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We consider the problem of designing an optimal quantum detector that distinguishes unambiguously be-
tween a collection of mixed quantum states. Using arguments of duality in vector space optimization, we
derive necessary and sufficient conditions for an optimal measurement that minimizes the probability of an
inconclusive result. We show that the previous optimal measurements that were derived for certain special
cases satisfy these optimality conditions. We then consider state sets with strong symmetry properties, and
show that the optimal measurement operators for distinguishing between these states share the same symme-
tries, and can be computed very efficiently by solving a reduced size semidefinite program.
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I. INTRODUCTION

The problem of detecting information stored in the state
of a quantum system is a fundamental problem in quantum
information theory. Several approaches have emerged to dis-
tinguishing between a collection of nonorthogonal quantum
states. In one approach, a measurement is designed to mini-
mize the probability of a detection error[1–10]. A more re-
cent approach, referred to as unambiguous detection[11–19],
is to design a measurement that with a certain probability
returns an inconclusive result, but such that if the measure-
ment returns an answer, then the answer is correct with prob-
ability 1. An interesting alternative approach for distinguish-
ing between a collection of quantum states, which is a
combination of the previous two approaches, is to allow for a
certain probability of an inconclusive result, and then maxi-
mize the probability of correct detection[19–21].

We consider a quantum state ensemble consisting ofm
density operatorshri ,1ø i ømj on an n-dimensional com-
plex Hilbert spaceH, with prior probabilitieshpi .0,1ø i
ømj. A pure-state ensemble is one in which each density
operatorri is a rank-one projectorufilkfiu, where the vectors
ufil, though evidently normalized to unit length, are not nec-
essarily orthogonal. Our problem is to design a quantum de-
tector to distinguish unambiguously between the stateshrij.

Chefles[16] showed that a necessary and sufficient con-
dition for the existence of unambiguous measurements for
distinguishing between a collection ofpurequantum states is
that the states are linearly independent. Necessary and suffi-
cient conditions on the optimal measurement minimizing the
probability of an inconclusive result for pure states were de-
rived in Ref. [18]. The optimal measurement when distin-
guishing between a broad class of symmetric pure-state sets
was also considered in Ref.[18].

The problem of unambiguous detection betweenmixed
state ensembles has received considerably less attention. Ru-
dolph, Speakkens, and Turner[22] showed that unambiguous
detection between mixed quantum states is possible as long
as one of the density operators in the ensemble has a nonzero
overlap with the intersection of the kernels of the other den-
sity operators. They then consider the problem of unambigu-
ous detection between two mixed quantum states, and derive
upper and lower bounds on the probability of an inconclusive
result. They also develop a closed form solution for the op-
timal measurement in the case in which both states have
kernels of dimension 1. In Ref.[23], the authors consider the
problem of unambiguous discrimination between two gen-
eral density matrices.

In this paper we develop a general framework for unam-
biguous state discrimination between a collection of mixed
quantum states, which can be applied to any number of states
with arbitrary prior probabilities. For our measurement we
consider general positive operator-valued measures[2,24],
consisting ofm+1 measurement operators. We derive a set
of necessary and sufficient conditions for an optimal mea-
surement that minimizes the probability of an inconclusive
result, by exploiting principles of duality theory in vector
space optimization. We then show that the previous optimal
measurements that were derived for certain special cases sat-
isfy these optimality conditions.

Next, we consider geometrically uniform(GU) and com-
pound GU (CGU) state sets[7,8,25], which are state sets
with strong symmetry properties. We show that the optimal
measurement operators for unambiguous discrimination be-
tween such state sets are also GU and CGU, respectively,
with generators that can be computed very efficiently by
solving a reduced size semidefinite program.

The paper is organized as follows. In Sec. II, we provide
a statement of our problem. In Sec. III we develop the nec-
essary and sufficient conditions for optimality using
Lagrange duality theory. Some special cases are considered
in Sec. IV. In Sec. V we consider the problem of distinguish-
ing between a collection of states with a broad class of sym-
metry properties.
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II. PROBLEM FORMULATION

Assume that a quantum channel is prepared in a quantum
state drawn from a collection of mixed states, represented by
density operatorshri ,1ø i ømj on an n-dimensional com-
plex Hilbert spaceH. We assume without loss of generality
that the eigenvectors ofri ,1ø i øm, collectively span[33]
H.

