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Abstract
The simultaneous perturbation stochastic approxima-

tion (SPSA) algorithm has recently attracted considerable
attention for optimization problems where it is di�cult or
impossible to obtain a direct gradient of the objective (say,
loss) function. The approach is based on a highly e�cient
simultaneous perturbation approximation to the gradient
based on loss function measurements. SPSA is based on
picking a simultaneous perturbation (random) vector in
a Monte Carlo fashion as part of generating the approx-
imation to the gradient. This paper derives the optimal
distribution for the Monte Carlo process. The objective
is to minimize the mean square error of the estimate. We
also consider maximization of the likelihood that the es-
timate be con�ned within a bounded symmetric region of
the true parameter. The optimal distribution for the com-
ponents of the simultaneous perturbation vector is found
to be a symmetric Bernoulli in both cases. We end the
paper with a numerical study related to the area of exper-
iment design.

1. Introduction
Consider the problem of determining the value of a p-

dimensional parameter vector to minimize a loss function
L(�), where only measurements of the loss function are
available (i.e., no gradient information is directly avail-
able). The simultaneous perturbation stochastic approx-
imation (SPSA) algorithm has recently attracted consid-
erable attention for challenging optimization problems of
this type in application areas such as adaptive control,
pattern recognition, discrete event systems, neural net-
work training, and model parameter estimation, see, e.g.,
[1], [2], [3], [4], [5], and [6].

SPSA was introduced in [7] and more thoroughly
analyzed in [8]. The essential feature of SPSA is its under-
lying gradient approximation that requires only two loss
function measurements regardless of the number of param-
eters being optimized. Note the contrast of two function
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measurements with the 2p measurements required in clas-
sical �nite di�erence based approaches (i.e., the Kiefer-
Wolfowitz SA algorithm). Under reasonably general con-
ditions, it was shown in [8] that the p-fold savings in func-
tion measurements per gradient approximation can trans-
late directly into a p-fold savings in total number of mea-
surements needed to achieve a given level of accuracy in
the optimization process.

An essential part of the gradient approximation is
a simultaneous (random) perturbation relative to the cur-
rent estimate of �. This perturbation is generated in a
Monte Carlo fashion as part of the optimization process.
Since the user has complete control over the perturbation
distribution, there is strong reason to choose a distribu-
tion as a means of minimizing the number of (potentially
costly) function measurements needed in the optimization
process. These function measurements may involve phys-
ical experiments involving labor or material costs as well
as computer related costs associated with simulations or
data processing.

The aim of this paper is to determine the form of
the optimal distribution for the simultaneous perturba-
tions. This will involve both analytical analysis based on
the asymptotic properties of the parameter iterate and
numerical �nite sample experimentation. The related ob-
jectives considered here are to minimize the mean square
error of the estimate and to maximize the likelihood that
the parameter iterate is restricted to a symmetric bounded
region around the true parameter.

The rest of the paper is organized as follows. In
Section 2, we briey review the SPSA algorithm. Section
3 considers the choice of random perturbations. Section 4
presents a numerical example from the area of statistical
experiment design. Section 5 o�ers concluding remarks.

2. Problem Formulation
Consider the problem of �nding a root �� of g(�) �

@L(�)=@� = 0 for some di�erentiable loss function L :
R
p ! R. In the case where the dependence of the loss

function upon � is unknown, but the loss function is ob-
served in the presence of noise, an stochastic approxima-
tion (SA) algorithm of the generic Kiefer-Wolfowitz type
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(see [9]) is appropriate.
Let us now briey review the SPSA algorithm (see

[8]) for the problem posed above. Let �̂k denote the esti-
mate for � at the kth iteration. The SPSA algorithm has
the form

�̂k+1 = �̂k � akĝk(�̂k)

where fakg is a gain sequence and ĝk(�̂k) is a simultane-

ous perturbation approximation to g(�̂k) at iteration k.
The simultaneous perturbation approximation is de�ned
as follows. Let �k 2 R

p be a vector of p mutually inde-
pendent mean zero random variables f�k1;�k2; :::;�kpg.
Consistent with the usual framework of stochastic approx-
imations, we have noisy measurements of the loss function
at speci�ed \design levels". In particular, at the kth iter-
ation

y
(+)

k = L(�̂k + ck�k) + �
(+)

k

y
(�)

k = L(�̂k � ck�k) + �
(�)

k

where fckg is a gain sequence and �
(+)

k and �
(�)

k represent
measurement noise terms. The basic simultaneous pertur-
bation form for the estimate of g(�) at the kth iteration is
then

