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OPTIMAL, QUASI–OPTIMAL AND SUPERLINEAR

BAND–TOEPLITZ PRECONDITIONERS FOR

ASYMPTOTICALLY ILL–CONDITIONED POSITIVE DEFINITE

TOEPLITZ SYSTEMS

STEFANO SERRA

Abstract. In this paper we are concerned with the solution of n × n Her-
mitian Toeplitz systems with nonnegative generating functions f . The pre-
conditioned conjugate gradient (PCG) method with the well–known circulant
preconditioners fails in the case where f has zeros. In this paper we consider
as preconditioners band–Toeplitz matrices generated by trigonometric polyno-
mials g of fixed degree l. We use different strategies of approximation of f
to devise a polynomial g which has some analytical properties of f , is easily
computable and is such that the corresponding preconditioned system has a
condition number bounded by a constant independent of n. For each strategy

we analyze the cost per iteration and the number of iterations required for the
convergence within a preassigned accuracy. We obtain different estimates of
l for which the total cost of the proposed PCG methods is optimal and the
related rates of convergence are superlinear. Finally, for the most economical
strategy, we perform various numerical experiments which fully confirm the ef-
fectiveness of approximation theory tools in the solution of this kind of linear
algebra problems.

1. Introduction

The aim of this paper is to introduce and analyze new strategies for the solution
by PCG method of n× n Hermitian Toeplitz systems [20, 21]

Anx = b.

Toeplitz matrices are assumed to be generated by 2π–periodic integrable real–
valued functions f defined on the fundamental interval [−π, π], in the sense that
the coefficients of An are given by the Fourier coefficients am of f : more precisely
we have

[An]j,k = aj−k =
1

2π

∫ π

−π
f(x)e−î(j−k)xdx, 0 ≤ j, k ≤ n− 1.

We point out that the generating function f is given in some applications of Toeplitz
systems. Classical examples are the kernels of the Wiener–Hopf equations [18], the
spectral density functions in stationary stochastic processes [20] and the point–
spread functions in image processing [24].
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652 STEFANO SERRA

If the generating function is continuous and positive there are many types of
preconditioners [10, 15, 16, 6] such as circulant matrices [14], τ matrices [5], Hartley
matrices [6]; these preconditioners lead to superlinearly convergent PCG methods.

When f has zeros, i.e., ess inf f = 0 we know [20] that the Euclidean condition
number µ2(An(f)) of An = An(f) grows to ∞ for n tending to ∞; in [30, 31]
estimates of µ2(An(f)) as a function of n and of the order r of the “zeros” of f are
given. In the case where r = 2k is an even number only τ preconditioners [15] and
band–Toeplitz preconditioners [7, 16] are shown to be able to reduce the condition
number from O(n2k) to O(1). More general statements and strategies useful to
handle the case where f has also zeros of odd or noninteger orders can be found in
[28, 32].

The main idea (see [16]) is to find a trigonometric polynomial g for which r <
f/g < R where r,R are positive constants. The associated band–Toeplitz matrix
An(g) results to be the desired preconditioner in the sense that the spectrum of
A−1
n (g)An(f) lies in (r,R) for any dimension n.
The quoted idea resulted to be very flexible and, actually, has been successfully

applied to the case of nondefinite Toeplitz problems [29], block Toeplitz problems
[27] and, joint with circulant structures, to the case of non-Hermitian Toeplitz
problems [8].

More recently, R. Chan and P. Tang [11] have proposed to increase the bandwidth
of An(g) to get extra degrees of freedom. They calculate g by means of the Remez
algorithm by minimizing h = ‖(f−g)/f‖∞ over all the polynomials g of fixed degree
l. In this paper we prove that this minimization property enables one not only to
match the zeros of f but also to minimize R/r obtaining (by using Theorem 3.1
in [16]) the best band–Toeplitz preconditioner in the class of all the band–Toeplitz
matrices of fixed bandwidth 2l+ 1. Moreover we perform a more accurate analysis
than [11] of the convergence properties of the preconditioned systems defined in
[11].

Since the Remez algorithm can be heavy from a computational point of view,
we propose two new techniques to minimize “in a certain sense” (f − g)/f . These
strategies are such that g is easier to calculate (for example, for one of the proposed
polynomials g = gB we use only few Fast Fourier Transforms (FFT) of order l− k)
and the preconditioned systems have an O(1) condition number for which we can
exhibit upper bounds depending on l, n and on the “regularity” features of f .

