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ABSTRACT

In this paper we propose an optimal quad-tree (QT)-based motion estimator for video compression. It is
optimal in the sense that for a given bit budget for encoding the displacement vector field (DVF) and the QT
segmentation, the scheme finds a DVF and a QT segmentation which minimizes the energy of the resulting
displaced frame difference (DFD). We find the optimal QT decomposition and the optimal DVF jointly using the
Lagrangian multiplier method and a multilevel dynamic program. The resulting DVF is spatially inhomogeneous
since large blocks are used in areas with simple motion and small blocks in areas with complex motion. We
present results with the proposed QT-based motion estimator which show that for the same DFD energy the
proposed estimator uses about 30% fewer bits than the commonly used block matching algorithm.

KEYWORDS: Motion Estimation, Video Compression, Operational Rate Distortion Theory, Quad-Tree, La-
grangian Relaxation, Dynamic Programming

1 INTRODUCTION

Since the bandwidth of uncompressed video is usually much larger than the available channel capacity, video
compression is one of the enabling technologies behind the multimedia revolution. Video lends itself to com-
pression because of the high perceptual, temporal and spatial redundancies inherent in a natural scene. The
most common approach to exploit the temporal redundancy is motion compensated prediction. All current video
coding standards such as MPEG-1, MPEG-2, H.261 and H.263 are motion compensated video coders, where the
current frame is predicted using a previously reconstructed frame and motion information, which needs to be
estimated. The motion estimation problem for video coding differs from the general motion estimation problem
in the following ways. First, for video coding, the performance of a motion estimator can be assessed using a
distortion measure, whereas for the general motion estimation problem, such measures are very hard to define.
Second, for video coding, the DVF has to be transmitted and therefore the minimization of the distortion should
be constrained by the available number of bits to encode the DVF, whereas for the general motion estimation
problem, the constraints are used to enforce certain desirable properties of the DVF, such as smoothness. Third,
for video coding, the resulting DVF can be arbitrary, i.e., it does not have to correspond to the real motion in
the scene, as long as the distortion is minimized for the available bit rate.

This paper is organized as follows: In Sec. 2 we formulate the problem and discuss some of the previous
solution attempts. In Sec. 3 we introduce the necessary notation and the underlying assumptions. In Sec. 4 we
formulate the rate constrained motion estimation problem and show how the Lagrangian multiplier method can



be used to find the optimal solutions on the convex hull of the operational rate distortion curve. In Sec. 5 we
develop a fast algorithm to solve the relaxed problem using dynamic programming (DP). In Sec. 6 we compare
the proposed QT-based motion estimator with block matching and in Sec. 7, we summarize the paper.

2 PROBLEM FORMULATION

All current video coding standards are based on a fixed segmentation of the frame into blocks of a given size.
The main advantages of this are simplicity and robustness of the algorithm and the fact that no segmentation
information needs to be transmitted. The only exception to this is H.263 when the “Advanced Prediction Mode”
is used. Then there is the option to split the 16 x 16 block into four 8 x 8 blocks. The main disadvantage of a
fixed and arbitrary segmentation is that it can not accurately represent real objects, and hence the representation
of the scene is not as compact as it could be. In addition, the underlying motion model of simple translation
cannot capture more complex motion, such as, pan, rotation and zooming. Clearly a dense DVF can represent
more complicated motion. The problem, however, in this case is that in many regions of the scene, most of the
motion vectors are identical and therefore not needed to describe the motion accurately. Hence a natural DVF
is inherently inhomogeneous, in the sense that for regions with simple motion, one motion vector is sufficient,
whereas in regions with complex motion the DVF should be denser. If the scene is segmented into blocks of
different sizes, then a compact representation of the DVF can be achieved. Since the segmentation information
of the frame needs to be transmitted, an efficient method should be used to encode it.

