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Abstract 

We determine the optimal centralized adaptive rate 
and power control strategy to maximize the total average 
weighted throughput in a generic multirate CDMA system 
with slow fading. An average power and instantaneous bit 
error rate (BER) constraint is assumed at the transmitter 
with conventional matched filter detection at the receiver. 
Our results are general enough to apply to several multirate 
CDMA schemes: multi-code, multi-processing gain, multi- 
rate modulation or hybrids of these. We obtain compact 
polyhedral set representations for the optimal rate regions 
without assuming any symmetries between the users. More- 
over we show that as the users move around within the cell, 
i.e. as the propagation path loss and the distribution of the 
channel fading of each user changes, the optimal power and 
rate control strategy can adupt by simply scaling the chan- 
nel fades of the users. Our numerical results show that in- 
creasing the granularity of rate adaptation (i.e. increasing 
the number of intermediate rate levels) for the same range 
of rates (i.e. the same maximum and minimum rate) does 
not significantly increase the average throughput. 

1. Introduction 

The importance of adaptation to improve the spectral ef- 
ficiency of a wireless communication system is well recog- 
nized. Rate and power adaptation strategies have been ex- 
plored under the assumption of perfect channel state infor- 
mation at the transmitter and receiver to determine the limits 
of achievable performance. For single user wireless com- 
munications the optimal rate and power control strategy to 
achieve ergodic capacity was determined by Goldsmith and 
Varaiya [I]. Practical systems represent a different prob- 
lem in that the set of rates is finite and discrete and there is 
a tolerable bit error rate (BER) associated with them. Gold- 
smith and Chua [2] determined the optimal adaptation strat- 
egy for such systems using a set of MQAM constellations 
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subject to an instantaneous BER constraint. The optimal 
adaptation strategy with a given set of rates requires choos- 
ing the optimal channel fade thresholds at which the user 
switches from one constellation to another. These thresh- 
olds divide the channel fade space into optimal rate regions. 
Since the transmit power is a function of just the required 
rate and the channel fade, power adaptation is fixed once the 
optimum rate adaptation is determined. Also it was shown 
in [2] that with just five or six different signal constellations 
the optimal adaptation strategy achieves within 1-2 dB of 
the maximum spectral efficiency. 

For the multiple access wireless channel the problem 
gets more interesting as users can interfere with each other. 
The optimal rate and power adaptation strategy to maximize 
the ergodic capacity for this channel was determined re- 
cently by Tse and Hanly [3]. Knopp and Humblet [7] found 
that for symmetric users the optimum rate and power adap- 
tation allows only the user with the best channel to transmit 
at any one time. However optimal rate and power adap- 
tation for interference limited systems when each user has 
an instantaneous BER constraint and a fixed set of transmit 
rates to choose from has not been studied. This problem 
forms the focus of our work in this paper. We concentrate 
upon multirate DS-CDMA systems since they dominate the 
air interface standards for third generation wireless commu- 
nications. 

The organization of this paper is as follows. The system 
model and notations are introduced in Section 2. The gen- 
eral form of the optimal adaptation strategy is presented in 
Section 3. Section 4 applies the results to particular mul- 
tirate DS-CDMA systems and presents simple examples to 
illustrate the nature of the optimal adaptation. Section 5 
shows that as the users move around within the cell, i.e. as 
the propagation path loss and the distribution of the chan- 
nel fading of each user changes, the optimal power and rate 
control strategy can adapt by simply scaling the channel 
fades of the users. We conclude in Section 6 with some ob- 
servations and further discussion on the interesting aspects 
of the optimal adaptation strategy and provide directions for 
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future work. 

2. System model and notation 

We use the following notation throughout the paper: E[.] 
for expectation; overline (77) for vectors; subscripts (v i )  for 
the components of the vectors; superscripts (T' ,Ez) to dis- 
tinguish vectors; < . , . > for inner product of vectors; 
V1 o Vz for the Hadamard product of vectors V1, 8'; and 
V(-') for the Hadamard reciprocal. Optimal solutions are 
denoted by a ()*. 

We consider the uplink in a single cell CDMA system 
with K users, each having a set of M + 1 transmit rates 
M = {mol ml ,. . . , m M }  to choose from, where mo < 
ml < < mM. The different rates may correspond to 
different numbers of transmitted codes (multicode CDMA), 
different bit durations (variable sequence length CDMA), or 
different modulations (multirate modulation). 

