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Abstract. In the bounded-storage model for information-theoretically secure encryp-
tion and key-agreement one can prove the security of a cipher based on the sole as-
sumption that the adversary’s storage capacity is bounded, say by s bits, even if her
computational power is unlimited. Assume that a random t-bit string R is either pub-
licly available (e.g., the signal of a deep-space radio source) or broadcast by one of the
legitimate parties. If s < t , the adversary can store only partial information about R.
The legitimate sender Alice and receiver Bob, sharing a short secret key K initially, can
therefore potentially generate a very long n-bit one-time pad X with n � |K | about
which the adversary has essentially no information.

All previous results in the bounded-storage model were partial or far from optimal,
for one of the following reasons: either the secret key K had to be longer than the derived
one-time pad (n < |K |), or t had to be extremely large (t > ns), or the adversary was as-
sumed to be able to store only s actual bits of R rather than arbitrary s bits of information
about R, or the adversary received a non-negligible amount of information about X .

In this paper we prove the first non-restricted security result in the bounded-storage
model: K is short, X is very long, and t needs to be only moderately larger than s + n.
In fact, s/t can be arbitrarily close to 1 and hence the storage bound is essentially
optimal. The security can be proved also if R is not uniformly random, provided that
the min-entropy of R is sufficiently greater than s.

Key words. Bounded-storage model, Unconditional security, One-time pad, Informa-
tion theory, Min-entropy.
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1. Introduction

In view of the growing dependence of the information society on cryptography, se-
curity proofs for cryptographic schemes are of great importance. Some of the major
achievements of the past decade or two in research in cryptography are precise security
definitions for many types of cryptographic schemes, as well as security proofs for a
number of proposed schemes, relative to these definitions and various assumptions, in-
cluding typically the assumption that a particular computational problem (e.g., factoring
integers) is intractable.

The security of every cryptographic system depends on certain assumptions. A main
goal of research in cryptography is to reduce the assumptions underlying a security
proof. Usually, not all assumptions are stated explicitly. For instance, two obvious such
assumptions are (1) that randomness exists, i.e., that one can generate random keys, and
(2) that such keys are independent of an adversary’s view. More generally, one assumes
that it is impossible to read somebody’s mind, at least not in a cryptographically relevant
context.

Almost all cryptographic systems in practical use are based on the two further assump-
tions that (3) the adversary’s computational resources are bounded, and (4) that a certain
computational problem is hard, i.e., requires an infeasible amount of time to solve, given
the assumed upper bound on the adversary’s resources. Assumption (4) could potentially
be dropped if a complexity-theoretic lower bound could be proved for the problem at
hand, but such lower bound proofs appear to be far beyond the reach of known techniques
in complexity theory, even for the classical Turing machine model, let alone for more
general models consistent with the laws of physics, like a quantum computer.

In contrast, information-theoretically secure systems rely on neither of assumptions
(3) nor (4), i.e., the adversary is assumed to have unbounded computing power. However,
the security of such a system may rely on an assumption about the probabilistic behavior
of Nature, for instance of a noisy channel [18] or a quantum measurement [4].

This paper is concerned with information-theoretically secure encryption and key-
agreement. More precisely, we consider the secure expansion of a short shared secret
key into a very long shared secret key. Using the one-time pad encryption method, a key-
agreement scheme can be directly converted into an encryption scheme. If the one-time
pad (i.e., the key) is essentially uniformly distributed, then the one-time pad is essentially
perfect. We can therefore concentrate on key expansion, i.e., on generating the one-time
pad.

Such key expansion at first glance apparently contradicts the known bounds on the
key size of a perfect or close to perfect cipher. Shannon’s classical result [22] states that
if the adversary Eve has full access to the (one-way) communication channel from Alice
to Bob and is missing only the secret key, then the entropy of the secret key is bounded
from below by the entropy of the message to be securely transmitted from Alice to Bob. It
was proved in [18] that this bound holds also in the more natural and practically relevant
scenario where Alice and Bob can communicate arbitrarily over an insecure (but even
authenticated) channel accessible to Eve.1 The motivation of the bounded-storage model

1 This implies that there is no information-theoretically secure version of two-way public-key cryptography.
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is to overcome this impossibility result by a twist in the model, namely by introducing
an additional random string too large to be stored completely by the adversary.

2. The Bounded-Storage Model and Related Work

2.1. Motivation

The two main parameters specifying the adversary Eve’s resources are her computing
power (e.g., specified in MIPS2) and her storage capacity (e.g., specified in terabytes).
Complexity-theoretic cryptography is based on an assumed upper bound on Eve’s com-
puting power (and possibly storage capacity). The natural idea of the bounded-storage
model, proposed in [17], is that one makes a sole (conservative) assumption about Eve’s
storage capacity (e.g., that it is at most one petabit, i.e., 1015 bits), but no assumption
whatsoever about her computing power. Let s be the assumed bound on Eve’s storage
capacity (in bits).

Ciphers in the bounded-storage model make use of a very large amount of auxiliary
information, denoted R and called public randomness or simply the randomizer. The
randomizer R could for instance be a random bit sequence broadcast by a satellite or
transmitted between the legitimate parties, or the signal of a deep-space radio source. If
R is a t-bit random string, then t > s is required to guarantee that Eve cannot store R
completely. More generally, it suffices to assume a bound on the min-entropy of R.3 The
restriction t > s immediately shows the inherent (but only) limitation of the bounded-
storage model: in order to be realistic, s and hence also the size t of R must be very
large. Nevertheless, schemes based on this model for which t is not much larger than s
may be on the verge of being practical, even for very powerful adversaries. The main
challenge, which we solve in this paper, is to devise a provably secure scheme with s
close to t .

We comment briefly on the practicality of the bounded-storage model, but in this paper
we do not give a detailed feasibility analysis for current technology. A recent article in
the New York Times (Feb. 20, 2001) and other media reports suggested that such schemes
may be used in practice. However, because of the inherent condition s < t , the feasibility
depends on possible advances in storage and in communication technology (see [12] or
Section 1.3.1 of [11] for an analysis of the current technology).

As a concrete example of what is proved in this paper (Example 10), assume that
Eve’s storage capacity is at most one petabit (i.e., s = 1015), that Alice and Bob share
a 6000-bit secret key, and that they (and Eve) have access to a random source emitting
100 gigabits (1011 bits) per second, which they access for about a day and a half, i.e.,
t = 1.25 · 1016. Then they can derive an expanded key of length 10 gigabits (i.e.,
n = 1010) about which the adversary has essentially no information, even if she uses
an optimal strategy. Alice and Bob need to read only 1.25 · 1012 bits from the random
source.