The QT data structure is commonly used to decompose a given frame into blocks of different sizes, since it
enables an efficient representation of the resulting decomposition. A QT starts with a square block with side
length a power of two. This block can be split into four equally sized square sub-blocks, and only one bit is
required to encode the split or lack of it. Clearly this splitting can then be recursively applied to the sub-blocks
until a sub-block is of dimensions 1 x 1. Hence the entire segmentation of the frame can be represented by a
tree structure, where every node has four children. The QT structure is an efficient way of segmenting the frame
into blocks of different sizes. It is therefore very attractive for the efficient representation of an inhomogeneous
DVF. In Refs.,! the QT structure is used to compactly represent the DVF. In Ref.! the dense motion field
is represented efficiently using higher order motion models, and the spatial density of the applicability of these
models is encoded using a QT. In Ref.? the temporal gradient of a pel-recursive motion estimation algorithm is
QT encoded and in Ref.? a QT-based motion estimator is proposed which finds the best QT in the rate distortion
sense (note that this algorithm is a direct application of the more general scheme proposed in Ref..*) The motion
estimator we propose is more general and more efficient than the scheme in Ref.,? since it finds the optimal QT
decomposition and the optimal DVF, given that the DVF is first order differential pulse code modulation (DPCM)
encoded. The presented algorithm is a generalization of the scheme presented in Ref.,* since the optimal QT
decomposition can be found even when there are dependencies between the QT leafs.

Note that the variable block size based decomposition of the frame is a good compromise between the overly
complex object-oriented approaches,® and the overly simple fixed block size based schemes. The object-oriented
approaches suffer from the fact that it is in general very hard to accomplish joint segmentation and motion
estimation, while the fixed block size schemes suffer from the inability to represent complex motion. In addition,
the overhead paid for the segmentation of a QT-based scheme is much lower than the bit rate required to transmit
the fine segmentation of an object-oriented scheme,’ although it is still substantial considering the fact that a
fixed segmentation based scheme does not require any segmentation information to be transmitted.



3 NOTATION AND ASSUMPTIONS

Consider Fig. 1, where a frame is segmented using variable block sizes and the black curve indicates the feature
of interest. The QT shown in Fig. 2 is used to represent this segmentation. As can be seen in this figure, the
QT data structure decomposes a 2V x 2V image (or block of an image) down to blocks of size 2™ x 270, This
decomposition results in an (N — ng + 1)-level hierarchy (0 < ng < N), where all blocks at level n (ng <n < N)
have size 2™ x 2™. This structure corresponds to an inverted tree, where each 2" x 2™ block (called a tree node) can
either be a leaf, i.e., it is not further subdivided, or can branch into four 27! x2?~! blocks, each a child node. The
tree can be represented by a series of bits that indicate termination by a leaf with a “0” and branching into child
nodes with an “1”. Let b; ; be the block 4 at level [, and the children of this block are therefore b;_1 4.i+;, Where
j €1]0,1,2,3]. The complete tree is denoted by 7 and a tree node is identified by the ordered pair (I,%) (see Fig. 3).
This ordered pair is called the index of the tree node. Each leaf of T represents a particular block in the segmented
frame. For future convenience, let the leafs be numbered from zero to the total number of leafs in the QT (N7)
minus one, from left-to-right and hence in increasing order of the measure 4/~ x i (this ordering of the leafs is
indicated by italic numbers in Fig. 3). Let m;; € M;; be the motion vector for block b; ;, where M ; is the set of
all admissible motion vectors for block by ;. Let s;; = [I,4,my,;] € Siy = {I} x {i} x M;; be the local state for block

by i, where S;; is the set of all admissible state values for block b ;. Let z = [l,i,m] € X = U;L:ON ?I:v(;l_l Si,i be
the global state and X the set of all admissible state values. Finally let xq,...,2nN,_1 be a global state sequence,
which represents the left-to-right ordered leaves of a valid QT T.
The DFD energy D(zo,...,Zn,—1) is the sum of the individual block energies d(z;), that is,
Nr—1
D(QZO,.-.,.’I}NT_l) = Z d(.’L']) (1)
j=0

This is true since each block in the current frame is predicted using one motion vector which points to a block
in a previously reconstructed frame. Note that in the rest of the paper we will use the terms DFD energy and
distortion between the original and predicted frames, interchangeably.

