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OPTIMAL PROPERTIES OF ONE-STEP VARIABLE SELECTION
IN REGRESSION

By RoNaALp W. BUTLER

The University of Texas

We consider the selection of the best subset of independent variables of
a fixed size for possible inclusion in a regression model. The classical proc-
edures (largest R? to enter) are shown to be uniformly invariant Bayes in the
sense of Paulson (1952) and Kudo (1956).

1. Introduction. This note is concerned with the problem of selecting the best subset
of independent variables of a fixed size in a linear regression model. Under the usual
assumptions of ii.d. normal errors, Butler (1981) has shown that the natural selection
procedure, which tests the significance of the subset with largest squared multiple corre-
lation coefficient RZ is unique invariant Bayes and unique Bayes and hence admissible. In
addition for the multivariate situation, he has also shown that the significance tests of the
fixed size subsets which are most significant for either a Wilks’ or Pillai’s criterion have the
same Bayes character. In Section 2 we strengthen these results in the case of the forward
selection of a single independent variable by showing that the significance test to include
the variable with largest partial correlation or, in the multivariate case, with largest partial
first canonical correlation (largest Hotelling’s T? for entry) uniformly minimizes the Bayes
risk, given by the probability of incorrect selection, within a class of invariant selection
rules. The method of proof follows the approach of Ferguson (1961) and Karlin and Truax
(1960) who have considered the problem of single outlier detection. In Section 3 these
results are extended to the selection of a single random effect variable in the multivariate
case and a fixed number of random effect variables in the univariate case. Further examples
of variable selection related to multiple outlier detection and discriminant analysis are

given.

2. Selection of a single fixed effects variable. We denote

~

Y =G, 5= X - 6 + E
(n X k) (nXp) (PXk) (nXE)

as the null (H,) model and use “”” to indicate a variable before transforming to canonical
form. In (2.1) X is fixed and @ is fixed or random depending on the circumstances.
Premultiplication of (2.1) by an n X n orthogonal matrix @ having its first p rows as
(X’ X) 72X’ transforms the model to canonical form which we indicate by removing the
“*in (2.1) so that ® = (X’X)"/2 ® and X’ = (I, 0) where I is the p X p identity matrix. The
rows of E and hence E are taken as ii.d. M VN, (0, Z) with £ > 0. Under this canonical
form the least squares estimator (LSE) of ©® is (y1, - -+ , ¥»)’ and the matrix error sum of
squares is

(2.1)

S= (n —p)ﬁ = E'f=p+1 yiyi = E'E.

An idealized setting is assumed where X is known to be relevant in the model and one
other possibly relevant variable is included in an auxiliary list given by the columns of n
X mmatrix Z = (3, -+, Z»). Let the n X m matrix Z = Q(I — X(X'X)'X')Z, so Zis the
canonical form of Z orthogonal to X (and the first p rows consist entirely of zeros). Also
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assume that z/z; = 1 Vi. Let H; refer to the model

Y=X.0+zr+E,

where 1; is £ X 1. If X contains a column of ones and {;} are fixed effects, then =27, is

the vector of population (or long-run) partial correlations of the components of ¥ with 2;
given X. Under H; the LSE of © and 7, are (yi, - -+, ¥,)’ and Y’z; respectively.

The multidecision problem involved here compares Hy and {H;:i =1, --., m} and a
test for such a problem is an (m + 1)-vector (¢o, - -+, ¢») Where ¢; is the probability of
deciding H; is the true model. If a zero-one loss function is assumed according to whether
the decision is right-wrong, then the Bayes risk with respect to a prior weighting of the
hypotheses is the probability of making an incorrect decision.

We follow the invariant Bayesian approaches of Ferguson (1961) and Karlin and Truax
(1960), which represent refinements of the methods of Paulson (1952) and Kudo (1956),
and restrict attention to the following class of tests:

(i) the test has level 0 < a < 1 so that

N

EQXLy ¢i| Ho) =1 — E(po| Ho) < a.

(ii) the test is invariant to translation of ¥ by a matrix of column vectors in the column
space of X, thus allowing for the rescaling of X.

(iii) Invariance is also maintained under an arbitrary nonsingular k& X k transformation
of the rows of ¥, thus allowing for the rescaling of ¥.

(iv) Apriori, each hypothesis in {H;: i =1, .--, m} is given the same weight 0 < 7 <
m ™!, where 7 is the value which assures the a level in (i).

We first consider the model I situation where {7;} are fixed effects and define the
hypotheses for comparison as

(22) Ho:Ti=0Vi, Hi:'r,-='r#0 and T,=0V]?£l

for i =1, ..., m. This particular specification exhibits these characteristics.

(a) Hypothesis formulation (2.2) tests that the partial correlation vectors {Z~*/r,} all
vanish versus one vector has the value =727, Because Z’X = 0, it is clear that the degree
of orthogonality of each variable in Z to design X does not enter into the hypothesis test.

(b) Since

&S|Z, 1, H) = (n — p)= + 71!

then apriori S has the same expected value under each H; and becomes a useful benchmark
with which to compare the effects of fitting the various {z;}.