2 Note that MIPS is not a precisely defined unit of computation. For a concrete security proof the computing
power would have to be specified precisely.

3 It was first proposed by Chor and Goldreich [8] to measure the non-uniformity of a random variable by
its min-entropy.
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2.2. From Book Ciphers to the Bounded-Storage Model

One can view book ciphers, known from spy stories, as a special case of such a random-
ized cipher. Assume that Alice and Bob agree, not necessarily secretly, on a particular
book of which they each have a copy. The book plays the role of the randomizer. To
use the book cipher, Alice and Bob agree on a secret key consisting of a page number
and a pointer to a letter on that page. The text following that letter is used as a one-time
pad (modulo 26) to encrypt a (single) message. It is clear that if Eve also has a copy of
the book and knows a sufficiently long ciphertext, she can find the key by an exhaustive
key search, provided the plaintext is redundant. In pre-OCR times this was a very cum-
bersome task, but not infeasible because the size of the key space corresponds only to
the length of the text in the book. It is obvious how a binary version involving a long
random string R instead of a book would work: plaintext and key are binary sequences
and encryption is the bit-wise XOR operation. This is the basic idea underlying Massey
and Ingemarsson’s so-called Rip van Winkle cipher [16].

In our context, however, because R is not a book but rather an immensely long bit
string with |R| = t , it is realistic to assume that Eve does not know the entire value of R
but has stored s bits of information about R. If, for example, s = t/2, it is clear that Eve
could for the discussed binary version of the book cipher obtain on average about half of
the information about the plaintext, which would be completely insecure. This problem
can be solved by encrypting the plaintext with several (say m) independent keys (but
the same randomizer), i.e., by defining the one-time pad as the (bit-wise modulo 2) sum
of m blocks of R beginning at independent random locations within R, where the key
consists of the m starting points. This, in essence, is the scheme proposed in [17], which
we also use here and which was also used in [2], but for a size of the one-time pad of
only n = 1 bits. The main difference between the schemes is that in [17] each of the m
blocks is taken from a separate non-overlapping part of R, with a cyclic continuation if
the block reaches the end of the part, whereas in this paper no cyclic extension is used
and in [2] the non-blocked scheme sketched above is used. In the subsequent papers of
Lu [15] and Vadhan [24], more complicated constructions with a reduced key size are
proposed.

2.3. Definition of the Bounded-Storage Model

We now define the bounded-storage model for key-expansion (and encryption) more
formally. Alice and Bob share a short secret initial key K , selected uniformly at random
from a key space K, and they wish to generate a much longer n-bit expanded key X =
(X1, . . . , Xn) (i.e., n � log2|K|).

In a first phase, a t-bit string R is available to all parties, i.e., the randomizer space
is R = {0, 1}t . For instance, R is sent from Alice to Bob or broadcast by a satellite.
Rather than assuming that R is uniformly random, which may be unrealistic, one can
also simply assume a lower bound on the min-entropy H∞(R) of R. Alice and Bob apply
a known key-expansion function f : R×K→ {0, 1}n to compute the expanded key as
X = f (R, K ). Of course, the function f must be efficiently computable and based on
only a very small portion of the bits of R such that Alice and Bob need not read the
entire string R.
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Eve can store arbitrary s bits of information about R, i.e., she can apply an arbitrary
storage function h: R → U for some U with the only restriction that |U | ≤ 2s .4 The
memory size during the evaluation of h need not be bounded. The value stored by Eve
is U = h(R). After storing U , Eve loses the ability to access R. All she knows about R
is U . In order to prove as strong a result as possible, we assume that Eve can now even
learn K , although in a practical system one would of course keep K secret.

A key-expansion function (or cipher) f is secure in the bounded-storage model if,
with overwhelming probability, Eve, knowing U and K , has essentially no information
about X . More precisely, the conditional probability distribution PX |U=u,K=k is very
close to the uniform distribution over the n-bit strings, with overwhelming probability
over values u and k. Hence X can be used as a secure one-time pad (see Section 3.3).
Obviously, this is not possible for s ≥ t nor for s ≥ H∞(R) (without making a further
assumption about R), but it should hold for as large a storage bound s as possible, ideally
for s = νH∞(R) for ν close to 1. The ratio

ν := s/H∞(R)

is called the randomness efficiency of a scheme. Actually, ν may depend on the ratio
H∞(R)/t , but for uniform R we have H∞(R) = t and thus ν = s/t .

2.4. Previous Results for the Bounded-Storage Model

The bounded-storage model was introduced by Maurer in 1990 [17]. However, the
proposed cipher was proved secure in [17] only under the assumption that Eve stores s
actual bits of R rather than the result of an arbitrary function applied to R.5 The s bits of
R can be accessed using an arbitrary adaptive strategy, where the position of each new
bit depends on the previously seen bits. The scheme is secure for, say, s ≤ t/2.6

As discussed above, in the scheme of [17], R is divided into m parts of l bits, i.e.,
t = lm, and each bit of X is the XOR of m bits, one from each part. The key K determines
which bits are XOR-ed. We refer to Section 4.1 for a precise description of the scheme
analyzed in this paper, which is essentially the same as that of [17]. The main problem
left open in [17] and solved here is to prove the security of this scheme in the model
where the adversary is allowed to compute an arbitrary function of the random string (as
described in Section 2.3).

Cachin and Maurer [7] proposed a scheme in which Eve is allowed to access arbitrary
s bits of information about R, but the probability that Eve can obtain a non-negligible
amount of information about X is non-negligible (e.g., 0.0001). Another scheme pro-
posed there requires no secret key K but is impractical.

4 Since for every probabilistic strategy there is a best choice of the randomness, we can without loss of
generality consider only deterministic adversary strategies.

5 This was justified by considering the following scenario. The t-bit randomizer R is assumed to be perma-
nently accessible to all parties, but it is too long to be read entirely. The basic operation is that of reading a
bit of R. As a somewhat unrealistic but illustrative example it was proposed to use the surface structure of the
moon as a huge array of random bits. The scheme is secure even if the adversary can adaptively choose the bit
positions to access and even when she has arbitrary prior knowledge about the plaintext.

6 In fact, the cipher is perfect with overwhelming probability, i.e., with overwhelming probability Eve gets
no information whatsoever about X (while with negligible probability she may learn something about X ). This
statement is slightly stronger than the statement that Eve gets only a negligible amount of information.
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A major step towards solving the open problem of [17] was achieved by Aumann,
Ding, and Rabin [2], [1], [11], [12], using a scheme very similar to that of [17]. The
core technical argument is a security proof for a scheme for generating a single key bit
(i.e., n = 1) and for randomness efficiency νADR ≈ 0.2. Of course, in practice one is
interested in deriving a key of length n > 1. In order to achieve this goal, one can use the
single-bit scheme as a building block. This can be done in two different, but in a sense
dual, ways.