To detect the state of the system a measurement is con-
structed comprisingm+1 measurement operatorshPi ,0ø i
ømj that satisfy

o
i=0

m

Pi = I , s1d

più0,0ø i øm. The measurement operators are constructed
so that either the state is correctly detected, or the measure-
ment returns an inconclusive result. Thus, each of the opera-
tors pi ,1ø i øm correspond to detection of the correspond-
ing statesri,1ø i øm, andP0 corresponds to an inconclusive
result.

Given that the state of the system isr j, the probability of
obtaining outcomei is Trsr jPid. Therefore, to ensure that
each state is either correctly detected or an inconclusive re-
sult is obtained, we must have

Trsr jPid = hidi j , 1 ø i, j ø m, s2d

for some 0øhi ø1. Since from Eq.(1), P0= I −Si=1
m Pi, Eq.

(2) implies that TrsriP0d=1−hi, so that given that the state
of the system isri, the state is correctly detected with prob-
ability hi, and an inconclusive result is returned with prob-
ability 1−hi.

It was shown in Ref.[16] that for pure-state ensembles
consisting of rank-one density operatorsri = ufilkfiu, Eq. (2)
can be satisfied if and only if the vectorsufil are linearly
independent. For mixed states, it was shown in Ref.[22] that
Eq. (2) can be satisfied if and only if one of the density
operatorsri has a nonzero overlap with the intersection of
the kernels of the other density operators. Specifically, de-
note byKi the null space ofri and let

Si = ù j=1,jÞi
m K j s3d

denote the intersection ofK j ,1ø j øm, j Þ i. Then to satisfy
Eq. (2) the eigenvectors ofPi must be contained inSi and
must not be entirely contained inKi. This implies thatKi
must not be entirely contained inSi. Some examples of
mixed states for which unambiguous detection is possible are
given in Ref.[22].

If the stateri is prepared with prior probabilitypi, then
the total probability of correctly detecting the state is

PD = o
i=1

m

piTrsriPid. s4d

Our problem therefore is to choose the measurement opera-
tors Pi, 0ø i øm to maximizePD, subject to the constraints
(1) and

Trsr jPid = 0, 1ø i, j ø m, i Þ j . s5d

To satisfy Eq.(5), Pi must lie inSi defined by Eq.(3), so that

Pi = PiPiPi, 1 ø i ø m, s6d

wherePi is the orthogonal projection ontoSi. Denoting by
Qi an n3 r matrix whose columns form an arbitrary ortho-
normal basis forSi wherer =dimsSid, we can expressPi as
Pi =QiQi

* . From Eqs.(6) and (1) we then have that

Pi = QiDiQi
* , 1 ø i ø m, s7d

whereDi =Qi
* PiQi is an r 3 r matrix satisfying

o
i=1

m

QiDiQi
* ø I , s8d

Di ù0,1ø i øm. Therefore, our problem reduces to maxi-
mizing

PD = o
i=1

m

piTrsriQiDiQi
*d, s9d

subject to Eq.(8).
To show that the problem of Eqs.(9) and (8) does not

depend on the choice of orthonormal basisQi, we note that
any orthonormal basis forSi can be expressed as the col-
umns ofCi, whereCi =QiUi for somer 3 r unitary matrix
Ui. SubstitutingCi instead ofQi in Eqs. (9) and (8), our
problem becomes that of maximizing

PD = o
i=1

m

piTrsriCiDiCi
*d = o

i=1

m

piTrsriQiDi8Qi
*d, s10d

whereDi8=UiDiUi
* , subject to

o
i=1

m

CiDiCi
* = o

i=1

m

QiDi8Qi
* ø I , s11d

Di ù0,1ø i øm. SinceDi ù0 if and only if Di8ù0, the prob-
lem of Eqs.(10) and(11) is equivalent to that of Eqs.(9) and
(8).

Equipped with the standard operations of addition and
multiplication by real numbers, the spaceB of all Hermitian
n3n matrices is ann2-dimensionalreal vector space. As
noted in Ref.[22], by choosing an appropriate basis forB,
the problem of maximizingPD subject to Eq.(8) can be put
in the form of a standard semidefinite programming problem,
which is a convex optimization problem; for a detailed treat-
ment of semidefinite programming problems see, e.g., Refs.
[26–29]. By exploiting the many well-known algorithms for
solving semidefinite programs[29], e.g., interior point meth-
ods [26,28,34], the optimal measurement can be computed
very efficiently in polynomial time within any desired accu-
racy.

