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Optimal quantum detectors for unambiguous detection of mixed states
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We consider the problem of designing an optimal quantum detector that distinguishes unambiguously be-
tween a collection of mixed quantum states. Using arguments of duality in vector space optimization, we
derive necessary and sufficient conditions for an optimal measurement that minimizes the probability of an
inconclusive result. We show that the previous optimal measurements that were derived for certain special
cases satisfy these optimality conditions. We then consider state sets with strong symmetry properties, and
show that the optimal measurement operators for distinguishing between these states share the same symme-
tries, and can be computed very efficiently by solving a reduced size semidefinite program.
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I. INTRODUCTION The problem of unambiguous detection betwesixed
L : . state ensembles has received considerably less attention. Ru-
The problem of det_ectlng information stored in the Statedolph, Speakkens, and Turn@2] showed that unambiguous
of a quantum system is a fundamental problem in quantuyetection between mixed quantum states is possible as long
information theory. Several approaches have emerged to digg one of the density operators in the ensemble has a nonzero
tinguishing between a collection of nonorthogonal quantunyyeriap with the intersection of the kernels of the other den-
states. In one approach, a measurement is designed to miRity operators. They then consider the problem of unambigu-
mize the probability of a detection errft—10. A more re-  ous detection between two mixed quantum states, and derive
cent approach, referred to as unambiguous detefiibal9,  upper and lower bounds on the probability of an inconclusive
is to design a measurement that with a certain probabilityesult. They also develop a closed form solution for the op-
returns an inconclusive result, but such that if the measuretimal measurement in the case in which both states have
ment returns an answer, then the answer is correct with protkernels of dimension 1. In Ref23], the authors consider the
ability 1. An interesting alternative approach for distinguish-problem of unambiguous discrimination between two gen-
ing between a collection of quantum states, which is eeral density matrices.
combination of the previous two approaches, is to allow for a In this paper we develop a general framework for unam-
certain probability of an inconclusive result, and then maxi-biguous state discrimination between a collection of mixed
mize the probability of correct detectigd9—21. quantum states, which can be applied to any number of states
We consider a quantum state ensemble consistingn of With arbitrary prior probabilities. For our measurement we
density operatordp,, 1<i<m} on ann-dimensional com- consider general positive operator-valued meas{Z¢4,
plex Hilbert spaceH, with prior probabilities{p,>0,1<i consisting ofm+1 measurement operators. We derive a set

o rgiatAorpui;easrt:;i-i:zenrqg'fc':?k;)n(;inwvmalf: tﬁ:%c?gpssmgurement that minimizes the probability of an inconclusive
P P : proje A result, by exploiting principles of duality theory in vector
|#0), though evidently normalized to unit length, are not nec'space optimization. We then show that the previous optimal

essarily orj[hggoqal. Our prqblem IS t0 design a quantum demeasurements that were derived for certain special cases sat-
tector to distinguish unambiguously between the stgigs

o isfy these optimality conditions.
_ _Cheﬂes[16] showed that a necessary and sufficient con- Next, we consider geometrically unifor(GU) and com-
dition for the existence of unambiguous measurements fo ound GU(CGU) state setg7,8,23, which are state sets

SAS?TEU'S{"?Q betWFen alcqllgctlon gﬂr?qltllantum statesdls ith strong symmetry properties. We show that the optimal
at the states are linearly independent. Necessary and SUllye 5 rement operators for unambiguous discrimination be-

cient conditions on the optimal measurement minimizing thg,, oo such state sets are also GU and CGU respectively
probability of an inconclusive result for pure states were de i '

. ) : .~ “=with generators that can be computed very efficiently b
rived in Ref.[18]. The optimal measurement when distin- 9 b y y by

ishing b broad cl : ; solving a reduced size semidefinite program.
guishing etwgen a broad class o symmetric pure-state sets g paper is organized as follows. In Sec. Il, we provide
was also considered in R4fL8].