– Execute the single-bit scheme n times [2], [1], [11] with the same key, but with in-
dependently chosen randomizers. The drawback of this approach is that the security
can be proven only if s ≤ νADR · t/n, i.e., the randomness efficiency ν = νADR/n
decreases inversely proportional to n.

– Execute the single-bit scheme n times [1], [11], [12] with the same randomizer, but
independently chosen initial keys. Here the security can be proved assuming that
s ≤ νADR · t , but the drawback is that in order to derive an n-bit key one needs an
initial key much longer than n. The reason why this result is nevertheless of interest
is that the same key can be used many times with new randomizers.

The bounded-storage model was also studied in the context of secure two-party compu-
tations [11], [10], [6].

2.5. Contributions of This Paper

The main open question of [17], [2], and [1] is whether significant key-expansion (i.e.,
n � log2|K|) with constant randomness efficiency ν is possible. We solve this problem
which has both theoretical and possibly practical implications. The technical contribu-
tions of the paper are divided into two parts. The first part (Sections 4 and 5) addresses
parameter sizes that are closest to being of practical interest. Theorem 8 and Corollary 9
state that, for reasonable parameter sizes, secure key-expansion is possible for ν in the
10% range. In the second part (Section 6) we prove, as a theoretical result, that ν can be
arbitrarily close to 1.

Letw := log2|K| be the length of the initial key. Our results imply, for example, that for
every ν < 1 and z > 3, and any key expansion ratio c(m) with 1 < c(m) = 2o(m), there
exists a family of schemes (with parameter m) such that t = O(mz), w = O(m log m),
and n = c(m)w + o(w), and such that the deviation from uniform of the expanded key,
from the adversary’s viewpoint, decreases exponentially in m, provided that s ≤ νt .

The scheme we propose is essentially the same as that used in previous works on
the bounded-storage model. The main contribution of this paper is therefore to provide
a new, stronger security proof. Some main steps of the proof are as follows. First, we
observe that it suffices to prove that the adversary cannot predict well the last bit of the
expanded key when given all other bits of the expanded key. Second, we prove that for
any strategy of the adversary, the fraction of randomizers for which her strategy gives her
a non-negligible advantage in the prediction problem, is negligible. In this step we need
to make use of Azuma’s inequality to cope with statistical dependencies that prevent us
from using the Chernoff bound.
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2.6. Subsequent Results

After the presentation of these results in [13], but independently, Lu [15] pointed out that
the construction of a secure cryptosystem in the bounded-storage model corresponds to
the design of a so-called randomness extractor (first defined in [20], see also [21] and
[23]) with a special property, which he called an on-line extractor. An extractor E takes
two inputs, say W and Z , and has the property that E(W, Z) is very close to uniform
if W has sufficient min-entropy and Z is uniform and independent of W . Actually, in
our context one needs a so-called strong extractor whose output includes the second
input Z .

The extractor argument also shows that the distribution of the randomizer R need not
be uniform but must only have sufficient min-entropy. The same is true for our scheme,
essentially without modifying our original proof (see [13]) which was stated for the case
of uniform R. Actually, our scheme is a (very simple) construction of a strong on-line
extractor. Subsequently, Vadhan [24] improved further on the construction of [15] by
considering the general problem of designing locally computable extractors. Both these
schemes also have optimal randomizer efficiency.

While these subsequent papers have provided insight and improved on the size of the
initial key, their schemes appear to be more complicated than ours which can be efficiently
implemented with a very simple process for selecting bits from the randomizer and for
XOR-accumulating them to obtain the expanded key. The accumulator for the expanded
key is the only memory that is required. Simplicity may be significant since, if the
bounded-storage model should ever be practical, then the data rates will have to be at
the very limits of the available technology, possibly making irregular bit selection or
significant processing of information infeasible. However, only future technology will
show which type of scheme is most advantageous, and it is an open research problem to
define simplicity meaningfully and to find even better schemes.

3. Preliminaries

3.1. Probability-Theoretic Preliminaries

Throughout the paper we use capital letters to denote random variables and lowercase
letters to denote values they can take on.

The min-entropy of a random variable X with probability distribution PX over X is
defined as

H∞(X) := − log2

(
max
x∈X

PX (x)

)
= min

x∈X
(− log2 PX (x)).

The deviation of a probability distribution p over an alphabet U from the uniform
distribution can be measured by its statistical distance d(p) from the uniform distribution:

d(p) := 1
2

∑
u∈U

∣∣∣∣p(u)− 1

|U |
∣∣∣∣ .



12 S. Dziembowski and U. Maurer

For a random variable X we also write simply d(X) instead of d(PX ). Similarly, for an
event A, we define

d(X |A) := d(PX |A).

The following notation and definitions are motivated by information theory. The distance
of X from uniform, given random variable Y , is defined as the expected distance of PX |Y=y

from uniform when averaged over values y of Y :

d(X |Y ) :=
∑
y∈Y

PY (y) d(X |Y = y)

=
∑
y∈Y

PY (y)
1
2

∑
x∈X

∣∣∣∣PX |Y (x, y)− 1

|X |
∣∣∣∣

= 1
2

∑
x∈X

∑
y∈Y

∣∣∣∣PXY (x, y)− PY (y)

|X |
∣∣∣∣ .

It is well known (and easy to prove) that if X is a binary random variable, then d(X |Y )
measures the optimal advantage (above 1

2 ) of a predictor g guessing X when given Y :

Lemma 1. If X is binary, then maxg: Y→X P (g(Y ) = X) = 1
2 + d(X |Y ).

Lists of random variables are abbreviated by simply concatenating their names; for
example, d(XY ) is used instead of d((X, Y )).

Lemma 2. d(XY ) ≤ d(X |Y )+ d(Y ).

Proof.

d(X |Y )+ d(Y ) = 1
2

∑
x∈X

∑
y∈Y

∣∣∣∣PXY (x, y)− PY (y)

|X |
∣∣∣∣+ 1

2

∑
x∈X

∑
y∈Y

∣∣∣∣ PY (y)

|X | −
1

|X ||Y|
∣∣∣∣

= 1
2

∑
x∈X

∑
y∈Y

(∣∣∣∣PXY (x, y)− PY (y)

|X |
∣∣∣∣+

∣∣∣∣ PY (y)

|X | −
1

|X ||Y|
∣∣∣∣
)

≥ 1
2

∑
x∈X

∑
y∈Y

∣∣∣∣PXY (x, y)− 1

|X ||Y|
∣∣∣∣ = d(XY ),

where the inequality follows from the triangle inequality for interval lengths.

