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Optimal Proxy Cache Allocation for Efficient
Streaming Media Distribution

Bing Wang1, Subhabrata Sen2, Micah Adler1 and Don Towsley1

1 Department of Computer Science
University of Massachusetts, Amherst, MA 01003
2 AT&T Labs-Research, Florham Park, NJ 07928

Abstract— In this paper, we address the problem of efficiently
streaming a set of heterogeneous videos from a remote server
through a proxy to multiple asynchronous clients so that they can
experience playback with low startup delays. We develop a tech-
nique to analytically determine the optimal proxy prefix cache al-
location to the videos that minimizes the aggregate network band-
width cost. We integrate proxy caching with traditional server-
based reactive transmission schemes such as batching, patching
and stream merging to develop a set of proxy-assisted delivery
schemes. We quantitatively explore the impact of the choice of
transmission scheme, cache allocation policy, proxy cache size, and
availability of unicast versus multicast capability, on the resultant
transmission cost. Our evaluations show that even a relatively
small prefix cache (10%-20% of the video repository) is sufficient
to realize substantial savings in transmission cost. We find that
carefully designed proxy-assisted reactive transmission schemes
can produce significant cost savings even in predominantly unicast
environments such as the Internet.

I. INTRODUCTION

The emergence of the Internet as a pervasive communication
medium, and a mature digital video technology have led to the
rise of several networked streaming media applications such as
live video broadcasts, distance education, corporate telecasts,
etc. However, due to the high bandwidth requirements and the
long-lived nature (tens of minutes to a couple of hours) of digi-
tal video, server and network bandwidths are proving to be ma-
jor limiting factors in the widespread usage of video stream-
ing over the Internet. This is further complicated by the fact
that the client population is likely to be large, with different
clients asynchronously issuing requests to receive their chosen
media streams. Also different video clips can have very differ-
ent sizes (playback bandwidths and durations) and popularities.
In this paper, we address the problem of efficiently streaming
a set of heterogeneous videos from a remote server through a
proxy to multiple asynchronous clients so that they can expe-
rience playback with low startup delays. Before presenting the
main contributions, we discuss some key challenges and limi-
tations of existing techniques in reaching this goal.

Existing research has focused on developing reactive trans-
mission schemes that use multicast or broadcast connections in
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innovative ways to reduce server and network loads, for serv-
ing a popular video to multiple asynchronous clients. The tech-
niques are reactive in that the server transmits video data only
on-demand, in response to arriving client requests. Batching,
patching and stream merging belong to this category. In batch-
ing, the server batches requests that arrive close together in
time [1], and multicasts the stream to the set of clients. In patch-
ing or stream tapping [2], [3], [4], the server streams the entire
video sequentially to the very first client. A later client receives
(part of) its future playback data by listening to an existing on-
going multicast of the same video, with the server transmitting
afresh only the missing prefix. Stream merging [5] is a related
technique where all streams (complete and prefix) are transmit-
ted using multicast, and clients can patch onto any earlier mul-
ticast stream.

An underlying requirement for the above schemes is the exis-
tence of multicast or broadcast connectivity between the server
and the clients. However, IP multicast deployment in the In-
ternet has been slow and even today remains severely limited
in scope and reach. Therefore, transmission schemes that can
support efficient delivery in such predominantly unicast settings
need to be developed. In addition, with the existing schemes,
data still has to traverse the entire end-end path from the server
to the clients, and network delays can cause substantial play-
back startup delays at the clients.

An orthogonal technique for reducing server loads, network
traffic and access latencies is the use of proxy caches. This
technique has proven to be quite effective for delivering Web
objects. However, video files can be very large, and traditional
techniques for caching entire objects are not appropriate for
such media. Caching strategies have been proposed in recent
years [6], [7], [8], [9], that cache a portion of a video file at the
proxy. In particular, caching an initial prefix of the video [7]
has a number of advantages including shielding clients from
delays and jitter on the server-proxy path, while reducing traf-
fic along that path. However, existing research has, for the
most part, been in the context of unicast delivery of a sepa-
rate stream to each client. Recent work [10], [11], [12], [13]
combines caching with scalable video transmission. However,
the focus has mostly been on transmitting a single video or us-
ing non-reactive schemes such as periodic broadcast [12], [14]
and on networks with end-to-end multicast/broadcast capabil-
ity. To the best of our knowledge, there has been no system-
atic evaluation of the resource (proxy cache space and transmis-



sion bandwidth) issues in techniques that combine proxy prefix
caching with reactive transmission for delivering multiple het-
erogeneous videos accross networks.