a statement of our problem. In Sec. Ill we develop the nec-
essary and sufficient conditions for optimality using
Lagrange duality theory. Some special cases are considered

*Electronic address: yonina@ee.technion.ac.il in Sec. IV. In Sec. V we consider the problem of distinguish-
"Electronic address: mihailo@systems.caltech.edu ing between a collection of states with a broad class of sym-
*Electronic address: hassibi@systems.caltech.edu metry properties.
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Il. PROBLEM FORMULATION Tr(p;I1;) =0, i # . 5

Assume that a quantum channel is prepared in a quantury satisfy Eq(5), II; must lie inS; defined by Eq(3), so that
state drawn from a collection of mixed states, represented by
(6)

density operatorgp;,1<i<m} on ann-dimensional com-
plex Hilbert space. We assume without loss of generality whereP: is the orthogonal projection onis,. Denoting by
0, annXr matrix whose columns form an arbitrary ortho-

that the eigenvectors gf;,1<i<m, collectively span33]
M. : ol

To detect the state of the system a measurement is co _oin(;ap ali"s forzé‘i Wh: reradllm(Si),hwe <r:]an eer) resg; as
structed comprisingn+1 measurement operatofH;,0<i i=0;0;. From Eqs(6) and(1) we then have that
=m} that satisfy

1<i,jsm,

II; = PILP;,

1<sism,

I=0,A0;, 1<i=sm, (7)
i WhereAi:f IT;0, is anr Xr matrix satisfying
2 IT, =1, (1) -
2 0A0] <1, (8)

I1,=0,0< i=m. The measurement operators are constructed
so that either the state is correctly detected, or the measure- . _
ment returns an inconclusive result. Thus, each of the operaéi?o,l$|<m- Therefore, our problem reduces to maxi-

torsIl;,1<i=<m correspond to detection of the correspond-

ing stateg;,1<i<m, andIl, corresponds to an inconclusive
result.

Given that the state of the systempis the probability of
obtaining outcomd is Tr(p;ll;). Therefore, to ensure that
each state is either correctly detected or an inconclusive r
sult is obtained, we must have

O

Tr(iji) = 7iij, (2

for some 0O< 5 <1. Since from Eq(1), ITy=1-31,11;, Eq.
(2) implies that Ttp;l1o)=1-7;, so that given that the state
of the system ig;, the state is correctly detected with prob-

1<i,jsm,

ability #;, and an inconclusive result is returned with prob-

ability 1-,.

It was shown in Ref[16] that for pure-state ensembles
consisting of rank-one density operatgis | ¢ #il, EQ. (2)
can be satisfied if and only if the vectog,) are linearly
independent. For mixed states, it was shown in ] that
Eg. (2) can be satisfied if and only if one of the density

operatorsp; has a nonzero overlap with the intersection of

mizing

m

Pp= 2 piTr(Pi®iAi®:),
i=1

9

aubject to Eq(8).

To show that the problem of Eq$9) and (8) does not
depend on the choice of orthonormal ba®is we note that
any orthonormal basis fof; can be expressed as the col-
umns of ¥;, whereW;=0;U; for somer Xr unitary matrix
U;. SubstitutingV; instead of®; in Egs. (9) and (8), our
problem becomes that of maximizing

m m
Po=2 pTr(p ViAW) = 2 pTr(p®A/0)), (10
i=1 i=1
whereA/ =U;A;U;, subject to
m m
2 VAT = 0A/0] <1, (11)
i=1 i=1

the kernels of the other density operators. Specifically, dex. >0, 1<i<m. SinceA;=0 if and only if A/ =0, the prob-

note byC; the null space op; and let

Si =N 4K 3
denote the intersection &f;,1<j<m,j#i. Then to satisfy
Eq. (2) the eigenvectors ofl; must be contained i, and
must not be entirely contained iK;. This implies thatkC;
must not be entirely contained i§;. Some examples of
mixed states for which unambiguous detection is possible a
given in Ref.[22].