It follows immediately from Lemma 2 that

d(X1 · · · Xn) ≤
n∑

i=1

d(Xi |X1 · · · Xi−1) (1)

and, more generally, we have:

Lemma 3. d(X1 · · · Xn|Y ) ≤
∑n

i=1 d(Xi |X1 · · · Xi−1Y ).
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Lemma 4. d(X |Y ) ≥ d(X).

Proof.

d(X |Y ) = 1
2

∑
x∈X

∑
y∈Y

∣∣∣∣PXY (x, y)− PY (y)

|X |
∣∣∣∣

≥ 1
2

∑
x∈X

∣∣∣∣∣∑
y∈Y

(
PXY (x, y)− PY (y)

|X |
)∣∣∣∣∣

= 1
2

∑
x∈X

∣∣∣∣PX (x)− 1

|X |
∣∣∣∣ = d(X).

When X is a binary random variable, then Lemma 4 (in view of Lemma 1) states
the intuitive and well-known fact that the advantage in (optimally) guessing X cannot
decrease when learning another random variable Y . An intuitive proof would be that a
guesser that ignores Y is admissible.

The above notation and results carry over naturally to a setting where everything is
conditioned on the event Z = z that some random variable Z takes on the value z. For
instance,

d(X |Y, Z = z) :=
∑
y∈Y

PY |Z (y, z) d(X |Y = y, Z = z),

and Lemma 1 becomes

max
g:Y→X

P (g(Y ) = X | Z = z) = 1
2 + d(X |Y, Z = z).

Similarly, Lemma 3 becomes

d(X1 · · · Xn|Y, Z = z) ≤
n∑

i=1

d(Xi |X1 · · · Xi−1Y, Z = z).

3.2. Martingales

We need the following result from the theory of martingales and refer to [19] for more
details on the subject.

Definition 5. A sequence of real-valued random variables S1, . . . , Sl is called a mar-
tingale difference sequence if, for every j and every s1, . . . , s j−1,

E[Sj | S1 = s1, . . . , Sj−1 = s j−1] = 0.

The following lemma follows directly from Azuma’s inequality (see, for example,
Theorem 4.16 on page 92 of [19] or [3] for the original result). To derive Lemma 6
from Theorem 4.16 in [19], set λ := τ la and X0 := 0, and for every i = 1, . . . , l, let
X j :=∑i

j=1 Sj and ci := a.
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Lemma 6. Let S1, . . . , Sl be a martingale difference sequence such that |Si | ≤ a for
1 ≤ i ≤ l. Then, for every τ > 0,

(∣∣∣∣∣
l∑

j=1

Sj

∣∣∣∣∣ ≥ τ la

)
≤ 2e−lτ 2/2.

If the variables S1, . . . , Sl are independent, then Lemma 6 follows from the Chernoff
bound.

3.3. One-Time Pad and Statistical Indistinguishability

The one-time pad encrypts a message M from message spaceM = {0, 1}n by adding
(bit-wise modulo 2) a random key X ∈M, resulting in ciphertext C = M ⊕ X . More
generally, one could apply any group operation � on M, i.e., C = M � X . It is well
known that this generalized one-time pad is perfect (i.e., C is independent of M) if X is
uniformly distributed overM.

Since we propose to use the expanded key as the key in a one-time pad encryption,
we need to investigate the potential security degradation due to the slight deviation of
the key X from the uniform distribution (from the adversary’s viewpoint). If X is not
uniformly distributed, then the one-time pad is not perfect. The natural relaxation of
perfect secrecy is to consider the statistical indistinguishability7 of the cipher, i.e., the
optimal advantage, for any unbounded distinguisher, of distinguishing the ciphertexts of
two different messages m and m ′, maximized over the choice of the pair (m,m ′).

Lemma 7. For the one-time pad with key X , the advantage in the statistical indistin-
guishability definition is upper bounded by 2d(X).

Proof. Let δ(PV , PW ) be the distance between the distributions PV and PW (over the
same alphabet), i.e., δ(PV , PW ) = 1

2

∑
v |PV (v) − PW (v)|. Let PU denote the uniform

distribution. Then d(PV ) = δ(PV , PU ). Let C = m � X and C ′ = m ′ � X be the
two ciphertexts for messages m and m ′, respectively. The advantage in the statistical
indistinguishability game is

δ(PC , PC ′) ≤ δ(PC , PU )+ δ(PC ′ , PU ) = d(C)+ d(C ′) = 2d(X),

where we have made use of the triangle inequality for δ.

This lemma justifies that we restrict our attention to proving that the statistical distance
of the expanded key X from uniform is negligible in the adversary’s view.

7 This notion was also called semantic security of the cipher in [1] and [11].
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Fig. 1. Illustration of the scheme for deriving an expanded n-bit key X = (X1, . . . , Xn), to be used as
a one-time pad, from a short secret initial key K = (K1, . . . , Km). The randomizer R is interpreted as an
m× (l+ n− 1)matrix with rows R(1), . . . , R(m) of length l+ n− 1. The expanded key X is the component-
wise XOR of m blocks of length n, one selected from each row, where Ki is the starting point of the i th block
within the i th row R(i).

4. The Main Theorem

4.1. Description of the Cipher

The randomizer R ∈ R = {0, 1}t is interpreted as being arranged in a matrix with m
rows, denoted R(1), . . . , R(m), for some m ≥ 1 called the height of the randomizer.
Each row consists of l + n − 1 bits, for some l ≥ 1 called the width of the randomizer.
Hence t = m(l+n−1) and R can be viewed as an m× (l+n−1)matrix (see Figure 1).
The initial key K = (K1, . . . , Km) ∈ K = {1, . . . , l}m selects one starting point within
each row, and the expanded key X = (X1, . . . , Xn) is the component-wise XOR of the
m blocks of length n beginning at these starting points Ki , i.e.,

X = f (R, K ),

where f : R×K→ {0, 1}n is defined as follows. For r ∈ R and k = (k1, . . . , km) ∈ K,

f (r, k) :=
(

m⊕
i=1

r(i, ki ), . . . ,

m⊕
i=1

r(i, ki + n − 1)

)
, (2)

where r(i, j) denotes the j th bit in the i th row of r . This is illustrated in Figure 1.
The random experiment consists of selecting K ∈ K uniformly at random and, in-

dependently R ∈ R with some (not necessarily uniform) distribution PR (known to
the adversary). All probabilities considered in this paper are for events in this random
experiment, unless stated otherwise.