Therefore, we can estimate the number of iterations to reach the solution within
a preassigned accuracy ε; on the other hand, the solution of a system An(g)y = c
can be obtained in O(l2n) arithmetic operations (ops), by using a classic band
solver [19], or in O(ln) ops [17] (see also [9]).

Hence, balancing the cost of a single iteration of the PCG and the number of
required iterations, it is possible to estimate the optimal bandwidth l, which allows
to mimimize the total amount of calculations to reach the solution of An(f)x = b
within a preassigned tolerance ε.

The outline of the paper is the following. In section 2 we analyze the convergence
rate of the PCG method proposed in [11]. In sections 3 and 4 we introduce two
new preconditioners and we perform a study of the convergence properties of our
PCG methods. In the subsequent section 5, first we discuss the cost of the different
PCG methods and then we indicate how to estimate the value lopt such that the
global optimal preconditioner has to be searched in the band–Toeplitz matrices of
bandwidth 2lopt+1. In section 6 we observe that, by choosing l as special functions
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BAND-TOEPLITZ PRECONDITIONERS FOR TOEPLITZ SYSTEMS 653

of n, we may construct superlinearly convergent PCG methods having a total cost of
O(n logn) ops. Finally in the last section we perform several numerical experiments
showing the effectiveness of the proposed ideas.

2. Convergence analysis of the PCG method

of R. Chan and P. Tang

We study the convergence speed of the PCG proposed in [11] in terms of the
generating functions f and g.

Firstly we recall some known results.

Theorem 2.1. Let mf and Mf be the essinf and the esssup of f in [−π, π]. If
mf < Mf then ∀n > 0 we have

mf < λi(An(f)) < Mf

where λi(X) is the i–th eigenvalue of X arranged in nondecreasing order. If mf ≥ 0
then An(f) is positive definite.

Proof. See [20, 7].

Theorem 2.2. Let f, g ∈ L1[−π, π] be functions essentially nonnegative, i.e., mf ,
mg ≥ 0. The matrices An(f), An(g) are positive definite (see Theorem (2.1)) and
the eigenvalues λni of A−1

n (g)An(f) arranged in nondecreasing order are such that:

1. λni ∈ (r,R), r,R being the ess inf and the ess sup of f/g, respectively.
2.
⋃
n∈N

⋃
i≤n λ

n
i is dense in the “essential range” ER(f/g) of f/g (the essential

range of an integrable function h defined on I is the set of all y real numbers
for which, ∀ε > 0 the Lebesgue measure of {x ∈ I : h(x) ∈ (y − ε, y + ε)} is
positive [28].

3. lim
n→∞

λn1 = r, lim
n→∞

λnn = R.

Proof. Under the assumption that f , g and f/g are continuous the claimed thesis
follows from Theorems 3.1 and 3.2 in [16]. Note that in the case where f/g is
continuous the essential range of f/g coincides with [r,R] and, in general, if f/g is
piecewise continuous the set ER(f/g) is the closure of the usual image of f/g.

Under the weaker hypothesis that f and g are only integrable follows from The-
orem 2.2 in [30] and Theorem 3.1 in [28].

Remark 1. The third statement of the preceding theorem has also been proved in
[12]. However, we notice that Theorem 2.2 is much more powerful, since it indicates
a “global property” of distribution of the eigenvalues. For instance, a consequence
of the second part of the considered theorem is that for any nonnegative integer k
fixed with respect to the dimension n we find the following limit relations

lim
n→∞

λnk = r, lim
n→∞

λnn−k = R.

In addition, we can conclude that the spectrum of the preconditioned matrix

A−1
n (g)A(f) is, for large n, “uniformly distributed” in the image of

f

g
. This means

[32] that the set

{
f

g

(
2πj

n

)}n
j=1

, suitably ordered, describes asymptotically the

set
{
λnj
}n
j=1

.

Finally we stress that these results are useful in order to understand very pre-
cisely the convergence rates of PCG methods based on Toeplitz preconditioners.
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Actually, owing to the sophisticated results [3] about the convergence speed of
PCG algorithms, we conclude that the knowledge of the asymptotical behaviour of
λn1 and λnn is not only useful (part 3 or [12]), but also the global distribution of the
preconditioned spectrum [16, 29, 31].