If the statep; is prepared with prior probability;, then
the total probability of correctly detecting the state is

m

Pp =2 pTr(pll).

i=1

(4)

lem of Eqs.(10) and(11) is equivalent to that of Eq$9) and
(8).

Equipped with the standard operations of addition and
multiplication by real numbers, the spaBeof all Hermitian
nXn matrices is anm?-dimensionalreal vector space. As
noted in Ref.[22], by choosing an appropriate basis
the problem of maximizindg®p subject to Eq(8) can be put
in the form of a standard semidefinite programming problem,
Which is a convex optimization problem; for a detailed treat-
ment of semidefinite programming problems see, e.g., Refs.
[26—29. By exploiting the many well-known algorithms for
solving semidefinite prograni29], e.g., interior point meth-
0ds [26,28,34, the optimal measurement can be computed
very efficiently in polynomial time within any desired accu-
racy.

Using elements of duality theory in vector space optimi-

Our problem therefore is to choose the measurement operaation, in the following section we derive necessary and suf-

torsII;, 0<i=<m to maximizePp, subject to the constraints
(1) and

ficient conditions on the measurement operatdis
=0;A;0; to maximizePp of Eq. (9) subject to Eq(8).
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III. CONDITIONS FOR OPTIMALITY

A. Dual-problem formulation

To derive necessary and sufficient conditions for optimal-
ity on the matrices\; we first derive a dual problem, using

Lagrange duality theor{/s,O].
Denote by A the set of all ordered setdl={II,

=@,A0]}", satisfying Eq. (8) and define J(II)
=3 piTr(pi®;A;0®;). Then our problem is
maxJ(I1). (12)
IIeA

We refer to this problem as the primal problem, and to any

IT € A as a primal feasible point. The optimal valueJfI)

is denoted byi.
To develop the dual problem associated with B@) we

PHYSICAL REVIEW A 69, 062318(2004)

B. Optimality conditions

We can immediately verify that both the primal and the
dual problem are strictly feasible. Therefore, their optimal
values are attainable and the duality gap is 424, i.e.,

J=T. (19)
In addition, for anyIT={IT;=@;A;0;}, € A, andZeT,
m
T(2) -J{1I) = TV(E OA0;(Z-pipy) + Hoz) =0,
i=1
(20)

where ITy=1-=",0,A;0;=0. Note that Eq.(20) can be
used to develop an upper bound on the optimal probability of

first compute the Lagrange dual function, which is given bycorrect detectionJ. Indeed, since for anyZeI',T(Z)

9(2)

0]) + Tr[Z(ﬁ 0,A0; - |)”

=min{ 2 Tr[A|®:(Z - pipi)i] - Tr(Z)} s
i=1

m
= min{ -2 pTr(p®A

Aj=0 i=1

(13
A=0

where Z=0 is the Lagrange dual variable. Sindg=0,
1<i<m, we have that TA;X) =0 for anyX=0. If X is not
positive semidefinite, then we can always chodsesuch
that Tr(A;X) is unbounded below. Therefore,

-Tr(Z2), A=0,1<i=<mZ=0
9@=\__

14
, otherwise, (14)
where

A=0[(Z-pp)®;, 1l<i=m. (15)

It follows that the dual problem associated with E&2) is

minTr(2) (16)
z
subject to
0;(Z-pip)0; =0, 1<i=<m,
Z=0. (17

Denoting bylI” the set of all Hermitian operato&such that
Z(Z—pipi)& =0,1<i<m, and Z=0, and definingT(2)
=Tr(2), the dual problem can be written as

minT(2).
Zel

(18)

=J(II), we have thaﬁsT(Z) for any dual feasible.
Now, letTT;=0,A;0;, 1<i<m andIly=1-3"II; denote
the optimal measurement operators that maximize (8y.

