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Abstract

We consider systems of bosons trapped in a box, in the Gross-Pitaevskii regime.
We show that low-energy states exhibit complete Bose-Einstein condensation with
an optimal bound on the number of orthogonal excitations. This extends recent
results obtained in [2], removing the assumption of small interaction potential.

1 Introduction

We consider systems of N bosons trapped in the three-dimensional box A = [0;1]3, with
periodic boundary conditions (the three dimensional torus with volume one), interacting
through a repulsive potential with scattering length of the order N~!, a scaling limit
known as the Gross-Pitaevskii regime. The Hamilton operator is given by

N N
Hy = -Ay+ > N°V(N(z; — ;) (1.1)

and acts on a dense subspace of L2(A"V), the Hilbert space consisting of functions in
L2(AN ) that are invariant with respect to permutations of the N particles. We assume



here V € L3(R?) to have compact support and to be pointwise non-negative (i.e. V(z) >
0 for almost all x € R3).

Instead of trapping the Bose gas into the box A = [0;1]* and imposing periodic
boundary conditions, one could also confine particles through an external potential Veyt :
R3 — R, with Ve (z) — o0, as |z| — oo. In this case, the Hamilton operator would
have the form

N N
H}\I;ap = Z [_Al'j + Vext(xj)] + ZNZV(N(xZ - xﬂ)) (1'2)

7=1 1<j

and it would act on a dense subspace of L2(R3V).
Lieb-Seiringer-Yngvason proved in [16] that the ground state energy E}:\l;ap of (1.2) is
such that, as N — oo,

Etrap

N .
— min Eap

N 7 per2®)gll2=1 (®)

with the Gross-Pitaevskii energy functional

ar(e) = [ (VP + Veulil? + draolel] do (13)

where ag denotes the scattering length of the unscaled interaction potential V.

In [13], Lieb-Seiringer also proved that the normalized ground state vector w%ap of
(1.2) exhibits complete Bose-Einstein condensation in the minimizer pgp of (1.3), mean-
ing that its reduced one-particle density matrix yy = tra N|w§\1}ap><w§\l}ap| (normalized

so that tryy = 1) satisfies
N = leap){eap| (1.4)

as N — oo (convergence holds in the trace norm topology; since the limit is a rank-
one projection, all reasonable notions of convergence are equivalent). Eq. (1.4) asserts
that, in the ground state of (1.2), all bosons, up to a fraction that vanishes in the limit
N — o0, occupy the same one-particle state pgp. In [14], Lieb-Seiringer extended Eq.
(1.4) to reduced density matrices associated with normalized sequences of approximate
ground states, ie. states with expected energy per particle converging to the minimum
of (1.3) (under the constraint ||| = 1).

A new proof of the results described above has been later obtained by Nam-Rougerie-
Seiringer in [18], making use of the quantum de Finetti theorem, first proposed in the
mean-field setting by Lewin-Nam-Rougerie [10, 11].

The results of [16, 13, 14, 18] can be translated to the Hamilton operator (1.1),
defined on the torus, with no external potential. They imply, first of all, that the ground
state energy En of (1.1) is such that

E
lim WN = drag . (1.5)

N—oo



Furthermore, they imply that for any sequence of approximate ground states, ie. for any
sequence ¥n € L2(AY) with ||¢n]| = 1 and

! (N, HNpn) = dmag (1.6)

lim —
N—oo N
the reduced density matrices yn = tr, . n|1n)(¥n| are such that

lim tr |yn — o) (ol| = 0 (1.7)
N—oo

where ¢o € L?(A) is the zero momentum mode defined by og(z) = 1 for all z € A.
Since we will make use of this result in our analysis and since, strictly speaking, the
translation invariant Hamiltonian (1.1) is not treated in [14, 18], we shortly discuss the
proof of (1.7) (in particular, how it follows from the analysis of [18]) in Appendix B.

Under the additional assumption that the interaction potential V' is sufficiently small,
in [2] we recently improved (1.5) and (1.7), obtaining quantitative estimates showing,
on the one hand, that Fn — 4magN remains bounded, uniformly in N, and, on the other
hand, that every sequence of approximate ground states ¥ of (1.1) exhibit Bose-Einstein
condensation, with number of excitations bounded by the excess energy (¢Yn, HNtn) —
4wagN. The goal of the present paper is to extend the results of [2], removing the
assumption of small interaction.

Theorem 1.1. Let V € L3(R3) have compact support and be pointwise non-negative.
Then there exists a constant C' > 0 such that the ground state energy En of (1.1) satisfies

|EN —47TCI0N| <C (1.8)
Furthermore, consider a sequence n € L2(AN) with |[¢n]|| = 1 and such that
(YN, HNYn) < dmagN + K

for a K > 0. Then the reduced density matriz yn = tra, . n|tN)YN| associated with Yy

1s such that
C(K+1)

~ (1.9)

1 — (0, YNp0) <
for all N € N large enough.

Remark: Eq. (1.9) gives a bound on the number of orthogonal excitations of the Bose-
Einstein condensate, for low-energy states of the Hamilton operator (1.1). It implies that

(N, dU(1 = |po)(pol)¥n) = N — (N, a”* (¢o)a(wo)N)

_ N[ (o) < O +1)  E10

and thus that, for low-energy states iy with finite excess energy K, the number of
excitations of the Bose-Einstein condensate remains bounded, uniformly in N. Notice
that the bounds (1.9), (1.10) remain valid and non-trivial even if K grows, as N — 0o, as



long as K < N; in particular, they imply complete BEC for all sequences of approximate
ground states 1y satisfying (1.6).

To prove Theorem 1.1, we are going to introduce, in Section 2, an excitation Hamilto-
nian Ly, factoring out the Bose-Einstein condensate. In Section 3, we define generalized
Bogoliubov transformations that are used in Section 4 to model correlations among par-
ticles and to define a renormalized excitation Hamiltonian Gy ¢; important properties of
Gn,e are collected in Prop. 4.2 and in Prop. 4.3. A second renormalization, this time
through the exponential of an operator cubic in creation and annihilation operators,
is performed in Section 5, leading to a new twice renormalized Hamiltonian Ry ¢; an
important bound for Ry, is stated in Prop. 5.2. In Section 6, we use the results of
Prop. 4.2, Prop. 4.3 and of Prop. 5.2 to show Theorem 1.1. Section 7 and Section 8 are
devoted to the proof of Prop. 4.2 and, respectively, of Prop. 5.2.

The main novelty, with respect to the analysis in [2] is the need for the second
renormalization, through the exponential S = e? of a cubic operator A. Under the
additional assumption of small potential, the analysis of Gy, was enough in [2] to
show Bose-Einstein condensation in the form (1.9). Here, this is not the case. The
point is that conjugation with a generalized Bogoliubov transformation renormalizes the
quadratic terms in the excitation Hamiltonian, but it leaves the cubic term substantially
unchanged. For small potentials, the cubic term can be controlled (by Cauchy-Schwarz)
through the quartic interaction and through the gap in the kinetic energy. Without as-
sumptions on the size of the potential, on the other hand, we need to conjugate with .S,
to renormalize the cubic term. After conjugation with S, we can apply techniques devel-
oped by Lewin-Nam-Serfaty-Solovej in [12] (inspired by previous work of Lieb-Solovej in
[17]) based on localization of the number of excitations. On sectors with few excitations
(the cutoff will be set at M = ¢N, for a sufficiently small constant ¢ > 0), the renor-
malized cubic term is small and it can be controlled by the gap in the kinetic energy
operator. On sectors with many excitations, on the other hand, we are going to bound
the energy from below, using the estimate (1.7), due to [14, 18] (since on these sectors
we do not have condensation, the energy per particle must be strictly larger than 4may).

Theorem 1.1 is the first important step that we need in [4] to establish the validity
of Bogoliubov theory, as proposed in [5], for the low-energy excitation spectrum of (1.1).

Acknowledgements. We would like to thank P. T. Nam and R. Seiringer for several
useful discussions and for suggesting us to use the localization techniques from [12]. C.
Boccato has received funding from the European Research Council (ERC) under the
programme Horizon 2020 (grant agreement 694227). B. Schlein gratefully acknowledges
support from the NCCR SwissMAP and from the Swiss National Foundation of Science
through the SNF Grant “Dynamical and energetic properties of Bose-Einstein conden-
sates”.



2 The Excitation Hamiltonian

The bosonic Fock space over L?(A) is defined as
F=EPrinm =g rin="
n>0 n>0

where L2(A"™) is the subspace of L?(A™) consisting of wave functions that are symmetric
w.r.t. permutations. The vacuum vector in F will be indicated with Q@ = {1,0,...} € F.

For g € L?(A), the creation operator a*(g) and the annihilation operator a(g) are
defined by

* n 1 . n—
(@ @) w1, n) = 7= 39O D g )
j=1

(@) o1, sz) = VAT [ gD ) da
A
Observe that a*(g) is the adjoint of a(g) and that the canonical commutation relations

[a(g), a*(W)] = (g, h), [alg),a(h)] = [a*(g),a"(R)] = O

hold true for all g,h € L2(A) ({g,h) is the inner product on L?(A)).
It will be convenient for us to work in momentum space A* = 27Z3. For p € A*, we
consider the plane wave p,(z) = e~ in L?(A). We define the operators

a, =a’(pp), and ap = a(pp)

creating and, respectively, annihilating a particle with momentum p.

To exploit the non-negativity of the interaction potential V', it will sometimes be
useful to switch to position space. To this end, we introduce operator valued distributions
Gz, s such that

o) = [ @ ards, @'(f)= [ fe)ads

The number of particles operator, defined on a dense subspace of F by (N \Il)(") =
nU™ can be expressed as

N = E a;ap:/a;idxdx
peEA*

It is then easy to check that creation and annihilation operators are bounded with respect
to the square root of N, i.e.

la(HEI < IFIINY2E, fla* (ORI < IFIITNV + 1)

for all f € L%(A).



Recall that ¢g(z) = 1 for all # € A is the zero-momentum mode in L?(A). We define
L% (A) as the orthogonal complement in L?(A) of the one dimensional space spanned by

po. The Fock space over Li (A), generated by the creation operators a, with p € A% =
27 Z3\{0}, will be denoted by

Fi= @Li(/\)@sn
n>0
On F,, the number of particles operator will be indicated by

. *
N+ - Z apap

pEAi

For N € N, we also define the truncated Fock space
N
F =i

On this Hilbert space, we are going to describe the orthogonal excitations of the Bose-
Einstein condensate. To this end, we are going to use a unitary map Uy : L2(AY) —
f_fN, first introduced in [12], which removes the condensate. To define Uy, we notice
that every ¥y € L2(A™) can be uniquely decomposed as

Q(N—

VN = aopd™ + a1 s g Vitay

with a; € L% (A)® (the symmetric tensor product of j copies of the orthogonal
complement L2 (A) of ) for all j = 0,...,N. Therefore, we can put Uyty =

{ag,a1,...,an} € ]:_EN. We can also define Uy identifying ¢ with the Fock space

vector {0,0,...,9¥n,0,...} and using creation and annihilation operators; we find
N N—n
a(¢o)
Unton = @D = lpo){pol) " e tbn
n=0 (N —n)!

for all ¢y € L2(AYN). Tt is then easy to check that U} : ffN — L2(AN) is given by

U {a(O), ] N)} - o™

Z f_ -
and that Uy,Uy = 1, ie. Uy is unitary.
Using Uy, we can define the excitation Hamiltonian Ly := Uy HpyUjy,, acting on a

dense subspace of }EN. To compute the operator Ly, we first write the Hamiltonian
(1.1) in momentum space, in terms of creation and annihilation operators. We find

Hy = Z p-ayap + N Z V(r/N)a: Oy Oy O Qg oy (2.1)
peEA* p,q,rEN*

6



where

~

V(k) = /]12{3 V(x)e kT dy

is the Fourier transform of V, defined for all k € R? (in fact, (1.1) is the restriction of
(2.1) to the N-particle sector of the Fock space F). We can now determine the excitation
Hamiltonian £y using the following rules, describing the action of the unitary operator
Un on products of a creation and an annihilation operator (products of the form apaq can
be thought of as operators mapping L2(AN) to itself). For any p,q € A* = 277Z3\{0},

we find (see [12]):

UNCLS(I()U;:[ :N—N+
UNa;‘,aoU}:, :a; N—N+

(2.2)
Un agap Uy = /N — Ny a,
Un apaq Uy = apaq
We conclude that
Ly =L+ L0+ + Y (2.3)
with
o N-1- V(0)
£ = VO = Ny + 5 NG (N = AL
2 * T; * 1 *
LY =3 pasa,+ > Vip/N) [bpbp — Napap]
peAj pEA:
1 > %7 %
+5 2 V@/N) [0, + bpb—y]
pEA’jr (2'4)
3 1 >
ESV) — \/—N Z V(p/N) [ p+qa p0q +a a,pprrq}
P.gENT :p+q#0
4 1
‘Cg\[) = ﬁ Z (T/N) Ayt qapanrr

P,gEANT TEN™:
r#—p,—q

where we introduced generalized creation and annihilation operators

\/N NJF and bp:\/N_TMap (2.5)

for all p € A%. Observe that, by (2.2),

a*
i Nk
In other words, b, creates a particle with momentum p € A% but, at the same time,
it annihilates a particle from the condensate; it creates an excitation, preserving the

UxbiUy = a Ukb,Uy =



total number of particles in the system. On states exhibiting complete Bose-Einstein
condensation in the zero-momentum mode ¢q, we have ag, aj ~ V/N and we can therefore
expect that b, ~ aj and that b, ~ a,. Modified creation and annihilation operators
satisfy the commutation relations

. Ni 1,
[bp, by] = (1 - W) Op.g — N Ya%p

(2.6)
[bp, bg] = [b},, b5] = 0
Furthermore, we find
[bp, agar] = Opgbr, by, agar] = =0y (2.7)
for all p,q,r € A%; this implies in particular that [b,, N7 ] = by, [by, Ny| = —bs. It is

also useful to notice that the operators by, by, like the standard creation and annihilation
operators a,,, a,, can be bounded by the square root of the number of particles operators;

we find

lepel < A2 (FEZ20) P < vty

sl < || nv + 1)1/2(N—TN+

1/2
) el < v+
for all £ € ffN. Since N;. < N on .FEN, the operators by, b, are bounded, with
Bl 110511 < (N 4 1)1/2.