Using elements of duality theory in vector space optimi-
zation, in the following section we derive necessary and suf-
ficient conditions on the measurement operatorsPi
=QiDiQi

* to maximizePD of Eq. (9) subject to Eq.(8).
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III. CONDITIONS FOR OPTIMALITY

A. Dual-problem formulation

To derive necessary and sufficient conditions for optimal-
ity on the matricesDi we first derive a dual problem, using
Lagrange duality theory[30].

Denote by L the set of all ordered setsP=hPi

=QiDiQi
*ji=1

m satisfying Eq. (8) and define JsPd
=oi=1

m piTrsriQiDiQi
*d. Then our problem is

max
PPL

JsPd. s12d

We refer to this problem as the primal problem, and to any
PPL as a primal feasible point. The optimal value ofJsPd
is denoted byĴ.

To develop the dual problem associated with Eq.(12) we
first compute the Lagrange dual function, which is given by

gsZd

= min
Diù0
H− o

i=1

m

piTrsriQiDiQ1
*d + TrFZSo

i=1

m

QiDiQi
* − IDGJ

=min
Diù0
Ho

i=1

m

TrfDiQi
*sZ − piridQig − TrsZdJ , s13d

where Zù0 is the Lagrange dual variable. SinceDi ù0,
1ø i øm, we have that TrsDiXdù0 for anyXù0. If X is not
positive semidefinite, then we can always chooseDi such
that TrsDiXd is unbounded below. Therefore,

gsZd = H− TrsZd, Ai ù 0,1ø i ø m,Z ù 0

− `, otherwise,
s14d

where

Ai = Qi
*sZ − piridQi, 1 ø i ø m. s15d

It follows that the dual problem associated with Eq.(12) is

min
z

TrsZd s16d

subject to

Qi
*sZ − piridQi ù 0, 1ø i ø m,

Z ù 0. s17d

Denoting byG the set of all Hermitian operatorsZ such that
Q1

*sZ−piridQi ù0,1ø i øm, and Zù0, and definingTsZd
=TrsZd, the dual problem can be written as

min
ZPG

TsZd. s18d

We refer to anyZPG as a dual feasible point. The optimal

value ofTsZd is denoted byT̂.

B. Optimality conditions

We can immediately verify that both the primal and the
dual problem are strictly feasible. Therefore, their optimal
values are attainable and the duality gap is zero[29], i.e.,

Ĵ = T̂. s19d

In addition, for anyP=hPi =QiDiQi
*ji=1

m PL, andZPG,

TsZd − JsPd = TrSo
i=1

m

QiDiQi
*sZ − pirid + P0ZD ù 0,

s20d

where P0= I −oi=1
m QiDiQ1

* ù0. Note that Eq.(20) can be
used to develop an upper bound on the optimal probability of

correct detectionĴ. Indeed, since for anyZPG ,TsZd
ùJsPd, we have thatĴøTsZd for any dual feasibleZ.

Now, let P̂i =QiD̂iQi
* , 1ø i øm andP̂0= I −oi=1

m P̂i denote
the optimal measurement operators that maximize Eq.(9)
subject to Eq.(8), and letẐ denote the optimalZ that mini-
mizes Eq.(16) subject to Eq.(17). From Eqs.(19) and (20)
we conclude that

TrSo
i=1

m

P̂iQi
*sẐ − piridQi + P̂0ẐD = 0. s21d

Since D̂i ù0,Ẑù0, and Qi
*sẐ−piridQi ù0, 1ø i øm, Eq.

(21) is satisfied if and only if

ẐP̂0 = 0, s22d

Qi
*sẐ − piridQiD̂i = 0, 1ø i ø m. s23d

Once we find the optimalẐ that minimizes the dual prob-
lem (16), the constraints(22) and (23) are necessary and
sufficient conditions on the optimal measurement operators

P̂i. We have already seen that these conditions are necessary.
To show that they are sufficient, we note that if a set of

feasible measurement operatorsP̂i satisfies Eqs.(22) and

(23), then Trfoi=1
m D̂iQi

*sẐ−piridQi +P̂0Ẑg=0 so that from Eq.