4.2. Statement and Explanation of the Main Theorem

Consider fixed parameters l,m, n, and s and remember that t = m(l + n − 1). In the
following we consider an arbitrary but fixed storage function h: R→ U with |U | ≤ 2s .
Recall that

U = h(R)

is the random variable corresponding to the value stored by Eve.
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We are interested in proving that from Eve’s point of view, when given particular
values u for U and k for K , the expanded key X is very close to uniformly distributed,
i.e., d(X |U = u, K = k) is very small, with very high probability (over values for U and
K ). (Remember that we assume that Eve can learn K after she loses the ability to access
R.) It suffices to prove that the expected value d(X |U K ) of d(X |U = u, K = k) is very
small. Markov’s inequality (see, e.g., page 57 in [9]) states that for every positive-valued
random variable Z and any α > 0, P(Z ≥ α) ≤ E[Z ]/α. This allows us to convert
the statement of Theorem 8, namely that d(X |U K ) is negligible, into the statement that
d(X |U = u, K = k) can exceed a certain (very small) bound only with negligible
probability.

The following theorem, the main result of the paper, is proved in Section 4.3. The
theorem implies that the key expansion function is actually an extractor.

Theorem 8. For l,m, n, s, t, R, K , and U as defined above and for any τ ∈ [0, 1] and
ξ ∈ [0, 1],

d(X |U K ) ≤ n · (2s+t−H∞(R)−� + ε), (3)

where

� := lm(1− ξ)τ 2 (log2 e)/2︸ ︷︷ ︸
≥0.721

−m(1+ (1− ξ)(m log2 l + n + 1)) (4)

and

ε := τ ξm/2. (5)

The first term in (4) is O(lm) and dominates the second term for m, n � l. The im-
plication of Theorem 8 is stated below, as an example, for concrete parameters with
randomness efficiency ν = 0.08.

Corollary 9. If R is uniformly distributed and l,m, and n satisfy m log2 l ≤ n and
l > 100, then, for s := 0.08t − 1.5m(n + 1),

d(X |U K ) ≤ n2−m/2. (6)

The assumption m log2 l ≤ n reflects the fact that we are interested in key expansion
(the length in bits of the initial key is �m log2 l�), and the technical assumption l > 100
can be made without loss of generality. The condition s = 0.08t−q for q := 1.5mn+m
means that Eve can store about 8% of the randomizer, i.e., ν = 0.08. Note that q is roughly
equal to the number of randomizer bits the honest players need to access, and hence can
be neglected. The right-hand side of (6) is negligible in m as long as log2 n ≤ cm (for
any constant c < 1

2 ), which is a very weak assumption.8

8 This assumption is actually optimal up to a constant. More precisely, for any ν ≤ 1 the scheme is insecure
if n ≥ 1/νm since, if Eve would store a fraction ν of the bits of each block, the probability that she could
compute at least one bit of the expanded key would be substantial.
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Proof (of Corollary 9). Let ξ = τ = 1
2 in Theorem 8. It follows directly from (4) and

m log2 l ≤ n that

� = lm(log2 e)/16− m(1+ 0.5(m log2 l + n + 1))

≥ 0.09lm − mn − 1.5m.

Thus s −� ≤ −0.01lm − 0.42mn − 0.08m ≤ −0.01lm and hence, using H∞(R) = t ,
Theorem 8 yields

d(X |U K ) ≤ n(2−0.01lm + 2−m/2/2).

For l > 100 we have 2−0.01lm < 2−m < 2−m/2/2 and the corollary follows.

Example 10. This example was discussed in Section 2.1. For s = 1015,m = 125, n =
1010, and l = 1014, we have t ≈ 1.25 · 1016 and the length of the initial key has
approximately 6000 bits. We obtain d(X |U K ) < 2−29.

4.3. Proof of the Main Theorem

In this section we prove Theorem 8. At a high level, the proof consists of three steps.
First, observe that, from Lemma 3, to bound the value of d(X) it suffices to prove a
bound on the advantage of the optimal strategy for guessing Xη, given X1 · · · Xη−1, U ,
and K , for any η = 1, . . . , n and any storage function h. Second, for any fixed h and
η and any fixed guessing strategy (called g) one can consider, for each value r of the
randomizer, the average (over values of K ) advantage of g in guessing Xη. Lemma 11
shows that the fraction of values r for which this average guessing advantage exceeds
ε (where ε is a very small value) is negligible. Third, this fact implies by a standard
argument that the overall guessing advantage is negligible.

The overall structure of the proof has similarities with Trevisan’s [23] work (see
also Shaltiel’s overview article [21]). The basic argument there is also to show that the
number of inputs (to the extractor) for which there exists a good next-bit predictor for
the extractor output, is negligible. However, our proof of the second step (i.e., the proof
of Lemma 11) seems to use fundamentally different techniques than those used in [23]
and [21].

For every h we have, according to Lemma 1,

1
2 + d(Xη|X1 · · · Xη−1U K ) = max

g: {0,1}η−1×U×K→{0,1}
P(g(X1, . . . , Xη−1,U, K ) = Xη),

(7)
where g is a function guessing Xη when given X1, . . . , Xη−1,U , and K . We can now
state the main technical lemma of the paper, which is proved in Section 5.

Lemma 11. For everyη ∈ {1, . . . , n}, for every function g: {0, 1}η−1×U×K→ {0, 1},
and for all u ∈ U , τ ∈ [0, 1], and ξ ∈ [0, 1], the fraction of randomizers r ∈ R for
which

P(g(X1, . . . , Xη−1, u, K ) = Xη | R = r) ≥ 1
2 + ε (8)

is at most 2−�, with � and ε defined by (4) and (5), respectively.
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We briefly discuss Lemma 11. Consider a fixed η. The adversary’s strategy (i.e., the
choice of h and g) can be considered fixed, i.e., before R and K are chosen. The adversary
is now assumed to be given X1, . . . , Xη−1 and K , and the purpose of g is to guess Xη

when given X1, . . . , Xη−1, K , as well as the stored value U = h(R). The concrete value
u is here considered as an input to g, but we can also interpret g as a set of functions
gu : {0, 1}η−1 ×K→ {0, 1} with parameter u ∈ U .

We analyze and bound (to close to 1) the fraction of randomizers r for which the (any)
fixed choice of h and g is bad for the adversary, where bad means that the advantage in
guessing Xη correctly is less than ε. In other words, for a given value u stored by the
adversary we analyze the fraction of r for which (8) does not hold. Equivalently, we can
bound (to close to 0) the fraction, say σ , of randomizers r for which (8) is satisfied, for
a given u, i.e., which are potentially good for the adversary. There are at most |U | ≤ 2s

values of u, hence the fraction of randomizers r for which (8) is satisfied for some u is at
most 2sσ (which is at most 2−�). Equivalently, 1− 2sσ is a lower bound on the fraction
of randomizers which are bad for the adversary for all u ∈ U . For such an r , the event
that R = r is bad for the adversary even if an oracle would tell him the best possible
value u he could have stored.