In this paper, we explore the combination of proxy pre-
fix caching with proxy-assisted reactive transmission schemes
for reducing the transmission cost of multiple heterogeneous
videos. Integrating the two techniques has the potential to re-
alize the bandwidth efficiencies of both approaches, while also
masking network delays from clients. In patching, for instance,
the initial parts of the video are transmitted more frequently
than the later parts, suggesting that prefix caching would be
particularly effective for bandwidth reduction. Ideally, a proxy-
assisted transmission scheme should be incrementally deploy-
able and be able to work with existing unicast-based servers.
We address the following questions in this paper:

• What are suitable proxy-assisted reactive transmission
schemes?

• For a given transmission scheme, what is the optimal
proxy prefix caching scheme that minimizes the transmis-
sion cost?

• What are the resource (proxy cache space and transmis-
sion bandwidth) tradeoffs for the different transmission
schemes?

A. Contributions

The following are the main contributions of this work:
• We develop a generalized allocation technique for ana-

lytically determining the solution to the second question
posed above. It is general in that it applies to any reactive
transmission scheme. It is transmission-scheme aware in
that the allocation is based on the transmission cost of a
given scheme.

• Starting from traditional reactive transmission schemes,
we develop corresponding schemes that use proxy prefix
caching as an integral part for bandwidth-efficient delivery
in Internet-like environments, where the end-end network
connections provide unicast-only service, or at best offers
multicast capability only on the last mile proxy-client path.

• We use the optimal cache allocation technique in conjunc-
tion with the developed transmission schemes to quanti-
tatively explore the impact of the choice of transmission
scheme, cache allocation policy, proxy cache size, and
availability of unicast versus multicast capability, on the
resultant transmission cost. We develop guidelines for ag-
gregate proxy cache sizing, and identify the combination
of transmission and caching schemes that provides the best
performance under different scenarios.

The remainder of the paper is organized as follows. Sec-
tion II presents the problem setting, and introduces key con-
cepts and terminology used in the remainder of the paper. Sec-
tion III presents our optimal proxy prefix caching technique.
Section IV presents a set of proxy-assisted reactive transmission
schemes. Our evaluations are presented in Section V. Finally,
Section VI concludes the paper and describes ongoing work.

II. PROBLEM SETTING AND MODEL

Consider a group of clients receiving videos streamed across
the Internet from a server via a single proxy (Fig. 1). We assume

Fig. 1. Streaming video in the Internet: The video stream originates from
a remote server and travels through the network to the end client. The proxies
performing prefix caching are located close to the clients, e.g., at the head-end
of the local access network.

that clients always request playback from the beginning of a
video. The proxy intercepts the client request and, if a prefix
of the video is present locally, streams the prefix directly to the
client. If the video is not stored in its entirety at the proxy, the
latter contacts the server for the suffix of the stream, and relays
the incoming data to the client.

In today’s Internet, the network route from the server to the
client often traverses multiple ISP domains, and predominantly
uses unicast delivery, since IP Multicast is not widely deployed.
We note that while many-to-many inter-domain multicast has
been slow to be deployed, one-to-many intra-domain multicast
(as would be used in an enterprise or cable/DSL-based last-
hop network environment) is much simpler to deploy and man-
age [15]. We therefore assume that the server-proxy network
path is unicast-enabled, while the network paths from the proxy
to the clients are either unicast or multicast/broadcast enabled.
Since the proxy is located close to the clients, we assume the
bandwidth required to send one bit from the proxy to multi-
ple clients using multicast/broadcast is still one bit. Finally, for
simplicity of exposition, we focus on a single server and a sin-
gle proxy. The multiple-proxy case is discussed in Section VI.

A. Model

We next provide a formal model of the system, and introduce
notation and key concepts that will be used in the rest of the
paper. Table I presents the key parameters in the model.

We consider a server with a repository of N Constant-Bit-
Rate (CBR) videos. We assume the access probabilities of all
the videos and the aggregate access rate to the video reposi-
tory are known a priori. In a real system, these parameters
can be obtained by monitoring the system. Without loss of
generality, we number the videos in non-increasing order of
their access probabilities. Let fi be the access probability of
video i,

∑N

i=1 fi = 1. fi measures the relative popularity of
a video: every access to the video repository has a probability
fi of requesting video i. Let λi be the access rate of video i
and λ be the aggregate access rate to the video repository. Then
λi = λfi, 1 ≤ i ≤ N .