(20), JsP̂d=TsẐd= Ĵ.
We summarize our results in the following theorem.
Theorem 1. Let hri,1ø i ømj denote a set of density op-

erators with prior probabilitieshpi .0,1ø i ømj, and let
hQi ,1ø i ømj denote a set of matrices such that the columns
of Qi form on orthonormal basis forSi =ù j=1,jÞi

m K j, whereKi
the null space ofri. Let L denote the set of all ordered sets of
Hermitian measurement operatorsP=hPiji=0

m that satisfyPi

ù0,oi=0
m Pi = I, and Trsr jPid=0, 1ø i øm, i Þ j and letG de-

note the set of Hermitian matricesZ such thatZù0, Q1
*sZ

−piridQi, 1ø i øm. Consider the problem maxPPLJsPd and
the dual problem minZPGTsZd, whereJsPd=oi=1

m piTrsriPid
andTsZd=TrsZd. Then we have the following.

(1) For anyZPG andPPL, TsZdùJsPd.
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(2) There is an optimalP, denoted P̂, such that Ĵ

=JsP̂dùJsPd for any PPL.

(3) There is an optimalZ, denotedẐ and such thatT̂

=TsẐdøTsZd for any ZPG.

(4) T̂= Ĵ.
(5) Necessary and sufficient conditions on the optimal

measurement operatorsP̂i are that there exists aZPG such
that

ZP̂0 = 0, s24d

Qi
*sZ − pirdQiD̂i = 0, 1ø i ø m, s25d

whereP̂i =QiD̂Qi
* ,1ø i øm, andD̂i ù0.

(6) Given Ẑ, necessary and sufficient conditions on the

optimal measurement operatorsP̂i are

ẐP̂0 = 0, s26d

Qi
*sẐ − piridQiD̂i = 0, 1ø i ø m. s27d

Although the necessary and sufficient conditions of Theo-
rem 1 are hard to solve, they can be used to verify a solution
and to gain some insight into the optimal measurement op-
erators. In the following section we show that the previous
optimal measurements that were derived in the literature for
certain special cases satisfy these optimality conditions.

IV. SPECIAL CASES

We now consider two special cases that were addressed in
Ref. [22], for which a closed form solution exists. In Sec.
IV A we consider the case in which the spacesSi defined by
Eq. (3) are orthogonal, and in Sec. IV B we consider the
problem of distinguishing unambiguously between two den-
sity operators with dimsSid=1,1ø i ø2.

A. Orthogonal null spacesSi

The first case we consider is the case in which the null
spacesSi are orthogonal, so that

PiPj = di j , 1 ø i, j ø m, s28d

wherePi is an orthogonal projection ontoSi. It was shown in
Ref. [22] that in this case the optimal measurement operators
are

P̂i = Pi = QiQi
* , 1 ø i ø m. s29d

In Appendix A we show that the optimal solution of the dual
problem can be expressed as

Ẑ = o
i=1

m

piPiriPi . s30d

It can easily be shown thatẐ and P̂i of Eqs. (30) and (29)
satisfy the optimality conditions of Theorem 1.

B. Null spaces of dimension 1

We now consider the case of distinguishing between two
density operatorsr1 andr2, whereS1 andS2 both have di-
mension equal to 1. In this case, as we show in Appendix B,
the optimal dual solution is

Ẑ = 5d1P1, d2 − d1uf u2 ø 0

d2P2, d1 − d2uf u2 ø 0

d2sQ2 + sQ2
'dsQ2 + sQ2

'd* , otherwise,

s31d

where Pi is an orthogonal projection ontoSi, Q2
' is a unit

norm vector in the span ofQ1 and Q2 such thatQ2
*Q2

'=0,
and

di = piQi
*piQi, 1 ø i ø 2,

s=
f*

e* SÎ di

d2uf u2
− 1D ,

f = Q2
* Q1,

e= sQ2
'd*Q1. s32d

The optimal measurement operators for this case were devel-
oped in Ref.[22], and can be written as

hP̂iji=1

2
= 5P̂1 = P1,P̂2 = 0, d2 − d1uf u2 ø 0

P̂1 = 0,P̂2 = P2, d1 − d2uf u2 ø 0

P̂1 = a1P1,P̂2 = a2P2, otherwise,

s33d

where

a1 =

1 −Îd2uf u2

d1

1 − uf u2
,

a2 =

1 −Îd1uf u2

d2

1 − uf u2
. s34d

We now show thatẐ andP̂ of Eqs.(31) and (33) satisfy
the optimality conditions of Theorem 1. To this end we note
that from Eq.(33),

hD̂iji=1

2
= 5D̂1 = 1,D̂2 = 0, d2 − d1uf u2 ø 0

D̂1 = 0,D̂2 = 1, d1 − d2uf u2 ø 0

D̂1 = a1,D̂2 = a2, otherwise.