subject to Eq(8), and letZ denote the optimaZ that mini-
mizes Eq.(16) subject to Eq(17). From Eqgs.(19) and(20)
we conclude that

m
Tf(E ﬁi®i*(2‘ Pip)O; + f[(,i) =0.

i=1

(21)

Since A;=0,2=0, and O (Z-p,p)®;=0, 1<i=<m, Eq.
(21) is satisfied if and only if

Zl1,=0, (22)

@T(Z— pipi)®iAi =0, 1sism. (23)

Once we find the optimaﬁ that minimizes the dual prob-
lem (16), the constraintg22) and (23) are necessary and
sufficient conditions on the optimal measurement operators
I1;. We have already seen that these conditions are necessary.
To show that they are sufficient, we note that if a set of
feasible measurement operatdﬂ$ satisfies Eqs(22) and
(23), then T[E A ® (Z pipi) Vi +HOZ] 0 so that from Eq.
(20), I =T(2)=J.

We summarize our results in the following theorem.

Theorem 1Let {p; 1<i<m} denote a set of density op-
erators with prior probabilitiedp;>0,1<i<m}, and let
{0;,1<i=m} denote a set of matrices such that the columns
of ®; form on orthonormal basis f&;=N%, ;.;K;j, wherek;
the nuII space ofy;. Let A denote the set of all ordered sets of
Hermitian measurement operatdis={II;}{, that satisfylI;
=0,300L=1, and T(p;I1)=0, I<i=<m, i # | and letl de-
note the set of Hermitian matric&such thatZz=0, ©;(Z

-pip))®;, 1<i<m. Consider the problem max_,J(II) and
the dual problem miry . T(2), whereJ(IT) ==, p;Tr(p;IT;)

We refer to anyZeI" as a dual feasible point. The optimal andT(z)=Tr(2). Then we have the following.

value of T(Z) is denoted byT

(1) ForanyZel andIl e A, T(Z)=J(II).
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(2) There is an optimalll, denotedII, such thatJ B. Null spaces of dimension 1
=J(IT) = J(II) for any I e A. We now consider the case of distinguishing between two
density operatorp, and p,, whereS; and S, both have di-
mension equal to 1. In this case, as we show in Appendix B,
the optimal dual solution is

(3) There is an optimalZ, denotedZ and such thafl
=T(Z2)<T(Z) foranyZel.

4) T=J.

ES; Necessary and sufficient conditions on the optimal d;Py, d - dyff|*<0
measurement operatof are that there exists A< I such Z=1d,P,, d;—dy|f2<0 (32
that dx(0,+s05)(0,+s05)", otherwise,

ZﬁO:O, (24)  whereP; is an orthogonal projection onts;, ®, is a unit
norm vector in the span dd; and ®, such that®*2®2L=O,
0] (Z-pp)OA =0, 1=i=m, (25y @and

Whereﬁi=iﬁ®:,1<ism, andA;=0. d=p0Oip0;, 1<i<2,

(6) Given Z, necessary and sufficient conditions on the

optimal measurement operatdﬁ$ are s= f—< i Thz - 1) ,
- n e 2
Z11,=0, (26)
f = ®; ®11
0;(Z-pip)OA =0, 1<ism, (27)
e=(0;)0,. (32

Although the necessary and sufficient conditions of Theo-
rem 1 are hard to solve, they can be used to verify a solutiolrhe optimal measurement operators for this case were devel-
and to gain some insight into the optimal measurement opeped in Ref[22], and can be written as
erators. In the following section we show that the previous
optimal measurements that were derived in the literature for f[l = pl,ﬁz =0, d, - d1|f|2 <0

. ) . . " 1 R i
certain special cases satisfy these optimality conditions. {Hi}i:1: fl,=011,=P,) dy- d,lf=<0

