43.93	19	31	39	22	9	0	0	0	120	210	252	. 90	. 79	. 63	OA27.10

REFERENCES

Box, G. E. P., and Draper, N. R. (1987), Empirical Model-Building and Response Surfaces, New York: Wiley.
Box, G. E. P., and Meyer, R. D. (1986), "An Analysis for Unreplicated Fractional Factorials," Technometrics, 28, 11-18.
(1993), "Finding the Active Factors in Fractionated Screening Experiments," Journal of Quality Technology, 25, 94-105.
Cheng, S. W., and Wu, C. F. J. (2001), "Factor Screening and Response Surface Exploration" (with discussion), Statistica Sinica. 11. 553-604.
Chipman, H. (1996), "Bayesian Variable Selection With Related Predictors," The Canadian Journal of Statistics, 24, 17-36.
Chipman, H., Hamada, M., and Wu, C. F. J. (1997), "A Bayesian VariableSelection Approach for Analyzing Designed Experiments With Complex Aliasing," Technometrics, 39, 372-381.
Deng, L. Y., and Tang, B. (2002), "Design Selection and Classification for Hadamard Matrices Using Generalized Minimum Aberration Criteria," Technometrics, 44, 173-184
Dey, A., and Mukerjee, R. (1999), Fractional Factorial Plans, New York: Wiley.
Farrell, R. H., Kiefer, J., and Walbran, A. (1967), "Optimum Multivariate Designs," in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I: Statistics, eds. L. Le Cam and J. Neyman, Berkeley, CA: University of California Press, pp. 113-138.
Fries, A., and Hunter, W. G. (1980), "Minimum Aberration 2^{k-p} Designs," Technometrics, 22, 601-608.
Hamada, M., and Wu, C. F. J. (1992), "Analysis of Designed Experiments With Complex Aliasing," Journal of Ouality Technology, 24. 130-137.
Hedayat, A. S., Sloane, N. J. A., and Stufken, J. (1999), Orthogonal Arrays. Theory and Applications, New York: Springer-Verlag.
Khuri, A., and Cornell, J. A. (1996), Response Surfaces: Designs and Analyses (2nd ed.), New York: Marcel Dekker.

Kiefer, J. (1961), "Optimum Designs in Regression Problems II," The Annals of Mathematical Statistics. 32. 298-325.
King, C., and Allen, L. (1987), "Optimization of Winding Operation for Radio Frequency Chokes," in Fifth Symposium on Taguchi Methods, Dearborn, MI: American Supplier Institute, pp. 67-80.
Lam, C., and Tonchev, V. D. (1996), "Classification of Affine Resolvable 2-(27, 9, 4) Designs," Journal of Statistical Planning and Inference, 56, 187-202.
McCullagh, P., and Nelder, J. A. (1989), Generalized Linear Models (2nd ed.), London: Chapman \& Hall.
Myers, R. H., and Montgomery, D. C. (1995), Response Surface Methodology: Process and Product in Optimization Using Designed Experiments, New York: Wiley.
Steinberg, D. M., and Bursztyn D. (2001), Discussion of "Factor Screening and Response Surface Exploration," by S.-W. Cheng and C. F. J. Wu, Statistica Sinica, 11, 596-599.
Tang, B., and Deng, L. Y. (1999), "Minimum G_{2}-Aberration for Non-Regular Fractional Factorial Designs," The Annals of Statistics, 27, 1914-1926.
Tsai, P. W., Gilmour, S. G., and Mead, R. (2000), "Projective Three-Level Main Effects Designs Robust to Model Uncertainty," Biometrika, 87, 467-475.
Wang, J. C., and Wu, C. F. J. (1991), "An Approach to the Construction of Asymmetrical Orthogonal Arrays," Journal of the American Statistical Association, 86, 450-456.
Wu, C. F. J., and Hamada, M. (2000), Experiments: Planning, Analysis and Parameter Design Optimization, New York: Wiley.
Xu, H. (2002), "An Algorithm for Constructing Orthogonal and NearlyOrthogonal Arrays With Mixed Levels and Small Runs," Technometrics, 44, 356-368.
(2003), "Minimum Moment Aberration for Nonregular Designs and Supersaturated Designs," Statistica Sinica, 13, 691-708.
Xu, H., and Wu, C. F. J. (2001), "Generalized Minimum Aberration for Asymmetrical Fractional Factorial Designs," The Annals of Statistics. 29. 1066-1077.