THEOREM 1. Suppose k < n — p and let p; be the first (and only nonzero) partial
canonical correlation of Y and Z; given X so that

p?=2ESTE 2.
For hypothesis specification (2.2), the test defined by
¢ =1 if p»=max;p?>c
¢o=1 otherwise

minimizes the probability of an incorrect decision given by the Bayes risk with respect to
(iv), uniformly in v € R*, among the class of tests specified in (i)-(iv), where ¢; > 0 is
chosen so level a is maintained.

PROOF. A test in the class above must be a function of the maximal invariant, so it
suffices to consider its likelihood under each hypothesis. The residuals E=(,-.--,0, Yp+1s
<+, %)’ are invariant to the transformations in (ii). Let W = (Yp+1, -+ , ¥p+2), Which is
k X k and nonsingular with probability one. To obtain invariance as in (iii) let
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—1 .
vi=Wy, i=1,.-.,n,

so that (Up+1, +++, Up+z) = I, and V= .. =y, =0. By Lehmann (1959, Section 6.2,
Theorem 2), V= (vy, - - - , v,) = WE’ is the maximal invariant. Straightforward Jacobian
transformations show that the likelihood of V is

L(V|H) o | W|"#7% |2 |~ P 2exp(~ % (V'W' — 2r)ZYAV'W' = zi7)’} dW.
Now let So = VV’, U= S§*W’ =72 and N = S5*/2V so that
L(V|H) o | So| ™" P %exp(— 1/ 77,

(2.3)
. J | U|* % . etr{—%(UU’ — 2U’'Nzir; 2%} dU.

Now let Z(I') be a & X k orthogonal matrix with first row given by z/N'/| z/N’ || (r{=//
|| 7i=7"2||). Transform ¥ = ZUT" and replace r; with 7 so that

L(V|Hy) o | So| ™" ?exp(—Yr'S 7)
(2.4)

.

. f [ [P *exp{—Y4 tr W’ + yu, (2{ N'Nz:) Y2+’ "'7) V%) Q.

As noted in Karlin and Truax (1960, page 320), expression (2.4) is an increasing function
of
2/N'Nz; = 2/ ES'E'z; = p?
for each value of 7’2 7'r. The likelihood of H, is (2.4) with 7 = 0.
The Bayes risk with respect to the equally-weighted prior specification in (iv) is

(2.5) l-mm-3Yr, f ¢i{wL(V|7, H) — (1 — ma)L(V|H,)} dV

when we substitute ¢o = 1 — },72; ¢;. The Bayes rule minimizing (2.5) accepts H;. if
L(V|r, Hy) =max,L(V |7, H;) > 77" (1 — mr)L(V| H,)

and accepts H, otherwise. This is equivalent to the rule in Theorem 1 by the monotonicity
of L(V|r, H;) in 7 for each value of 7. The minimization is also uniform in 7. 0

ExaMPLE 1. Consider the classification of an unknown individual into one of two
populations. Assume that p = 1 and Xis an n X 1 column of ones. Let ( Y1, +++, ¥, and
(J2+1, +++ , Y2o) represent observations from populations 1 and 2 respectively and suppose
that observation 2¢+ 1 = n is to be classified. We let m = 2 and assume that 7; is the
differential effect of population 1 for i = 1, 2. If

4 4
— —t—
g_(1-+1 =1...-1 1
‘ 1.ev1 =1...-1 -1)’
then the selection of Z; is equivalent to the classification of individual » into population i.

We set a = 1 (7 = %) to eliminate the possible acceptance of Hy. From the variable
updating formula

S(X, z) = 8(X) — E'zz2!E,

where S (+) is the matrix error sums of squares when fitting the enclosed variables, it

follows that R .
pi=1 —|8X) |7 S(X, 2:) |-

From this it is easy to show that
WA+ A+ 1) NG — 7)) WG — 7))

A2
pi=1 — — ,
ITI{1+ (n=1)n""(F—5)T (5 — 7))
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where ¥; is the ith stratum mean without 7., y = (71 + 2)/2, T is the total sums of squares
of the classified data J;, :--, ¥,—1 about its mean, and W is the within strata sums of
squares for the classified data. The sign of 63 — p is the same as the sign of (7, —
7 WG = 71) = (Fn — 72) W N(F» — 72) which is the sign of (72 — 71)’ W (Fn — 7), so
Theorem 1 yields the plug-in version of Fisher’s classification rule. The weaker admissible
Bayes character of this test has been shown by Kiefer and Schwartz (1965) using a different
approach.

3. Selection of random effect variables. We now assume {7;} represent random
normal effects. In the multivariate situation we show the significance test on the single
variable with largest partial first canonical correlation is again optimal. For the univariate
case, the test of the variable subset of size s = 1 with largest partial multiple correlation
(largest R? to enter) among all subsets of size s is also optimal.