As pointed out in the introduction, the DVF exhibits large spatial correlation, and hence we encode it using
a first order DPCM. In other words, we allow for a first order dependency between the QT-leaves along the
scanning path. Because of the variable block sizes, we add the constraint that blocks which belong to the same
parent, need to be scanned in sequence. We discuss the selection of a good scanning path in more detail in Sec.
3.1. Based on the first order DPCM assumption, the DVF rate R(xzo,...,zn,_1) can be expressed as follows,

Nr—1

R(CE(),...,.TNT_l) = Z r(wj_l,mj), (2)
j=0

where r(z;_1,2;) is the block rate which depends on the motion vectors of the current and previous blocks, since
the difference between these two motion vectors is entropy encoded.

3.1 Scanning path based on Hilbert curves

A scanning path is a rule which defines in what order the different blocks of a frame are visited. Since the QT
decomposition can change from frame to frame, each frame might require a different scanning path. We propose
a procedure for inferring the scanning path from a given QT decomposition. This procedure, together with an
appropriate level ng scanning path, guarantees that consecutive blocks are always neighboring blocks, that is,
they have a common edge. This results in an efficient encoding of the DVF using a first order DPCM scheme
along the scanning path.



Assume that the frame is completely segmented into blocks of the smallest size, i.e., 2" x 2. The QT
representation of this segmentation is a complete tree, where all leafs are of level ng. Further assume that the
scanning path for this decomposition is known to the encoder and decoder. The scanning path for any other QT
decomposition is defined recursively, by merging four consecutive blocks along the scanning path at the lower level
to form the blocks at the higher level. An example of this recursive definition is given in Fig. 8, where the level
no scanning path is a third order Hilbert curve.” From the properties of a Hilbert curve and the above procedure
it is clear that when the level ng scanning path is a Hilbert curve of order N — ng, then the overall scanning path
connects only neighboring blocks and the resulting blocks are square, regardless of the QT decomposition. Since
for our experiments we selected a quarter common intermediate format (QCIF) sequence which is of dimension
176 x 144, the level ng scanning path cannot be a pure Hilbert curve. Figure 5 shows the modified Hilbert scan
used in the experiments, where the smallest block size is 8 X 8 (ng = 3). Note in Fig. 5 that the lower left corner
(z =[0,...,127],y = [16, ..., 143]) of the level ng scanning path is a pure Hilbert curve of order 7 (27 = 128).

4 RATE DISTORTION FORMULATION

The motion estimation problem for video coding can be stated as the following constrained optimization
problem,
min  D(zo,...,Zn,—1), subject to: R(zo,...,zn;-1) < Rmaz, (3)
Lo, TN —1
where D(zo,...,zn,—1) and R(zo,...,zn,—1) are defined by Egs. (1) and (2), respectively. In other words, we
try to find the inhomogeneous DVF which results in the smallest DFD energy for a given maximum bit rate for
encoding the DVF. Clearly the optimal state sequence zg, ...,z identifies the optimal QT decomposition
and the optimal DVF, since each state value x; contains the block size, its location and the associated motion
vector.

We propose to use the Lagrangian multiplier method® to solve the constrained problem of Eq. (3). The
idea behind this method is to transform the “hard” constrained optimization problem into a family of “easy”
unconstrained problems, which can be solved efficiently. This transformation is achieved by creating a new
objective function, the Lagrangian cost function (Jx(:)). It is the sum of the original objective function and the
constraint, where the constraint is weighted by the Lagrangian multiplier A,

Ix(@o, .-y TNy —1) = D(T0, .-, TNy —1) + A% R(T0, ..., TN —1)- (4)
The main theorem?® of the Lagrangian multiplier method states that if there is a A* such that