s35d

From Eqs.(31)–(35) we have that ifd2−d1uf u2ø0, then

Q1
*sẐ − p1r1dQ1D̂1 = d1 − Q1

*p1r1Q1 = 0,

Q2
*sẐ − p2r2dQ2D̂2 = 0,
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ẐP̂0 = ẐsI − P̂1d = d1Q1Q1
* − d1Q1Q1

* = 0. s36d

Similarly, if d1−d2uf u2ø0, then

Q1
*sẐ − p1r1dQ1D̂1 = 0,

Q2
*sẐ − p2r2dQ2D̂2 = d2 − Q2

*p2r2Q2 = 0,

ẐP̂0 = ẐsI − P̂2d = d2Q2Q2
* − d2Q2Q2

* = 0. s37d

Finally, if neither of the conditionsd1−d2uf u2ø0, d2−d1uf u2
ø0 hold, then

Q1
*sẐ − p1r1Q1D̂1d=fd2sf* + e*sdsf* + e*sd* − d1g

1 −Îd2uf u2

d1

1 − uf u2

=Fd2uf u2SÎ d1

d2uf u2
D2

− d1G1 −Îd2uf u2

d1

1 − uf u2

=0, s38d

Q2
*sẐ − p2r2dQ2D̂2 = sQ2

*ẐQ2 − d2d
1Îd1uf u2

d2

1 − uf u2
= 0, s39d

and

ẐP̂0 = Ẑ − ẐP̂1 − ẐP̂2 = Ẑ − D̂1ẐQ1Q1
* − D̂2ẐQ2Q2

* .

s40d

To show thatẐP̂0=0, we note that

ẐQ1Q1
* = d2suf u2 + s*ef*dQ2Q2

*+ d2ssuf u2 + ss*ef*dQ2
'Q2

*

+ d2se* f + s* ueu2dQ2Q2
'*+ d2sse* f + ss* ueu2dQ2

'Q2
'* ,

s41d

and

ẐQ2Q2
* = d2Q2Q2

* + d2sQ2
'Q2

* . s42d

Substituting Eqs.(41) and(42) into Eq. (40), and after some
algebraic manipulations, we have that

ẐP̂0 = Ẑ − D̂1ẐQ1Q1
* − D̂2ẐQ2Q2

* = 0. s43d

Combining Eqs.(36)–(43) we conclude that the optimal
measurement operators of Eq.(22) satisfy the optimality
conditions of Theorem 1.

V. OPTIMAL DETECTION OF SYMMETRIC STATES

We now consider the case in which the quantum state
ensemble has symmetry properties referred to as GU and
GCU. These symmetry properties are quite general, and in-
clude many cases of practical interest.

Under a variety of different optimality criteria the optimal
measurement for distinguishing between GU and CGU state
sets was shown to be GU and CGU, respectively[7,8,18,19].
In particular, it was shown in Ref.[18] that the optimal mea-
surement for unambiguous detection between linearly inde-
pendent GU and CGU pure states is GU and CGU, respec-
tively. We now generalize this result to unambiguous
detection of mixed GU and CGU state sets.

VI. GU STATE SETS

A GU state set is defined as a set of density operators
hri ,1ø i ømj such thatri =UirU1

* where r is an arbitrary
generating operatorand the matriceshUi ,1ø i ømj are uni-
tary and form an Abelian groupG [8,31]. For concreteness,
we assume thatU1= I.

The groupG is thegenerating groupof S. For consistency
with the symmetry ofS, we will assume equiprobable prior
probabilities onS.

As we now show, the optimal measurement operators that
maximize the probability of correct detection when distin-
guishing unambiguously between the density operators of a
GU state set are also GU with the same generating group.
The corresponding generator can be computed very effi-
ciently in polynomial time.