For brevity, we prove both of the above results within the notation of the multivariate
model. The following notational extensions are necessary. Let & denote an arbitrary subset
of {1, - -+ ,m} of size s, and, accordingly, suppose ¢+is the probability of accepting H, the
hypothesis that the true model includes the additional variables in Z,= (311 € &), which
isn X s. Let o= (1:: i € &)’ be s X k and suppose in the univariate case psis the partial
multiple correlation of ¥ and Z given X.

We again follow the invariant Bayesian approach of Section 2 and restrict attention to

the tests of (i)-(iv) with the modification that equal prior weight is given to all(';l

possible subsets and £(Yo¢4] Ho) < a.
The hypotheses for comparison are

(3.1) Hp: ;i =0w.p.1 Vi
H,: (27?1 hasiid. rows ~ MVN,(0,A’Z) and 7, =0w.plVig€¥
Again &(8| =, Hy) = (n — p + sA®)Z for all #so that § is a useful benchmark.
THEOREM 2. For the univariate regression model (k = 1) consider the hypothesis

specification in (3.1) with s = 1, and for the multivariate model assume s = 1. Then the
rule

32) b =1 if p% =maxsp’>c

¢o =1 otherwise
when k =1 and the rule of Theorem 1 when k > 1 minimize the probability of an incorrect

decision given by the Bayes risk uniformly over A > 0 among the class of tests in (i)-(iv).

Proor. The results here follow from the Bayes nature of the tests. Ferguson (1961)
has shown that:this result holds when looking for a single outlier in a multivariate location

model.
We proceed as in Theorem 1 to (2.3) where it can be shown that the maximal invariant

has the conditional distribution
L(V|1y, Hy) < | So| "7 2exp(—% tr 14ZyZyTs2 ")

(3.3)
f | U||* 7~ *etr(—=% UU’ + U'NZy1sZ™"?) dU.

The marginal distribution of V under Hy follows by integrating (3.3) with respect to the
random effect distribution of 7,in (3.1) so that

L(V|Hy) o< | So| P2\~ J f | U7 *etr(=% UU’ — % f AN’

+ U'NZAZ'vZy) A} dU dA,
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where A = (Z4,Z4)*142 "% and f? = A*(1 + A%) .. Completing the square and integrating
out A yields

(34)  L(V|Hy) o< | So| ™ P21 + A2 ~/2 f | Ul|* >~ *etr (=% UU'(I — P)} dU,

where P = f*NZZ/;Zs) "'Z',N’. Make the substitution A = UU’ (which is not a square
transformation but an integrated Jacobian of | A |~/ is shown for it in Anderson, 1958,
page 319) so that (3.4) takes the form of a Wishart integral and reduces to

(3.5) L(V|Hy) o |So|~"™P2(1 4 N?) */2| I — P| P2,

For both cases of Theorem 2, |I — P| =1 — f*6%since when k2 = 1, P = f25%, and when s
= 1’

“N' NZAZ'sZs) 7' = p%.

The Bayes risk with respect to our prior specification (iv) is

(3.6) o — ny ¢[7L(V|\, Hy) — mL (V| Ho)] AV

where 0 =7 =1— ('Z) 7 < 1 so that the rule

¢p» =1 if L(V|\ Hy) =maxsL(V|\, Hy) > 7 'mL(V|Hp)
¢o =1 otherwise

is Bayes. Since (3.5) is a strictly increasing function of p%if either 2 = 1 or s = 1, then the
tests of Theorem 2 are invariant Bayes for all A > 0. 0

ExaMpPLE 2. Consider the detection of s outliers in a univariate location model having
X as an n X 1 vector of ones. We suppose m = n, Z = I,,, and that the outliers result from
independent normal random effects. Then #C {1, -+ -, n} indexes a possible subset of s
outliers. Denote S (X) as the sum of squares of the y-values about their mean, and SX Z,
is the sum of squares of the y-values indexed by {1, ... , n}\&¥about their mean. Then p%
=1-8(X)'S(X, Z.) is the Grubb’s (1950) outlier test statistic and its uniformly invariant
Bayes character is given in Theorem 2.

ExaMpPLE 3. Consider the classification of an individual into one of m + 1 populations
based on a single variable (¢ = 1). Suppose that F;—1s1, «+-, Jir are derived from
population i for i =1, - .- m + 1, and observation (m + 1)¢+ 1 = n is from the unclassified
individual. Random effect interpretations are given to the strata effects here which must
sum to zero w.p.1 if X is taken as a column of ones. Let 5;, 5} and 5}* respectively be the
usual n X 1 design variables indicating stratum i effects with a 0, 1 and —1 in the nth row
fori=1, ..., m. Then Z consists of these 3m variables and we must select from

'%={2‘~'ik)52’""ém})"',ym={§l,""£m—l,2~*;n}y and ym+1={2~ik*y"',§l:*})

where the selection of % corresponds to classification into population i. Then, in the
notation of Example 1 extended to m + 1 strata,
‘Bg/) =1- W + [(f+ 1)_1(.’)7717-.)71')2
o T+ (n—Dn (5 —7)?

and p?, is largest at the i for which (7, — %;)? is smallest.
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