(20> Tn,—1] =arg  min  Jx«(To,...,TN; 1) (5)
Loy TNy —1

leads to R(zo,-..,ZN;~1) = Rmaq, then z5,..., 2% _, is also an optimal solution to (3). The main shortcoming
of the Lagrangian multiplier method comes from the fact that only solutions which belong to the convex hull of
the operational rate distortion curve (or in this case, the rate energy curve) can be found. Since for the proposed
scheme, the convex hull solutions tend to be dense (see Sec. 6), this is not a problem in practice. Note that the
dual problem, which can be stated as follows,

min  R(xo,...,ZNn;—1), subject to: D(zo,...,2N;—1) < Dmaaz, (6)

Loy ey TNy —1

can be solved with exactly the same technique using the following relabeling of function names,
R(20, . 8ny—1) D@0, n7 1), D(@0, -2y 1)  R(To, .., ory—1).

Having stated the main theorem of the Lagrangian multiplier method, there are two problems left to address:
first, how to find the optimal A* of Eq. (5) and second, how to solve the unconstrained problem of Eq. (5)
optimally for an arbitrary A. In Ref.? we proposed a very fast convex search to find \* and in Sec. 5 we introduce
a dynamic programming algorithm to find the optimal solution to problem (5).



5 OPTIMAL SOLUTION OF THE UNCONSTRAINED
PROBLEM BY MULTILEVEL DYNAMIC PROGRAMMING

The form of the objective function of the optimization problem of Eq. (5) suggests that dynamic programming
(DP) should be used to find the optimal solution efficiently. To be able to employ forward DP (the Viterbi
algorithm), a DP recursion formula needs to be established. A graphical equivalent of the DP recursion formula
is a trellis where the admissible nodes and the permissible transitions are explicitly indicated. Consider Fig. 6
which represents the multilevel trellis for a 32 x 32 image block (N = 5), with a QT segmentation developed down
to level 3 (no = 3, block size 8 x 8). The QT structure is indicated by the white boxes with the rounded corners.
These white boxes are not part of the trellis used for the Viterbi algorithm but indicate the set of admissible state
values Sy ; for the individual blocks b; ;. The black circles inside the white boxes are the nodes of the trellis (i.e.,
the state values s;,;). Note that for simplicity, only two trellis nodes per QT node are indicated, but in general,
a QT node can contain any number of trellis nodes. The auxiliary nodes, start and termination (S and T) are
used to initialize the DPCM and to select the path with the smallest cost.

Each trellis node represents the prediction of the block it is associated with using a different motion vector.
Since the state of a block is defined to contain its level and number within that level (which identifies the blocks
size and its position in the frame), and its motion vector, each of the nodes contains the distortion occurring
when the associated block is predicted using the node’s motion vector. As can be seen in Fig. 6, not every trellis
node can be reached from every other trellis node. By restricting the permissible transitions, we are able to force
the optimal path to select only valid QT decompositions. Such valid decompositions are based on the fact that
at level [, block b;; can replace four blocks at level [ — 1, namely ;1 axi+0, 0i—1,4%i+1, 01—1,4%i+2 and b1 4xit3.
As we will see later in this section, the QT encoding cost can be distributed recursively over the QT so that each
path picks up the right amount of QT segmentation overhead.