ĝk(�̂k) =

2
6664

y
(+)

k
�y

(�)

k

2ck�k1

...
y
(+)
k
�y

(�)
k

2ck�kp

3
7775 : (2.1)

Note that at each iteration, only two measurements are
needed to form the estimate. To help mitigate noise ef-
fects in high noise environments, it is sometimes useful to
consider averaging among gradient approximations, each
generated as in Eq(2.1) based on a new pair of measure-

ments that are conditionally (on �̂k) independent of the
other measurement pairs; this is examined in [8] but will
not be examined further here. Throughout the paper, we
assume that:

A1: ak = a=k�, and ck = 1=k where a > 0,
0 < � � 1,  > 0, �� > 0:5, ��2 > 0, and 3��=2 � 0
(since ck and �k always appear together as ck�k, we �x
the numerator in ck to unity and let �k vary freely).

A2: Ef�
(+)

k ��
(�)

k j�̂k;�kg = 0, and for some �0; � >

0 and 8k, Ef��(2+�)k g < �0. Moreover, there is a �2 such

that Ef(�
(+)

k � �
(�)

k )2j�̂k;�kg ! �2 as k!1.
A3: For all k < 1, f�kig (i = 1; :::; p) are i.i.d.

and symmetrically distributed about 0 with j�kij � �0
a.s. and Ej��1ki j � �1 a.s. for some �0; �1 > 0. For some

�2; �3; � > 0, it holds that EfjL(�̂k�ck�k)j2+�g � �2 and

E(��2��ki ) � �3, i = 1; :::; p. Moreover, there are �2; �2

such that as k !1, E(�2
ki)! �2 and E(��2ki )! �2 for

all i = 1; :::; p.
A4: supk jj�̂kjj < 1 a.s. where jj � jj denotes usual

Euclidean norm.
A5: �� is an asymptotically stable solution of the

di�erential equation dx=dt = �g(x).
A6: Let D(��) = fx0 : lim

t!1
x(tjx0) = ��g where

x(tjt0) denotes solution to the di�erential equation of A5

based on initial condition x0. There exists a compact set
S � D(��) such that �̂k 2 S in�nitely often for almost all

�̂k.
A7: For almost all �̂k, there is an open ball about

�̂k whose radius is independent of k or �̂k, where the third
derivative of the loss function exists continuously and is
uniformly bounded.

The reader is referred to [8] for remarks on the as-
sumptions.

The problem of selecting random perturbations is
formulated as selecting a sequence of probability distri-
butions for �ki, k = 1; 2; :::, each from the set of allow-
able probability distributions for the random perturba-
tions (see A3). The objective is to optimize a suitable
criterion related to the parameter estimate.

For small k, the exact distribution of �̂k is depen-
dent upon the (unknown) joint probability distribution
of the noise sequence. Therefore, we solve the optimal
random perturbation problem using the asymptotic dis-
tribution of the estimate. It follows from Proposition 2 of
[8] that as k !1:

k
�

2 (�̂k � ��)!distZ � N (�2d; �2D) (2.2)

where � is a positive constant, and d and D are quantities
not dependent upon the random perturbations. The ma-
trix D depends on the Hessian of L(�) at �� and �2, and d
depends on the third order derivative of L(�) at ��. Both
d and D are dependent upon a, �, and . The reader is
referred to [8] for the detailed forms of d and D.

From Eq(2.2), it is evident that the distribution of
Z is a�ected by the random perturbations only through
�2 and �2 (see A3). Hence, using the asymptotic result for
su�ciently large number of iterations, the problem sim-
pli�es to selection of a single probability distribution for
�ki, for all k = 1; 2; :::, optimizing some criterion related
to Z.