We can also define modified operator valued distributions

. N — . N —
by = TN ly, and b} = a; TM
in position space, for x € A. The commutation relations (2.6) take the form
7 Ik N 1 « ok >
[bx,by] = (1 - ﬁ) 6($ — y) — Nayam

Moreover, (2.7) translates to

(b, d;dz] = d(x — y)b., by, Gyaz] = —0(x — z)bz

which also implies that [b,, N'] = b, [0, Ny] = —br.

3 Generalizated Bogoliubov Transformations

Conjugation with Uy extracts, from the original quartic interaction in (2.1), some con-

stant and some quadratic contributions, collected in EES) and EE\Q,) in (2.4). In the



Gross-Pitevskii regime, however, this is not enough; there are still large contributions to
the energy hidden among cubic and quartic terms in EE\&;) and E%).

To extract the missing energy, we have to take into account the correlation struc-
ture. Since Uy only removes products of the zero-energy mode g, correlations among
particles, which play a crucial role in the Gross-Pitaevskii regime and carry an energy of
order N, remain in the excitation vector Untn. To factor out correlations, it is natural
to conjugate Ly with a Bogoliubov transformation. In fact, to make sure that the trun-
cated Fock space ffN remains invariant, we will have to use generalized Bogoliubov
transformations. Their definition and their main properties will be discussed in this
section.

For 1 € (*(A%) with n_, = n, for all p € A%, we define

1

B(n) = 3 Z (b~ — Tipbpb—p) (3.1)
pEAi
and we consider
1 * 7 % =
P = exp |5 N (mpbyb®, — fbyb—y) (3.2)

pEAi

We refer to unitary operators of the form (3.2) as generalized Bogoliubov transforma-
tions, in analogy with the standard Bogoliubov transformations

- 1 ~
B0 = exp 3 Z (mpana™, — fpapa_p) (3.3)
peAj

defined by means of the standard creation and annihilation operators. In this paper,
we will work with (3.2), rather than (3.3), because the generalized Bogoliubov transfor-
mations, in contrast with the standard transformations, leave the truncated Fock space
}EN invariant. The price we will have to pay is the fact that, while the action of
standard Bogoliubov transformation on creation and annihilation operators is explicitly
given by

B0 a, B0 — cosh(n,)a, + sinh(n,)a* (34)

there is no such formula describing the action of generalized Bogoliubov transformations.

A first important tool to control the action of generalized Bogoliubov transformations
is the following lemma, whose proof can be found in [6, Lemma 3.1] (a similar result has
been previously established in [19]).

Lemma 3.1. For every n € N there exists a constant C > 0 such that, on .FEN,
e BN, +1)"eBM < ceClnl N, 4 1)7 (3.5)

for all n € (2(A*).



Bounds of the form (3.5) on the change of the number of particles operator are not
enough for our purposes; we will need more precise information about the action of
unitary operators of the form eZ( . To this end, we expand, for any p € A%,

1
o~ B b, B — b, + /O ds %efsB(n)bpesB(n)
1
=b, — / ds e*B[B(n),b,]esB™
0

1 1
=ty Byl + [ [ dsn PO B, (805, by
0 0
Iterating m times, we find

m—1 ad(n) (b)

Bmp, eBM) — Z

" (3.6)
Sm—1
+/0 d81/0 dSQ-../O dsm, e_SmB(n)ad(BnZ%)(bp)eSmB(n)

where we recursively defined

0 n n—1
adfy) (A)=A and ad) (A) = [B(n),ady ()
We are going to expand the nested commutators adgl()n)(b ) and ad! () )(b*) To this
end, we need to introduce some additional notation. We follow here [6, 2, 3]. For

fiooo o fan € la(AL), 8= (81, 80),0 = (bos .- -, bp—1) € {-, %}, we set

0 (fro- o fo)

)

ﬁl by f2 ba fn—1 7)

3
_ bo b H
- Z ba0p1 @8 py Yorps YBaps Caops -+ 4B, _ip, g Yo lpn 5npn fz pe
P, PnEA*

where, for £ = 0,1,...,n, we define ap = 1 if by =%, ay = —1if by =, fp=11if iy =

and By = —1if #; = x. In (3.7), we require that, for every j = 1,...,n—1, we have either
f; =-and b; = x or §; = * and b; = - (so that the product a%‘lm meﬂ always preserves
the number of particles, for all £ = 1,...,n — 1). With this assumption, we find that

the operator Hﬁ)(fl,.. , fn) maps .7-"SN into itself. If, for some £ = 1,...,n, by_1 = -

and fiy = * (i.e. if the product aofl, 11pea§fm for £ = 2,...,n, or the product baop1a51p1

for £ =1, is not normally ordered) we require additionally that f, € ¢'(A%). In position
space, the same operator can be written as

n
2 b b b n—1 gbn—1pfn £
Hé,b) (f17 e 7f ) /bmol ?/11 axlg 222 $23 ﬁ 11 Tn 11)1:i H fé(x[ — y[) dl’gdyg (38)
=1

10



An operator of the form (3.7), (3.8) with all the properties listed above, will be called a
@ _operator of order n.

For g’fl""’fn € 62(A*+)’ ﬁ = (ﬁl""?ﬂn) € {_,*}n’ b = (bo"'-abn) € {.’*}n-‘rl, we
also define the operator

08 (fr,- . i)

n
b b b fin— b n b
- Z b£07p1a§311p1a0411p2 aﬁBQszaofws e aﬁn—llpn—laanfllpnaﬁﬁnpna "(9) H fe(pe)

p17---7pneA* 621
(3.9)
where ay and By are defined as above. Also here, we impose the condition that, for
all £ = 1,...,n, either § = - and by = * or #; = * and by = -. This implies that
Hé’lb) (f1,---, fn;g) maps }EN back into ]:_EN. Additionally, we assume that f, € ¢1(A%)
if by_1 = - and fy = * for some ¢ = 1,...,n (i.e. if the pair aifeillpfa%‘z[p[ is not normally

ordered). In position space, the same operator can be written as

) (frr s fnig) = / b afaaiaz .. apiayala(g) [ fo(ee — ye) doedye
/=1
(3.10)
An operator of the form (3.9), (3.10) will be called a II)-operator of order n. Operators
of the form b(f), b*(f), for a f € £2(A%), will be called TI"-operators of order zero.
() )(bp) and

The next lemma gives a detailed analysis of the nested commutators ad By

adg()n)(b;‘,) for n € N; the proof can be found in [2, Lemma 2.5/(it is a translation to

momentum space of [6, Lemma 3.2]).

Lemma 3.2. Let n € (*(A%) be such that n, = n_, for all p € (2(A*). To simplify
the notation, assume also n to be real-valued (as it will be in applications). Let B(n) be

n

defined as in (3.1), n € N and p € A*. Then the nested commutator adB(n)(bp) can be
written as the sum of exactly 2"n! terms, with the following properties.

i) Possibly up to a sign, each term has the form
AMAy. . A N_kﬂé’lb) (7L, ... % MPap) (3.11)

for some i k,s € N, j1,...,5, € N\{0}, # € {-,*}*, b € {-,*}f! and o € {1}
chosen so that o = 1 ifby = - and o = —1 if by, = * (recall here that p,(x) = e~ P<).
In (3.11), each operator A, : F<N — FSN w = 1,...,4, is either a factor
(N —N4)/N, a factor (N — (N4 —1))/N or an operator of the form
- 2 21,2 z
NI, (7, ) (3.12)

for some h, zq,...,z, € N\{0}, #,b € {-,*}".
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it) If a term of the form (3.11) contains m € N factors (N — N.)/N or (N — (N, —

) If / ; 3
1))/N and j € N factors of the form (3.12) with II®) -operators of order hy, .. ., hj €
N\{0}, then we have

m+ (b + 1)+ (h+ 1)+ (k+1)=n+1

it1) If a term of the form (3. 11) contains (considering all A-operators and the TI() -
operator) the arguments n't,... . n' and the factor n, for some m,s € N, and
i1, ... 0m € N\{0}, then
i1+t il S =n.

iv) There is exactly one term having of the form (3.11) with k = 0 and such that all
A-operators are factors of (N — NL)/N or of (N +1—N,)/N. It is given by

N—N+ n/2 N+1—N+ n/2 .
—~ ) \—/=x~ ) wh
if n is even, and by

(N N, ><"+1 /2 <N+1—N+>(” /2

nb*
N N

Tlp O—p
if n is odd.

v) If the TW -operator in (3.11) is of order k € N\{0}, it has either the form

k

i Ji

E : baom H aﬁlpl zp7.+1 fpknp apHn i
i=1

P1,--Pk

or the form

i 2r+1 *
Z baopl H aﬁzpz sz+1apknp Hn

P1,--Pk

for some r € N, j1,...,j5r € N\{0}. If it is of order k = 0, then it is either given

by np”b or by 772”16*,],, for some r € N.

vi) For every non-normally ordered term of the form

Z ”;aqa; Z ”ébqa;

qeA” qeA”
4 * i *
E NgQqby,  OT E 14bqbq
qeEN* qeEN*

appearing either in the A-operators or in the W —operator in (8.11), we have i > 2.

12



With Lemma 3.2, it follows from (3.6) that, if ||5|| is sufficiently small,

o0

~ "
P, = 3 nl) adigi, ()
”;0( ') (3.13)
—1)"
—B(n)px,B(n) _ (n) (px
e (”)bpe m = ZTadB(n)(bp)
n=0

where the series converge absolutely (the proof is a translation to momentum space of
[6, Lemma 3.3]).

While Lemma 3.2 gives a complete characterization of terms appearing in the ex-
pansions (3.13), to localize the number of particles as we do in Prop. 4.3, we will need

") (bp) with a smooth function f(N, /M) of the

to consider double commutators of ad(_ B

number of particles operator AVy. varying on the scale M € N\ {0}. To this end, we will
apply the following corollary, which is a simple consequence of Lemma 3.2.

Corollary 3.3. Let f : R — R be a real, smooth and bounded function. For M €
N\ {0}, let far = f(Ny/M). Then, for any n € N, p € A%, the double commutator

[far, [, ad(j%(n)(bp)]] can be written as the sum of 2™n! (possibly vanishing) terms,
having the form

FarnWN) AAg - ANTFILY (7t 5i0ay)

for some i,k,s €N, j1,..., 5, € N\{0}, # € {-,x}*, b € {-,+}**! and a € {1} chosen
so that o = 1 if b = - and o = —1 if b, = *, where the operators Aq,...,\; and
Hé’lb) (1, ... ,nj’f;n;goap) satisfy all properties listed in the points i)-vi) in Lemma 3.2
and where Fyy,, 1s a bounded function such that

cn?
| Errn NI < =11 (3.14)

for a universal constant C > 0 (different terms will have different functions Fyy,, but
they will all satisfy (3.14) with the same constant C' > 0).

(n)

Proof. 1t follows from Lemma 3.2 that, for any n € N, ad* B

)(bp) can be written as the

sum of 2"n! terms of the form (up to a sign)
AMAy. . A Nﬁkﬂé’lb) (7t ... ok My Pop) (3.15)

for some i, k,s €N, j1,...,jk € N\{0}, # € {-,*}*, b € {,*}** and a € {£1} chosen so
that o = 1if by = - and o = —1 if by, = *. In (3.15), each operator A, : F<N — F<N,
w=1,...,4, is either a factor (N — N )/N, a factor (N — (N} —1))/N or an operator
of the form

Nﬁhﬂéi)b/(nn ) 77Z2’ e ’nZh) (316)

13



for some h,z1,...,2, € N\{0}, #,b € {-,*}". The commutator of (3.15) with fys is
therefore given by

1)
ﬁ7b (

—Z(HAt) far, A < H At) NI 1)( J1 ...,njk;n;(pap)

u=1 " t=1 t=u+1
+ A Ag . A NTF A T O )]
Recalling (3.7) and (3.9) and using the identities by = (N +1)by, BN, = (N} —1)b},

we obtain that
o = 1) - 125 .

with e, = 0 if A, is either (N —N)/N or (N —(N;—1))/N, while e, takes values in the
set {—2,0,2} if A, is of the form (3.16) (Hﬁ)—opera‘cors can either create or annihilate

two excitations, or it can leave the number of excitations invariant). Moreover

[ T (iP5 )| = [f(%) —f(MMi1)]H§,1b)(77j17---mjk;vﬁwap)

1)

because H:(ib can create or annihilate only one excitation. Therefore

[farA1As .. Ay NTFIT --,nj‘“;nf;soap)]

s MAg o A NTRIID 7 e o)

-3 (I C) ~ () el I wv i
e A N () (AEED I i)

Hence, we have

[fM, A1A2 s AZ NﬁkHé}b) (,'7_71’ cee ,Ujka U;@ap)]

(Sl ()]

u=

) - e A

where n,, = >_," | ;. By the mean value theorem, we can find functions 6; : N — (0, £1),
60, : N — (0,e,) such that

[Far iAo A NTRIE) (7o)

_ 1 lieuf/(M) o (et )y

M M M

u=1

x Ao A NTHIL 0 mhipay)
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It follows that

e Lar Mg o A NTRI (PP 0y )]
= FynNp)A 1A A N_kﬂé}b) (njl, .. ,njk;n;gpap)

with

7 2
Fual) = lz ot (M OulNe)y | f'(%)]

u=1

depending on the precise form of the operator AqAs...A; N~ kH( )(77]1 ,njk;n;gpap).