Assume that no QT segmentation is used and the block size is fixed at 8 x 8. In this case, only the lowest level
of the trellis in Fig. 6 is used. The transition costs between the trellis nodes would be the rate required to encode
the differences between consecutive motion vectors along the scanning path weighted by the Lagrangian multiplier
A. Assume now that the next higher level, level 4, of the QT is included. Clearly the transition cost between the
trellis nodes of level 3 stay the same. In addition, there are now transition costs between the trellis nodes of level
4 and also transition costs from trellis nodes of level 3 to trellis nodes of level 4 and vice versa, since each cluster
of four blocks at level 3 can be replaced by a single block at level 4. The fact that a path can only leave and
enter a certain QT level at particular nodes results in paths which all correspond to valid QT decompositions.
Note that every QT node in a path is a leaf of the QT which is associated with this path. In this example, a tree
of depth 3 has been used to illustrate how the multilevel trellis is built. For QTs of greater depth, a recursive
rule has been derived which leads to the proper connections between the QT levels.'? In the presented multilevel
trellis, the nodes of the respective blocks hold the information about the distortion occurring when the associated
block is predicted using the motion vector of the node. The rate needed to encode the difference between the
motion vectors is incorporated into the transition cost between the nodes (weighted by the Lagrangian multiplier
A), but so far, the rate needed to encode the QT decomposition has not been addressed.

Since the Viterbi algorithm will be used to find the optimal QT decomposition, each node needs to contain a
term which reflects the number of bits needed to split the QT at its level. Clearly, trellis nodes which belong to
blocks of smaller size have a higher QT segmentation cost than nodes which belong to bigger blocks. When the
path includes only the top QT level IV, then the QT is not split at all, and only one bit is needed to encode this.
Therefore its segmentation cost, An o, equals one. For the general case, if a path splits a given block b; ; then a
segmentation cost of A;; + 4 bits has to be added to its overall cost function, since by splitting block b;;, 4 bits
will be needed to encode whether the four child nodes of block b ; are split or not. Since the path only visits
trellis nodes and not QT nodes, this cost has to be distributed to the trellis nodes of the child nodes of block by ;.
How the cost is split among the child nodes is arbitrary since every path which visits a sub-tree rooted by one
child node, also has to visit the other three sub-trees rooted by the other child nodes. Therefore the path will



pick up the segmentation cost, no matter how it has been distributed among the child nodes. Since the splitting
of a node at level ng + 1 leads to four child nodes at level ng, which can not be split further, no segmentation
cost needs to be distributed among its child nodes. Clearly, using the above argument, these segmentation costs
can be generated recursively in a Top-Down fashion.

The recursion involved in the assignment of the encoding cost is illustrated in Fig. 7. Note that in Fig.
7, the segmentation cost is distributed along the leftmost child. As mentioned before, any other assignment
of the segmentation cost will lead to the same result. Furthermore, since in the Lagrangian cost function the
rate and distortion are merged by adding the rate, weighted by the Lagrangian multiplier, to the distortion, the
segmentation rate also needs to be weighted by .

Having established the multilevel trellis, the forward DP algorithm can be used to find the optimal state
sequence g, ..., 2y, 1 which will minimize the unconstrained problem (5). The Viterbi algorithm simply finds
the shortest path from S to T, where the distance is measured as the sum of the node distortions d(z;) plus the
sum of the weighted segmentation and DVF encoding rates, A*r(zj_1,x;). Hence the Viterbi algorithm finds the
optimal solution to the unconstrained problem (5). In Fig. 7, a QT of depth 4 is displayed and the optimal state
sequence is indicated which leads to the segmentation shown in Fig. 8. Note that the resulting scanning path is
spatially non-disruptive and the segmentation cost along the optimal path adds up to 13 bits, which is the number
of bits needed to encode this QT decomposition. The bit stream for this QT decomposition is “1010000011001”.

5.1 Color

In the our experiments, we only use the luminance part of the sequence, but the presented theory also covers
the case when the chrominance distortion is included in the distortion measure. The block distortion d(x;) can
be defined arbitrarily and hence it can contain contributions from the luminance channel as well as from the two
chrominance channels (or from R, G and B channels). In the most general form, the block distortion can be
written as follows,

d(z) = (d" (x),d" (;),d"" (z;)), (7
where ¢(+) is an arbitrary function and the superscripts Y, Cb and Cr indicate the distortions in the luminance
and chrominance channels. One popular choice for the function ¢(-) is a weighted sum,

d(z;) = d¥ (z;) + axd(z;) + B+ d" (z;), (8)

since for this definition of the block distortion, the frame distortion is also the weighted sum of the luminance and
chrominance frame distortions. Clearly the selection of an appropriate a and 8 has to be done experimentally.
Note that by defining the block distortion as above, the inhomogeneous DVF is found optimally, using the
information from all three channels. Nevertheless, in the presented results, we set a and 3 to zero.