An allocation of rates among users is denoted by a rate 
vectorz = {no, nl,. + , n ~ - l } .  If the system allows users 
to switch off transmission, i.e. mo = 0, one or more of these 
n; may be zero. The system may not allow some rate vec- 
tors that are particularly biased towards a subset of users in 
the interest of fairness, while some rate vectors might be in- 
feasible. Note that a rate allocation is infeasible only if there 
does not exist a set of non-negative transmit powers that 
can achieve that rate allocation. The feasibility constraint 
will be specified more concretely in Section 4. Assuming T 
such vectors, the set of allowed and feasible rate vectors in 
the system is denoted as N = {$,E', - .  , ET-1} where 
T 5 K'+l. 

The user's channel access is assumed to be asynchronous 
and the spreading codes used by different users are not or- 
thogonal to each other. The channel is affected by slow fad- 
ing, additive white Gaussian noise (AWGN), and multiple 
access interference (MAI) due to other users. We define the 
channel state by the vector X = ( X I ,  XZ, e .  , XK) where xi 
is the channel power fade experienced by the ith user. Un- 
der centralized control the optimal transmit rate and power 
for each user is a function of the entire channel state vector 
X which is distributed according to the probability density 
function f(T). We assume that the receiver (base station) 
is able to estimate the channel state perfectly and a reli- 
able feedback channel exists from the receiver to each of 
the transmitters for flow of rate and power control infor- 
mation. The channel state changes at a rate slow enough 
(slow fading) for the delay on the feedback channel to be 
negligible. The ith user's received power at the base sta- 
tion is given by: Pi(n) = Si(x)xi V i  E I and E E r. 
Here S;@) is the transmit power of user i; I is the in- 
dex set of users {1,2, .  . - , K }  and r = RF. The x; can 
be the channel power gains themselves (flat fading) or the 
sum of channel power gains of the multipath components 

for each user at the output of an L-fin er RAKE receiver 
(frequency selective fading): xi = xi,,. Using the 
Hadamard product and Hadamard reciprocal notation we 
can write s(X) = F(jz) o X(-l). For MAI we make the 
Gaussian approximation [6] which has been shown [5] to 
be valid for large number of users or large enough spread- 
ing code lengths. 

E 

3. Optimal adaptation 

The problem statement is as follows: 

T-1 - 

The set of T allowed rate vectors 5; E N divides the chan- 
nel state space into T rate regions RE< = {z : E*@) = 
F?}, Vi$ E N .  The conventional receiver makes the sys- 
tem interference limited. Thus for each allowed rate vector 
5E E JV there is a unique received power vector F(E) that 
minimizes each user's transmit power for that rate vector 
and the given set of BER constraints. Note the similarity 
with the single user adaptive MQAM problem solved in [2] .  
E is the vector of weights or utilities. Constructing the La- 
grangian yields the optimal adaptation strategy as follows: 

3 s (X) = P(E*(Z) )  0 2(-1). 
- 
X is the vector of Lagrange multipliers and needs to be cho- 
sen to meet the average transmit power constraints of a11 
users. Note that the equations for the boundaries between 
optimal rate regions are linear in $-'). SO the optimal 
rate regions are polyhedral sets in the Hadamard reciprocal 
$-') space, and a compact polyhedral set representation 
exists for RE as: 

Here A = {uj,k} is a matrix with uj,k = &[P#) - 
Pk(E)] and v j  =< Z,Ej  - E >. 

Our optimization problem differs from the optimal strat- 
egy to achieve capacity in [3], where stronger users can ac- 
tually be decoded first and their effect cancelled out. Unlike 
our system which is interference limited, as pointed out in 
[4], for the capacity maximization problem there is no solu- 
tion that minimizes the required power of all users. Increas- 
ing the power of one user benefits the others because it can 
be decoded and cancelled more easily. 

The optimal rate and power adaptation strategy for our 
system depends on the probability distributions of the user's 
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channel fades p(xi) and the user's average power con- 
straints only through the constants 1. This characteristic 
is common to the solutions of the problems in [ 11, [2] and 
[3]. The similarity between the problems and the nature of 
their solutions is easily noticeable inspite of the differences 
pointed out earlier. 