Since e, # 0 only if A, is a II® operator, since there are at most n H( ) operators among
Aq,...,A; and since |e,| < 2 for all u € {1,...,i}, we conclude that, for example,

3n?2
1 Futall < 2751712
O

As explained after their definition (2.5), the generalized creation and annihilation
operators by, b, are close to the standard creation and annihilation operators on states
with only few excitations, ie. with N, < N. In particular, on these states we expect the
action of the generalized Bogoliubov transformation (3.2) to be close to the action (3.4)
of the standard Bogoliubov transformation (3.3). To make this statement more precise
we define, under the assumption that ||n|| is small enough, the remainder operators

L[ . m ” . 1 —
dg=7) — [ad(,B)(n)(bq) i bﬁ;"mq} dy=> — [ad( " () = b(ﬁml] (3.17)
m>0 m>0

where g € A%, (B, ) = (-, +1) if m is even and (f,, @) = (%, —1) if m is odd. It
follows then from (3.13) that

B peeBM) = b, + ogb™, + dy, e BpzeB) = bt + ogb_g +d;  (3.18)

where we introduced the notation 7, = cosh(n,) and o, = sinh(n,). It will also be useful
to introduce remainder operators in position space. For x € A, we define the operator
valued distributions d,, d}, through

e BB = b(3,) +0*(6,) + dp, e PDeBM = p*(3,) + b(5,) +dE (3.19)
where 7;(y) = - en- cosh(n,)e'®@Y) and ,(y) = > gens sinh(n,)e'? @=v).

The next lemma confirms the intuition that remainder operators are small, on states
with N, < N, and provides estimates that will be crucial for our analysis.
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Lemma 3.4. Letn € (*(A%), n € Z. For p € A%, let d,, be defined as in (3.17). If ||n||
is small enough, there exists C' > 0 such that

C
[Ny + D)™ 2dyg| < ~ [|np|||(/v+ + D)2 Inlllby (N + 1) H2/2¢ | a0
C .
I+ 0"2d58] < < Il |V + 1) +2

for allpeA*,§€.F§N. Wzthd =d,+ N! « ngbta* a,, we also have, for
qu qvq”"—q™"p
p & supp n, the improved bound

n/27 c n
IV + D" 2dpE)| < NIIUHQH%U\@ + 1) 22 (3:21)
In position space, with d, defined as in (3.19), we find

] C
IV + )" 2da | < < [l [ I + 1)U 4 [y (N + )T (3.22)

Furthermore, letting d, = d, + (Ny/N)b*(11,.), we find

[Ny + D)™ 2a,d,£||
< % [||77\|2||(N+ +1)™D2¢] 4 Inllii@ — )|V + 1)+272¢]
+ |Inllllae Ny + D)PFD2e) 4 nl12]la, (N 4+ 1) 3/ 2¢)|
+ |Inlll|a@zay (N + 1) F2D/2¢)|

(3.23)

and, finally,
N+ 1)"/%2 dy¢|
< 5 [P IOV + 14972 4 it — ) IV + 1097 (3.24)
o [l N+ D 2] + [ lay (N + D)%
+ Inl” lasay (A +1)+9/2] |

<n
forall £ € F&7.

Proof. To prove the first bound in (3.20), we notice that, from (3.17) and from the trian-
gle inequality (for simplicity, we focus on n = 0, powers of N can be easily commuted
through the operators d,,),

gl < 37— [ [ad o) — i, €] (3.25)
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From Lemma 3.2, we can bound the norm || [ad&ng(n) (bg) — ngbbﬁ?;p]g || by the sum of one
term of the form

NN mi(1-am)/2 N4+l-N m=(-am)/2
— N4 — N4 -
(T) <T> -1 n;nbgmpf (3.26)
and of exactly 2"m! — 1 terms of the form
B 0, . ,
HA1 A NTRTI (e nf;up%p)gH (3.27)

where i1,k1,41 € N, j1,..., 5k, € N\{0} and where each A,-operator is either a factor
(N —N.)/N, a factor (N +1—N,)/N or a Il -operator of the form

—hyy(2
N hl‘[é,g .. (3.28)
with A, z1,..., 2z, € N\{0}. Furthermore, since we are considering the term (3.26) sepa-

rately, each term of the form (3.27) must have either k; > 0 or it must contain at least
one A-operator having the form (3.28). Since (3.26) vanishes for m = 0, it is easy to
bound

m+(1—am)/2 m—(1—am)/2

N - N 2 N+1-N\~ =z .
(") () |

< O PN + 1)
On the other hand, distinguishing the cases ¢; > 0 and ¢; = 0, we can bound

HAl e AilN_klné,lb) (’I’}jl, e ,njkl ; nf;lgpazlp)gu
< CmNT Il fp Bl (M + 1P + ™ by (N + 1)EN]  (3.29)
< C™ " N | nplSmsoll Vs + 1€ + Il 16, (N + 1]

where in the last line we used |n,| < ||7||. Inserting the last two bounds in (3.25) and
summing over m under the assumption that ||n|| is small enough, we arrive at the first
estimate (3.20). The second estimate in (3.20) can be proven similarly (notice that,
when dealing with the second estimate in (3.20), contributions of the form (3.27) with
{1 = 0, can only be bounded by [b;(Ny + 1)E|| < [[(Vy + 1)3/2¢||). To show (3.21),
we notice that Jp is exactly defined to cancel the only contribution with m = 1 that
does not vanish for p ¢ supp 7. Moreover, the assumption 7, = 0 implies that only
terms with ¢; = 0 survive in (3.29). Also the bounds in (3.22) and (3.23) can be shown
analogously, using [3, Lemma 7.2]. O

To localize the number of particles operator in Prop. 4.3, we will also need to
control the double commutator of the remainder operators d,, d;, with smooth functions
f(N; /M) of the number of particles operator, varying on the scale M. To this end,
we use the next corollary, which is an immediate consequence of Corollary 3.3 and of
Lemma 3.4 (and of its proof).
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Corollary 3.5. Let f : R — R be smooth and bounded. For M € N\{0}, let fy; =
FNL/M). The bounds in (3.20), (3.21), (3.22), (3.23) and (3.24) remain true if we re-
place, on the left hand side, d;, by e, [, dplls dyp by [fars [, dplls de by [far, [fars dal]s
aydy by [far, [far,ayds]) and dxdy by [fur, [fM,dey]] and, on the right hand side, the
constant C' by CM 2| f'||2,. For example, the first bound in (3.20) becomes

[ VES YRR

< AU [, v+ D0+972¢) + Il + 1022

4 Quadratic Renormalization

We use now a generalized Bogoliubov transformation exp(B(n)) of the form (3.2) to
renormalize the excitation Hamiltonian. To make sure that exp(B(n)) removes correla-
tions that are present in low-energy states, we have to choose the coefficients n € £2(A*)
appropriately. To this end, we consider the ground state solution of the Neumann prob-
lem

[—A + %V} foe=Xefe (4.1)

on the ball |z| < N/ (we omit here the N-dependence in the notation for f; and for \s;
notice that A, scales as N—3), with the normalization fy(z) = 1 if |z| = N/. By scaling,
we observe that f;(N.) satisfies the equation

- v v = woasiove)

on the ball |z| < ¢. We choose 0 < ¢ < 1/2, so that the ball of radius ¢ is contained in
the box A = [~1/2;1/2]® (later, we will choose ¢ > 0 small enough, but always of order
one, independent of N). We extend then fy(N.) to A, by setting fy¢(z) = fo(Nz), if
|z| < ¢ and fy(xz) =1 for x € A, with |z| > £. Then

2
<—A + N7V(N~’U)> fne = N*Xefnexe (4.2)

where y; is the characteristic function of the ball of radius £. The Fourier coefficients of
the function fy, are given by

fNj(p) ::/Afg(Nx)e_ip'xdx (4.3)

for all p € A*. Tt is also useful to introduce the function wy(z) =1 — fy(z) for |z| < N¢
and to extend it by setting we(x) = 0 for |x| > N{. Its rescaled version wy,: A — R is
then defined through wy ¢(z) = we(Nz) if |z| < ¢ and wye(x) = 0 if 2 € A with |z| > £.
The Fourier coefficients of wy ¢ are then given, for p € A*, by

L@5(]9/]\7)

wWn,e(p) :/AW(Nx)eip'xdw: NE
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where
wy(k) = we(x)e”FTdx
R3
denotes the Fourier transform of the (compactly supported) function wy. We find
Ine(p) = 6p0 — N3, (p/N). From (4.2), we obtain

2 o~ o~ o~
ip/N) + 5 30 V(- 0)/N)Fxela) = NN Y 0o~ ) fwela) (4.
qeEN* qeEN*

In the next lemma we collect some important properties of wy, fy. The proof of the
lemma is given in Appendix A.

Lemma 4.1. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric. Fiz £ > 0 and let f; denote the solution of (4.1). For N large enough the
following properties hold true.

i) We have
3&0

(EN)?

Ao = (14 O(ag/EN)) (4.5)

it) We have 0 < fy,wy < 1. Moreover there exists a constant C' > 0 such that

'/V(x)fg(x)dx — 8mag| < C_a% (4.6)
(N
for all £ € (0;1/2) and N € N.
i11) There exists a constant C' > 0 such that
wy(z) < mi 1 and  |Vwe(x)| < $2€- T (4.7)
for all x € R3, £ € (0;1/2) and all N large enough.
iv) There exists a constant C > 0 such that
[ne(p)] < NLPQ
for allp € R3, all £ € (0;1/2) and all N large enough (such that N > £~1).
We define n : A* — R through
Iy = ~ N o(p) = —3300(p/N)
With Lemma 4.1, we can bound
il < o (1.9



for all p € A% = 27Z3\{0}, and for some constant C' > 0 independent of N and £ € (0; 3),
if N is large enough. From (4.4), we also find the relation

Py + 5 (VC/N) * o) (0) = N*Au(Re * ) 0) (49)

or equivalently, expressing the r.h.s. through the coefficients 7,,

Py + 5 Vp/N + o ZV p—q)/N)ng
qEA*

(4.10)
= N3AXe(p) + N2Ae > Relp — )y
qeEN*
Moreover, with (4.7), we find
2 = 1712 = / N?uw(No)Pde < C | —dw < C (4.11)
2| < 2| <t |Z]
In particular, we can make ||5|| arbitrarily small, choosing ¢ small enough.
For a > 0, we now define the momentum set
Py ={pe A} :|p| >}, (4.12)
depending on the parameter ¢ > 0 introduced in (4.1)!. We set
i (p) = mp x(p € Prr) = mpx(lpl = £7) . (4.13)
Eq. (4.8) implies that
lnull < Ceo (4.14)

For a > 1, the last bound improves (4.11). As we will see later, this improvement,
obtained through the introduction of a momentum cutoff, will play an important role
in our analysis. Notice, on the other hand, that the H'-norms of n and ny diverge, as
N — co. From Lemma 4.1, part iii), we find

S Pl < ) PPl <CN (4.15)

pEPH peEAT

for all £ € (0;1/2) and N € N large enough. We will mostly use the coefficients 7, with
p # 0. Sometimes, however, it will be useful to have an estimate on 79 (because Eq.
(4.10) involves 79). From Lemma 4.1, part iii) we find

Ino| < N2 /3 wy(x)dz < CF (4.16)
R

LAt the end, we will need the high-momentum cutoff £~ to be sufficiently large. To reach this
goal, we will choose ¢ sufficiently small. Alternatively, we could decouple the cutoff from the radius £
introduced in (4.1), keeping ¢ € (0;1/2) fixed and choosing instead the exponent « sufficiently large.
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It will also be useful to have bounds for the function 7 : A — R, having Fourier
coefficients 0 (p) as defined in (4.13). Writing ng(p) = np — mpx(|p| < 6*0‘), we obtain

u () =) = Y npe? = =Nuwy(Nz) = Y e’

peEA*: pEA*:
Ip|<e—« |p|<e—
We obtain
() <CN+ Y |p| > <C(N+L*) <CN (4.17)
peEA*:
Ip|<e—

for all z € A, if N € N is large enough.
With the coefficients (4.13), we construct the generalized Bogoliubov transformation
eBm) . .FEN — .FEN, defined as in (3.2). Furthermore, we define a new, renormalized,

excitation Hamiltonian Gy ¢ : ffN — ffN by setting
Gni = e~ B0 £y eB0m) — = Bom) yry j iy Uk eB0m) (4.18)

In the next proposition, we collect some important properties of the renormalized
excitation Hamiltonian Gy . In the following, we will use the notation

1 > * *
K= Z pa »p and Vy = oN Z V(r/N)a,  a;aq+rap (4.19)
pGA* P, qEA’jr,TEA*:
r#—p,—q
for the kinetic and potential energy operators, restricted on .FEN. We will also write
Hy =K+ Vn.