3. Optimal Choice of Random
Perturbations

As mentioned in the previous section, the analysis here
is based on the asymptotic distribution of the parameter
iterate; the authors are unaware of any corresponding �-
nite sample result that would be useful in such calcula-
tions.

We consider the design of optimal perturbation dis-
tribution with the goal of minimizing the trace of mean
square error of the estimate, and maximizing the probabil-
ity of restricting the estimation error within some bounded
symmetric about zero region, respectively.

First suppose that we seek a probability distribution

that minimizes the expression MSE
4

= Eftrace[ZZ>]g.
We refer to this criterion as the mean square error crite-
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rion. Now, using Eq(2.2)

MSE = �2tracefDg + �4d>d: (3.1)

Denote K1 = tracefDg and K2 = d>d (the numbers K1

and K2 do not depend upon the random perturbations).
In the following, we let Pr(:) denote probability.

Proposition 1 For all k = 1; 2; :::, and i = 1; :::; p, the
symmetric Bernoulli distribution

Pr(�ki = �(
K1

2K2

)
1
6 ) =

1

2
(3.2)

is the unique single allowable distribution for �ki, mini-
mizing the mean square error criterion.

Proof: See [10].

From a practical point of view, Corollary 1 below is
important in showing that a Bernoulli distribution with
given �2 and �2 will always improve upon any other dis-
tribution with the the same �2 and �2. This result requires
no knowledge of K1 and K2.

Corollary 1 For a given �2 (or �2), the Bernoulli distri-
bution �ki = �� (or �ki = ���1) provides a lower value
of Eq(3.1) than any other distribution with the same �2

(or �2).
Proof: Follows immediately from the necessity

part of Proposition 1, see [10].

Remark 1 To invoke the full optimality of the result in
Proposition 1, we require knowledge of K1 and K2. This
is analogous to the calculations for the optimal gain se-
quences of stochastic algorithms, see e.g. [11] and [12].
The result in Corollary 1 partially mitigates this situa-
tion in that it implies that no matter how a given per-
turbation distribution is determined, there is a Bernoulli
distributions that yields a lower MSE, for any � (or �)
of the given distribution. Another frequently encountered
situation is the case where an implicit a priori model for
L(�) is given (i.e., it is only possible to compute L(�)
for each �). In such cases, it is often di�cult to accu-
rately evaluate the second and third order derivatives or
the noise variance �2 to determine K1 and K2. The fol-
lowing procedure may be useful in such situations. By
applying SPSA to the available model using very large
number of iterations K, we obtain the estimate �̂K which
we use as the true optimum in our calculations. We then
obtain (rough) estimates of K1 and K2 using the given

model and �̂K , and use Eq(3.2) to �nd an approximation
to the optimal perturbation magnitude which will be used
as an initial guess for a numerical search. Corollary 1
implies that the optimal perturbation distribution should
be sought among symmetric Bernoulli distributions. We
sample the �ki from Bernoulli distributions with varying
magnitudes around the initial guess. For each magnitude,
we apply SPSA a number of times (cross sections), ob-

tain �̂k for each cross section to �nd jj�̂k � �̂K jj
2 where

k << K is some large iteration number of interest, and

average over the computed values of jj�̂k� �̂K jj2 to numer-
ically evaluate the mean square error for each one of the
Bernoulli distributions respectively. The numerical study
of the paper illustrates such a procedure.

Now consider maximization of the likelihood of restrict-
ing the error Z within some bounded symmetric (about
zero) region V�. A similar approach is pursued in [13]
to determine the constants of a Robbins-Monro stochas-
tic approximation algorithm. The optimality criterion is
written as

J = PrfZ 2 V�g: (3.3)

An important special case is where V� is the closed unit
ball. Then the criterion is PrfjjZjj � Ag, where as usual,
jj � jj denotes Euclidean norm and A is a positive number
chosen by the user. It reects the user's tolerable amount
of error.

For the probability criterion J , a result identical
to Corollary 1 holds (see [10]). Numerical procedures
for optimizing J , given an implicit a priori model for
the loss function, are similar to the procedure described
in Remark 1; they involve application of Bernoulli dis-
tributed perturbation sequences and numerical assessment
of PrfZ 2 V�g.