4. Application to specific systems 

While the formula for the optimum adaptation strategy 
in (1) is sufficiently general, it does not give much insight 
into the optimal policy for any specific system. In this sec- 
tion we apply (1) to systems using multiple codes or vari- 
able spreading - the two commonly used schemes to achieve 
multiple rates with CDMA. With multicode CDMA, each 
user has a set of M codes, orthogonal within themselves but 
not across different users. Variable spreading allows each 
user M different values of spreading gain while keeping the 
chip rate fixed. For our example we let the available rates 
be {0 ,1 , . - .  , M } ,  i.e. mi = i. 

4.1. Analysis 

For our system model the ith user's BER with multicode 
or variable spreading CDMA is given by the following ex- 
pression: 

if ni(x) # o then BER~(F(~),z(~)) = 

For multicode CDMA or conventional CDMA' N, is the 
spreading gain and ~ ( x )  is the number of orthogonal, syn- 
chronous codes transmitted in parallel by user i. For no- 
tational convenience let us define constants c = 2 and 

d = &&-. For variable spreading, N, is the maxi- 
mum spreadmg gain (corresponding to the minimum or unit 
rate) of the system and rates n;(x) are achieved by reducing 
the spreading factor for user i to &. The chip duration 
T, remains fixed in all schemes. 

For simplicity we assume symmetric users - The 
symmetry assumption implies that the users have identi- 
cal instantaneous BER and average transmit power con- 
straints, their channel power fades are independent and 
identically distributed (i.i.d.) and the weights in the ob- 
jective function are set to unity. Therefore it suffices to 
specify the optimal adaptation for the region r o r d  = {x : 

Q-'(BERo) ' 

"ate that  conventional^^^^ is just a specid case of multicode 
CDh4A with ni&) E (0,l). 
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x1 > x2 . > XK} because the solution for any chan- 
nel state can be obtained by a corresponding transposition 
of the xis. 

Note that because of the symmetry assumption the av- 
erage power constraints of all K users are the same and 
equivalent to an average power constraint on the sum of the 
transmitted powers within r o r d .  This can be stated as fol- 
lows: 

then S, ~ i ( x ) j ( x ) f i  = saw vi E I. (4) 

While in general a rate sum r = E:, nc can correspond to 
several different rate vectors representing various dismbu- 
tions of the total rate among the users, we find that within 
r o r d  only one of these rate vectors is optimal in that it min- 
imizes the sum transmit power required to achieve a total 
rate r .  As pointed out earlier, within r o r d  the average sum 
power constraint by itself is precisely equivalent to all the 
user's individual average power constraints over the entire 
channel fade space I'. The unique optimal rate vector Z is 
such that nj = M for j 5 [GJ, nl+~+1 = r mod M 
and nj = 0 for I&] + 1 < j 5 K. In other words it has 
the first 16 J users (with the best channels) transmitting at 
maximum rate (transmitting their full quota of M codes, or 
at the minimum spreading gain %) and one user (the next 
one) transmitting at rate m = r mod M (transmitting m 
codes or at a spreading gain %). For simplicity, since each 
sum rate r corresponds to a unique and distinct rate vector 
within rord ,  we denote the rate regions as 72, instead of 
%-. 

The received power vector for rate region R, is found 
from (3) so that 

else 

where m = r mod M .  Note that for a s u m  rate r to be 
feasible, i.e. for the transmit powers to be non-negative we 
need 

Using the optimal adaptation strategy the boundary between 
the rate regions 'R, and is given by 
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where X is a constant chosen to satisfy the average power 
constraint of all users and x1 = X is the equation for the 
boundary between 720 and RM . 

It is interesting to note that the rate regions 
Rl,R2,*.* , R M - ~  that correspond to just one trans- 
mitting user with no interference from other users 
are empty. Mathematically it is easy to see this 
since the boundary 120 H R1 is the same as that of 
RI H Rz,... , 7 Z ~ - 1  H RM. In other words the user 
with the best channel either does not transmit (nl (y) = 0) 
or he transmits at his maximum rate (nl(z) = M). 
This suggests that when a user does not have to deal 
with interference his power is more efficiently used if he 
transmits only when the channel is good enough for him 
to transmit at maximum rate. However when more than 
one user is transmitting, if one of them increases his rate 
he causes more interference to the others who are forced to 
increase their powers to meet their BER constraint, forcing 
him in turn to further increase his power. It no longer turns 
out to be efficient to wait for a good enough channel to 
transmit at maximum rate. Thus, for example, rate regions 

In a system where users are required to maintain some 
minimum rate (m-, # O), a user will always see interference 
and allowed rate regions won't be empty. Of course with 
some fading distributions (like Rayleigh fading) one must 
allow users to shut off transmission (mo = 0) during deep 
fades or else the average transmit power will be iniinite. 