More precisely, by counting only those r that are bad for the adversary for all u, we
need not consider the particular storage function h. Rather, we can allow the adversary
(only for the purpose of the analysis) a more generous strategy which still does not help
her. In this view the adversary can choose |U | ≤ 2s different guessing functions gu and is
considered to be successful (for r ) if any one (without her being required to know which
one) of the gu has an advantage P(gu(X1, . . . , Xη−1, K ) = Xη | R = r) ≥ 1

2 + ε.
To continue the proof of Theorem 8, let � be the set of values r ∈ R for which (8) is

satisfied for some u ∈ U . We have

|�| ≤ |U | · 2−�|R| ≤ 2s+t−�.

Since the maximal probability of any r ∈ R is 2−H∞(R), this yields

P(R ∈ �) ≤ 2s+t−H∞(R)−�.

For all r �∈ � we have P(g(X1, . . . , Xη−1, u, K ) = Xη|R = r) < 1
2 + ε. Therefore

P(g(X1, . . . , Xη−1, u, K ) = Xη|R �∈ �) < 1
2 + ε.

We hence obtain, for all g,

P(g(X1, . . . , Xη−1,U, K ) = Xη) ≤ 1
2 + ε + P(R ∈ �)

≤ 1
2 + 2s+t−H∞(R)−� + ε.

Thus, using (7) we get

d(Xη|X1 · · · Xη−1U K ) ≤ 2s+t−H∞(R)−� + ε. (9)

Since the choice of η was arbitrary, (9) holds for any η. Thus we get

d(X |U K ) ≤
n∑
η=1

d(Xη|X1 · · · Xη−1U K )

≤ n · (2s+t−H∞(R)−� + ε),
where the first step follows from Lemma 3. This completes the proof of Theorem 8.
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5. Proof of the Main Technical Lemma

To prove Lemma 11, which states an upper bound on the number of randomizers r ∈ R
with property (8), we consider throughout this section (and also in Section 6) a new
random experiment E in which R is chosen uniformly from R, and K is chosen as
before. This allows us to convert a statement about the probability that R has property (8)
(in this new random experiment) directly into a statement about the number of r ∈ R
satisfying (8) in the original (or the new) random experiment, which we are interested
in.

We now fix, throughout the section, an arbitrary guessing function g: {0, 1}η−1×U ×
K→ {0, 1} and an arbitrary value u ∈ U . Let c: K×R→ {−1, 1} be the function that
indicates for given key k ∈ K and randomizer r ∈ R whether or not g guesses the nth
bit of the expanded key correctly when given the first η − 1 bits (as well as u and k):

c(k, r) :=
{

1 if g( f1(r, k), . . . , fη−1(r, k), u, k) = fη(r, k),
−1 otherwise,

where f j : R × K → {0, 1} is the function computing the j th bit of the expanded key
(i.e., f (r, k) = ( f1(r, k), . . . , fn(r, k)) and X j = f j (R, K )).

We give a high-level overview of the main ideas of the proof. For each fixed r ∈ R
we are interested in

P(g(X1, . . . , Xη−1, u, K ) = Xη | R = r) = 1
2 + 1

2 l−m
∑
k∈K

c(k, r)

︸ ︷︷ ︸
=:α(r)

.

Let α(r) := l−m
∑

k∈K c(k, r). Lemma 11 is thus equivalent to

P(α (R) ≥ 2ε) ≤ 2−�. (10)

The quantity α(r) and the following analysis is best understood by considering the
complete l-ary tree of depth m, with the lm leaves labeled by the keys k ∈ K. Each leaf
labeled k is assigned the value c(k, r), and α(r) is simply the average of these values
assigned to the leaves.

Each node at depth i in the tree can be labeled by a key prefix of length i , i.e., by an
element κ ∈ Ki , whereKi := {1, . . . , l}i . To each node κ in the tree we can assign as its
value the average of the leaf values in the corresponding subtree, denoted ακ(r). It can
be computed by adding the values of the l sons of node κ and dividing the sum by l:

ακ(r) := l |κ|−m
∑

k∈K with prefix κ

c(k, r) = 1

l

l∑
a=1

ακ||a(r), (11)

where || denotes concatenation. Note that

− 1 ≤ ακ(r) ≤ 1 (12)

and, typically (as we want to prove), ακ(r) is very close to 0. The root value thus obtained
is α(r) (where we can omit the empty string as subscript).
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To make the analysis of the distribution of the random variable α(R) (required to
prove (10)) manageable we need to make simplifications, which of course must be
conservative in the sense that they cannot decrease α(R). For this purpose we define
βi (r) (for 0 ≤ i ≤ m) as the maximum of all absolute values of ακ(r), maximized over
κ ∈ Ki and over choices of the first i rows of r :

βi (r) := max
κ∈Ki

max
ρ∈Ri

|ακ((ρ, r(i + 1), . . . , r(m)))|, (13)

whereRi := {0, 1}i×(l+n−1) denotes the set of binary i×(l+n−1)matrices, r(i) denotes
the i th row of randomizer r , and (ρ, r(i + 1), . . . , r(m)) ∈ R denotes the randomizer
consisting of ρ as the first i rows and r(i + 1), . . . , r(m) as the lower m − i rows. Note
that βi (r) is actually a function only of the lower m − i rows of r and is independent of
the first i rows (because of the maximization over ρ).

We define Ai (for 0 ≤ i ≤ m) as the random variable

Ai := βi (R). (14)

Since β0(r) = α(r) we have A0 = α(R). Also, βm(r) = 1 for all r and hence Am = 1.
Because of (11) and (12) we have

βi (r) ≤ βi+1(r)

for all r and thus

Ai ≤ Ai+1. (15)

Thus the reverse sequence Am, . . . , A0 of random variables is non-increasing, and our
goal is to show that, in fact, in each step it decreases significantly (i.e., is multiplied by
τ � 1) with high probability (i.e., with probability 1− π for a small π ).

Note that A0, . . . , Am are defined in our random experiment of selecting R = (R(1),
. . . , R(m)) and K , but the random variable Ai actually depends only on R(i + 1), . . . ,
R(m). For example, Am is constant (= 1).