Remark 2 Consider the degenerate case d = 0. This
for example occurs when the third order derivatives of
the loss function at �� are zero (see [8]). Then, clearly
the optimal solution according to both the mean square
error and probability criteria will be a distribution with
� ! 0, forcing the covariance �2D to zero. This implies
that �ki !�1 is the optimal choice for random pertur-
bations. However, lim

k!1
ck = 0, meaning that it is not pos-

sible to draw any de�nitive conclusion about the optimal
size of ck�k based on the asymptotic properties. In �nite
sample cases, ck does not get in�nitesimally small, and it
is obviously not allowed to let j�kij ! 1, either. How-
ever, a practical guideline in d = 0 situations is to select
the magnitude of �ki as large as the algorithm does not
go unstable. This example shows that the results based
on the asymptotic distribution must be interpreted and
used with some care in �nite sample cases.

4. Numerical Study
In this section, we apply SPSA to a statistical ex-

periment design problem for parameter estimation in a
dynamic model, see e.g. [14]. Consider the following au-
toregressive model with exogenous inputs (ARX(2,1)):

yt = h1yt�1 + h2yt�2 + ut + et (4.1)

where futg and fytg are input and output sequences and
fetg is a sequence of mean zero i.i.d. Gaussian random
variables. We assume that the input sequence is generated
by a �nite register with length 10, meaning that the input
repeats periodically with cycle 10. We wish to compute
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the input sequence parameter (u1; :::; u10)> which starting
from zero initial condition minimizes

Ju = �Eflog detMF g+ 0:5
X

u2t (4.2)

where

MF =

2
664

n2P
i=n1

y2t�1

n2P
i=n1

yt�1yt�2

n2P
i=n1

yt�1yt�2
n2P

i=n1

y2t�1

3
775 :

Notice that such a problem formulation implies that we
deal with a static optimization problem and not a dynamic
one since we consider the whole sequence of data fytg in
batch mode within the loss function and a �xed number
of parameters independent of the size of the data set. We
explain Eq(4.2) as follows. Assuming that we are inter-
ested in estimating � = (h1; h2)>, the basic least squares
estimate is given by (see, e.g. [15])

�̂ = M�1
F

2
664

n2P
i=n1

(yt � ut)yt�1

n2P
i=n1

(yt � ut)yt�2

3
775 :

Hence, by selecting the input sequence to maximize the
expected value of the (logarithm) of the determinant of
MF , we wish to avoid the problem of the singularity of
MF . Indeed, for large values of sample size, the matrix
MF is (approximately) proportional to Fisher's informa-
tion matrix for the model given by Eq(4.1) (see [14], Chap-
ter 6). Since the positive semi-de�nite matrix MF is an
increasing function of the input power

P
u2t , the second

term of the criterion penalizes signals with large power.
For a detailed treatment of the problem of input design
for dynamic system identi�cation, see [14], Chapter 6. In
a large part of the literature on experiment design, the
solution is obtained by assuming a model for the data and
calculation of the information matrix as a function of in-
put. Such models are often obtained through performing
preliminary identi�cation experiments. Here, we directly
estimate the optimal inputs without requiring a prelimi-
nary identi�cation stage.

Let us assume that the model parameters are given
by h1 = 1:45, h2 = �0:475 (which correspond to poles
0.5 and 0.95), the standard deviation of et is 0.05, and
the system is initially at rest. Note that these values are
used for data generation purpose, and to (approximately)
determine the optimal distribution of the random pertur-
bations. The SPSA algorithm requires no knowledge of
these values and the optimization may be carried out by
real experimentations that involve exciting the system at
initial rest by di�erent inputs and output measurements
to compute Ju. In the following, we select n1 = 9, n2 = 64
(see the de�nition of MF below Eq(4.2)), ak = 0:1=k0:9,
and ck = 1=k0:17.