We introduce a caching grain of size u to be the smallest
unit of cache allocation and all allocations are in multiples of



this unit. It can be one bit or 1 minute’s worth of data, etc. We
express the size of video i and the proxy cache size as a multi-
ple of a caching grain. Video i has playback bandwidth bi bps,
length Li seconds, and size ni units, niu = biLi. We assume
that the proxy can store S units and S ≤

∑N

i=1 ni. The storage
vector v = (v1, v2, · · · , vN ) specifies that a prefix of length vi

seconds for each video i is cached at the proxy, i = 1, 2, · · · , N .
Note that the videos cached at the proxy cannot exceed the stor-
age constraint of the proxy, that is,

∑N
i=1 bivi ≤ uS. Let cs

and cp respectively represent the costs associated with transmit-
ting one bit of video data on the server-proxy path and on the
proxy-client path. Our goal is to develop appropriate transmis-
sion and caching schemes that minimize the mean transmission
cost per unit time aggregated over all the videos in the repos-
itory, i.e.,

∑N
i=1 Ci(vi), where Ci(vi) is the transmission cost

per unit time for video i when a prefix of length vi of the video
is cached at the proxy. In the rest of the paper, unless otherwise
stated, we shall use the term transmission cost to refer to this
metric.

For simplicity of exposition, we ignore network propagation
latency. All the results can be extended in a straightforward
manner when network propagation latency is considered [16].
On receiving a client request for a video, the proxy calculates a
transmission schedule based on the predetermined transmission
scheme. This transmission schedule specifies, for each frame in
the video, when and on what transmission channel (unicast or
multicast connection) it will be transmitted by the proxy. The
proxy also determines and requests the suffix from the server.
A reception schedule is transmitted from the proxy to the client.
It specifies, for each frame in the video, when and from which
transmission channel the client should receive that frame. Note
that a client may need to receive data from multiple transmis-
sion channels simultaneously. Frames received ahead of their
playback times are stored in a client-side workahead buffer. For
simplicity, we shall assume the client has sufficient buffer space
to accommodate an entire video clip. Finally note that, in our
approach, the server only needs to transmit via unicast a suffix
of the video requested by the proxy. Our delivery techniques
are therefore incrementally deployable as these can work with
existing predominantly unicast-based media servers, in the con-
text of existing streaming protocols such as RTSP [17], and re-
quire no additional server-side functionality.

III. OPTIMAL PROXY CACHE ALLOCATION

We next propose a general technique to determine the opti-
mal proxy prefix cache allocation for any given proxy-assisted
transmission scheme. For a given transmission scheme, the av-
erage transmission cost per unit of time for video i, Ci(vi), is
a function of the prefix vi cached at the proxy, 0 ≤ vi ≤ Li.
We make no assumption regarding Ci(vi); it may not exhibit
properties such as monotonicity or convexity. For some trans-
mission schemes, there may not even exist a closed-form ex-
pression for Ci(vi). In this case we assume that this value can
be obtained by monitoring a running system.

Recall that we use a caching grain u as the smallest unit
of cache allocation (see Section II). The size of video i is ni

units and the size of the proxy is S units. Let Ai = {mi |
0 ≤ mi ≤ ni} denote the set of possible prefixes for video i,

Para. Definition
N Number of videos
Li Length of video i (sec.)
bi Mean bandwidth of video i (bits per sec.)
u Caching grain
ni Size of video i (units)
fi Access probability of video i

λi Request rate for video i

λ Aggregate request arrival rate
S Proxy cache size (units)
vi Length (sec) of cached prefix for video i

v Storage vector, v = (v1, v2, · · · , vN )
cs Transmission cost on server-proxy path (per bit)
cp Transmission cost on proxy-client path (per bit)
Ci(vi) Transmission cost per unit time for video i

when a prefix of length vi for video i is cached

TABLE I
PARAMETERS IN THE MODEL.

where mi units is the size and miu/bi seconds is the length
of a possible prefix of video i. Let saving(mi) denote the
saving in transmission cost when caching an mi-unit prefix of
video i over caching no prefix of the video at the proxy, i.e.,
saving(mi) = Ci(0) − Ci(miu/bi). Our goal is to maximize
the aggregate savings and, hence, minimize the aggregate trans-
mission cost over all the videos. The optimization problem can
therefore be formulated as :

maximize:
N

∑

i=1

saving(mi)

s.t.
N

∑

i=1

mi ≤ S,mi ∈ Ai

Note that this formulation is a variant of the 0-1 knapsack
problem, where the items to be placed into the knapsack are
partitioned into sets and at most one item from each set can
be chosen. We next use the following dynamic programming
algorithm to determine the optimal allocation.