By means of Theorem 2.1 in [11] it is shown that, if g is a polynomial of degree
l such that ∥∥∥∥f − gf

∥∥∥∥
∞

= h < 1,(1)

then An(g) is positive definite and the Euclidean condition number of A
−1/2
n (g) ·

An(f)A
−1/2
n (g) is bounded by a positive constant, i.e.,

µ2

(
A−1/2
n (g)An(f)A−1/2

n (g)
)
≤ 1 + h

1− h.

Consequently, by standard error analysis of the PCG method [2], Chan and Tang
conclude that the number of iterations for convergence within a tolerance ε is
bounded by

N(h, ε) =
1 + h

2(1− h)
log

(
1

ε

)
+ 1.

In the following theorem we refine the result in [11] and we show that the former
bound is a very sharp bound, i.e., the number of iterations that we expect cannot
be much less than N(h, ε).

Theorem 2.3. Let f ≥ 0 be a continuous function and g be a polynomial of degree
l such that the relative error h is less than 1. Then

1. µn2 = µ2

(
A−1/2
n (g)An(f)A−1/2

n (g)
)
<

1 + h

1− h .

2.
⋃
n∈N

⋃
i≤n λ

n
i is dense in [1/(1 +h), 1/(1−h)], λni being the i–th eigenvalue

of A−1
n (g)An(f). Therefore we have no clusters in (1/(1 + h), 1/(1 − h))

but practically a “uniform distribution” of the spectrum of the preconditioned
matrix.

3. lim
n→∞

µn2 = (1 + h)/(1− h).

Proof. From

∥∥∥∥f − gf
∥∥∥∥
∞

= h < 1 we deduce that

−h ≤ 1− g

f
≤ h, g ≥ 0,

and, consequently,

1

1 + h
≤ f

g
≤ 1

1− h.(2)

Now we may apply Theorem 2.2 obtaining (1), (2) and (3). Moreover, it is worth
pointing out that (2) implies that f has only zeros of even order, because of the
fact that g is a nonnegative trigonometric polynomial.

As a final remark of this section we can state the following property.

Theorem 2.4. The preconditioner An(g∗), where g∗ is the best relative Chebyshev
approximation of f of degree l, is optimal in the sense that N(h, ε) is minimal for
g = g∗.
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Proof.

h∗ =

∥∥∥∥f − g∗f

∥∥∥∥
∞

= min
g∈Pl

∥∥∥∥f − gf
∥∥∥∥
∞
,

Pl being the class of the trigonometric polynomials of degree at most l. As for
h ∈ (0, 1) the function N(h, ε) is an increasing function of h, it is trivial to note
that the minimal value of N(h, ε) is attained for h = h∗.

Observe that we can suppose h∗ < 1 as proved in the third part of Theorem 4.1
in section 4.

3. New preconditioning strategies

We start this section with the following observation: in the case where f is non-
negative and has some zeros in [−π, π], band–Toeplitz preconditioners can reduce
the condition number to a value uniformly bounded by a constant independent of
the dimension n only when the zeros of f have even order [7, 16].

Actually, since a nonnegative trigonometric polynomial g can have only zeros of
even order, in light of Theorem 2.2 it is trivial to conclude that the union of the
spectra of A−1

n (g)An(f) cannot be contained in a positive interval in the case where
f has a zero of order r 6= 2q, for any positive integer q. Therefore, in the following,
we assume that f is continuous and has only zeros of even order.

Now we define by zk the polynomial of minimum degree k containing all the
zeros of f with their orders and the generating function g of our preconditioners in
the following way:

g = zkg l−k, degree(g) = l ≥ k.
g l−k is a trigonometric polynomial of degree l− k and can be chosen, for example,
in light of these two strategies.

A: g l−k is the best Chebyshev approximation of f̂ = f/zk, i.e.,

‖f̂ − g l−k‖∞ = min
g∈Pl−k

‖f̂ − g‖∞.

B: g l−k is the trigonometric polynomial of degree at most l− k interpolating f̂
at the l− k + 1 zeros of the (l− k + 1)–th Chebyshev polynomial of the first
kind.