RM+l, R M + Z ,  ' * 7 RZM-1 are not empty- 

4.2. Simplifications for conventional CDMA with 
outage 

For the simple case of conventional CDMA with outage 
the set of rates available to each user is (0,l) indicating 
that a user may or may not transmit depending upon his 
rate adaptation. The received power Pi(.) = for 
1 5 j 5 T and 0 otherwise. Hence the equation for the rate 
boundary between regions Ri and is 

. d 1-(i-1)d 7 - e H 'Ri+l : + 
Xj Xi+l 'R;+~ 

X(1- id)(l - (i - 1)d) (7) 

'Ri 

The relational operator $ means that for all points in R, 

the relation is >; for all points in the relation is <; 
and all points on the boundary satisfy this with equality. 
The optimal rate regions are illustrated for a two user case 
in Figure 1. 

%+I 
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L I  

x1 + x 

Figure 1. Optimal rate regions for a conven- 
tional CDMA system with two users 

43. Average throughput computation 

We now present a numerical example to show the ap- 
plication of the optimal adaptation strategy to a multirate 
CDMA system with symmetric users. We use Monte Carlo 
simulations to evaluate the average throughput with opti- 
mum adaptation, i.e., we generate channel states accord- 
ing to the Rayleigh distribution and find the optimum rate 
and power given by the adaptation strategy for each state. 
This is averaged out to obtain the average throughput and 
transmit power. We used the following parameters: spread- 
ing gain N, = 128, target BER (Bm) = and i.i.d. 
Rayleigh fading with average channel power fade of unity 
on each user's channel. We choose noise power spectral 
density NO and symbol duration Tb so that transmitting at 
unit power all the time would yield an average received & 
of 20 d ~ ,  i.e. 8 = 100. We evaluate the average sum rate 
versus average transmit S N R  with optimal rate and power 
adaptation for different values of M, the number of codes 
available to each user. The results are plotted in Figure 2. 
The plot shows steadily increasing average sum rate for the 
same average transmit power as M increases. 

We also explore the effect of a restricted number of 
rates available to each user. Figure 3 shows how the av- 
erage sum rate versus average transmit SNR plot varies as 
the set of rates available to the user becomes more and 
more restricted. We notice that when each user is re- 
stricted to transmit either at the full rate ( M  = 16) or shut 
off (M = 0) the loss compared to the complete rate set 
(M = 0,1,2, . . ,15,16) is less than a dB. Moreover if 
the rates are restricted to ( M  = 0,8,16) the difference is 
negligible. The performance penalty depends on the aver- 
age transmitted S N R  and vanishes at high or low average 
transmit SNRs.  To understand this better we plot the opti- 
mum rate regions for a system with just 2 users for the case 
of high average transmitted S N R  in Figure 4. The optimum 
rate regions for low SNRs can be obtained by simply scaling 
the axes, e.g. contracting the axes by a factor of 7.3 gives us 
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Figure 2. Average Sum Rate versus Average 
Transmit SNR for 20 users 

Figure 3. Average Total Sum Rate versus Av- 
erage Transmit SNR for 20 users 

an average transmit S N R  of -4.6 dI3 and an average rate of 
0.7. We immediately notice that most of the channel state 
space is consumed within the rate regions corresponding to 

be rewritten as 

A* (x) = a r ~  max < E, > - < x =$-I), qA) >) 
Fi€ N 

the restricted rates, i.e. most of the time the users are trans- 
mitting at either peak rate (m = 16) or not transmitting at 
all (m = 0). 

Note that in contrast to Knopp and Humblet’s results [7] 
where only the user with the best channel transmits, the op- 
timal rate and power adaptation for symmetric users when 
the set of rates available to the users is discrete and finite 
allows users to transmit simultaneously and interfere with 
each other. This is because with lited rates as the best 
user’s channel improves he cannot increase his rate beyond 
the maximum value and several users need to transmit si- 
multaneously to use the channel to its fullest, even at the 
cost of interfering with each other. 