Let B be a two-dimensional matrix, where entry B(i, j) rep-
resents the maximum saving in the transmission cost when us-
ing videos up to video i (0 ≤ i ≤ N) and j (0 ≤ j ≤ S) units
of the proxy cache.

B(i, j) =

{

0, i = 0
max{B(i − 1, j), B′(i, j)}, i > 0

where

B′(i, j) = max
∀mi∈Ai

{B(i − 1, j − mi) + saving(mi)}

This matrix is filled in row-order starting from B(0, j), j =
0, · · · , S. The value B(N,S) is the maximum saving in trans-
mission cost when all N videos have been used. The minimum
transmission cost is

N
∑

i=1

Ci(0) − B(N,S)



since the saving is relative to storing nothing at the proxy. The
optimal cache allocation can now be computed as follows. For
each entry, we store a pointer to an entry from which this current
entry is computed. By tracing back the pointers from the entry
B(N,S), the optimal allocation is obtained.

The execution time of the algorithm is O(NSK), where
K = max1≤i≤N |Ai|. If the caching grain is increased by a
factor of k, both the number of columns in matrix B and the
cardinality of Ai (1 ≤ i ≤ N ) are reduced by a factor of k.
Therefore the complexity is reduced by a factor of k2. In Sec-
tion V, we shall examine the impact of the choice of caching
grain on the resultant transmission cost.

IV. PROXY-ASSISTED TRANSMISSION SCHEMES

In this section, we develop a set of reactive transmission
schemes that use proxy prefix caching as an integral part
for bandwidth-efficient delivery in Internet-like environments,
where the end-end network connections provide unicast-only
service, or at best offers multicast capability on the proxy-
client path. For each scheme, we develop a closed-form ex-
pression for the transmission cost Ci(vi) associated with video
i, 1 ≤ i ≤ N . Detailed derivations are found in [16]. The
transmission cost Ci(vi) is used in Section III to determine the
proxy cache allocation for each video that minimizes the aggre-
gate transmission cost. The transmission schemes we propose
are completely general and apply to any sequence of client ar-
rivals. However, we shall assume a Poisson arrival process for
analyzing the transmission costs. Our ongoing work shows that
Poisson arrival is a reasonable and conservative assumption for
reactive schemes. A similar conjecture is presented in [18].

A. Unicast suffix batching (SBatch)

SBatch is a simple batching scheme that takes advantage of
the video prefix cached at the proxy to provide instantaneous
playback to clients. This scheme is designed for environments
where the proxy-client path is only unicast-capable.

Suppose the first request for video i arrives at time 0. The
proxy immediately begins transmitting the video prefix to the
client. SBatch schedules the transmission of the suffix from the
server to the proxy as late as possible, just in time to guaran-
tee discontinuity-free playback at the client. That is, the first
frame of the suffix is scheduled to reach the proxy at time vi,
the length of the prefix. For any request arriving in time (0, vi],
the proxy just forwards the single incoming suffix (of length
Li − vi) to the new client, and no new suffix transmission is
needed from the server. In effect, multiple demands for the
suffix of the video are batched together. Note that in contrast to
traditional batching, SBatch does not incur any playback startup
delay. Assuming a Poisson arrival process, the average number
of requests in time [0, vi] is 1 + viλi. The average transmission
cost for delivering video i is

Ci(vi) = (cs

Li − vi

1 + viλi

+ cpLi)λibi

where the first and the second term in the sum corresponds
to the server-proxy and proxy-client transmission cost respec-
tively.

prefix suffix threshold

from proxy

0

 from server

from ongoing stream

Time

���

���

���
�
	���
��

���������
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���

Fig. 2. Unicast patching with prefix caching (UPatch).

When vi = 0 (vi = Li), video i is transmitted from the
server (proxy) using unicast, since it is impossible to batch mul-
tiple requests.

B. Unicast patching with prefix caching (UPatch)

SBatch can be further improved by using patching for the
suffix. Note that here we use patching in the context of unicast.
This is possible because the proxy can forward one copy of the
data from the server to multiple clients.