IV. SPECIAL CASES I, = a;Py, 11, = a,P,, Otherwise,

. . . (33
We now consider two special cases that were addressed in
Ref. [22], for which a closed form solution exists. In Sec. where
IV A we consider the case in which the spacgslefined by :
Eq. (3) are orthogonal, and in Sec. IV B we consider the 1- d,/f|
problem of distinguishing unambiguously between two den- d,
sity operators with dirgS))=1,1<i<2. a=T 72
A. Orthogonal null spacess; dl|f|2
The first case we consider is the case in which the null B 1= d,
spacesS, are orthogonal, so that 2= (34)
Pin=c‘)‘ij, 1$i,j$m, (28)

We now show thaZ and1l of Egs.(31) and(33) satisfy
whereP; is an orthogonal projection onts). It was shown in  the optimality conditions of Theorem 1. To this end we note
Ref.[22] that in this case the optimal measurement operatorthat from Eq.(33),
are R R
Alzl,AZZO, dz_d1|f|2$0
~ 12 N N
{Ai}i:f A1=0A,=1, d;-dyff’<0 (35
Al = al,ﬁz =y, oOtherwise.

From Egs.(31)~«(35) we have that ifd,—d,|f|><0, then

=P=0,60, 1<i=m (29)

In Appendix A we show that the optimal solution of the dual
problem can be expressed as

m
Z=3 pPipiP;. (30) . ~ .
i=1 01(Z- p1p1)O14; =01~ O1p;p10, =0,

It can easily be shown that and ﬂi of Egs.(30) and(29) .o~ -
satisfy the optimality conditions of Theorem 1. O,(Z = P2p2)024,=0,
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Zl,=2(1-11,) =d,0,0; - d,;0,0;=0.  (36)
Similarly, if d,—d,|f|?<0, then
®1(2 ~p1p) 04, =0,
®;(2 - pzpz)zﬁz =dy- ®;p2P22 =0,
21:[0 = 2(' - ﬁz) = d2®2; - dzz@; =0. (37)

Finally, if neither of the conditionsl; —d,|f[><0, d,—d,|f|?
=0 hold, then

d,|f[?
N
Z(Z - p1p101A)=[dy(f" +€'5)(f +€'5)" = dl]Tﬂzl
d,|f|?
N 1]
- d|f|2< d; ) -d vV d
? dIf?) ] 1-]i?
=0, (39)
d,|f]?
i
OHZ = Pap2) 020, = (0,20, ~ d2>1_—|f|§ =0, (39

ZHO =7Z- Zﬁl - 21:[2 = 2 - A]_zl@;_ - Azz(’)z@;
(40)
To show tha’rﬁf[o=0, we note that
20,0; = dy[f|2+ S ef ) 0,05+ dy(s|f[2 + sSef )04 0}

€2)0,0, +d,(se€f +sSe)0, 0,7,
(41)

+dy(e'f+s

and

70,05 = 0,0,0) + d,s0 0}, (42)

Substituting Eqs(41) and(42) into Eq.(40), and after some

algebraic manipulations, we have that

Zly=2Z - A,20,0; - A,70,05=0. (43)

Combining EQs.(36)«43) we conclude that the optimal
measurement operators of E2) satisfy the optimality

conditions of Theorem 1.

V. OPTIMAL DETECTION OF SYMMETRIC STATES

PHYSICAL REVIEW A 69, 062318(2004)

Under a variety of different optimality criteria the optimal
measurement for distinguishing between GU and CGU state
sets was shown to be GU and CGU, respectiyé|$,18,19.

In particular, it was shown in Ref18] that the optimal mea-
surement for unambiguous detection between linearly inde-
pendent GU and CGU pure states is GU and CGU, respec-
tively. We now generalize this result to unambiguous
detection of mixed GU and CGU state sets.

VI. GU STATE SETS

A GU state set is defined as a set of density operators
{pi,1<i<m} such thatp;=U;pU; wherep is an arbitrary
generating operatoand the matricegU;,1<i<m} are uni-
tary and form an Abelian grou@ [8,31]. For concreteness,
we assume thdt;=I.