Suppose that the optimal measurement operators that
maximize

JshPijd = o
i=1

m

TrsriPid s44d

subject to Eqs.(8) and (5) are P̂i, and let Ĵ=JshP̂ijd
=oi=1

m TrsriP̂id. Let rs j , id be the mapping fromI3I to I
with I=h1, . . . ,mj, defined byrs j , id=k if Uj

*Ui =Uk. Then

the measurement operatorsP̂i
s jd=UjP̂rs j ,idUj

* and P̂0
s jd= I

−oi=1
m P̂i

s jd for any 1ø j øm are also optimal. Indeed, since

P̂i ù0,1ø i øm andoi=1
m P̂i ø I ,P̂i

s jdù0, 1ø i øm and

o
i=1

m

P̂i
s jd = UjSo

i=1

m

P̂iDUj
* ø UjUj

* = I . s45d

Using the fact thatri =UirUi
* for some generatorr,

JshP̂i
s jdjd = o

i=1

m

TrsrUj
*UjP̂rs j ,idUj

*Uid

=o
k=1

m

TrsrUk
*P̂kUkd

=o
i=1

m

TrsriP̂id

=Ĵ. s46d

Finally, for l Þ i,
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TrsrlP̂i
s jdd = TrsUlrUl

*UjP̂rs j ,idUj
*d

=TrsUsrUs
*P̂rs j ,idd

=TrsrsP̂kd

=0, s47d

whereUs=Uj
*Ul andUk=Uj

*Ui and the last equality follows
from the fact that sincel Þ i, sÞk.

It was shown in Refs.[8,19] that if the measurement op-

erators P̂i
s jd are optimal for any j , then hP̄i

=s1/mdo j=1
m P̂i

s jd ,1ø i ømj and P̄0= I −oi=1
m P̄i are also opti-

mal. Furthermore,P̄i =UiP̂Ui
* whereP̂=s1/mdok=1

m Uk
*P̂kUk.

We therefore conclude that the optimal measurement op-
erators can always be chosen to be GU with the same gen-
erating groupG as the original state set. Thus, to find the
optimal measurement operators all we need is to find the

optimal generatorP̂. The remaining operators are obtained

by applying the groupG to P̂.
Since the optimal measurement operators satisfyPi

=UiPUi
* ,1ø i øm andri =UirUi

* , TrsriPid=TrsrPd, so that
the problem(9) reduces to the maximization problem

max
PPB

TrsrPd, s48d

whereB is the set ofn3n Hermitian operators, subject to
the constraints

P ù 0,

o
i=1

m

UiPUi
* ø I ,

TrsPUirUi
*d = 0, 2ø i ø m. s49d

The problem of Eqs.(48) and(49) is a (convex) semidefinite
programming problem, and therefore the optimalP can be
computed very efficiently in polynomial time within any de-
sired accuracy[26,28,29], for example, using the LMI tool-
box on Matlab. Note that the problem of Eqs.(48) and (49)
hasn2 real unknowns andm+1 constraints, in contrast with
the original maximization problem(9) subject to Eqs.(8) and
(5) which hasmn2 real unknowns andm2+1 constraints.

VII. CGU STATE SETS

A CGU state set is defined as a set of density operators
hrik, 1ø i ø l 1økø rj such thatrik=UifkUi

* for some gen-
erating density operatorshrk, 1 ,økø rj, where the matrices
hUi ,1ø i ø lj are unitary and form an Abelian groupG
[8,25]. A CGU state set is, in general, not GU. However, for
everyk, the operatorshrik ,1ø i ø lj are GU with generating
groupG.

Using arguments similar to those of Sec. VI and Ref.[19]
we can show that the optimal measurement operators corre-
sponding to a CGU state set can always be chosen to be GU
with the same generating groupG as the original state set.