Suppose that the first request for video i arrives at time 0 and
the suffix reaches the proxy from the server at time vi, as shown
in Fig. 2. Suppose another client’s request for video i comes at
time t2, vi < t2 < Li. The proxy can schedule a transmission
of the complete suffix at time t2 + vi from the server. Another
option is to schedule a patch of [vi, t2) of the suffix from the
server since segment [t2, Li] has already been scheduled to be
transmitted. Note that this patch can be scheduled at time t2+vi

so that the client is still required to receive from at most two
channels at the same time. The decision to transmit a complete
suffix or a patch depends on a suffix threshold Gi, measured
from the beginning of the suffix. If one request arrives within
Gi units from when the nearest complete transmission of the
suffix was started, the proxy schedules a patch from the server
for it. Otherwise, it starts a new complete transmission of the
suffix. Assuming a Poisson arrival process, between the initia-
tions of two consecutive transmissions of the suffix, the average
number of requests is 1+λi(vi+Gi). The average transmission
cost for video i is

Ci(vi) = csλibi

λiG
2
i /2 + Li − vi

1 + λi(vi + Gi)
+ cpλibiLi

where the first and the second term corresponds to the server-
proxy and the proxy-client transmission cost respectively.

The suffix threshold Gi is chosen to minimize the transmis-
sion cost for video i for a given prefix vi. Finally, when vi = Li,
video i is transmitted from the proxy to clients using unicast.

C. Multicast patching with prefix caching (MPatch)

If the proxy-client path is multicast capable, the proxy can
use a multicast transmission scheme. We describe MPatch, a
patching scheme that exploits prefix caching at the proxy.



Suppose the first request for video i arrives at time 0 (Fig. 3).
Then the proxy starts to transmit the prefix of the video via
multicast at time 0. The server starts to transmit the suffix of
the video to the proxy at time vi and the proxy transmits the re-
ceived data via multicast to the clients. Later requests can start
a new complete multicast stream or join the ongoing multicast
of the stream and use a separate unicast channels to obtain the
missing data. Let Ti be a threshold to regulate the frequency
at which the complete stream is transmitted. Suppose a request
arrives at t2 (0 < t2 ≤ Ti) units after the beginning of the
nearest ongoing complete stream. Video delivery for this client
can be classified into the following two cases depending on the
relationship of vi and Ti.

• Case 1: Ti ≤ vi ≤ Li. This is shown in Fig. 3 (a). The
client receives segment [0, t2] from a separate channel via
unicast from the proxy and segment (t2, Li] via the on-
going multicast stream. Assuming a Poisson arrival, the
transmission cost function in this case g1(vi, Ti) is

g1(vi, Ti) = λibi

1+λiTi

[(Li − vi)cs+

Licp + λiTi
2

2 cp]

This is computed by modelling the patching system as
a renewal process, since requests arriving more than Ti

units after the previous complete stream initiates a new
complete stream. The above computation is carried out
over the interval between the initiation of two complete
streams. In this interval, the average total length of patches
is λiTi

2

2 [4].
• Case 2: 0 ≤ vi < Ti. This is shown in Fig. 3 (b). If 0 <

t2 ≤ vi, then the transmission mechanism is the same as in
Case 1. If vi < t2 ≤ Ti, the client receives segment [0, vi]
from a separate channel via unicast from the proxy and
receives segment (t2, Li] via the ongoing multicast stream.
Segment (vi, t2] is transmitted from the server to the client
via the proxy using unicast. Assuming a Poisson arrival,
the transmission cost function in this case g2(vi, Ti) is

g2(vi, Ti) = λibi

1+λiTi

[(Li − vi)cs + Licp

+λivi
2

2 cp + λi(Ti−vi)
2

2 (cs + cp)]

Similar to Case 1, this computation is also carried out
over the interval between the initiation of two complete
streams. In this interval, the average total length of patches
from the proxy is λiTi

2

2 . The average total length of

patches from the server is λi(Ti−vi)
2

2 . This is because
the average number of arrivals in this time interval is
λi(Ti − vi) with average length of patch of (Ti − vi)/2.

Let hk(vi) be the minimum transmission cost in Case k, k =
1, 2. That is,

hk(vi) = min
Ti

{gk(vi, Ti), 0 ≤ Ti ≤ Li}, k = 1, 2

For a given prefix vi, the average transmission cost is

Ci(vi) = min{h1(vi), h2(vi)}

Finally, note that if video i is streamed entirely from a single
location (either the server or the proxy), the MPatch transmis-
sion scheme reduces to Controlled Multicast (CM) patching [4].

D. Multicast merging with prefix caching (MMerge)

The key issue in stream merging is deciding how to merge
a later stream into an earlier stream. Closest Target [5] is one
online heuristic merging policy whose performance is close to
optimal offline stream merging. This policy chooses the closest
earlier stream still in the system as the next merge target.