5. Adaptation to large scale mobility 

Over a communication session, while the user is running 
the same application, his BER requirement is fixed. This 
implies that the power vectors P’(.) do not change. The 
revenue model doesn’t change either which means that iZ is 
also fixed. The only thing that gets affected by the user’s 
mobility is his channel power fade distribution. This also 
includes the change in shadowing and path loss as the prop 
agation environment changes. However, as stated above, 
this only affects the constants that decide the optimal rate 
regions. So the optimal adaptation strategy need not be re- 
computed from scratch as large scale mobility changes the 
user’s channel fade distribution. We need only an appropri- 
ate scaling of 1. Moreover the optimal strategy in (1) can 
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Note that the dependence on the ith user’s channel fade xi is 
only through the quantity 2. Thus a different rate adapta- 

tion strategy corresponding to a constant vector X’ # x can 
be treated as effectively the same strategy (i.e. $ff = A) 
but with the channel fades scaled by the ratio of the con- 
stants (i.e. zeff = ’jg o x o ?(-’)). n u s  an appropriate 
scaling of the channel fades (with unchanged) gives the 
new optimal rate regions. So we could adapt to both small- 
scale and large-scale mobility. To account for the changing 
wireless channel power fades xi arising out of small scale 
mobility we have the optimal rate and power adaptation 
scheme derived earlier. Then in addition, to account for rel- 
atively large scale mobility that changes the distribution of 
the channel fades p ( X )  itself, we need an algorithm to adapt 
the scaling factors to retain optimality. The task is made 
simpler because the algorithm does not have to actually fig- 
ure out what the new distribution p ( x )  is or keep track of 
how it changes. Instead, the algorithm just needs to make 
sure that every user meets his average transmit power con- 
straint. Each user can evaluate his average transmit power 
over some time and indicate to the base station if it exceeds 
or falls short of its desired average transmit power. The 
algorithm then needs to transform these inputs into a rule 
that modifies the scaling factors. The apparent simplicity of 
this adaptation raises some interesting questions about the 
existence and convergence of efficient algorithms to track 
the optimal scaling factors as the users move around. It is 
also interesting to determine the extent of coupling between 
the effects each of these scaling factors has on the system. 

- 
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Figure 4. Optimum rate region boundaries for 
2 users for high SNR 

In other words, how strongly does a change in the constant 
A; affect the other users’ average transmit power as com- 
pared to the ith user’s average transmit power. The extent 
of this coupling should have a significant impact on the na- 
ture of such an algorithm as well as its convergence proper- 
ties. While we do not directly tackle this issue in this paper, 
we find it interesting enough to include a simple numerical 
example that leads to some encouraging results. 

5.1. Numerical Example 

We consider the simplest case of 2 users in a conven- 
tional DS-CDMA system with Rayleigh fading. However, 
this time we do not assume symmetry between users. The 
optimal solution as found earlier depends upon two con- 
stants XI and X2 to satisfy the users’ average transmit power 
constraints. Define a squared error function as 

&SE = (sm,au,l - sFu,1)2 + (sm,au,2 - Sav,2)2 (8) 

where Sm,au,l and Sm,au,2 are the measured average trans- 
mit powers of users 1 and 2 respectively. Now varying the 
constants X1 and Az, we plot the contours of constant &SE 
in Figure 5. Also, in Figure 6 we plot Sm,av,l against XI 
keeping A2 fixed, for several different values of X2. Note 
that the plots superposed on each other are almost identi- 
cal and hard to distinguish. Thus A2 has little impact on 
the average transmit power of user 1. For these plots we 
used Monte Carlo simulations with the same parameters as 
Section 4.3. 

Figure 5 shows a unique global minimum for the error 
€ S E ,  suggesting that convergence may not be a big problem 
for algorithms seeking to minimize &SE. Figure 6 shows 
that, at least for this simple example, there is almost no 

Figure 5. Contour Plots for Squared Error in 
Measured Average Powers 

coupling between the effects of the scaling factors. While 
affects Sm,au,l very strongly, A2 has little effect on it. 

A possible explanation for this is as follows: For Rayleigh 
fading the probability mass is heavily concentrated close to 
zero. So the average transmit power is a strong function of 
the outage threshold for each user. However, that thresh- 
old is a function of that particular constant A1 or X2 alone 
for user 1 or 2 respectively. This explains the decoupled 
effect. Such trends, if proved to be more general than this 
specific example, could guarantee efficient algorithms with 
fast convergence. 