Observe that we cannot choose g directly as the best Chebyshev approximation
of f for two reasons: we are not guaranteed that g is nonnegative since f has zeros.
In fact, if g = gl such that ‖f − g l‖∞ = min

g∈Pl
‖f − g‖∞ = El(f), l =degree(gl),

then we have

f(x)−El(f) ≤ g(x) ≤ f(x) +El(f)(3)

and lim
l→∞

El(f) = 0, but, since f has zeros, it may happen that g assumes negative

values (see equation (3)) in a suitable neighbourhood of each zero of f . Conse-
quently, by virtue of the classical spectral theory on Toeplitz matrices, An(g) is
not positive definite for any n large enough and cannot be used as preconditioner
[20]. In addition, it is worth pointing out that relation (3) does not imply that f/g
and g/f are bounded because, in general, g has different zeros with respect to f .
Finally, from Theorem 2.2, we cannot expect a convergence speed independent of
the dimension n, since r = 0 and/or R = +∞.
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From a computational point of view we remark that g l−k in (A) can be cal-
culated by using the standard Remez algorithm [26] with respect to the classical
trigonometric basis {1, sin(qx), cos(qx)}, while the calculation of g∗ in [11] is per-
formed by using a modified version of the Remez algorithm [33] with the basis
{1/f(x), sin(qx)/f(x), cos(qx)/f(x)}; in this case it is possible to observe instabil-
ity problems due to the fact that f has zeros (see section 6).

For the calculation of g l−k in (B), on the other hand, we have no problems:
this polynomial can be calculated, very easily, with few FFTs of order l − k by
means of a classical trigonometric representation of the interpolating polynomial at
Chebyshev zeros (see section 6).

4. Convergence analysis

We perform a convergence analysis of the PCG methods proposed in the former
sections; it is worth pointing out that this analysis gives further information on the
convergence properties of the PCG method proposed by R. Chan and P. Tang.

First we introduce a result which makes a link between Theorem 2.2 in [11] and
Theorem 2.2, i.e., Theorems 3.1 and 3.2 in [16].

Theorem 4.1. Let f be a nonnegative continuous function defined in [−π, π] with
zeros of even order, then the following statements hold.

1. There exists a nonnegative trigonometric polynomial zk of minimal degree k
[7, 16] such that

0 < rk <
f

g
< Rk <∞.

2. If g is a trigonometric polynomial such that f/g ∈ (r,R) (one of the hypothe-
ses of Theorem 2.2), r,R being positive constants, then there exists α > 0 for
which

hαg =

∥∥∥∥f − αgf

∥∥∥∥
∞
< 1.

3. If l ≥ k (with k the degree of the minimal polynomial zk), then

h∗ = min
g∈Pl

∥∥∥∥f − gf
∥∥∥∥
∞
< 1.

(Recall that h∗ < 1 is one among the hypotheses of the main theorem in [11].)

Proof. Let x1, . . . , xj be the zeros of f and 2l1, . . . , 2lj be the orders of such zeros.
The linear polynomial 2− 2 cos(x− x̂) is nonnegative and is clearly the polynomial
of minimal degree which has in x̂ a zero of order 2. Consequently zk is easily
constructed as

zk =

j∏
i=1

(2− 2 cos(x− xi))li , k =

j∑
i=1

li.

Hence f/zk and zk/f have to be bounded and the thesis of part 1 is proved.

Remark 2. The preconditioner An(zk) was first proposed by R. Chan in [7], in
which the proof of the related statement of part 1 was also given under the as-
sumption of strong regularity of f (f being 2q times continuously differentiable
with q = max li). The proof under the weaker hypothesis of continuity can be
found in [16], while in [30] it is possible to derive the statement under the full
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general hypothesis that f belongs to L1, f has only “essential” zeros of even order
and is essentially nonnegative. For the definition of “essential” zero of a Lebesgue
integrable function see [30].

Now we prove statement 2; from the hypothesis r < f/g < R we deduce that

z <
g

f
< Z, z =

1

R
, Z =

1

r
.

Consequently, for any positive α we have

αz − 1 <
αg

f
− 1 =

αg − f
f

< αZ − 1.(4)

Now we choose α such that 0 < αZ−1 = −(αz−1), i.e., solving the linear equation,
we find α = 2/(Z + z). Therefore, setting

hαg =

∥∥∥∥f − αgf

∥∥∥∥
∞

we have from (4)

hαg = αZ − 1 =
Z − z
Z + z

< 1.

For the third part it is sufficient to observe that, when l ≥ k we can construct
zk ∈ Pl such that rk < f/zk < Rk and consequently from the former part of the
theorem we find hαzk < 1 and

h∗ = min
g∈Pl

∥∥∥∥f − gf
∥∥∥∥
∞
≤
∥∥∥∥f − αzkf

∥∥∥∥
∞
< 1.