Thus, to find the optimal measurement operators all we need

is to find the optimal generatorsP̂k. The remaining operators
are obtained by applying the groupG to each of the genera-

tors P̂k.
Since the optimal measurement operators satisfyPik

=UiPkUi
* ,1ø i ø l ,1økø r and rik=UirkUi

* ,TrsrikPikd
=TrsrkPkd, so that the problem(9) reduces to the maximiza-
tion problem

max
PkPB

o
k=1

r

TrsrkPkd, s50d

subject to the constraints

o
i=1

l

o
k=1

r

UiPkUi
* ø I, Pk ù 0,1ø k ø r ,

TrsPkUir jUi
*d = 0, 1ø k, j ø r,1 ø i ø l ,

if i = 1 then k Þ j . s51d

Since this problem is a(convex) semidefinite programming
problem, the optimal generatorsPk can be computed very
efficiently in polynomial time within any desired accuracy
[26,28,29]. Note that the problem of Eqs.(50) and (51) has
rn2 real unknowns andlr +1 constraints, in contrast with the
original maximization which haslrn2 real unknowns and
slr d2+1 constraints.

VIII. CONCLUSION

We considered the problem of distinguishing unambigu-
ously between a collection ofmixedquantum states. Using
elements of duality theory in vector space optimization, we
derived a set of necessary and sufficient conditions on the
optimal measurement operators. We then considered some
special cases for which closed form solutions are known, and
showed that they satisfy our optimality conditions. We also
showed that in the case in which the states to be distin-
guished have strong symmetry properties, the optimal mea-
surement operators have the same symmetries, and can be
determined efficiently by solving a semidefinite program-
ming problem.

An interesting future direction to pursue is to use the op-
timality conditions we developed in this paper to derive
closed form solutions for other special cases.

APPENDIX A: PROOF OF Eq. (30)

To develop the optimal dual solution in the case of or-
thogonal null spaces, letQ=fQ1Q2¯Qmg, and define a ma-
trix Q' such thatfQ Q'g is a square, unitary matrix, i.e.,
fQ Q'g*fQ Q'g= I. Denoting Z=fQ Q'gYfQ Q'g* , the
dual problem can be expressed as

min
Y

TrsfQ Q'gYfQ Q'g*d sA1d

subject to
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Qi
*fQ Q'gYfQ Q'g*Qi ù Qi

*piriQi, 1 ø i ø m;

Y ù 0. sA2d

Using the orthogonality properties ofQi and Q', the prob-
lem of Eqs.(A1) and (A2) is equivalent to

min
Y

TrsYd sA3d

subject to

Yi ù Qi
*piriQi, 1 ø i ø m;

Y ù 0, sA4d

where

Y =3
Y1

Y2

�

Ym

0
4 . sA5d

Since TrsYd=oi=1
m TrsYid, a solution to Eq.(A3) subject to Eq.

(A4) is

Ŷ = 3
Ŷ1

Ŷ2

�

Ŷm

0
4 , sA6d

where

Ŷ = Qi
*piriQi, 1 ø i ø m. sA7d

Then,

Ẑ = fQ Q'gŶfQ Q'g* = o
i=1

m

piPiriPi , sA8d

as in Eq.(30).

APPENDIX B: PROOF OF Eq. (31)

To develop the optimal dual solutionẐ for one-

dimensional null spaces, we note thatẐ lies in the space
spanned byQ1 andQ2. Denoting byQ a matrix whose col-

umns represent an orthonormal basis for this space,Ẑ can be

written asẐ=QŶQ* , where the 232 matrixŶ is the solution
to

min
Y

TrsYd sB1d

subject to

F1
*YF1 ù d1, sB2d

F2
*YF2 ù d2, sB3d

Y ù 0. sB4d

HereFi =Q*Qi anddi =piQi
*riQi for 1ø i ø2.

To develop a solution to Eq.(B1) subject to Eqs.
(B2)–(B4), we form the Lagrangian

L = TrsYd − o
i=1

2

gisFi
*YFi − did − TrsXYd, sB5d

where from the Karush-Kuhn-Tucker conditions[32] we
must have thatgi ù0,Xù0, and

gisFi
*YFi − did = 0, i = 1,2, sB6d

TrsXYd = 0. sB7d

DifferentiatingL with respect toY and equating to zero,

I − o
i=1

2

giFiFi
* − X = 0. sB8d

If X=0, then we must have thatI =oi=1
2 giFiFi

* , which is
possible only if F1 and F2 are orthogonal. Therefore,X
Þ0, which implies from Eq.(B7) that Eq. (B4) is active.
Now, suppose that only Eq.(B4) is active. In this case our
problem reduces to minimizing Trsy*yd whose optimal solu-
tion is y=0, which does not satisfy Eqs.(B2) and (B3).