6 EXPERIMENTAL RESULTS

As in test model four (TMN4)!! of H.263 we assign one bit per block to indicate if the motion vector of this
block is zero, since this is the most common event. When the motion vector is non-zero, we encode the motion
vector difference between the current and the previous block using the entropy table of TMN4. Efficient motion
estimation is particularly important for very low bit rate video coding, since the encoding of the DVF can take
up to 100% of the available bit rate.

From a theoretical point of view, every possible motion vector of block b;; should be included in the set
M ;, which is the admissible motion vector set for block b; ;. This means that for a typical search window of
+15.5 pixels and an accuracy of 0.5 pixel, |M;;| = 63*63 =3969, which is quite large. Most of these motion



vectors, however, are not likely candidates for the optimal path, since they do not correspond well to the real
motion in the scene and therefore they lead to a high distortion and a high rate. These motion vectors can be
found by performing block matching since they will result in a high matching error. To make the optimization
process faster, the prior knowledge about these motion vectors is taken into account. Even though this might
be complicated in general, it is easily achieved in the presented framework of DP by reducing the set M ; of
admissible motion vectors of block by ;.

We propose the following scheme for the recursive generation of admissible motion vector sets. An initial
motion vector search is conducted for the 20 x 270 blocks at level ng by using block matching with integer
accuracy. The K integer motion vectors which lead to the best prediction are kept. Then the set M, ; is defined
as the set which contains the K integer motion vectors plus their half pixel neighbors. After the set of admissible
motion vectors has been defined for the bottom level (ng), the sets of admissible motion vectors for higher level
blocks are defined recursively. A block b;; only includes a motion vector in M ; if this motion vector has been
selected by all of its child nodes. This leads to the fact that for small blocks, many motion vectors are considered
but the bigger the block, the smaller the number of vectors associated with it. This reflects the well known fact
that small block sizes lead to small energy in the DFD but not very consistent motion vector fields, whereas
bigger blocks lead to consistent vector fields, but the energy in the DFD can be quite high. Our experiments have
shown that for K = 10 this restriction of the search space does not lead to a performance loss but increases the
speed of the algorithm significantly.

We compare the QT-based optimal motion estimation scheme with the fixed block size (16 x 16) based scheme of
TMN4. As pointed out before, we use the same encoding technique for the DVF as TMN4 and hence the difference
in performance stems from the optimal tradeoff between the rate necessary to encode the inhomogeneous DVF
(QT segmentation and motion vector differences) and the resulting energy in the DFD (the distortion). For the
presented experiment, we use the Y-channels of the 176-th and 180-th frames of the QCIF sequence “Mother and
Daughter”. We select the mean squared error (MSE) as the distortion measure, and employ the peak signal to
noise ratio (PSNR) to express its magnitude in dB, (PSNR = 10xlog;,(255%/MSE)). We intra code the 176-frame
using TMN4 and a quantizer step size of 10. The resulting PSNR for this frame is 33.85 dB . Then the original
180-th frame is used to find the DVF. First we employ the TMN4 block matching scheme which uses the sum
of the absolute error and favors the zero motion vector by reducing its error by a constant amount of 100. The
resulting bit rate for the DVF and the DFD energy are listed in row “TMN4” in Table 1. The predicted frame
and the DVF are displayed in Fig. 9.