Now define g∗ the polynomial in [11] such that h∗ =

∥∥∥∥f − g∗f

∥∥∥∥
∞

, gA, gB the

polynomials shown in the preceding section and scaled suitably in light of the
second part of Theorem 4.1, and hA and hB, respectively, the relative Chebyshev
errors.

If l ≥ k, then clearly h∗ ≤ hA ≤ hB < 1 so, in view of Theorem 2.2 we
have that the condition numbers of the matrices A−1/2

n (gA)An(f)A−1/2
n (gA) and

A−1/2
n (gB)An(f)A−1/2

n (gB) give two upper bounds for

µ2

(
A−1/2
n (g∗)An(f)A−1/2

n (g∗)
)
<

1 + h∗

1− h∗ .

We are ready to estimate the condition numbers of the system An(f)x = b precon-
ditioned by means of An(gA) and An(gB) respectively. In view of Theorem 2.2 we
have that the eigenvalues of A−1

n (gA)An(f) belong to the open interval (rA, RA) =

(inf f̂/g l−k, sup f̂/g l−k), where f̂ = f/zk is continuous and positive and g l−k is

the best Chebyshev approximation of f̂ , i.e., we have

El−k(f̂) = min
g∈Pl−k

‖f̂ − g‖∞ = ‖f̂ − g l−k‖∞.

Hence

rA ≥
f̂

f̂ +El−k(f̂)
= 1− El−k(f̂)

f̂ +El−k(f̂)
≥ 1− El−k(f̂)

m̂+El−k(f̂)
,

RA ≤
f̂

f̂ −El−k(f̂)
= 1 +

El−k(f̂)

f̂ −El−k(f̂)
≤ 1 +

El−k(f̂)

m̂−El−k(f̂)
,
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m̂ being the minimum of f̂ in [−π, π], m̂−El−k(f̂) being a positive constant and

El−k(f̂)

m̂+El−k(f̂)

being less than 1, for l − k large enough.
Therefore

µA = µ2

(
A−1/2
n (gA)An(f)A−1/2

n (gA)
)
<

1 +
El−k(f̂)

m̂−El−k(f̂)

1− El−k(f̂)

m̂+El−k(f̂)

.

For the second preconditioner An(gB), gB = zkg l−k we recall that g l−k is the first

kind Chebyshev interpolant of f̂ and so, by using the standard error estimate of
Powell [25], it follows that

‖f̂ − g l−k‖∞ ≤ cEl−k(f̂) log(l − k), c ∼ 2

π
.

Recalling that f/gB = f̂/g l−k, in view of Theorem 2.2 we state that the eigenvalues
A−1
n (gB)An(f) lie in the open interval

(rB , RB) = (inf f̂/g l−k, sup f̂/g l−k).

Therefore using the same argument used in analyzing the former preconditioner we
obtain

µB = µ2

(
A−1/2
n (gB)An(f)A−1/2

n (gB)
)
<

1 +
Fl−k(f̂)

m̂−Fl−k(f̂)

1− Fl−k(f̂)

m̂+Fl−k(f̂)

,

where Fl−k(f̂) = cEl−k(f̂) log(l − k).
Now, to conclude we want to recall a classical result of approximation which

allows us to estimate more precisely µA and µB.

Theorem 4.2 ([22]). If f ∈ Cp[−π, π] and if ω(f (p); δ) indicates the modulus of
continuity of f (p), then

Em(f) ≤ dpω
(
f (p);

1

m

)
1

mp
,

where dp is a well–known constant. (Jackson proved this result with a somewhat
large constant dp = cp, c < 100; in [23] we find a better estimate of c, that is, c =

1 + π2/2.) In particular, if f (p) ∈ LipαM , α ∈ [0, 1],M > 0, (i.e., ∀x1, x2 ∈ [−π, π],

|f (p)(x1)− f (p)(x2)| ≤M |x1 − x2|α) we have

Em(f) ≤ dp
1

mp+α
.