We conclude that at the optimal solution(B4) at least one
of the constraints(B2) and(B3) is active. Thus, to determine
the optimal solution we need to determine the solutions un-
der each of the three possibilities: only Eq.(B2) is active,
only Eq. (B3) is active, both Eqs.(B2) and (B3) are active,
and then choose the solution with the smallest objective.

Consider first the case in which Eqs.(B2) and (B4) are

active. In this case,Ŷ= ŷŷ* for some vectorŷ, and without
loss of generality we can assume that

F1
* ŷ = d1. sB9d

To satisfy Eq.(B9), ŷ must have the form

ŷ = Îd1F1 + ŝF1
', sB10d

where F1
' is a unit norm vector orthogonal toF1, so that

F1
*F1

'=0, andŝ is chosen to minimize TrsŶd. Since

TrsŶd = ŷ* ŷ = d1 + uŝu2, sB11d

ŝ=0. Thus,Ŷ=d1F1F1
* , and TrsŶd=d1. This solution is valid

only if Eq. (B3) is satisfied, i.e., only if

F2
*ŶF2 = d1uf u2 ù d2. sB12d

Here we used the fact that

F2
*F1 = Q2

*QQ*Q1 = Q2
*Q1 = f , sB13d

since QQ* is an orthogonal projection onto the space
spanned byQ1 andQ2.
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Next, suppose that Eqs.(B3) and (B4) are active. In this

case,Ŷ= ŷŷ* where without loss of generality we can choose
ŷ such that

F2
* ŷ = d2 sB14d

and

ŷ = Îd2F2 + ŝF2
', sB15d

whereF2
' is a unit norm vector orthogonal toF2, and ŝ is

chosen to minimize TrsŶd. Since TrsŶd=d2+ uŝu2, ŝ=0, and

TrsŶd=d2. This solution is valid only if Eq.(B2) is satisfied,
i.e.,

F1
*YF1 = d2uf u2 ù d1. sB16d

Finally, consider the case in which Eqs.(B2)–(B4) are
active. In this case, we can assume without loss of generality
that F2

* ŷ=Îd2. Then,

ŷ = Îd2F2 + ŝF2
', sB17d

whereŝ is chosen such that

F1
*ŶF1 = d1 sB18d

and TrsŶd= ŷ* ŷ is minimized. Now, forŷ given by Eq.(B17),

Ŷ = d2F2F2
* + uŝu2F2

'F2
'* + ŝÎd2F2

'F2
* + ŝ*Îd2F2F2

'* ,

sB19d

so that

F1
*ŶF1 = d2uf u2 + uŝu2ueu2 + Îd2ŝe

* f + Îd2ŝ
* f*e

= uÎd2f + ŝ*eu2, sB20d

where we definedQ2
'=QC2

', ande and f are given by Eq.
(32). Therefore, to satisfy Eq.(B18), ŝ must be of the form

ŝ=
1

e* sejwÎd1 − f*Îd2d sB21d

for somew. The problem of Eq.(B1) then becomes

min
w

1

ueu2
uejwÎd1 − f*Îd2u2, sB22d

which is equivalent to

max
w

Rehejwfj. sB23d

Since

Re hejwfj ø uejwf u = uf u, sB24d

the optimal choice ofw is ejw= f* / uf u, and

ŝ=
f*Îd2

e* S Îd1

Îd2uf u
− 1D . sB25d

For this choice ofŝ,

TrsŶd = d2 + uŝu2=d2F1 +
uf u2

ueu2S Îd1

Îd2uf u
− 1D2G,a.

sB26d

Clearly, aùd2. Therefore, to complete the proof of Eq.
(31) we need to show thataùd1. Now,

ueu2sa − d1d = ueu2sd2 − d1d + uf u2SÎd1

uf u
− Îd2D2

= s1 − ueu2dd1 + sueu2 + uf u2dd2 − 2Îd1
Îd2uf u

= suf uÎd1 − Îd2d2 ù 0, sB27d

where we used the fact that

ueu2 + uf u2 = Q1
*Q2Q2

*Q1 + Q1
*Q2

'sQ2
'd*Q1 = Q1

*Q1 = 1,

sB28d

sinceQ2Q2
* +Q2

'sQ2
'd* is an orthogonal projection onto the

space spanned byQ1 andQ2.
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