The groupg is thegenerating groupf S. For consistency
with the symmetry ofS, we will assume equiprobable prior
probabilities onS.

As we now show, the optimal measurement operators that
maximize the probability of correct detection when distin-
guishing unambiguously between the density operators of a
GU state set are also GU with the same generating group.
The corresponding generator can be computed very effi-
ciently in polynomial time.

Suppose that the optimal measurement operators that
maximize

A} = X Tr(pT) (44)
i=1

subject to Egs.(8) and (5) are ﬁi, and Ieth:J({f[i})
:Ei":‘lTr(pif[i). Let r(j,i) be the mapping f*romZxI toZ
with 7={1, ..., m}, defined byr(j,i)=k if U;U;=U,. Then
the measurement operatoiﬁi(”=ujﬁ,(j,i)UF and flg>=l
—Ei”:‘lﬁi(” for any 1<j=<m are also optimal. Indeed, since
11,=0,1<i=mand3"1;<I1,11"=0, 1<i<mand

m m
Eﬁﬁ):uj(Eﬁi)u;suju}:l. (45)
i=1 i=1

Using the fact thapizuipui* for some generatas,

m

I} = X Tr(pU] U IL, U] Uy)
i=1
m

= Tr(pUIT, Uy
k=1

= Tr(pil1;)
i=1

We now consider the case in which the quantum state R
ensemble has symmetry properties referred to as GU and =J. (46)
GCU. These symmetry properties are quite general, and in-

clude many cases of practical interest.

Finally, for | #1,

062318-5
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Tr(p 1) = Tr(UjpU; U TL ) U))
=Tr(UgpUgIT, ;)

:Tr(psﬁk)
=0, (47)

whereUs=U; U; and U,=U; U; and the last equality follows
from the fact that sincé#1, s#k.
It was shown in Refs[8,19 that if the measurement op-

erators ﬁf” are optimal for any j, then {ﬁi
:(1/m)§lj”lll'[i(”,1$ism} andII,=1-X,II; are also opti-
mal. Furthermorell,=U;TIU; wherell=(1/m)Z,U,ITU,.

PHYSICAL REVIEW AG69, 062318(2004)

Thus, to find the optimal measurement operators all we need

is to find the optimal generatof$,. The remaining operators
are obtained by applying the grogpto each of the genera-
torsIIy.

Since the optimal measurement operators satidfy
:UinU:,1$i$I,1sk$r and pik:UipkU:,Tr(pikHik)
=Tr(pll,), so that the problen®) reduces to the maximiza-
tion problem

r

We therefore conclude that the optimal measurement op- T

erators can always be chosen to be GU with the same gen-
erating groupg as the original state set. Thus, to find the

optimal measurement operators all we need is to find the

optimal generatof[. The remaining operators are obtained

by applying the grou; to II.

Since the optimal measurement operators satibfy
=UTIV; , 1<i<mandp;=U;pU;, Tr(p;IL;)=Tr(plIl), so that
the problem(9) reduces to the maximization problem

maxTr(pll), (48)
IeB

where B is the set ofnX n Hermitian operators, subject to
the constraints

Ol

m
> UIIU; <,
i=1

=<

=

Tr(llU;pU;) =0, 2<i<m. (49)

The problem of Eqg48) and(49) is a(conve® semidefinite
programming problem, and therefore the optirhllcan be
computed very efficiently in polynomial time within any de-
sired accuracy26,28,29, for example, using the LMI tool-
box on Matlab. Note that the problem of E¢48) and(49)
hasn? real unknowns andh+1 constraints, in contrast with
the original maximization problert®) subject to Eqs(8) and
(5) which hasmr? real unknowns and¥+1 constraints.