Hence

µA < UA(l) =
1 +

dl−kω(f̂(p); 1
l−k )/(l−k)p

m̂−dl−kω(f̂(p); 1
l−k )/(l−k)p

1− dl−kω(f̂(p); 1
l−k )/(l−k)p

m̂+dl−kω(f̂(p); 1
l−k )/(l−k)p

,

where UA(l) can be a sharp estimate of µA2 for a large class of functions for which
the estimate of Jackson (see the last theorem) is sharp.
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5. Some remarks about the computational costs

In this section first we discuss the computational cost required by each iteration
of the considered PCG methods and then we discuss the cost of the determination
of the trigonometric polynomials g∗, gA and gB. For the first step we consider
two possible strategies: the first one based on classical band solvers [19] and the
second one based on a particular algebraic multigrid method devised for symmetric
positive definite Toeplitz matrices [17]. By following the first idea, we have that
the solution of a system An(gA)y = c needs about q1l

2n arithmetic ops while the
second method requires q2ln ops, that is, the cost is linear both with respect to
the dimension and to the bandwidth. Since the multiplication of An(f) by a vector
uses about q3n logn arithmetic ops (qi suitable and known constants) we can state
that the number of iterations to reach the solution within a preassigned accuracy
ε, is proportional to

Cost(l, n, ε) = nUA(l)(X + q2 logn) log

(
1

ε

)
where X is equal to q1l

2 or to q2l.
Therefore, observing that UA(l), U∗(l) and UB(l) are nonincreasing functions

of l independent of n, we obtain that a total cost of O(n log n) ops is reached

for any l ∈ [k, lmax] where lmax = O(log1/2 n) if we use classical band solvers or
lmax = O(log n) if we use the quoted algebraic multigrid method. Finally, the global
optimal value lopt can be estimated by minimizing analytically or numerically the
function Cost(l, n, ε) with respect to the variable l. For instance, by considering
Table 4 in section 7, if we use the multigrid strategy [17] for the solution of the
banded preconditioning systems, then the optimal value of the halfbandwidth is
l = 6.

5.1. The computation of the “generating” functions g∗, gA and gB. We
preliminarily observe that the calculation of g∗, which involves a modified version
of the Remez algorithm [33, 12], and the calculation of gA, which requires the stan-
dard Remez algorithm [26], are from a computational point of view substantially
equivalent. In both of the cases we use an iterative method which has a com-
plex structure (see [12]) and for which we cannot give a theoretical bound of the
number of iterations required for the computation within a preassigned accuracy
(see [26, 11, 12, 33]. However, in practice in [33, 11], the authors observe a total
arithmetic amount of about O(l3) ops where l is the degree of the trigonometric
polynomials g∗ or, equivalently, gB.

On the other hand, the calculation of g∗ is delicate. By referring to the paper
[12], in step 1, the modified Remez algorithm has to solve a linear system in which

the elements of the j-th column (j = 2, . . . , l + 1) are given by φj−1(x(i)
s ) where

φk(x) =
cos(k − 1)x

f(x)
and x

(i)
s , s = 1, . . . , l + 1, are points calculated at the i-th

step of the algorithm. If some of the values approach a zero of f and, in particular,
when f has zeros of high order, it may happen that the considered linear system
becomes very ill-conditioned.

The calculation of the coefficients of the polynomial gB is actually very simple
and direct.

Let us consider a function h defined on [−1, 1] and a positive integer m, then
we consider the trigonometric polynomial of degree m interpolating h at zeros of
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the m + 1-th Chebyshev polynomial of the first kind. A classical trigonometric
representation is given by

b0 + 2
m∑
j=1

bj cos(jx)

where the coefficients bi are easily expressed as follows:

bj =
1

m+ 1

m∑
k=1

h(cos(θk)) cos(jθk), θk =
(2k + 1)π

2(m+ 1)
.

Therefore, by using about 2m2 arithmetic ops, we may obtain all the coefficients
bj. On the other hand, the previous expression can be suitably manipulated in the
following way:

bj =
1

2(m+ 1)

m∑
k=1

h(cos(θk))
(
eijθk + e−ijθk

)
, θj =

jπ

m+ 1
+

π

2(m+ 1)
.

By calling φj =
jπ

m+ 1
we have that bj = zj + z̄j where

zj =
1

2(m+ 1)
eij

π
2(m+1)

[
m∑
k=1

h(cos(θk))eijφk

]
and the expression in the squared brackets can be calculated by using one FFT of
order 2(m+ 1). Therefore the calculation of all the bj can be done in a stable way
within a cost of cm logm where c is a suitable, small and known constant value
[34].