We �rst apply SPSA with 50000 iterations and
�ki = �0:1 (Bernoulli distributed) in order to obtain an
estimate of the (uncomputable) optimal sequence fu�tg for

later reference. This value will be used as the true opti-
mum for the rest of the paper since the number of itera-
tions for all later estimation is 1200 << 50000. Then, we
assess the second and third order derivatives of the loss
function at the optimum, fu�tg, by numerical �nite di�er-
ence method for the noise free case. Also, we approximate
�2 by simulation of 1000 realizations of [logdet(MF )] at
fu�tg. Inserting these estimates in Eq(3.2) yields the dis-
tribution Pr(�ki = �0:19) = 1

2
. This distribution shall

only be used as an initial guess for a numerical search to
�nd the optimizer for the mean square error and probabil-
ity criteria since only rough estimates of K1 and K2 (see
Eq(3.2)) are available.

We apply Bernoulli distributions with magnitude of
the outcome around 0.19, estimate the optimal input se-
quence 100 times, and assess the values of the mean square
error and probability criteria numerically. The optimal
distribution, according to both the mean square error and
probability criteria, is found to be a�0:25 Bernoulli distri-
bution. We use the same procedure as above to compare
the optimal distribution against other choices of distri-
bution. In Table 1, all the distributions correspond to
Bernoulli distributed variables. The top row of the ta-
ble provides the relevant Bernoulli distributions. For the
probability criterion, we have chosen the special case be-
low Eq(3.3) with A = 4� 10�3. The results indicate that

� 0.15 � 0.25 � 0.4 � 1
MSE 0.0063 0.0052 0.0073 0.1061
J 0.36 0.51 0.35 0.0

Table 1: Performance of SPSA under varying Bernoulli dis-

tributions

an inappropriate choice of random perturbations (e.g. �1
in this numerical study) would lead to very poor estima-
tion properties.

We also apply a random variable uniformly dis-
tributed over [�0:3;�0:2] [ [0:2; 0:3]. This choice is in-
teresting since the distribution is continuous and its sup-
port includes the support points of the optimal Bernoulli
(�0:25). The numerical evaluations of MSE and J yield
0.0062 and 0.39, respectively, which are noticeably worse
than the results for the optimal Bernoulli distribution.

Finally, notice that in Table 1, the number of iter-
ations have been chosen relatively large (1200) in order
to let the iterates reach the asymptotic condition. There-
fore, we expect that the optimum should be sought among
symmetric Bernoulli distributions (see Section 3). In or-
der to investigate the performance of the asymptotic so-
lution for small sample cases and large initial deviations
from the true optimum, consider a case of 10 iterations
with a 17:5% initial deviation for all components of futg.
We are particularly interested in numerically evaluating
the performance of the (asymptotically) optimal Bernoulli
distribution against other (symmetric) distributions that
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contain more than two support points. Therefore, we use
the MSE criterion to test the Bernoulli (�0:25) distri-
bution against two bimodal distributions. One is cho-
sen to be a random variable uniformly distributed over
[�0:3;�0:2][ [0:2; 0:3]. The other corresponds to a ran-
domvariable triangular distributed over both [0:2; 0:3] and
[�0:3;�0:2]. The corresponding MSE values are 0.0756,
0.0789, 0.0764, respectively. This comparison indicates
that the asymptotic solution may perform reasonably well
even for very small sample sizes. Notice however that
the solution to the random perturbation problem in small
sample cases is an open question.

5. Concluding Remarks
The paper deals with the optimal choice of random

perturbations for the SPSA algorithm. Since the user has
full control over this choice, there is strong reason to pick
this distribution wisely in order to reduce the overall costs
of optimization. We have shown that for the mean square
error and probability criteria, the optimal random per-
turbations should be sampled from a symmetric Bernoulli
distribution. The choice of the optimal Bernoulli distribu-
tion (i.e. the magnitude of its outcome) is dependent upon
the prior information about the loss function. However,
in the usual case where such information is unavailable,
this paper shows that the Bernoulli distribution form is
the (asymptotically) optimal form regardless of the value
of the variance of the perturbation distribution. This has
signi�cant practical implication as the perturbation dis-
tribution is typically determined based on small scale ex-
perimentation and/or limited prior knowledge about the
form of the loss function. All the results are based on
the asymptotic theory. Investigating the choice of ran-
dom perturbations for �nite sample cases is of signi�cant
theoretical and practical interest and represents a possible
topic for future research on the subject.
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