VII. CGU STATE SETS

A CGU state set is defined as a set of density operators

{pik, 1<i=<I 1<k=r} such thatpy =U; 4 U; for some gen-
erating density operatofp, 1,=<k=<r}, where the matrices
{U;j,1=<i<lI} are unitary and form an Abelian groug@

max2, Tr(p L), (50)
I eBk=1
subject to the constraints
D2 UIU <1, I=0,1<ks<r,
i=1 k=1
TrILUpU) =0, 1<kj<rl<is<I,
ifi=1 then k#]j. (51)

Since this problem is &onveX semidefinite programming
problem, the optimal generatoi$, can be computed very
efficiently in polynomial time within any desired accuracy
[26,28,29. Note that the problem of Eq$50) and(51) has
rn? real unknowns antt +1 constraints, in contrast with the
original maximization which hagrn? real unknowns and
(Ir)2+1 constraints.

VIIl. CONCLUSION

We considered the problem of distinguishing unambigu-
ously between a collection ahixed quantum states. Using
elements of duality theory in vector space optimization, we
derived a set of necessary and sufficient conditions on the
optimal measurement operators. We then considered some
special cases for which closed form solutions are known, and
showed that they satisfy our optimality conditions. We also
showed that in the case in which the states to be distin-
guished have strong symmetry properties, the optimal mea-
surement operators have the same symmetries, and can be
determined efficiently by solving a semidefinite program-
ming problem.

An interesting future direction to pursue is to use the op-
timality conditions we developed in this paper to derive
closed form solutions for other special cases.

APPENDIX A: PROOF OF Eg. (30)

To develop the optimal dual solution in the case of or-
thogonal null spaces, [@=[0,0,---0,,], and define a ma-

[8,25. A CGU state set is, in general, not GU. However, fortrix ®+ such that{® ®+] is a square, unitary matrix, i.e.,

everyk, the operatorgp;,1<i=<I} are GU with generating

groupg.
Using arguments similar to those of Sec. VI and R&€]

we can show that the optimal measurement operators corre-

[0 OL][6 ©+]=I. Denoting Z=[0 O+]Y[® O], the
dual problem can be expressed as

myinTr([® O1Y[O 01T) (A1)

sponding to a CGU state set can always be chosen to be GU

with the same generating grodpas the original state set.

subject to

062318-6



OPTIMAL QUANTUM DETECTORS FOR UNAMBIGUOUS..

0;[0 6+]Y[0 01 6,= 0;pn0;

I<sism

Y=0. (A2)

Using the orthogonality properties &f; and ®+, the prob-
lem of Egs.(Al) and(A2) is equivalent to

minTr(Y) (A3)
Y
subject to
Yi=0/pp®;, l<i<m
Y=0, (A4)
where
Y1
Yz
Y= (A5)
Ym
0

Since TtY)=2Z,Tr(Y;), a solution to Eq(A3) subject to Eq.
(Ad) is

Yy
Y,
Y= , (AB)
Yim
0
where
Y=0pp6, l<i<m. (A7)
Then,
m
Z=[0 0*]Y[0 0] =X pPpP, (A8)
i=1
as in Eq.(30).

APPENDIX B: PROOF OF Eq. (31)

To develop the optimal dual solutiorz for one-

dimensional null spaces, we note thatlies in the space
spanned by, and ®,. Denoting by® a matrix whose col-

umns represent an orthonormal basis for this spﬁ«:xan be

written asZ=0Y®", where the X 2 matrixY is the solution
to

minTr(Y) (B1)
Y

subject to

O YD, =d,, (B2)
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DY, = d,, (B3)

Y=0.

Here®=0"0; andd,=p,0; p;®, for 1<i<2.
To develop a solution to Eq(B1l) subject to Egs.
(B2)«B4), we form the Lagrangian

2
L=Tr(Y) = 2 %(®; YD, - dy) - Tr(XY),

i=1

(B4)

(BS)

where from the Karush-Kuhn-Tucker conditiofi82] we
must have that;=0,X=0, and

%(@ YD, - d)=0, i=1,2, (B6)

Tr(XY) = 0. (B7)

Differentiating £ with respect toY and equating to zero,

2

I =, y®® - X=0.
i=1

(B8)

If X=0, then we must have tha==2,y®;®;, which is
possible only ifd; and ®, are orthogonal. Thereforex
#0, which implies from Eq(B7) that Eq.(B4) is active.
Now, suppose that only E@B4) is active. In this case our
problem reduces to minimizing T'y) whose optimal solu-
tion is y=0, which does not satisfy EqeB2) and (B3).