Obviously, by using the approximation theory tools we can define other good
preconditioners whose generating functions can be efficiently calculated by means
of FFTs algorithms. For instance, if we consider the least squares polynomial g of
degree m [25] and we approximate its coefficients by using the repeated trapezoidal
rule with m+ 2 uniformly distributed knots, we obtain some “cosine” summations
which can be calculated by using fast cosine transforms [1]. We recall that the
order of approximation of the Chebyshev least squares polynomial is the same as
that of the polynomial interpolating at the Chebyshev zeros [25].

Finally, if we are interested in parallel computation (for instance the PRAM
model), it is useful to recall that FFT algorithms are well parallelizable procedures
and perform O(logm) parallel steps if m is the order of the Fourier transform.

Since the band solvers [19] are inherently sequential we cannot use them for the
solution of the preconditioning systems. However, in the recent literature we may
find alternative techniques: for an efficient parallel solution of generic band sys-
tems see [35], while a good survey about fast parallel methods for band-Toeplitz
systems can be found in [4]. Since the trigonometric polynomials g are nonnega-
tive, it follows that the matrices An(g) are also positive definite; therefore we can
alternatively apply the multigrid technique developed in [17].

6. Superlinear PCG methods

In this section we discuss a strategy in order to devise superlinear PCG methods
having the optimal cost of O(n log n) ops. We say that this cost is optimal because
O(n logn) ops is, asymptotically, the cost of a FFT and, therefore, the cost of
a product between a (dense) Toeplitz matrix and a generic vector. Since in the
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implementation of a PCG method we have to calculate, at each iteration, a few
of these products, it seems evident that the asymptotical cost of O(n log n) ops is
minimal with respect to this class of linear algebra problems.

Then, if we use a classic band solver [19], then the maximal halfbandwidth we

can admit is lmax = O(log1/2 n), while, if we choose an algebraic multigrid method
as in [17] we can use a maximal halfbandwidth equal to lmax = O(log n). So, by
calling tn = l−1

max, we find that UA(lmax) is asymptotic to

1 +O
(
tpnω

(
f̂ (p); tpn

))
,

U∗(lmax) is less than UA(lmax) and UB(lmax) is asymptotic to

1 +O
(

log(lmax)tpnω
(
f̂ (p); tpn

))
.

In this way we have found PCG methods with a cost of O(n log n) ops and
having a superlinear rate of convergence due to the cluster around 1 observed for
the spectrum of the preconditioned matrices A−1

n (gA)An(f) and A−1
n (g∗)An(f). In

fact, the functions U∗(lmax) and UA(lmax) tend to 1 as the dimension n tends to
infinity.

Of course, analogous considerations can be done naturally for the PCG method
associated with the preconditioner An(gB). In this last case the “clustering” prop-
erty is weakly deteriorated according to the quantity

log(lmax(n)) = O(log(log n)).

This deterioration becomes considerable only when the function f̂ is very “irregu-
lar”. Actually, it is sufficient that the modulus of continuity ω(f ; δ) of f is a “small

o” of
1

| log δ| in order to have

lim
n→∞

UB(lmax(n)) = 1.

For instance, the very weak assumption that f̂ belongs to the class LipαM for some
positive value α is enough in order to obtain the preceding relation.

If we want to use in practice these superlinear PCG methods, we have to point
out that the considered trigonometric polynomials g∗, gA and gB have a degree
which grows logarithmically as a function of n. This means that, for any dimension
n, we must calculate the generating function of the preconditioner. Unfortunately,
for the first two strategies we cannot exhibit a theoretical bound for the related
arithmetic cost; for the third strategy, on the other hand, we may say that the cost
is of O(lmax(n) log lmax(n)) (see the previous section). Since lmax(n) is bounded by

c1 log1/2(n) or c2 log(n) we have that the total cost for determining the coefficients
of gB is well dominated by the asymptotical (and also practical) cost of a generic
iteration of the associated PCG method. Therefore, as shown in the last section,
we can really use this superlinear technique.

Observe that good clustering properties for the preconditioned matrix have been
proved also in [8], where by using band-Toeplitz + circulant preconditioners the
authors may handle the non-Hermitian case. By comparing the two approaches,
we notice that the techniques proposed in this paper do not seem to be interesting
for non-Hermitian problems, because, for instance, the theoretical results as in
Theorem 2.2 and Theorem 2.3 are strictly related to the symmetric case. However,
we stress that in our case we can easily deduce a superlinear convergence by using
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the previous limit relations and the tools developed by Axelsson and Lindskög [3],
while in [8] no rigorous proof of superlinear convergence is given.