For a key prefix κ ∈ Ki of some length i , letw(κ, r) be the n-bit string obtained as the
XOR of the i n-bit subkey blocks selected by κ in the first i rows of r . In other words,
w(κ, r) is the expanded key that would result if a scheme restricted to the first i rows
was used. It will be crucial later that for fixed κ , ακ(r) and hence βi (r) depend on ρ (the
first i rows of r ) only through w(κ, r) (actually only through the first η bits of w(κ, r)).
Therefore, for a given κ the maximization over ρ in (13) can be seen as a maximization
only over the 2n values of w(κ, (ρ, ρ)) (for any ρ).9

Lemma 12. The random variables A0, . . . , Am satisfy, for every τ ∈ [0, 1] and for
0 ≤ i ≤ m − 1,

P(Ai ≥ τ Ai+1 | Ai+1 = ai+1, . . . , Am = am) ≤ π (16)

9 Actually, one could consider only the 2η values of the first η bits of w(κ, (ρ, ρ)), but we do make use of
the resulting slightly stronger bound.
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for all ai+1, . . . , am ,10 where

π := lm2n+1e−lτ 2/2. (17)

We discuss the implications of this lemma before proving it. It implies that with very
high probability the value of A0 = α(R) is very small. More precisely, we have the
following lemma.

Lemma 13. If, for some π, τ ∈ [0, 1], a sequence of positive-valued real random
variables A0, . . . , Am with Am = 1 satisfies (15) and (16), then, for every ξ ∈ [0, 1] we
have

P(A0 ≥ τ ξm) ≤ 2mπ(1−ξ)m .

Proof. For 0 ≤ i ≤ m − 1, let

Bi :=
{

1 if Ai ≤ τ Ai+1,

0 if Ai > τ Ai+1.

Because of (15) we have A0 ≤ τ B1+···+Bm and hence it suffices to prove

P(B1 + · · · + Bm ≤ ξm) ≤ 2mπ(1−ξ)m . (18)

Inequality (16) implies that for every i and for all bi+1, . . . , bm ∈ {0, 1},

P(Bi = 0 | Bi+1 = bi+1, . . . , Bm = bm) ≤ π

and hence, for all b1, . . . , bm ∈ {0, 1},

P(B1 = b1, . . . , Bm = bm) ≤ π |{i : bi=0}| = πm−(b1+···+bm ). (19)

Thus the event B1+· · ·+Bm ≤ ξm of (18) is the union of the events (B1 = b1∧· · ·∧Bm =
bm) for those b1, . . . , bm with b1+ · · · + bm ≤ ξm. Using (19), each of these events has
probability at most πm−ξm , and there are trivially at most 2m such events. Hence (18)
follows and Lemma 13 is proved.11

Proof (of Lemma 12). Consider a fixed i ∈ {0, . . . ,m − 1}. We prove that (16) holds
even when further conditioned on the event, denoted Eρ ′ , that (R(i+2), . . . , R(m)) = ρ ′,
for any fixed value ρ ′ ∈ Rm−i−1 of the bottom m − i − 1 blocks of the randomizer. In
other words, we prove P(Ai ≥ τ Ai+1|Eρ ′) ≤ π for all ρ ′. Hence (16) also holds (as
stated), i.e., without further condition. Note that Ai+1, . . . , Am are determined by ρ ′; let

10 Formally, one should require the conditioning event to have non-zero probability, but here and in what
follows for simplicity we omit such conditions.

11 One could also bound P(B1 + · · · + Bm ≤ ξm) by the probability P(C1 + · · · + Cm ≤ ξm) where
C1, . . . ,Cm are independent binary random variables with P(Ci = 0) = π . However, the improvement in the
bound would only be minor.
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these values be ai+1, . . . , am , respectively. Therefore to prove (16) we need to show that
for all ρ ′, (

max
κ∈Ki

max
ρ∈Ri

∣∣ακ((ρ, R(i + 1), ρ ′))
∣∣ ≥ τai+1

)
≤ π. (20)

This probability can be computed in a restricted random experiment defined only by the
row R(i + 1) since the rest is fixed. Let us fix some particular values of κ ∈ Ki , ρ ∈ Ri ,
and ρ ′ ∈ Rm−i−1, and investigate the event that∣∣ακ((ρ, R(i + 1), ρ ′))

∣∣ ≤ τai+1.

Applying (11) yields

ακ((ρ, R(i + 1), ρ ′)) = 1

l

l∑
j=1

Sj , (21)

where

Sj := ακ|| j ((ρ, R(i + 1), ρ ′)).

The random variables Sj are not independent, but they are sufficiently independent in
the sense of the following lemma, which we need to continue the proof of Lemma 12.

Lemma 14. S1, . . . , Sl is a martingale difference sequence.

Proof. First, observe that for every j the bit R(i + 1, j + η − 1) is independent of
(S1, . . . , Sj−1). Flipping the bit R(i + 1, j + η − 1) complements the ηth bit of the
expanded key for any initial key k with prefix κ|| j . Hence this also flips all the values of
c(k, (ρ, R(i + 1), ρ ′)) for such k and thus changes the sign of ακ|| j ((ρ, R(i + 1), ρ ′)),
i.e.,

ακ|| j ((ρ, R(i + 1), ρ ′)) = −ακ|| j ((ρ, R̂(i + 1), ρ ′)),

where R̂(i + 1) is obtained from R(i + 1) by flipping bit R(i + 1, j + η− 1). Therefore
the probability distribution PSj |S1···Sj−1 is symmetric in the sense that

PSj |S1···Sj−1(sj , s1, . . . , sj−1) = PSj |S1···Sj−1(−sj , s1, . . . , sj−1) (22)

for all s1, . . . , sj ∈ {0, 1}. This implies that E[Sj | S1 = s1, . . . , Sj−1 = sj−1] = 0 for
all s1, . . . , sj−1, i.e., S1, . . . , Sl is a martingale difference sequence.

We return to the proof of Lemma 12. From Lemma 6 and the fact (because of (11))
that

∣∣Sj

∣∣ ≤ ai+1 for all j we obtain

P

(∣∣∣∣∣
l∑

j=1

Sj

∣∣∣∣∣ ≥ τ lai+1

)
≤ 2e−lτ 2/2, (23)

which together with (21) implies

P(|ακ((ρ, R(i + 1), ρ ′))| ≥ τai+1) ≤ 2e−lτ 2/2. (24)
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Note that (24) holds for any κ ∈ Ki , ρ ∈ Ri , and ρ ′ ∈ Rm−i−1, as our choice of these
values was arbitrary. To finalize the proof of Lemma 12 we observe that, as explained
above, the maximization in (20) is only over the li values of κ and over the 2n values of
w(κ, (ρ, ρ)) (where the value of ρ is irrelevant). The event

max
κ∈Ki

max
ρ∈Ri

|ακ((ρ, R(i + 1), ρ ′))| ≤ ai+1

is thus the union of li · 2n events of the form |ακ((ρ, R(i + 1), ρ ′))| ≤ ai+1, each
of which has probability at most 2e−lτ 2/2, according to (24). Lemma 12 now follows
because i < m.