Our MMerge scheme integrates proxy caching and stream
merging. It uses the Closest Target policy to decide how to
merge a later stream into an earlier stream. For a video segment
required by the client, if a prefix of the segment is at the proxy,
it is transmitted directly from the proxy to the client; the suffix
not cached at the proxy is transmitted from the server as late as
possible while still ensuring continuous playback at the client.
Let pj be the probability of requiring a j-second prefix per unit
of time for video i, 0 ≤ j ≤ Li. Then the average transmission
cost for video i is

Ci(vi) =

vi
∑

j=1

jpjbicp +

Li
∑

j=vi+1

(j(cp + cs) − vics)pjbi

where the first summation in the sum corresponds to the case
where the required prefix streams are no longer than the prefix
cached at the proxy, while the second summation corresponds
to the case where the required prefix streams are longer than
the prefix at the proxy. Finally, note that if video i is streamed
entirely from a single location (either the server or the proxy),
MMerge reduces to Closest Target stream merging.

V. PERFORMANCE EVALUATION

In this section, we examine the resource tradeoffs under
the previously described caching and transmission schemes.
We consider a repository of 100 CBR video clips with ac-
cess probabilities drawn from a Zipf distribution with param-
eter θ = 0.271 [1]. For simplicity, we assume all the videos
are two hours long, and have the same bandwidth. We nor-
malize the transmission cost by both the video bandwidth and
the value of cs. That is, the normalized transmission cost is
∑N

i=1 Ci(vi)/(csbi). Let ĉp = cp/cs. In this section, we as-
sume ĉp ∈ [0, 1]. Observe that ĉp = 0 corresponds to cp = 0
and ĉp = 1 corresponds cp = cs. We represent the proxy cache
size as a percentage, r, of the size of the video repository. We
consider 10 seconds and 1 minute’s worth of data as the caching
grain for the optimal prefix caching. Our evaluation shows that
the transmission costs differ little for these two grains. There-
fore, we only provide results using the latter. For MMerge, the
probability of requiring a j-second prefix per unit of time for
video i is obtained from a 150-hour simulation run.

We first compare the transmission costs using optimal prefix
caching and optimal 0-1 caching. Optimal 0-1 caching only al-
lows a video to be cached in its entirety or not at all. We then
investigate differences in transmission cost under optimal pre-
fix caching and a heuristic, Proportional Priority (PP) caching.
In PP caching, the size of the proxy cache allocated to a video
is proportional to the product of the size of the video and its
access probability, under the constraint that the allocated space
is no larger than the size of the video. PP caching takes ac-
count of both the popularity and the size of the video. A similar
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Fig. 3. Multicast patching with prefix caching (MPatch).
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heuristic is suggested in [13]. In our setting, the size of proxy
cache allocated to a video is proportional to its popularity un-
der PP caching since all the videos are of the same size. For
each scheme, we plot the optimal proxy cache allocation across
the videos for small (r = 1%), medium (r = 10%) and large
(r = 50%) proxy caches.

A. Optimal prefix caching v.s. optimal 0-1 caching

The allocation under optimal 0-1 caching can be modeled
as a 0-1 knapsack problem [16]. When the length and band-
width of the videos are the same, the optimal 0-1 scheme caches
videos in the order of their popularities. We find that optimal
prefix caching significantly outperforms optimal 0-1 caching
for all the schemes we examine. Fig. 4 plots the transmission
costs under the two caching schemes for UPatch and MMerge
when ĉp is 0 and the arrival rate λ is 100 requests per minute.
UPatch and MMerge under optimal prefix caching result in sub-
stantially lower costs than under optimal 0-1 caching across
the range of proxy cache sizes. For instance, when the proxy
cache is 20% of the size of the video repository, optimal prefix
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caching reduces the costs over optimal 0-1 caching by 60% and
35% for UPatch and MMerge respectively. We therefore focus
on prefix caching for the rest of the paper.

B. Transmission and caching schemes under unicast

We first investigate the transmission cost when the proxy-
client path is only unicast capable. Fig. 5 depicts the transmis-
sion cost as a function of r, when ĉp is 0 and the aggregate
arrival rate λ is 30 requests per minute. The performance of
SBatch and UPatch under both PP and optimal prefix caching
are plotted on the graph. The percentage of reduction by using
optimal prefix caching over PP caching increases as the proxy
size increases. When r = 20%, the reduction is 26% for SBatch
and 11% for UPatch. Our evaluation also shows that the cost re-
duction using optimal prefix caching over PP caching increases
as the aggregate arrival rate increases. The reason will become
clear at the end of Section V-B.