7. Numerical results

In this section, we compare the convergence rate of the band-Toeplitz precondi-
tioner (strategy A), with the optimal band-Toeplitz preconditioner [11] and with
the optimal circulant preconditioner [13] on three different generating functions

having zeros. They are (x − 1)2(x + 1)2, 1 − e−x2

and x4 and are associated to
ill-conditioned matrices An having Euclidean condition numbers equal to O(n2),
O(n2) and O(n4) respectively (see for instance [30, 31]). The matrices An are
formed by evaluating the Fourier coefficients of the generating functions by using
FFTs (see [11]). In the tests considered, the component of the vector b on the
right-hand side of the system Anx = b are all equal to one, the zero vector is
the initial guess and the stopping criterion is ‖rq‖2/‖r0‖2 ≤ 10−7, where rq is the
residual vector after q iterations. All computations were performed using Matlab.

In the subsequent tables, I denotes that no preconditioning is used, C is the
T. Chan optimal circulant preconditioner [13], B∗n,l is the optimal band-Toeplitz

preconditioner [11] and BBn,l is the band-Toeplitz preconditioner defined according
to the strategy B; here l denotes the halfbandwidth of the band preconditioners.

We do not make explicit comparison with the preconditioner related to the
strategy A because the associated PCG method has, by virtue of the relation
µ∗ < µA < µB , a convergence speed between the R. Chan, P. Tang one and the
“B” one.

We observe that the “optimal” and the “B” band-Toeplitz PCG methods per-
form, substantially, in the same way, but the second one is much more economical
with respect to the computation of the related generating function. This fact is
not so considerable when the bandwidth is fixed, but it becomes crucial in or-
der to increase l, say, as logn. Actually, in this case, for any dimension n, it is
not expensive to calculate a different preconditioner An(gA(l)), since the related
cost O(log n log(logn)) is strongly dominated by the cost O(n log n) of each PCG
iteration.

Finally, the reduction of the number of required iterations, as the dimension
increases, shown in Table 4 gives numerical evidence of the superlinear convergence
claimed in section 6. We stress that the exceptional convergence behaviour of the
PCG algorithm related to BBn,6 is explained by the good approximation proper-
ties of the first-kind Chebyshev interpolation: to have a practical measure of this,

Table 1. f(x) = (x2 − 1)2

n I C B∗n,3 = BBn,3 B∗n,4 B
B
n,4 B∗n,5 B

B
n,5 B∗n,6 B

B
n,6

16 11 9 9 9 7 8 6 7 6
32 27 14 13 11 9 9 7 7 6
64 74 17 16 11 10 8 8 7 7
128 193 22 18 11 11 8 8 7 7
256 465 28 19 11 11 8 9 7 7
512 > 1000 34 19 11 11 8 8 7 7
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it is sufficient to notice that the reduction of the condition number from An to
(BBn,6)−1An, for n = 512, is from 2.7 ∗ 104 to 1 + 5 ∗ 10−4.

Table 2. f(x) = 1− e−x2

n I C B∗n,2 = BBn,2 B∗n,3 B
B
n,3 B∗n,4 B

B
n,4 B∗n,5 B

B
n,5

16 9 6 9 7 8 4 4 3 3
32 14 7 15 7 8 5 5 3 3
64 24 8 17 8 9 5 5 3 3
128 42 10 17 8 9 5 5 3 3
256 77 13 17 8 9 5 5 3 3
512 143 17 17 8 9 5 5 3 3

Table 3. f(x) = x4

n I C B∗n,3 = BBn,3 B∗n,4 B
B
n,4 B∗n,5 B

B
n,5 B∗n,6 B

B
n,6

16 12 10 9 9 8 9 7 7 6
32 34 16 15 10 10 11 8 9 7
64 119 26 21 13 12 11 10 9 8
128 587 77 24 15 15 12 11 10 10
256 > 1000 179 27 16 16 12 13 10 10
512 > 1000 406 29 16 16 13 13 10 11

Table 4. f(x) = 1−e−x2

, superlinear PCG Prec= BBn,l(n), l(n) =

log(n)− 2

n 16 32 64 128 256 512

l(n) 2 3 4 5 6 7
Iter 9 7 5 3 2 2
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