Proof (of Lemma 11). Since α (R) = A0, Lemma 13 together with (17) implies

P(α (R) ≥ τ ξm) ≤ 2m+(1−ξ)m(m log2 l+n+1)e−τ
2(1−ξ)lm/2,

which implies (10) for � given by (4) by changing the base in the right term from e to
2. This completes the proof of Lemma 11.

6. Asymptotically Optimal Randomness Efficiency

In this section we prove that the security of our scheme can be proved for randomness
efficiency arbitrarily close to 1. We assume that the min-entropy of R is at least some
constant fraction γ of the maximal value t , i.e.,

H∞(R) ≥ γ t.

The randomness efficiency ν (which can generally depend on γ ) can be defined as

ν := s

H∞(R)
.

Hence s ≤ γ νt . Let

ψ(m, l, n, γ, ν) := max
PR : H∞(R)≥γ t

max
h: {0,1}t→{0,1}�γ νt�

d(X |U K )

be the maximal average distance of X from uniform that the adversary can achieve. To
state an asymptotic result we must fix how the parameters l,m, and n grow with respect
to each other. Let l and n be functions of m. First, we let l := λ(m) where λ is any
function satisfying

m3 ≤ λ(m) ≤ 2m . (25)

(The choice of these bounds is rather arbitrary.) Second, we consider any fixed key
expansion factor c, i.e., n := �cm log2 l�. From (25) we have n ≤ cm2 and

t = m(l + n − 1) = mλ(m)+ o(mλ(m)).

Theorem 15. For every γ ∈ (0, 1], ν ∈ [0, 1), c > 1, and λ satisfying (25),

ψ(m, λ(m), cm log2(λ(m)), γ, ν) = 2−�(m).
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The theorem, stating thatψ(m, λ(m), cm log2(λ(m)), γ, ν) decreases exponentially in
m, is primarily of theoretical interest since for ν close to 1 the parameter m must be quite
large. We briefly explain why Theorem 8 does not imply Theorem 15. It is not difficult to
see that for γ = 1 (i.e., H∞(R) = t) and for all ξ and τ we have� ≤ lm(log2 e)/2. For
s ≥ � the right-hand side of (3) is at least n. Thus Theorem 8 gives no non-trivial bound
on d(X |U K ) if ν exceeds lm(log2 e)/2t ≈ (log2 e)/2 ≈ 0.72. The factor (log2 e)/2
comes from Lemma 6 used to prove (23). We therefore need Lemma 16 as an alternative
to Lemma 6.

Lemma 16. Let S1, . . . , Sl be a sequence of random variables such that for 1 ≤ j ≤ l
we have |Sj | ≤ a (for some a ≥ 0) and (22) is satisfied, then, for every τ ∈ [0.5, 1),(∣∣∣∣∣

l∑
j=1

Sj

∣∣∣∣∣ ≥ τ la

)
≤ 2−l(1−H(τ ))+1, (26)

where H(τ ) := −τ log2 τ − (1− τ) log2(1− τ) is the binary entropy function.

This lemma is incomparable with Lemma 6. On one hand it is weaker since it applies
only when (22) is satisfied and for τ ≥ 1

2 . Also, for τ not much greater than 1
2 , (26) is

worse than (23). However, for our purposes (τ close to 1), (26) is stronger than (23).

Proof (of Lemma 16). For every j let Tj := ∣∣Sj

∣∣ and

Vj =
{

1 if Sj ≥ 0,
−1 otherwise.

Thus Sj = Tj · Vj . Therefore, for every τ ,
∑l

j=1 Sj ≥ τ la implies |{ j : Vj = 1}| ≥ τ l.
The random variables V1, . . . , Vl are independent and uniformly distributed and thus
|{ j : Vj = 1}| is distributed according to the binomial distribution. Therefore(

l∑
j=1

Sj ≥ τ la

)
≤ P(|{ j : Vj = 1}| ≥ τ l)

≤ 2−l
(1−τ)l∑

j=0

(
l

j

)

≤ 2−l(1−H(1−τ)). (27)

The last step follows from
∑ωl

j=0

( l
j

) ≤ 2l H(ω) (see, for instance, Theorem 1.4.5 on
page 21 of [25]) which holds for all ω ∈ (0, 0.5], hence for ω = 1 − τ . By symmetry
we also get the same bound as in (27) for P(

∑l
j=1 Sj ≤ −τ la) and thus, by multiplying

the bound by 2 and using H(1− τ) = H(τ ), (26) follows.

If we now use Lemma 16 instead of Lemma 6 in the proof of Theorem 8 we can
replace the term τ 2(log2 e)/2 in (4) by 1 − H(τ ) and thus obtain the following lemma
which is incomparable with Theorem 8.
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Lemma 17. Theorem 8 also holds for τ ≥ 1
2 if (4) is replaced by

� := lm(1− ξ)(1− H(τ ))− m(1+ (1− ξ)(m log2 l + n + 1)).

We are now ready to prove Theorem 15.

Proof (of Theorem 15). We have s + t − H∞(R) ≤ (γ ν + 1 − γ )t = ζ t for ζ :=
1− γ (1− ν). Lemma 17 and n ≤ cm2 imply that for every τ ≥ 1

2 and ξ ,

ψ(m, λ(m), cm log2(λ(m)), γ, ν) ≤ cm2(2ζ t−� + ε).
Note that

ζ t −� = (ζ − (1− ξ)(1− H(τ )))mλ(m)+ o(mλ(m)).

By choosing τ ≥ 1
2 and ξ such that ζ − (1 − ξ)(1 − H(τ )) < 0 it follows that 2ζ t−�

vanishes (more than) exponentially in m, as does ε and hence also the right-hand side of
the above inequality.

7. Conclusions and Open Problems

The problem of finding very simple key-expansion schemes for the bounded-storage
model, with very short initial keys and optimal randomizer efficiency (also concrete,
non-asymptotic), remains an interesting research topic. This question, in particular the
notion of simplicity, is necessarily related to future developments in communication and
storage technologies.

A very interesting question is whether our scheme or any of the other proposed schemes
remains secure against an adversary who can store s quantum bits rather than s classical
bits of information. This question is relevant because the read-out operation on the state of
the quantum memory could depend on the initial key K which the adversary is assumed
to learn after having performed the store operation, and this makes quantum memory
potentially more powerful than classical memory. This issue is discussed in [14], where
it is proved for instance that privacy amplification by universal hashing [5], previously
proved secure against storage-bounded but otherwise unbounded classical adversaries,
remains equally secure even against an adversary with quantum memory. These results
do not seem to carry over to the bounded-storage setting, but we conjecture that security
in the bounded-storage model holds also against quantum adversaries.
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