We observe from Fig. 5 that a small amount of cache at the
proxy results in substantial cost savings for both transmission
schemes under optimal prefix caching. For instance, with a



proxy cache that is 10% of the size of the video repository,
the transmission costs reduce to 17% and 88% of the corre-
sponding costs without a proxy cache for SBatch and UPatch
respectively.

We find that UPatch substantially reduces cost over SBatch
under optimal prefix caching, particularly for small and moder-
ate proxy sizes (see Fig. 5). For instance, when r = 1%, the
reduction under UPatch over SBatch is 69%. However, this is
under the assumption that the optimal threshold for UPatch can
be obtained. The choice of the threshold critically impacts the
cost savings for UPatch - an arbitrary threshold value can result
in performance degradation. Hence for situations where the ap-
propriate threshold cannot be properly determined, SBatch may
be preferred. SBatch, being simpler to implement, is also pre-
ferred for larger proxy cache sizes, where its performance is
very close to that of UPatch.

The above discussion focussed on the case of ĉp = 0. When
ĉp > 0, we observe similar performance trends for the different
transmission and caching schemes. This is because when the
proxy-client path is only unicast-capable, the proxy has to trans-
mit a copy of each data unit separately to each client. Hence,
for a fixed ĉp, the transmission costs on the proxy-client path
are identical for all transmission (unicast-based) and caching
schemes.
Proxy cache allocation across the videos: We next examine the
proxy cache allocation for SBatch and UPatch under optimal
prefix caching. When the proxy-client path is only unicast-
capable, the optimal prefix cache allocation is identical for all
values of ĉp for a given transmission scheme. This is because,
as mentioned earlier, the transmission cost on the proxy-client
path for a fixed ĉp does not depend on cache allocation. There-
fore allocating the proxy cache to minimize the total transmis-
sion cost is the same as that required to minimize the transmis-
sion cost on the server-proxy path, which is independent of the
value of ĉp. In the following, ĉp is chosen to be 0.

Fig. 6 depicts the proxy cache allocations under UPatch, for
arrival rates of 10 and 100 requests per minute. The proxy cache
allocation under SBatch is similar. We see that, when the proxy
cache size is small, only the most popular videos are cached. As
the the proxy cache size increases, more videos are cached. For
low aggregate arrival rates, the size of the proxy storage allo-
cated to a video increases as a function of its access probability.
At high arrival rates, the proxy storage tends to be more evenly
distributed among all the videos; this differs substantially from
the proportional allocation under PP caching and helps to ex-
plain the difference in transmission cost under the two caching
schemes.

C. Transmission and caching under multicast

We next investigate the transmission cost when the proxy-
client path is multicast capable. Fig. 7 shows the normalized
transmission cost as a function of r, when ĉp is 0.5 and the
aggregate arrival rate λ is 30 requests per minute. The trans-
mission costs for MPatch and MMerge under optimal prefix
caching and PP caching are plotted on the graph. In the case
of MPatch, the transmission costs under optimal prefix caching
and PP caching are close for very small and large proxy sizes.
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In the case of MMerge, the difference in transmission costs un-
der optimal prefix caching and PP caching is large for small
proxy cache sizes. For instance, when r = 1%, the transmis-
sion cost under optimal prefix caching is 20% lower than that
under PP caching.

Fig. 7 also demonstrates that a small amount of proxy buffer
results in substantial transmission cost savings under optimal
prefix caching. With a proxy cache that can hold 10% of the
video repository, the transmission costs reduce to 65% and 85%
of the corresponding cost without proxy cache for MPatch and
MMerge respectively.

It is interesting to notice that proxy-assisted MMerge does
not always outperform MPatch. This is different from tradi-
tional server-based patching and stream merging, where stream
merging always outperforms patching. Fig. 8 depicts the trans-
mission costs for various arrival rates when r = 20% and
ĉp = 0.5. We observe that, MPatch incurs lower transmission
cost for low arrival rates and MMerge incurs lower transmission
cost for high arrival rates.
Proxy cache allocation across the videos: We next examine the
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Fig. 6. Proxy cache allocation for UPatch under optimal prefix caching, ĉp=0.
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Fig. 9. Proxy cache allocation for MPatch and MMerge under optimal prefix caching when ĉp = 0.1 and λ=30/min.

proxy cache allocation for MPatch and MMerge under optimal
prefix caching. When ĉp = 0, since the transmission from the
proxy to clients does not incur any cost, using multicast or uni-
cast along the proxy-client path does not make any difference to
the allocation. Therefore, the allocation for MPatch is identical
to UPatch as shown in Fig. 6.