Proposition 4.2. Let V € L3(R®) be compactly supported, pointwise non-negative and
spherically symmetric. Then

Gnye = 4dmagN +Hn +0gy, (4.20)
where for every § > 0 there exists a constant C > 0 such that
+0gy, <OHN+CU NG +1) (4.21)
and the improved lower bound
Ogy, > —0HN — CNy —CU™ (4.22)

hold true for all o > 3, ¢ € (0;1/2) small enough, N € N large enough.
Furthermore, let

gfvff?; = dmrag(N — N3) + [‘?(0) - 47Ta0}/\/'+%
) Y anap(1— N/Ny) +4mag Y [bib™, + bpb_y]
pEPE pEPE, (4.23)
1
+ — Z (p/N)[ p+q fpaq + h.C.] +HN

P,gENT :p+q#0
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Then there exists a constant C > 0 such that &JN,e =0Ny — gﬁ,ﬁg s bounded by

+Egy, < CLOIPY N + o (4.24)

for all a > 3, £ € (0;1/2) small enough, and N large enough.
Finally, there exists a constant C > 0 such that
+ [f(NG/M), [f(N+/M), 06y, ]] < COPM72| f|I% (Hn + 1)

(4.25)
+ [fNL /M), [f(N1 /M), Egy )] < CLDIPM2| |2, (Hn +1)

for all o > 3, £ € (0;1/2) small enough, f : R — R smooth and bounded, M € N and
N € N large enough.

The proof of Prop. 4.2 is technical and quite long; it is deferred to Section 7 below.
Eq. (4.25) allows us to prove a localization estimate for Gy .

Proposition 4.3. Let f,g: R — [0;1] be smooth, with f?(x) + g*>(x) =1 for all z € R.
For M € N, let far := f(NL/M) and gy := g(N/M). There exists C > 0 such that

ONe = fmGne fr + 9 GNegn +Emr
with 2
cir—
+E0 < e (1120 + 119 1120) (K + 1)

for all a > 3, £ € (0;1/2) small enough, M € N and N € N large enough.

Proof. An explicit computation shows that

Gnye = fMGNefv + guGN egmr + %([fM, [far, Gnell + [gnrs L9 gN,d])

Writing as in (4.20), Gy = 4mag N +Hn +0g, ,, noticing that 4mrag N and Hy commute
with far, gar, and using the first bound in (4.25), we conclude that

Cg—a/Q

£ ([far: e, Gvel) + lgar, loar, Gvel]) < === (130 + o ) (v + 1)

5 Cubic Renormalization

The quadratic renormalization leading to the excitation Hamiltonian Gy ¢ is not enough
to show Theorem 1.1. In (4.22), the error term proportional to the number of particles
operator cannot be controlled by the gap in the kinetic energy (in [2] this was possible,
because the constant multiplying N is small, if the interaction potential is weak). To
circumvent this problem, we have to conjugate the main part gjevffg of Gn ¢, as defined in
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(4.23), with an additional unitary operator, given by the exponential of an expression
cubic in creation and annihilation operators.
For a parameter 0 < 8 < a we define the low-momentum set

Pp={pe Ay :|p| <t}

depending again on the parameter ¢ > 0 introduced in (4.1)2. Notice that the high-
momentum set Py defined in (4.12) and Pj, are separated by a set of intermediate
momenta {7 < |p| < £=*. We introduce the operator A : ]—"EN — ]—"EN, by

A= — Z Ny [b) 40’ pay — hoc.] (5.1)

T‘EPH;UEPL

An important observation for our analysis is the fact that conjugation with e does
not substantially change the number of excitations.

Proposition 5.1. Suppose that A is defined as in (5.1). For any k € N there exists a
constant C > 0 such that the operator inequality

e ANy + )Pt <O, +1)F
holds true on ffN, forallao>pB>0,¢€(0;1/2), and N large enough.
Proof. Let £ € ffN and define ¢ : R — R by
pe(s) = (€ e NG + DFerle)
Then we have, using the notation A, = N~1/2 > repywepy MO p@ ay,
Ospe(s) = 2Re (&, e *A[(N} + 1)F, A, ]e*e)
We find

(& e A (Ve + 1)F, A ] es4e)

1 sA * * k k1 _sA
= T = 77T<6 5’ br pA—rQ—y [(NJr + 2) - (N+ + 1) ]6 £>
\/N T‘GPHZ,;EPL i

With the mean value theorem, we find a function 6 : N — (0; 1) such that

Wi +2)F = (Wi + 1)F = kW +0W) + 1)

2At the end, we will need the low-momentum cutoff £~# to be sufficiently large (preserving however
certain relations with the high-momentum cutoff). We will reach this goal by choosing ¢ small enough.
Alternatively, as already remarked in the footnote after (4.12), also here we could decouple the low-
momentum cutoff from the radius ¢ introduced in (4.1), by keeping ¢ € (0; 1/2) fixed and varying instead
the exponent (.
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Since bpNy = (N4 + 1)b, and by Ny = (N} — 1)by, we obtain, using Cauchy-Schwarz
and the boundedness of 0,

(6 e [ + DR, 4, ]|

C
S 7% ’nT’HbT’-FUa—T‘(N_F + 1)_1/4+(k_1)/268A§H
\/ﬁ rePgePL

« Hafv N++1)1/4+(k71)/265A£H
Z Hbr-',-va N++1) 1/44+(k—1)/2 SA§H }1/2

T‘EPH;UEPL

< 75l

1/2
% [ Z ’nT'IQHG’_U(N‘F+1)1/4+(k;_1)/2€8A§H2i|

T’EPH,UEPL

\/—HUHHH Ny +1) 3/4+(k—1)/2 sA£H

< T (W + 1))

< C(ee, (Vg +1)Fe)
for a constant C' > 0 depending on k, but not on N or £. This proves that

Dspe(s) < Cope(s)
so that, by Gronwall’s lemma, we find a constant C' with
(€ e WL+ Drefle) = Cle, Wi + 1))
O

We use now the cubic phase e/ to introduce a new excitation Hamiltonian, defining

Ry = e A58, e

on a dense subset of .F_EN. The operator Q}s\% is defined as in (4.23). As explained in the
introduction, conjugation with e# renormalizes the cubic term on the r.h.s. of (4.23),
effectively replacing the singular potential V(p/N ) by a potential decaying already on
momenta of order one. This allows us to show the following proposition.

Proposition 5.2. Let V € L3(R3) be compactly supported, pointwise non-negative and
spherically symmetric. Then, for all « > 3 and a/2 < < 2a/3, there exists k > 0 and
a constant C' > 0 such that

Ry > dmagN + (1 — CL*)Hy — CL** N /N — Ce3
for all € € (0;1/2) small enough and N large enough.

The proof of Proposition 5.2 will be given in Section 8. In the next section, we show
how Prop. 5.2, together with Prop. 4.2 and Prop. 4.3, implies Theorem 1.1.
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6 Proof of Theorem 1.1

The next proposition combines the results of Prop. 4.2, Prop. 4.3 and of Prop. 5.2.

Proposition 6.1. Let V € L3(R3) be compactly supported, pointwise non-negative and
spherically symmetric. Let Gy be the renormalized excitation Hamiltonian defined as in
(4.18). Then, for every o > 3, £ € (0;1/2) small enough, there exist constants C,c > 0
such that

gN7g—47TCloN > CN+ -C (6.1)

for all N € N sufficiently large.

Proof. As in Proposition 4.3, let f,g: R — [0;1] be smooth, with f?(x) + ¢*(z) = 1 for
all x € R. Moreover, assume that f(z) =0 for x > 1 and f(z) =1 for z < 1/2. We fix
M = (32FTEN (with k > 0 as in Prop. 5.2) and we set fay = f(N./M), gp = g(N/M).
It follows from Proposition 4.3 that

Gne—4magN > far(Gne—4magN) far+gar (G —4magN) gy — CLB 2728 N=2(3 5y 4 1)
(6.2)
Let us consider the first term on the r.h.s. of (6.2). From Prop. 4.2, there exists

C > 0 such that

Gny — AmagN > G, — dmagN — CL@=32y — Cr
and also, from (4.20),
1
ngg - 47TC(0N > 57‘[]\/’ - C’./\/’Jr —-Cr (63)

for all @ > 3, £ € (0;1/2) small enough and N large enough. Together, the last two
bounds imply that

Gy — dmagN > (1 — CL@= 32 (G, — dragN) — Ce2N, — Co°
Hence, for ¢ > 0 small enough,
1
ngg - 47TC(0N > §(g]e\l;fg - 47TC(0N) - Cé(a—3)/2j\/'+ —Ccr
With Prop. 5.2, choosing @ > 3 and /2 < 8 < 2a/3, we find £ > 0 such that

fr(Gne —4magN) fu
1
= §fM(g]e\gg — 47TC10N)fM — C@(a*3)/2f]%4./\/'+ _ Cefaf]ﬁ

2
> %fMeA (1-Cl"YHy — Cf?’o‘% — o3 e A fy — eI N — CuofE,
1 A _(pE —CUEN L] e A —op@=3)/2£2 A1 cp—3a g2
2 5fue” [(1 = C)Hy — CENy e far = Ot JaNy = CU fiy
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In the last inequality, we used Prop. 5.1 to estimate

e A NZe far < Cfu(NG + 1) fur
< ONO frr(Ny + 1) far < CNEOTS frre ANy + De fi

because we chose M = (3t N. Since now N, < CK < CHy, we obtain that, for
¢ € (0;1/2) small enough,

Fr(Gne = dmaoN) far = C fare Noe ™ far — CLOTIR NG — 0L 1,
With Prop. 5.1, we conclude that, again for ¢ > 0 small enough,
(G — 4AmagN) far > CFENL — CU3 1 (6.4)

Let us next consider the second term on the r.h.s. of (6.2). From now on, we keep
¢ > 0 fixed (so that (6.4) holds true), and we will only worry about the dependence of
N. We claim that there exists a constant C' > 0 such that

m(Gne — dmagN)gar > CNga; (6.5)

for all N sufficiently large. To prove (6.5) we observe that, since g(x) = 0 for all x < 1/2,

. 1
M (Gne — 4magN )gar > <1£nf N(S, Gn4€) —dmag | Ngiy
66]_—;]\4/2”6”_1

where ]:>M/2 ={{ € ]:_EN 1 & = x(W4 > M/2)E} is the subspace of ]:_EN where states
with at least M /2 excitations are described (recall that M = (3***N). To prove (6.5)
it is enough to show that there exists C' > 0 with

_nf <£ On &) —4dmag > C (6.6)
cer=N lel=1 N

for all N large enough. From the result (1.7) of [13, 14, 18], we already know that

1 Exn
inf —<£,gN7g£> — 4mag > inf <£ gNg£> 4rag = — —4mag — 0
ceF5h plel=t N 7EVier=1 N N

as N — oco. Hence, if we assume by contradiction that (6.6) does not hold true, then we
can find a subsequence N; — oo with

I\;nf N (f QN g£> 47‘(‘00 — 0
ceF5,] pillel=1

as j — oo (here we used the notation M; = ¢3@T*N,). This implies that there exists a
sequence £y, € ]:>M L2 with [, || =1 for all j € N such that

1
li ) =4 .
Jim N, (€N, N, éN;) = 4mag
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Let now S := {N; : j € N} C N and denote by {x a normalized minimizer of Gy for

all N € N\ S. Setting ¢y = Uz eP)¢y, for all N € N, we obtain that [[¢x| = 1 and
that

m %<¢N, Hyyy) = am %@N, GnEn) = dmag

In other words, the sequence 1y is an approximate ground state of Hy. From 1.7, we
conclude that i exhibits complete Bose-Einstein condensation in the zero-momentum
mode ¢, meaning that

lim 1 — (o, vn¥0) =0
N—oo

Using Lemma 3.1 and the rules (2.2), we observe that

En, Nién) = (e PO Uy, Ny e POm Uy )

1
¥

IN

C
(o, UR (V1 + DUN) = 2+ C 1= <, a*(g0)alpo)on)

2zl zlQazl=

+ 1 = {po,7np0)] = 0
(6.7)
as N — oco. On the other hand, for N € S = {N; : j € N}, we have {y = x(Ny >

M/2)¢n and therefore

1 M 3otk
> =
N<£N,N+€N> = oN 9

in contradiction with (6.7). This proves (6.6), (6.5) and therefore also

gM(gN7g—47TC10N)gM > C./\/+g]2\/[ (68)
Inserting (6.4) and (6.8) on the r.h.s. of (6.2), we obtain that
Gy —4AmagN > CNy —CN*Hy — C (6.9)

for N large enough (the constants C' are now allowed to depend on ¢, since ¢ has been
fixed once and for always after (6.4)). Interpolating (6.9) with (6.3), we obtain (6.1). O

We are now ready to show our main theorem.
Proof of Theorem 1.1. First of all, (4.20) and (4.21) in Prop. 4.2 imply that
gNl — 47TC10N S 27‘[]\/' + CN+ + C

With the vacuum 2 as trial state, we obtain the upper bound Ey < 4mwagN + C for the
ground state energy En of Gy (which coincides with the ground state energy of Hy).
With Eq. (6.1), we also find the lower bound Ex > 4wag N — C. This proves (1.8).