Now the QT-based optimal motion estimator is run, where first the maximum rate is set equal to the TMN4
rate, i.e., Ryqe = 470 bits. We call this experiment “matched Rate” in Table 1 and the resulting rate and distortion
are listed in the corresponding row. Note that for the same rate, the total distortion is reduced significantly, or in
other words, a better prediction is achieved. Besides outperforming the TMN4 motion estimator in the objective
sense, the proposed QT-based scheme also outperforms the TMN4 motion estimator subjectively. This is due
to the inhomogeneous representation of the motion by means of the QT, which enables the QT-based motion
estimator to spend more bits in areas with complex motion, i.e., small block sizes are used, and fewer bits in
areas with simple motion, i.e., large block sizes are used. The better prediction performance is apparent from the
resulting predicted frame and the DVF which are displayed in Fig. 10. For example, the prediction of the left eye
and the shirt collar of the mother and the right corner of the frame in the background, is clearly better in the
proposed approach. Recall that the ng level is scanned by the modified Hilbert scan shown in Fig. 5. To generate
the scanning path for an arbitrary QT decomposition, the procedure introduced in Sec. 3.1 is used. In Fig. 11
the resulting overall scanning path which corresponds to the QT decomposition displayed in Fig. 10 is shown.

For the next experiment, the DFD energy of the TMN4 run is matched by setting D,,,., = 1148 (=30.6 dB
PSNR). We call this experiment “matched Dist.” in Table 1 and the resulting rate and distortion are listed in
the corresponding row. Note that for the same distortion, the bit rate is reduced significantly (about 30%). The
resulting predicted frame and the DVF are displayed in Fig. 12. Again, even though the DFD energy is the same
as in Fig. 9, the predicted frame is of higher quality. The same explanation applies as before, that is, the implicit
DVF smoothing along the Hilbert scan results in a good DVF. In addition, the inhomogeneous structure of the



DVF fits a real DVF better and hence a better representation of the real DVF can be achieved.

7 SUMMARY

In this paper we presented a QT-based motion estimator which finds the QT-segmentation and the DVF
jointly and optimally in the rate distortion sense. The inhomogeneous representation of the DVF results in DVF
estimates which are close to the real DVF, and in their efficient encoding. We encode the inhomogeneous DVF
using a first order DPCM along the scanning path and the QT data structure. We introduced a procedure to create
a spatially non-disruptive scanning path for an arbitrary QT-decomposition, which results in an efficient DPCM
encoding of the DVF. We formulated the motion estimation problem as a constrained optimization problem,
which we solve using the Lagrangian multiplier method and a multilevel dynamic program. We showed that the
proposed motion estimator can easily incorporate multichannel information, such as color. Finally, we presented
results of the proposed QT-based motion estimator for a QCIF video sequence and compared them with block
matching. The results clearly demonstrated that the proposed scheme outperforms block matching significantly
in an objective, as well as, in a subjective sense.
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Figure 5: Modified Hilbert scan for level ny = 3 of a QCIF frame.
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Figure 6: The multilevel trellis for N =5 and ny = 3.
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Figure 7: The recursive distribution of the quad-tree encoding cost among the trellis nodes for a quad-tree of
depth 4 and an optimal path.
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Figure 8: Quad-tree decomposition corresponding to the optimal state sequence. The left figure shows the
graphical representation of the QT which corresponds to the frame decomposition in the right figure. The right
figure shows the level ng scanning path, which is a third order Hilbert curve, and the resulting overall scanning
path.



| [ Rate (bits) | Dist. (PSNR) |

TMNA4 (Fig. 9) 170 30.6
matched Rate (Fig. 10) 472 31.3
matched Dist (Fig. 12) 344 30.7

Table 1: Comparison between the TMN4 motion estimation algorithm and the proposed optimal motion estimator
using the luminance values of the 176-th and 180-th frames of the QCIF sequence “Mother and Daughter”.
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Figure 9: The predicted frame and the DVF for TMN4  Figure 10: The predicted frame and the DVF for the
block matching. optimal QT-based motion estimator, when the rate
matches the TMN4 rate.
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Figure 11: The overall scanning path. Figure 12: The predicted frame and the DVF for the
optimal QT-based motion estimator, when the distor-
tion matches the TMN4 distortion.