We conclude that at the optimal solutigB4) at least one
of the constraint§B2) and(B3) is active. Thus, to determine
the optimal solution we need to determine the solutions un-
der each of the three possibilities: only E&2) is active,
only Eq.(B3) is active, both Eqs(B2) and (B3) are active,
and then choose the solution with the smallest objective.

Consider first the case in which Eq82) and (B4) are

active. In this casey=yy" for some vectory, and without
loss of generality we can assume that

®9=d,. (B9)
To satisfy Eq.(B9), § must have the form
§=d, 0, +507, (B10)

where ®; is a unit norm vector orthogonal t,, so that
®;®; =0, ands is chosen to minimize T¥). Since
Tr(Y) =979 =dy +[3P, (B11)

$=0. Thus,Y=d;®,®}, and TXY)=d,. This solution is valid
only if Eq. (B3) is satisfied, i.e., only if

DY D, = dyf2= d,. (B12)
Here we used the fact that
D,0,=0,00'0,=0,0,=T, (B13)

since ®O" is an orthogonal projection onto the space
spanned byd; and ©,.
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Next, suppose that EqeB3) and (B4) are active. In this

case,Y=9y" where without loss of generality we can choose

¥ such that
D59 = d (B14)
and
§=\dy®, + 305, (B15)

where®; is a unit norm vector orthogonal @®,, and$ is
chosen to minimize T¥). Since TfY)=d,+|3 $=0, and
Tr(Y)=d,. This solution is valid only if Eq(B2) is satisfied,
i.e.,
O YD, =d,|f[>= d,. (B16)
Finally, consider the case in which Eq82)—(B4) are
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active. In this case, we can assume without loss of generality

that ®,§=1d,. Then,

§= \d®, + 503, (B17)
wheres is chosen such that
YD, =d, (B18)

and Tl(\?):y*y is minimized. Now, fory given by Eq.(B17),

Y = d0,0) + 205 0" + 8d, D5 D) + 8 VD05,

(B19)
so that
YD, = dyf f|2+ 3262 + Vo8 f + V0,8 fe
=[\d,f +5 e, (B20)

where we define®, =0V, ande andf are given by Eq.
(32). Therefore, to satisfy EqB18), S must be of the form

1 T *x [
S= g(eJ‘Pw"dl—f Vdy) (B21)
for somee. The problem of Eq(B1) then becomes
1 io (a4 *x [
min—|el*\d; = f'\dy|?, (B22)
¢ |l
which is equivalent to
maxRe{el¢f}. (B23)
0]
Since
Re{el*f} < [*f| = |f|, (B24)
the optimal choice ofp is e¢=f"/|f|, and
* [ /_
. fd /d
L 2( L —1). (B25)
e \Vdyf|
For this choice oF,
. . [f2( oy ?
Tr(Y) =d, +[3*=d {1+— -1 &
i L e\
(B26)

Clearly, a=d,. Therefore, to complete the proof of Eq.
(31) we need to show that=d;. Now,

/_ 2
= (1 -[eA)dy + (ef +[f[}1dy ~ 21y VL]
= (|f|\d; - Vd,)?= 0, (B27)
where we used the fact that
el? + |7 = ©10,0,0, + 010, (0;) 0, = 0,0, =1,
(B28)

since ®,0,+05(05)" is an orthogonal projection onto the
space spanned b9, and Q..

lel*(a~dy) =|e[*(d,~dyp) + |f|2<
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