Let now ¢ € L2(AY) with |[n|| = 1 and

(YN, HNYn) < dmagN + K
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We define the excitation vector £y = e~ BU#)Upnepn. Then ||€x|| = 1 and, recalling that
Gny = e B Uy HN U eP0m) | we have

(EN NLEN) < CLEN, (G — ATagN)én) + C < C(K +1)

If vn denotes the one-particle reduced density matrix associated with ¢y, we obtain

1 — (@0, YNpo) =1— %(dﬁma*(ﬂpo)a(%)wm

1
=1- N<UE€B("H)§N7 a*(po)a(po)UgePmey)

C(K +1)

1 C
= N(GB("H)gN,N+€B("H)§N> < N(&N,NJrﬁN) < W

which concludes the proof of (1.9). O

7 Analysis of Gy

From (2.3) and (4.18), we can decompose

gNK:emeﬂENJWM>:gﬁ§+gﬁ§+gﬁi+g%§

)

with A ,
g](\iﬁ)Z _ e_B(nH)E%)eB(nH)

In the next subsections, we prove separate bounds for the operators Q](\j,)z, 7=0,2,3,4. In
Subsection 7.5, we combine these bounds to prove Prop. 4.2 and Propi 4.3. Throughout
this section, we will assume the potential V € L3(R3) to be compactly supported,
pointwise non-negative and spherically symmetric.

7.1 Analysis of Gy, = e~ B0 L)) B0
From (2.4), recall that

0_ (N-15 V(o)
L) = V0N = N + PN (N = N5 (7.1)
We define the error operator 5](\?’)6 through the identity
N-1)5 V(0
640, = =P g s = DTy - wy) + EONL V- ) 4, (72)

)

In the next proposition, we estimate 5](\(,) » and its double commutator with a smooth and
bounded function of A.
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Proposition 7.1. There exists a constant C > 0 such that

+ &) < CLOP(NL +1) (7.3)
and
& [fN4 /M), [f(Ng /M), EQ)) < COPM72| fI2, (N +1) (7.4)

for all >0, ¢ € (0;1/2), f smooth and bounded, M € N and N € N large enough.

Proof. From (7.1) we have
1 - 1

o _ N-1s5 RS 15 2
Ly = 5 V(0) + QNV(O)N+ 2NV(O)./\/Jr (7.5)
In the last term, we rewrite
N ./\/
~ N+ /\/’+—Zb*b—— Ny
qEA*
Inserting in (7.5), we obtain
o_N-Dg “
Ly = Z bib
qEA*
From (7.2), it follows that
17 § . 0
£, = 2 Z [e (1) ey B )—bqbq] - ;) [ n) N, Bl N+] (7.6)

qeAy
With (3.18), we can express

Z e_B("H)b;bqu(”H) = Z [’yqb; + ogb_g + d:;] [’yqbq +ogbt, + dq]
qEA’jr qEA’jr

where we set v, = coshnu(q), 04 = sinhny(q) and where d;, d; are defined as in (3.17),
with 7 replaced by nr(q) = ngx(q € Pu). Using |77 — 1| < Cnu(q)?, log| < Clna(q)l,
the first bound in (3.20), Cauchy-Schwarz and the estimate ||ng| < C£*/? from (4.14),
we conclude that first term on the r.h.s. of (7.6) can be bounded by

| S (e [ B by P o) — b )| < CeE N+ 1) 2

S
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As for the second term on the r.h.s. of (7.6), we expand using again (3.18),

1
:/ e*sB(nH)[NJ”B(UH)]esB(nH)dS
0

1
_ / S np e PO (b, 4 bib* e PO ds
0 pEPy

1
~ /O ds 3 mp [0, + 0§00, + Ay + o0, +d%) + he.
pEPy

with 71(,8) = cosh(sng(p)), JI(,S) = sinh(sng(p)) and where the operators d;,s)

as in (3.17), with n replaced by sng. Using ]’yl(,s)] < C and ]al(;s)] < Clnpl, (3.20) in
Lemma 3.4 and again (4.14), we arrive at

are defined

‘(5’ (e B A7, Blom) _NJF}@‘
< CIN + 0260 S Il [Impll (V4 + DM€ + €]

pEPn
< CLP| (N + )M

This concludes the proof of (7.3).

The bound (7.4) follows analogously, because, as observed in Cor. 3.5, the estimates
(3.20) in Lemma 3.4 remain true if we replace d,, and dj; by [f(Ny /M), [f(N}/M),dy]]
and, respectively, [f(Ny/M),[f(Ny/M),d;]], provided we multiply the rh.s. by an
additional factor M 2| f’||%,. The same observation holds true for bounds involving the
operators b, b, since, for example,

[FNG /M), [F(NG /M), bpl] = (FING /M) = F((N5 +1)/M))?b, (7.7)
and [|f(N4/M) = f(NVs +1)/M)|| < CM 7Y foo- O

7.2 Analysis of gz(v%)z — B ) Blum)

With (2.4), we decompose 43) =K+ Eg\zf’v), where K = ZpeA*; pza;ap is the kinetic
energy operator and

) o NoNe Lo
LY = > V(p/N)apapT+ t3 > V/N) [bpb*, + byb—p)] (7.8)
pEAT PEAT
Accordingly, we have
gz(\?)z — ¢~ B jceBm) e*B(nH)ﬁgvv)eB(WH) (7.9)

In the next two propositions, we analyse the two terms on the r.h.s. of the last equation.
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Proposition 7.2. There exists C > 0 such that

e~ B e Bn) — o 4 Z p2np(bpb_p + 050" )

p —p
P,
pe H2 N Nor /N - No 1 ) (7.10)
2 n(ty ) () e
peEPy
where
+EN) < OOy 1 1) (7.11)
and
| FN /M), [ FN /M), EG) || < O 12 607972 (4 1) (7.12)

for all > 3, £ € (0;1/2) small enough, f smooth and bounded, M € N and N € N large
enough.

Proof. To show (7.11), we write
1
e B jceBm) _ o — / e BOKC, B(ny))e* B0 ds
/ ST g [em BOp b et Bom) | omsBomypr sBamn] g,
pEPH
With relations (3.18), we can write
e~ Bnu) jceBnu) _ i

/ ds 3 pn,,[ by + 00 ,) (17 + 0§08+ hc]

pEPy

/ ds Y PP [(17by + o067, + d) (3boy + 0 00)) +he] (7.3
pEPy

/ dsanp sd(s —i—hc]

pEPy
=:G1+ G2+ G3

with the notation ’yl(,s) = cosh(snmg(p)), O’I(;S) = sinh(sng(p)) and where dés) is defined as

n (3.17), with n, replaced by sng(p) (recall that ng(p) = npyx(p € Pr)). We start by
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analysing G;. Expanding the product, we obtain

/ ds > p np[ + (08)2) (bpb_yp + b7 b%) + D0 ) (4bEb, — 2N 1a ap))}
pEPy
N.
/ ds Z p 77p (1 — ﬁ)
pEPH
2 « * N
= D Prup(bpb—p + 1,00 + Y 07 + ek
pEPH pEPy
(7.14)
with
el = / ds Z P, [( — 1) + (652 (byb_p + b7 ,7)
pEPy
/ ds anpwp 4bb — 2N~ aap))
pEPH
(5) 4 (5(5) Ny
dS Z P p [ 1)Jp + (O'p - snp)} <1 — W)
pEPy

For an arbitrary & € ]:_EN, we bound

(€.E{€)]
<C Y P mpPlbp g N + DY+ C D pitllaél? +C > pp (7.15)
PEPH pEPH pPEPH

< CO*||(N3 + 1)),

since |((71!(;s))2 —1)| < Cn, (01!(25))2 < Cn2 and p*n2 < C**, for all p € Py.
We consider now Gg in (7.13). We split it as Go = Ga1 + Gag + Gaog + Gaoy, with

/dszpn ( s>bd(s>+hc>, GQQ:/ dszpnp( s>b*pd(j,+hc)

pEPH pEPy
/dsanp( S)d(sb_p+hc>,GQ4=/dsanp( s) S)b*—l—hc>
pEPH pEPy

(7.16)
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We consider Go; first. We write

1
Gop = / ds Z P np (7 1)b, d(s) / ds Z p277pbpd(fl),

peEPr pEA:
/ ds Z by _p N Z sngbya” a
pEPC qEPy
1
2
—i—/o dSN Z P NpNgbpbya’ a—p + hec.
pEPﬁI,qEPH

Massaging a bit the second term (similarly as we do below, in (7.39), (7.40) in the proof
of Prop. 7.3), we arrive at

Ni+1N-N

2 N4 + K

- g Py N (&' +h.c] (7.17)
pEPy

where £ = Z?:l 55, with

* 1 *
& = NZP (Vg +1)(brb, — N(Zpap)a ngz/dsan —1bd()
PEPH pEPH
1 —
EE = / ds 3 puybyd®), gk — _/ ds 3 pPuybpd®)
0 peay 0 pepg

1
K 2
Eas = IN Z P NpTgbp bq‘an P

pGPI?I,QEPH
(7.18)
Here we introduced the notation
S S N % S S k  k
J(,I), = d(,z), + snu(p) ]\;rbp, and d( ) = d( Z 8ngbya’ ja—p. (7.19)
qEPH
We can easily bound
(6581 < C Y pmllapéll” < PNy e (7.20)
pEPH
and, using hz(,s) -1 < C’nIQ) and (3.20) in Lemma 3.4,
1/2 s
(& EROI < D Pl IV elae
pEPH
< > PPNl Il el + imlllap€l] < CE2IN + 1) 2
pEPH
(7.21)
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With (3.21) in Lemma 3.4, we can also estimate

1 _
€, < /0 ds 3 Pl + DYV + 17200

pEPE

< Cllnal PN+ + D2 Y Pl layd]|
pEP;; (7.22)

1/2
< CEW + D22 | S ph

lp|<e=e
< CPTR(N +1)2¢ K% |
To bound the last term in (7.18), we commute by, to the right (note that p # ¢). We find

(€, E356) < ON! Z D[yl 1qlaga—g€ | lapa—pé |

pEPﬁI,qEPH
<C Y Pmplingllaggllap]
PEPE,q€PH (7.23)
1/2 B 1/2
<c| Y vl ] Y a il
PEPE,qEPH PEPE,qEPH

< o)
To control the third term in (7.18), we first use (4.9) to write

1 = - 1 —~
el = /O ds Y (V(./N)* f]w) (p)bpd®) + /O ds N3N Y (yg* va£> (p)bpd®)

peEA’ PEAT
Switching to position space, we obtain

1
52% = / ds //\2 dxdyN3V(N(x —y) el — y)bzdés)
0

1 .
4 / dsN® ), / dedyxa( — ) o — 4)bd?)
0 A2
With Lemma 4.1, we find
1
(el < [ s [ dody [NVNG@ =)+ 0ta =)

X + D)2+ 1) Padye]
Hence, with Eq. (3.23) in Lemma 3.4,

1
(€, E56) < ON|lnm| /O ds [ | dady [NV (@ =) + £ vula = )
XN+ M2 NIV + 1022 + lanN el + layNogl + lasd, N el
< CUOIR (N + )2 + OV + )2V e
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Combining the last bound with (7.20), (7.21), (7.22), (7.23), we conclude that
+ [EX +he] <02y 4+ 1) (7.24)

Next, we consider the term Gay in (7.16). With (3.20) in Lemma 3.4, we find
(€, G)[ < C Y pPipllb—pélllld—pé]l

peEPy

<C S pP2lb €l [l IOV + DY2E] + [l b€ (7.25)

pEPy
< COP||(Ny + 1))

As for the term Gag, defined in (7.16), we split it as Gog = Z?:1 5§§~ + h.c., with

1 1
5;5 - / ds Z pQUP('YI(?S) - 1)d§28)b—p7 gfg - / ds Z pQWpdz()s)b—p
0 pEPH 0 PEAY
1 . . 1 -
€55 = 2N Z p277pnqbqa—qapb—p7 E3y = —/0 ds Z ande() )b_p

with the notation for @S) introduced in (7.19). With (3.20) in Lemma 3.4, we find

1
(€, €516)] < C/O Y PPN + 1)V + 1) 2 b_ ¢

pEPn

< Clnm | IN+ + DVZE Y~ PP Pl1bp€]l < CO* N +1)2¢)?

pEPH
and also, proceeding as in (7.22),

1 _
(€, €556)] < C/O ds Y pPlnplll (N3 + DYEENIWG + 1) 720 g]|

pEPE

< Ol P IV + D)Y2El Y Pl l1b—p]l (7.26)

pEPﬁ
< COP||(Ny + D)V

The term EX coincides with the contribution £ in (7.18); from (7.23) we obtain ££5 <
CleK. As for Ezg, we use (4.9) and we switch to position space. Proceeding as we did
above to control the term £, we arrive at