9 

Figure 6. Measured Average Power for user 1 
versus X1 for various values of A2 
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6. Conclusions and future work 

We determined the optimal centralized adaptive rate 
and power control strategy to maximize the total average 
weighted throughput in a generic multirate CDMA sys- 
tem. We found that the optimal adaptation for symmetric 
users when the set of rates available to the users is discrete 
and finite allows users to transmit simultaneously and inter- 
fere with each other. For multicode and variable spreading 
CDMA with conventional matched filter detection we found 
that the user with the best channel either does not trans- 
mit (i.e. the best channel is not good enough and nobody 
transmits) or he transmits at maximum rate if his channel is 
above a threshold. A user transmits only if all the users 
with a better channel are transmitting at their maximum 
rate. Although we considered just the symmetric users case 
the same holds true for asymmetric users. Our numerical 
results exploring the effect of granularity of rate adaptation 
on the average throughput have a similar flavor to corre- 
sponding results for a single user in [2] mentioned earlier in 
Section 1. We found that for a given range of rates available 
to each user (given the maximum and minimum transmit 
rates) the optimal average throughput does not improve sig- 
nificantly if we increase the granularity of rate adaptation by 
allowing each user a richer set of rates. The difference dis- 
appears at very low or very high SNRs. Lastly we found that 
the optimal adaptation strategy has a parametric form where 
the parameters can be interpreted as scaling factors for the 
users’ channel fades. This allows the optimum adaptation 
strategy to retain optimality even with large scale mobility 
by suitably adapting these parameters. 

While we focused on multirate DS-CDMA schemes us- 
ing a conventional receiver, note that the optimal rate and 
power adaptation strategy given by (1) is sufficiently gen- 
eral to encompass several other systems as well. (1) makes 
use of the key fact that given a rate vector there exists a 
unique received power vector that minimizes the transmit 
power for all the users. This is m e  for interference lim- 
ited systems as discussed earlier. In addition the optimal 
strategy is given by (1) for all other systems where this is 
true as well. Such systems include a system using a linear 
MMSE receiver instead of the conventional receiver, and 
TDMA/FDMA schemes with the users’ rates determined by 
the number of timdfrequency slots available to each user. 

Some directions for future work include an extension to 
systems with continuous rates; a detailed analysis of the 
number of different rates each user must have in the mul- 
tirate DS-CDMA system to come close to the maximum 
spectral efficiency; comparison of the optimal adaptation 
with a fixed-rate scheme that inverts the channel-fading or 
a truncated power control scheme like the one presented 
in [8]; and the performance degradation caused by channel 
measurement errors. 

0-7803-6507-0/00/%10.00 02000 IEEE 

References 

[ 13 A. J. Goldsmith and Varaiya, P. P., “Capacity of fading 
channels with channel side information,” IEEE Trans- 
actions on Information Theory Vol. 43.6, Nov. 1997, 
Page(s): 1986-1992 

[Z] A. J. Goldsmith and S .  G. Chua, “Variable-Rate 
Variable-Power MQAM for Fading Channels,” 
IEEE Trans. on Communications, Vol. 45, pp. 1218- 
1230, Oct. 1997. 

[3] Tse, D.N. and S.V. Hanly (1998) “Multi-access fad- 
ing channels: Part I: Polymatroid structure, optimal 
resource allocation and throughput capacities.” IEEE 
Trans. on Info. Theory, v. 44. No. 7, Nov., pp. 2796- 
2815. 

[4] S.V. Hanly and D. Tse, ‘Tower Control and Capacity 
of Spread-Spectrum Wireless Networks”, Automatica, 
vo135, no. 12, Dec. 1999, p. 1987-2012. 

[5] Tony Ottosson and Arne Svensson, “On Schemes for 
Multirate Support in DS-CDMA Systems”, to be pub- 
lished in Wireless Personal Communications, Kluwer 
Academic Publishers. 

[6] T. S .  Rappaport, “Wireless Communications - Princi- 
ples and Practice”, Prentice Hall. 

[7] Knopp, R. and P. A. Humblet (1995) “Information ca- 
pacity and power control in single-cell multiuser com- 
munications’ .” IEEE Int. Con$ on Communications, 
Seattle Wash., June. 

[8] S.W.Kim and A. Goldsmith, ‘Truncated power control 
in code division multiple access communications.”, in 
Vehicular Technology Transactions, May 2000. 

1000 VTC 2000 