Fig. 9 (a) displays proxy cache allocations for MPatch when
ĉp = 0.1 and λ = 30/min. We find that the size of the proxy
cache allocated to a video is not a monotonically increasing
function of the access probability. This is because the threshold
tends to increase as the access probability decreases. Therefore
some less popular videos may require larger prefixes than more
popular videos to realize the optimal threshold.

Fig. 9 (b) depicts the proxy cache allocations for MMerge
when ĉp = 0.1 and λ = 30/min. In general, the proxy cache
space allocated to a video decreases as its popularity decreases.
However, when the proxy caches are large and the arrival rates
are high, the size of the proxy cache allocated to a video can
increase as the popularity decreases. This is because the aver-
age length of prefix streams increases as the popularity (hence

the arrival rate) decreases. We also observe that when ĉp = 0.1,
only several of the most popular videos are cached for small and
moderate proxy caches. When ĉp = 0 (not shown in the fig-
ure), proxy cache is more evenly distributed among the videos
for small and moderate proxy caches.

D. Comparison between unicast and multicast

When ĉp > 0, using multicast instead of unicast along the
proxy-client path results in substantial savings. We set ĉp to
0.1 in the following. Fig. 10 (a) depicts the normalized trans-
mission costs of UPatch, MPatch and MMerge under optimal
prefix caching when λ = 10/min. We observe, in this case, that
the transmission costs of MPatch and MMerge are significantly
lower than those of UPatch across the range of proxy cache
sizes. Fig. 10 (b) shows the transmission costs as the arrival rate
increases from 10 to 100 requests per minute when r = 10%.
The savings under MPatch and MMerge over UPatch increase
as the arrival rate increases. When the arrival rate is 10 requests
per minute, transmission costs under MPatch is 25% lower than
under UPatch. When the arrival rate is 100 requests per minute,
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Fig. 10. Comparison between unicast and multicast schemes when ĉp = 0.1. (a) Normalized transmission cost v.s. proxy cache size. (b) Normalized transmission
cost v.s. arrival rate.

the reduction becomes 61%. This clearly illustrates the benefits
of using multicast locally, over the proxy-client path.

E. Summary of Results

We summarize the key inferences from our evaluation.
• For the same proxy size, using prefix caching for a set

of videos results in significantly lower transmission costs
compared to entire-object caching policies. Under opti-
mal prefix caching, even a relatively small proxy cache
(10%-20% of the video repository) is sufficient to realize
substantial savings in transmission cost.

• The allocation under optimal prefix caching is sensitive
to the transmission scheme, the aggregate arrival rate and
the value of ĉp. Optimal prefix caching can substantially
outperform transmission cost agnostic PP caching, partic-
ularly for high arrival rates. However, in some cases, such
as when the arrival rates are low, the simpler PP caching
performs reasonably well.

• Carefully designed reactive transmission schemes coupled
with optimal proxy prefix caching can produce significant
cost savings over using unicast delivery, even when the un-
derlying network offers only unicast service. Our results
also suggest that, unlike the case of server-client trans-
mission over a multicast-capable network, stream merging
does not always outperform patching in the presence of
proxy prefix caching.

• The optimal cache allocation can realize most of the cost
savings even with a relatively coarse (few minutes of data)
cache allocation grain. The computation overhead of the
scheme is well within the capabilities of todays desktop
PCs, suggesting that the cache allocation scheme can be
deployed in practice.

VI. CONCLUSIONS AND ONGOING WORK

In this paper, we presented a technique to determine, for a
given proxy-assisted transmission scheme, the optimal proxy
prefix caching for a set of videos that minimizes the aggregate

transmission cost. We presented and explored a set of proxy-
assisted reactive transmission schemes that exploit proxy prefix
caching to provide bandwidth efficient delivery. Our evalua-
tions demonstrate that, even with a relatively small proxy cache,
carefully designed transmission schemes under optimal prefix
caching can lead to significant cost reductions.

As ongoing work, we are pursuing the following directions.
(i) We are evaluating the performance of optimal prefix caching
and PP caching under realistic network settings. (ii) Our results
apply directly to multiple-proxy Content Distribution Networks
where the server has unicast connections to the proxies, each
proxy serves a different set of clients (no overlapping), and the
proxies do not interact. We are currently exploring scenarios
where the connections between the server and the proxies are
multicast-capable, and proxies can interact. (iii) Our schemes
apply equally to Variable-Bit-Rate (VBR) video transmission,
and the analysis presented here can be extended in a straight-
forward manner to the VBR case. Quantitative evaluation of
the different schemes for VBR video distribution is part of on-
going work.
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