1
(€8I < [ ds [ dody [NV =)+ el = )]

X WG+ DYV + )7 2dPag)
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With (3.22) in Lemma 3.4, we find

(€ E€) < ON Ml [ dody [NV (N(z = ) + £ xalo — )]
XN+ DY) lay (Vs + DEN + a0, (Vs + 1)42%]
< CLOD2 N+ 1)2)% + Cel? (N + D)2 v e
Combining the last bounds, we conclude that

+ Goz < CLOI2(H 4 1) (7.27)

To estimate the term Goy in (7.16), we use (3.20) in Lemma 3.4; with (4.15), we find
(€, Gaat)]

<c / ds S PPNy + DY + 1) V2d0n5e]

pEPn

< ONTHWe + D2 S0 22 [l Vs + D20+ lna BB + 1))

pEPn
< ON7Y|(Ve +1)V2¢)

x 30 22 [l |+ D2+ sl + 12260 + il lap (N + 1]

pEPy

< COP|(Ny + 1))

Together with (7.17), (7.24), (7.25), (7.27), this implies that

Ne+1N— N

2 + + K
-2 v N N T
pEPy

where
+ X <O 2(Hy +1) (7.28)

Finally, we consider Gg, defined in (7.13). We split it as G3 = & + €5 + h.c., with

ex :/ ds > pPnpdy| (g els = _/O ds Y p 2,d®)d)

PEAT pEP;

With (3.20) in Lemma 3.4 (using g (p) = 0 for p € Pf;) and proceeding as in (7.26), we
obtain

(&, EBON < Cllnall Y, PPInpll|(N+ + 1)V ld—p€ |

pEPfI

< Cllnal PN +1D)Y2el Y p?mplllb-péll < CEZ N4 + D)2l 2¢]|

PEPH
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To estimate 55{{ , we use (4.9) and we switch to position space. Similarly as in the analysis
of the terms E{g and 5§§ above, we obtain

1
(€. E5E) < CING +1"36] [ s [ dady [NV (NG =)+ €t =)
<N+ 1) 2|

With (3.24) in Lemma 3.4, we arrive at

(€, €361
1
< CON7?|(WVy 4+ 1)V2¢| / dS/ dady [N°V(N(z —y)) + £ xe(z — y)]
0 A2
[l NN + D260 + |21 N 261 + |21, N2€1 + i |2 o N2 % |
< O 4 732Ny + DY2E|2 + OR[N + 1) 2| [V e

Hence, +G3 < C(£%/2 4 3(@=D/2)(H y +1). With (7.14), (7.15), (7.28), we obtain (7.10)
and (7.11), as desired.

As explained in Corollary 3.5, the bounds in Lemma 3.4 continue to hold, with an
additional factor M 2| f'||%, on the r.h.s., if we replace the operators dp, dy, dp, Gy,
dd, by their double commutators with f(Ay/M). From (7.7) we conclude that also
bounds involving b, and b, or, analogously b, and E; remain true if we replace them by
their double commutator with f(N,/M). As a consequence, (7.12) follows through the
same arguments that led us to (7.11). O

In the next proposition, we study the second term on the r.h.s. of (7.9).
Proposition 7.3. There is a constant C' > 0 such that

¢~ Bl £ V) Bnn)

. NN\ /N-N;—1 _ . N-N
= V(p/N)np( I +)( N+ >+ > V(p/N)aga,——— +
pEPH peEA’ (7.29)
1 N
3 2 V/N)(bb—y + b7 ,05) + eV
peAj
where
+ V) < CP(Hy +1) (7.30)
and
= | FN /M), [fN /M, EQ)| | < o2 I, (e +1) (731

foralla > 0, £ € (0;1/2) small enough, f smooth and bounded, M € N and N € N large
enough.
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Proof. To show (7.30), we start from (7.8) and we decompose

e—B(UH)ﬁg\QIV B(n Z V (p/N)e~ nH)b*b eBnm)
pGA*

_ Z Vp/N B(nm) g * ape —B(nm)

peA* (7.32)
+ - Z V(p/N)e BOm) [bb_, + bib* | eBlm)
pGA*
= F; +Fs+F3

With equations (3.18), we split Fy as

F, = Z V(p/N) [’ypb;‘, + Upb_p] ['ypbp + opb” )]
pEAi

+ Z V(p/N) [(Vpb; + pr*p)dp + d;(%bp + O-Pbip) + d;dp]
peEA
=:Fi1 +Fp2

with the notation 7, = coshny(p), o, = sinhng(p) and the operators d,, as defined in
(3.17), with n replaced by ng. We decompose

17 * N_N+ \%
F11 = Z V(p/N)apapT +€1
PEAT
with
Z V(p/N)aza, + > V(p/N) [ — D)B3by + 1p0p(bpby + BD)
pEA* pEPy
N - N
2(p* -1 _x 2 +
+ O'p(bpbp — N apap) + JP<T>}
where we used 7, = 1 and o, = 0 for p € Pj; to restrict the second sum. With

v — 1| < Cn2, |op| < Clnpl for all p € Py and since |[ng|| < 0%/2 | we find
+&/ < CWU? £ N"HWN, +1) < CrY2 (N +1)

if N is large enough. With Lemma 3.4 (with 7 replaced by 7y), we can also bound
+F19 < CL*2(Ny 4+ 1). We conclude that

Ny

N —
Z V(p/N)a, PN + &Y (7.33)
pEA*
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with +&) < C¢*/2(Ny 4 1). Let us now consider the second contribution on the r.h.s.
of (7.32). We have —F3 > 0 and, by Lemma 3.1,

Z V(p/N)eBlm) apyp Bl < H‘j\uoo B N B0H) < Cre 2N 4 1)
pEA*

(7.34)

if N € N is large enough, Finally, we turn our attention to the last term on the r.h.s. of
(7.32). With (3.18), we decompose F3 as

1 ~
F; = 3 Z V(p/N) [’ypbp + apb*_p] [’ypb_p + apb;‘,] +h.c.
pEAi

1 ~
+3 > V/N) [(wbp + 0pb”,) d—p + dy (1pb—p + b} + hec.
PEAT (735)

1 N
+5 > V(p/N)dpd_p +hec.
pEA:
=:F31 + F3o + F33 + h.c.

We decompose the first term as

1 i * Lk i N -
Far =3 > Vip/N)(bpbp + 5 ,05) + > Vp/N)np——+ & (7.36)
pEAi pEPy
with (recall that 7, = 1 and o, = 0 for p € Pf;)
= > V(p/N) [ — 1+ 02) (bpb—p + b, b%) + 207,050y
pEPy
_ X N - N\
-N 1'Yp‘7papap + (Vpop — np)iN +
Using again the estimates |7 — 1| < Cn2 and |o,| < Clny| for all p € Py, we find
+& < CI2 (N +1) (7.37)

Let us now consider F3y in (7.35). We divide it into four parts
1 .
Fi2 = 5 > V/N) [(wbp + 0pb”,) dp + dp (1pb—p + b})] + hec.
PEAT (738)
=: F321 + F320 + F323 + Fs4
We start with F3s1, which we decompose as

1 - 1 s Ny
Fao =5 > V/N) (v — Dbyd—p + 3 > V(p/N)by [dp + 01 (P) by
peEA’ pEAT

1 .
—5x 2 V@/N)nu(p)by Nybj, + hee.

PEAT

(7.39)
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Using (2.6), we commute
by Nyby = (Vo + 1)bpby, = (Vg +1)(1 = Ny /N) 4 (N + 1) (byb, — N_la;ap) (7.40)

We arrive at

Fan == Y P, (S ) (M) el

pEPy

where &} = &} + &}, + EJ5 + h.c., with

1 ~ 1 ~ -
=5 X Ve/N) (o~ Dby, =5 S Vio/Nbydy

PEAT peEA’
v 1 i N+ +1 * -1 _=*
Eis = —5 > Vo/N)ny—5—O3b, — N 'ayap)
pePy

and with the notation d_, = d_, + N1y (p) Ny bs. Since |y, — 1| < Cn2x(p € Py), we
find easily with (3.20) in Lemma 3.4 that

(€. €581 < C 3 mIN +DM2) [Inpl |V + 1)V2¢ ] + syl

pEPy
< OOV + 1))

Furthermore

(e, EHREI < C Y mpllayt]? < C N ¢

pEPn

To control £}, we switch to position space. With (3.23) in Lemma 3.4, we find
(€, E06)| < C/A2 dudy N°V (N (= ) [(Ny + 1)V + 1) 2asd,]
< Cllnall [ | dady N*V(N (o = ) | + 1)1

X VIOV + 1012 + A€l + Ml + lasd, My el
< COP|(N + 1)) 4+ Ce (N + 1) 2€)| [V %]
We conclude that
+& < CI?(Hy +1).

To estimate the term Fzgg in (7.38), we use (3.20) in Lemma 3.4 and |o,| < Clnu(p)|;
we obtain

(€, F3226)| < C ) ImpllIb—p€llld—pé]l

pEPn

<C > mpllb-p€l [N + 1) + 16— ]

pEPy
< COP||(Np + 1))
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Let us now consider the term Fso3 on the r.h.s. of (7.38). Here, we proceed as we did
above to estimate F391. We write Fgo3 = 55‘/1 + EEYQ + h.c., with

1 ~ 1 ~
=3 2 VBN = Dby, Er=5 > Vp/N)dybe,
pEAj‘r peAi

With |y, — 1| < Cn2x(p € Py), we obtain

(€. EXEN < C Y mllWNe + D)V lllapél] < OO ||(N + 1)M2¢)?

PEPH

Switching to position space, we find, by (3.22),

(6, 56| < C /A dady N*V (N (@ =) [N + DYV2ENN + )72 daa €
<l +1)1%¢] /A dady N*V(N(z =) [a,N-€]l + o, N ¢ ]
< COP|(N +1)12€]? + Cror2| (N + 1)V 2| [V %]

Hence, +F303 < CL2(Hy + 1).

To es/‘Eimate the term F3o4 in (7.38), we use (3.20) in Lemma 3.4 and the estimate
2 pens, V(p/N)||np| < CN; we find

(& Fana)l < C Y [Vo/N)|Inpl |V + DY + 1)712d, b

pEPn

< = 3 P lnliovs + 1%

pEPy

X Impl |V + DY 2¢ ] + 1Byt (A + 1)1/2]

S PNl + )%

pEPy

X [Inpl\l(/\@ + 132€]| + lna N+ D€+ lllap (Ve + DE]
< COP|(Ny + 1))

IN

Combining the last bounds, we conclude that

Fip= > V(p/N)n, (NZVM) <_va_ 1) + &

pEPy

with
+ & < C?(Hy +1) (7.41)
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To bound the last term Fs3 in (7.35), we switch to position space. With Lemma 3.4,
specifically (3.24), and (4.17), we obtain

(€ Fasé)| < CIN, + 1) /A drdy NV (N(a — ) [Ny + 1) dod g
< Cllnm IV + 1)V /A drdy NV(N(z —))
[NV + 1072 + a2l + .0, N2
< CO2||(Ny + 1)V2)2 + co N Pe v el

The last equation, combined with (7.35), (7.36), (7.37) and (7.41), implies that

=5 3 VN by +7,5)

pEAi

~ N - N N-N; -1
£ 3 Vo (T ) (R ) e
peEPy

with
+&V < CloP My +1)

Together with (7.33) and with (7.34), we obtain (7.29) with (7.30). Eq. (7.31) follows
similarly, arguing as we did at the end of the proof of Prop. 7.2 to show (7.12). U

We conclude this section, summarizing the results of Prop. 7.2 and Prop. 7.3.

Proposition 7.4. There exists a constant C > 0 such that

NZ_IC+ > [P 77p+VP/N)Up]<N;VN+><N_N+_1>

N
peEPy
+ D PP (b, +bobp) + D Vp/N)apay———
pEPH pEAL
1 %% * o px (2 )
+5 2 VO/N) (bpb—y +b7,05) + Ex
pEAT
where
+Ey), < OOy + 1)
and

£ | NG /M), [NV M), EQ] | < CtedPa2 )%, (b +1)

for all o > 3, £ € (0;1/2) small enough, f smooth and bounded, M € N, N € N large
enough.
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7.3 Analysis of Gy, = e~ B0 L) B0

From (2.4), we have

1 N
Gy, = Vi ST Vip/N)e B, o agePm) 1 he, (7.42)
P,qENY :p+q#0
Proposition 7.5. There exists a constant C > 0 such that
1 N
GV =—= > V(/N)[bh,a ag+he] +EF) (7.43)
P,qENY :p+q#0
where
+ ), <O (Hy +1) (7.44)
and
£ [F(NG /M), [F (N4 /M), E) < M2 27 (M + 1) (7.45)

for all o > 0, £ € (0;1/2) small enough, f smooth and bounded, M € N, N € N large
enough.

Proof of Proposition 7.5. We start by writing
e—B(nH)a*_paqu(nH) = a* ay + /01 ds e—sBm) [a* aq, B(n)]esBom)
=a’,a,+ /01 dse= B0 (11 (p)byb, + nH(q)b*_pb*_q)eSB(”H)
From (7.42), we find

P,qEAY :p+q7#0

3 1 > — * *
GNe = 2 VN P,
1

1
+—= > V(p/Nmu(p)e B0y, Bom) / ds e=* Pl byes Pl
P,qENY ,p+q#0 0
1 > — * ! —S * * s
+ S Dp/N)na(g) e By eBom) /0 ds s Bompr e oBom)

p,q€AY ,p+q7#0
+ h.c.
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-
2
(=]
o
w0
—_

.18) we arrive at (7.43), with

3 1 ~ . ) )
&(V)z =N S V@O/N) (g = Dbhyg + 0prab—p—g + diy) a” paq
P,qEAT p+qF#0
1 ~ 1
+ —N Z V(p/N)nH(p) e—B(UH)b;+qu(77H) / ds e—sB(nH)bpbqesB(nH)
P,q€AY ,p+q7#0 0
1 ~ 1
+ \/—N Z V(p/N)nw(q) e—B(UH)b;+qu(7IH) / ds e—sB(nH)b*_pb*_qesB(nH)
P.aEAT p+q#0 0
+ h.c.

=: 51(3) + 52(3) + 5:53) + h.c.
(7.46)

where we defined v, = coshng(p), o, = sinh g (p) and where the operator d, is defined
as in (3.17), with n replaced by ng. To complete the proof of the proposition, we have

to show that the three error terms 51(3),52(3),5353) all satisfy the bounds (7.44), (7.45).

We start by considering 51(3)

3 1 > * * *
& = VN Y. V@/N) (g = Dy + Oprab—pg +dyyy) a0
PgENT :p+q#0

. We decompose it as

3 3 3
= 51(1) + 51(2) + 51(3)

Since [ypq — 1 < nsr(p + )2 and [[ni]] < C£/2, we have

C ~
eedeal<—~= 3 [Ve/Nlnap + ) bpea—péllllagk]
VN P,qENY :p+g#0
C 1/2
<=l X Imer ol e+ 1))

P.gEAY :p+q#0 (7.47)
1/2
<[> I+ a)Pleg)?]
P,qEAY :p+q#0
< Ol |P |V + V2P < OIS + 1)1 22

To bound Eg’) we move a*, to the left of b, , (using [a_p¢,a” ] = 0, since ¢ # 0).
With |op44| < C|nu(p + )|, we obtain

C ~
(eeRal < —~ X IVe/Nlna(p+ @)l lla—pélllagh—p—q]
\/N P,qEAY :p+q#0

C / /
o D DI Il PRI e I W I o

P,q€EA] :p+q7#0 P,qEA] :p+q7#0
< COP|(Ny + 1) ?
(7.48)
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In 5{3), on the other hand, we write d , = dt., — (MrTH)nH(p + q)b_p—q. We obtain

P+q
D — e 18 with

3 1 > Tk *
51(3)1 VN Z V(p/N)dy 40" paq
P,qEA :p+q#0

Ny+1) 1
£6) — Ny +1) 3

2 N JN V(p/N)nu(p+ q) b—p—ga’ a4

P,qEAY :p+q#0

The term 51%% can be bounded like 51(3), commuting a®, to the left of b_, 4; we find
:I:El(gé < Cl/>(Ny +1). As for the term 51(3)1, we switch to position space:

3 1 i T * T w ok
51(3)1 = ﬁ Z V(p/N) dy i g0” paq = /2 dwdyNE’/QV(N(x —v)) 20y
p,q€AY :p+q#0 A

With (3.23), we bound
(€ EQiEN < [ | deduNRV(NG@ = )lastl oy dot]

< Cllgul| [ | dsdy N2V (N2 = p)ast]
IO+ D60+ O+ 1)M2€] g OV + 126 + g ]
< Cllua N[ [ dadyV?V (N (@ 1)
1/2
X [NV + DI + (W + 1)) + avdy€]?]|

< Cllna |IN2EN [Ny + D2 + [V €l]
< CLP[||(Ny + D)V2)2 + V%€l

With (7.47) and (7.48) we conclude that

+ B <tV + Ny +1) < CP(Hy + 1) (7.49)
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Next, we consider the term 52(3), defined in (7.46). Using Eq. (3.18) we rewrite

&)= > V/Nuup)e ", P
P,qENY ,p+q#0

1
“ /O ds (17 Obybg + 0P Ob* bt +4Oa b b, + oGO b by)

1 ~ B . 1 o *
" VN Z V(p/N)nH(p) ¢ B(nH)bp+qu(nH) / ds ’7;(; )O'S )[bp, bfq]
P,qEAY ,p+q#0 0
1 =R . .
* VN Z V(p/N)ny (p) e B0y | Bl

P,qEANY ,p+q#0
1
. /0 ds [dés) (’Yés)bq + U((Js)btq) + ('Vzgs)bp + Ués)bip)df(f) + déﬁ)déS)]
3 3 3
= 551) + 52(2) + 52(3)
(7.50)

where, for any s € [0;1] and p € A%, %()s) = cosh(snm(p)), O’I(;S) = sinh(sng(p)) and dz(,s)

is the operator defined as in (3.17), with 7 replaced by sny. We have
Yo @)l M EN Nopbo€ll + mar (o)l (NG +1)'2¢]|
P,qEN] :pF—q
+ e (@1 N + DYZEN + s () na ()| (N + 1)£|l]
< Claull|Vy + DY < e[V + 1))

(€, E0¢)] <

Sk

(7.51)
Since [by, b*—q] = —a*_qap/N for all p # —q, we find
3 C
6,620 < i 2 @ @llbpge" e lap(Wy + 1)
P,qEAL ,p+qF#0 (752)

C ce
< SlnmPIOV, + D22 < S+ 1)42)?
To bound the third term on the r.h.s. of (7.50), we switch to position space. We obtain
553) = / dedydzN°?V (N (& — 2))iju (z — y) e B0 jr B0m)
A3

1
x /0 ds[ ) (b(5) + 5" (64) + (b)) + b (64))d) + dd)
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Using the bounds (3.22), (3.23), (3.24) and Lemma 3.1 we arrive at

(€ ESO1 <l [ | dedyds N2V (N = 2l = 2)| o]

X [Baby€ll + OV + DI + o (A + 1)1 + 1By W + 1) 2]

Cllna
= TUN
< GOy + 1)V

INE2eBOme | [V + 1)¢]

Combined with (7.51) and (7.52), the last bound implies that
+ &P < orPN, +1) (7.53)

Finally, we consider the last term on the r.h.s. of (7.46). In fact, it is convenient to
bound (in absolute value) the expectation of its adjoint, which we decompose as

1
£ = S VNmala) | dsems P om0

P.gEAL p+q#0
x (10— + 085 + d°)) (Yprgbpra + Oprab™ p_g + doig)
1
> V®/Nnu() /0 ds e sB0m)p_ sBm)

P,q€AY ,p+q7#0

2=

2=

X

—

Vés)Vanqb*pprrq + J;()S)Jerqb;b*—p—q + W;SS)Uanqb*fpfqb*p + 7p+q01()s)b;bp+q

+ d(j;)) (7p+qbp+q + Jerqb*—p—q) + (Wés)bfp + Jz(;s)b;) dptq + d(j;))dpntq

1 o L ds e . ’ -
TN > V/N)ulg) / ds e *Pmp_e B Doy by, b5, ]
P,qEN’ ,p+q#0 ’

3 3
= &) + &)

Using that ¢ # 0 and thus that [b_,,b" ,_ | = —a*,_,a_,/N, we can estimate the second
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term by

(€.E5€)]

—C ' —S8 * S
SNsxz/ods ST na(@llna e+ a)l la—p—g e B0 s Blme||a_g|

P,qEANY ,p+q#0

1 1/2
<o [ @[ X i @P flapge B0 e Pmg 2]
0 P,gEANT
p+q7#0
1/2
< | e+ a)Plla-pEl?]
P,qEAT
p+q#0

C cee
< Sl PN + V2P < S + 1)V
(7.54)

)

To bound the expectation of E?E? , it is convenient to switch to position space. We find

1
535‘?) :/ ds/ dxdy NS/QV(N(x _y)) G_SB(UH)b('f]HJ-)BSB(nH)
0 A2
< BGEBR) + B (23) + 5 @)L + 5 )
+d9) (6(7y) +b*(3y)) + (b(3E) + * (510)dy + dd, |

where we used the notation 7, 5*) and 5 to indicate the functions on A with Fourier
coefficients ng (p), cosh(snm(p)) and, respectively, sinh(sng(p)), and where 9y 2, ¥z
and &, denote the functions defined by 7 .(2) = Mu(z — ), J2(2) = ¥(z — z) and
Gx(z) = d°(z — x). Using (3.22), (3.23), (3.24) and the bound (4.17), we find, for N
large enough,

1
(€EDOI< [ ds [ dady NPVNG = )V Gio)e PO
0
x| IBaBy€ll + 1B (N + 1)M2€ ] + Iy (A + 1)M2€] + IV + 1]
With Lemma 3.1, we estimate
1" (irr.2)e*PE | < Cllnm ||V + 1)

We conclude that
1€, 6)| < co ||V +1)M2¢)? + [Vile)?

From (7.54), we find
+&8) < cr2(1y +1)
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and thus, combining this bound with (7.46), (7.49) and (7.53), we arrive at
+E), < O (Hy +1)

This proves (7.44). The bound (7.45) follows similarly, arguing as we did at the end of
the proof of Prop. 7.2 to show (7.12). O

7.4 Analysis of Q](é)g — B () Blun)

With 553) as defined in (2.4), we write

g](\‘i) e~ Bnm) E%) eB(nm)

g =
1 = N Ni+1
gy X Temmen (1-5) (12757

qeEN’ reA*
q,q+r€Py
1 5 * (4)
+ 5N > V(N ngir (bgb—g +5b%,) + Ex
gEN® reA*:
q+rePy

Proposition 7.6. There exists a constant C > 0 such that

+ &Y < O (Hy +1) (7.55)
and
+ [FNL/M), [FN /M), EQ]] < CM72 f]1%09% (Hy + 1) (7.56)

for all « > 0, ¢ € (0;1/2) small enough, f smooth and bounded, M € N, N € N large
enough.

The following lemma will be useful in the proof of Prop. 7.6.

Lemma 7.7. Let ny € (2(A*), as defined in (4.13). Then there exists a constant C > 0
such that

(N + 1)n/26—B(nH)g}mg;yeB(nH)gn
< Ol IWVg + D)™ 22| 4+ N[N + D)2 (7.57)
t llay (N + D2 4 lag (N + 12 4 Jlagay (W + 1)"/2511]

for all € € fEN, n € 7.

Proof. We consider n = 0, the general case follows similarly. With the notation v, =
coshn (p), 7p = 1 — 7p, 0p = sinhny(p) and denoting by &, # the functions in L?(A)
with Fourier coefficients o, and ry,, we use (3.18) to write

le™BDb,b,ePDe|| = || (b + b(7e) +b°(62) + di) (by + b(7y) + () + dy )€]|
< |lbabyll + CUIBN el + 11BN 2€]) + Clo(x — y)l[€]
+ 11Bady €]l + i (by + b(7y) + 0 (6) + dy )]l
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because |||, ||| < C|nu| < C. Using Eq. (3.24) and (after writing b,d, = b,d,
by (N4 /N)b* (7)) Eq. (3.23), and with the bound (4.17) (which also implies |5 ()|
CN), we obtain (7.57).

HRVAN

Proof of Prop. 7.6. We start by writing

e_B(nH)Egé)eB(nH)

! v - * ok
= 5% > V(r/N)e B0 arata, ayy,e?0m)
P.gEN rEA r#E—p,q
1 =N 1
= VN + ﬁ Z V(T/N)/O ds e*SB(nH) [a;aZaq,raerr’ B(UH)] esB(nH)

P.qENT TEN T£—p,q

1 - (=B e 5B
Vntgy S VeMalan) [ ds (T 000 )
qeEN reN*ir#£—q

1 ~ 1
TN > V(r/N)nu(g+r) / ds (e Bmby, bra” ,_ape 00 e
p,qENT rEN T #DP,—q 0

(7.58)
Now we observe that
e_SB(”H)a*_q_TapeSB("H)
S
—a’_ap+ / dr PO [0 ay, Blng)] e 00
0
S
=a’, .ap+ / dr e~ TB0m) (na(P)b* b 4 + 1 (q 4 7)bypbgsr) e~ TB0)
0

Inserting in (7.58), we obtain

9%7)Z—VN:W1 + Wy + W34+ Wy
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where we defined

1 . 1
Wi = IN Z V(r/N)nu(q+ 7“)/ ds(e_SB(nH)bqbfq esBlmm) h.c.)
qEN rEN T FE—q 0

1 ~ 1
Wa = N Z V(r/N)nu(qg+r) / ds (eisB(nH)bzbiqBSB(nH)a*,q,,,ap n h.c.)
P.gENT TEN T #ED,—q 0

1 .
Ws = > V(r/N)nw (g + r)nw(p)
p,qEAj_,rEA*:r;é—p—q

1 s
x / ds / dr (e7sBmpr | presBlm) = Bumpr b e7B0m) 4 hc))

—qr

1 ~
Wi=+ > V(r/N)nf (g +7)
p,qGA:,rGA*:r;ﬁfpfq
1 s
X/ ds/ dr (e_SB("H)b;+rbZeSB("H)e_TB("H)bpqurreTB("H) +h.c.)
(7.59)

First, we consider the term W;. With (3.18), we find

1 ~
W = N Z V(r/N)nu(q+r)
qENT ;rEA* T #E—q

1
x / ds (1{bg + 0B+ d) (b + 0B + d)) + hic.
0

where we defined mgs) = cosh(sng(q)), 0,(18) = sinh(sng(g)) and where d,(f)

n (3.17), with n replaced by sngy. We write

is defined as

R 1
W, = % Z V(r/N)ng(q+ 7“)/0 ds(’yés))Q(bqb_q + h.c.)

qENY reN*ir£—q

1 T s) (s *
ton Z V(r/N)nu(q + 7“)/ ds 3§ o) ([bg, b] + h.c.)
qEN reAN*:r#£—q (760)

1 = ! s s 4
tow X VoMl [ dsaf? (b, + he) + e
gEA* rEN £ —q 0

=: Wy +W12+W13+5()

where

4 4 4 4 4 4
5( ) = 5%0)1 + 51(0; + 51(0?5 + 51(021 + 51(0)5 (7.61)
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with the errors

1 - ! * s koK
Elo) = N > V(r/N)nu(q+r) / ds [mqs)ag)bqbq + (o8)2b* b: + hc.
qENY rEA*TE—q 0

1 ~ 1 « s
51(3)2 T ON Z V(r/N)nu(q+ T)/ ds O'( )(b d ()1 + h.c.)
qEN rEN T #£—q 0

1 1 ! S S) 1%
5&% T ON Z V(r/N)nu(q+ 7“)/ ds Ué )(dé )bq + h.c.)
geEN} rEA*TE—q 0

—1 1 ! S S
fn=5v > VE/Nmalg+r) / ds 7 (db_y +h.c.)
qeEN? reN*ir#£—q 0

1 ~ 1 s
5%)5 ~oN Z V(r/N)nm(q+ 7“)/ ds(d((;)d(,; +h.c.)
qeEN? reN*ir#£—q 0

(7.62)

Since

sup — Z IV ( r/N)||Ng4r| < C < 0 (7.63)
qu* reA*

uniformly in N € N and ¢ € (0;1/2), we can bound the first term in (7.62) by

(& EROI < C D [Imalllbg€ 1 + n2Ib €N + 1))l | < C N + 1))

qEA:

To estimate the second term in (7.62), we use (7.63) and Lemma 3.4; we find

(€ EQON < C D lnr(@lIb—g&l [Insr (@I + DY) + I 1€ ]

qEA*

< CP|(Ny +1)1%¢)?

For the third term in (7.62), we use (7.63), Lemma 3.4, and also

1 .
N2 > WV (r/N)Inu (g +7)l[nu(g)] < C < oo
qu:vT‘eA*J’#_q
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uniformly in N and ¢ € (0;1/2). We obtain

CI(NL +1)1/2 ~
el < DAL VTE s PNl + Ml @)
qENY ;reEN*ir£—q

x| gl + N i bgbpA el
C||(Ny + 1)1/2¢ ~
< AN LD S 106y mta + )l (a)
qEN rEAT T #E—q

X | (gl + N~ na DIV €l + Inll1bgél]

< OV + 1) 2¢)?

Consider now the fourth term in (7.62). We write 51(321 = 51(3211 + 51(3212, with

4 1 i ! s s
Sh=gy X VM) [ a6l - ndd,
qeEN reAN*ir#£—q 0

1
51(3212 N Z V(r/N)ng(q+ 7“)/0 ds dés)b,q

qeEN? reN*ir#£—q
With ]’yqs) — 1] < Cnu(q)|?, (7.63) and Lemma 3.4, we easily find
€ Elon&)| < CLWo + 1) 2)?

As for the term 51(81212, we switch to position space. Using (4.17) and (3.22) in Lemma
3.4, we obtain

1
(&G0l =[5 [ ds [ dsayNPV (NG = )in(a =~ )i dBg)
1
<C [ [ dsdyNV@ - )N+ DG + 1) 20,
0 JA2

1
x |llay Nyl + Haxay/\/i/%u]
< CLP|W + )2 + Ol W+ 1) [V el

Let us now consider the last term in (7.62). Switching to position space and using (3.24)
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in Lemma 3.4 and again (4.17), we arrive at
(€ €l < C /A dedy N*V(N (@ = y)(Ns + DV +1)72ddy]
< Cllna Il +1)'2¢)] [ | dedy NV (NG =)
X NIV + 172l + laaN el + layNZED + llawa, N3 €] ]
< CEP|(Ny + )Y + ||V + )Y |[vie]
We conclude that the error term (7.61) can be estimated by
+e) < cr(y +1)

Next, we come back to the terms Wiy, Wia, W3 defined in (7.60). Using (7.63) and
\'y,gs) — 1] < Cng(q)?, we can write

1 = 4
Wi =55 > V(r/N)nm(q+7)(bgh—g + hoc.) + E (7.64)
qENY rEN*:r£—q
where El(i‘) satisfies the estimate

C ~
Eeval<s< X IVE/MNlnala+r)lna(@) Pl IIN + 1]

qEN rEN T #£—q
< COP|(Ny +1)¢)?

The second term in (7.60) can be decomposed as

2N
qEA’_‘F rEN*r#£—q

Wo-gn S PeMNmlerom (15 ) we) @e)

where the error

4 1 i ! s) _(s) %
5{2) =~ N2 Z V(r/N)ng(q+ 7“)/ dS")/(g )aé )aqaq
qeEN reN*ir#£—q 0

~ 1
+ % Z V(r/N)nu(q+ r)/o dS(’y(gs)UéS) - <1 B %)

qENY ;reEN*ir£—q
can be bounded, using (7.63) and \'y(gs)aés) — s (@) < Clnu(q)?, by

+el) < PN, +1)
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As for the third term on the r.h.s. of (7.60), we write

1 PN N\ Ny +1
Wa=—on X TeMmat it (1- 50 ) M el mon
qENY ;reEN*ir£—q
where 51(§) = 51@1 + 51(3)2 + 51%?5 + 51(321, with
(4) 1 > ! (s) ()
€131 = IN Z V(r/N)mu(q+r) . ds(v,” — 1)bgd” + h.c.

qEN rEN r#£—q

1 ~ 1 < Ny,
Elgh = N > V(r/N)nm(q + T)/O dsb, [d(_; + an(Q)ﬁbq +h.c.

qui,reA*:r;é—q

, ) A o Ne+1
£d — _ e 3 V(r/N)n (g +r)nu(9)bgbe—x—
qeA’ reA* ir#—q
X _ o Ne+1
Bhimgw L VOMNuala+ma@age =

qEN rEAT T #E—q
It is easy to estimate the last two terms: with (7.63), we have
(4) 2a (4) 2a
&35 < YNy + 1), £Ey5y < CCY Ny +1)

With ]'yqs) — 1] < Cng(q)?, Lemma 3.4 and, again, (7.63), we also find

C ~
emol<y > VE/Mlnmta+n)lnn@PIWs + 1%
qENY reAN*:ir#£—q

x| @UIOV + 1Y€+ i g€ ]
< CEU Wy + 1))

Let us now focus on 51(3)2. Switching to position space, making use of the notation

jgjs) = dg(/s) + s(N4/N)b* () and using Lemma 3.4, specifically (3.23), we obtain

1 ~
< Cllanll [ | dedyN*V (N (@ = )|V + 1%

X NI + 112 + oA €]l + Mgl + lasd, My el
< COPI|N5 + 1)) + O (W + 1) 2 [Vy e
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We conclude that +£{3 < C1%/2(Hy + 1). Combining this with (7.64), (7.65), (7.66),
we obtain

1

W, = N Z V(r/Nng(q+r) (bqb,q + h.c.)
qEN ;rEN T #£—q

! v N Np+1
+ IN Z V(r/N)nu(qg+r)nu(q) <1 — ﬁ) <1 _ +T> + 51(4)

qEA% reN T —q
(7.67)

with
+eW < cel2(y + 1)

Next, we consider the term Wy, in (7.59). To this end, it is convenient to switch to
position space. We find

1
Wy = / dzdyN*V (N (z — y))/ ds (e_SB(”H)lv);lV)ZeSB("H)a*(ﬁH,x)dy +h.c.)
A2 0

with the notation 7y 4 (2) = g (x — 2z). By Cauchy-Schwarz, we have
1
(EWa| < [ drty NPV (N =) [ s
XA+ 1) 2P, PO |V + 1) 20 (g 1)

With
1N+ 1) 720" ()€l < Cllnmlllagéll < C€*/?|lay€]|

and using Lemma 7.7, we obtain

(6, Wag)| < Ct*/? | dwdy N>V (N(z —y))||ayé]|
A2

x A NI+ DY2E) + Vg + Nlagl + NV a.ae)} (768
< O (g + )Y (Vy + N + DY

Also for the term W3 in (7.59), we switch to position space. We find
W3 = /A2 dxdy N*V(N(z —y))
« /O s /O dr (e B e o BOm) = TBOM (i Vb (731, )P 1 b
and thus

1 S
& W38 < | dedy N°V(N(z—y ds | dr||(Ny + 1) 2esBOm)p b 5B ¢
A2 0 0 Y

X [Ny 4 1) Y2 BOm b (g )b (g, ) e B¢ |
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With Lemma 3.1, we find
IV + 1) 2e PO (i ) )6 (i, )e™ P MEN < Cllmarl P (V- + 1)V2¢]
Using Lemma 7.7, we conclude that
(€ Wa)l < O [ dady NV (N(z = )N + 1%

< NI + 12 + Nl + Nl + N2 azae] ) 769
< CE NG+ DY (Vi + A+ 1)1

The term Wy in (7.59) can be bounded similarly. Switching to position space, we find
Wy = /dxdy N2V(N(z —y))
1 s
« / ds / dr (e By ooBlun) =B (2 35 B | )
0 0

where 77%, denotes the function with Fourier coefficients 7% (q), for ¢ € A*, and where
ﬁ%m(y) := N4 (x —y). We conclude that Hﬁ?{xH = ||n%|| < C¢>*/2. With Cauchy-
Schwarz, we arrive at
1 s
ewig <o [Las [ar [ anagNvnG - y)
0 0
X [Ny + 1)1 2ems B0, b esBome|[|[b, ™0

Applying Lemma 7.7 and then Lemma 3.1, we obtain

1 s
e wigl <02 [as [Car [ asayNvnte - p)l,e g
0 0
x ANV + D)Y2€]] + Nljaag]) + Nlayéll + N2)aa,8] |

1 s
§C£5a/2/ dS/ dTH(N++1)1/2e*TB(nH)§”“(VN+N++1)1/2§H
0 0
< C£5a/2||(_/\/'+ + 1)1/2£||H(VN TN+ 1)1/2£||
Combining (7.67), (7.68), (7.69) with the last bound, we find

1 _
G\ =V + oy 2. V/N)um(a+r)(bgbg +huc)
quj_,TEA*:r;éfq

+ % Z V(r/N)nu (g + r)nu(q) (1 - W) <1 _ A%) n 5]@

qEAi ZTEN*ir£—q

where Ej(\?‘)g satisfies (7.55). As for the bound (7.56), it follows similarly, arguing as we

did at the end of the proof of Prop. 7.2 to show (7.12). O
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7.5 Proof of Propositions 4.2

We now combine the results of Subsections 7.1 - 7.4 to prove Proposition 4.2. From
Propositions 7.1, 7.4, 7.5, 7.6, we conclude that the excitation Hamiltonian Gy, defined
n (4.18) is such that

<>
~le

NN
N
—i—an{p 77p+V(p/N Z VT/anJFTKN—NJF)(N—NJF_l)

N N
pEPy reA*
p+rePy

i * N_N+
‘|"C‘|‘ GZA* V(p/N)apapT
p

X [Pt V0N + 5 S V0N | (6307, + bby)
pEPy reA*: p+rePy

1 = 1 >
+ 3 E [V(p/N) + N E V(T/N)Uerr} (bpb—p + bipb;)
pEPS reA*: p+rePy

1 .
+\/—N Z V(p/N)[erqa aq—|—hc}+VN+51
P,q€A :p+¢7#0

Onye = (N+Ny—1)

(7.70)

where

+£& < CUOTIZ(Hy +1)
and, with the notation fis = f(N;/M),
+for, [far, 1) < CLOIPM2 | F5 (Hy + 1)

for every f bounded and smooth and M € N.
Our first goal is to show (4.24). With (4.10), we have

Z Tlp {p Mp +V(p/N) + 2N Z ?(T/N)npﬂ,]
pEPy reA*: p+rePy

I -
= Zﬁp[§ (p/N) + XeN*%ue(p) + AN D~ Relp — @)y
pEPy qeEN*

pEPH7 qGP

With Lemma 4.1 and estimating

IRell = lxell < CE2, gl < €2, IRexnmll = x| < liul| < €2, (7.71)
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we conclude that

NN\ /N —-N; —
sznp[p”ﬁv(p/]v ZA: Vi /N N “)( i 1)
et pLe’ePH
N - N N-N, -1
L o (55 (4

with £& < C0~* (and with [far, [far, )] = 0). Since ZpeP;, \V(p/N)|np| < C74,
and from (4.6), we further obtain

an[pzanr‘?(p/N)Jr% Z V(T/N)Upw]<N;VN+><N_JJ\V/+_1)

pEPH reA*
p+rePy (7.72)

(N=Ny—1) (N;VM) + &

where £&3 < C0~* (and [far, [far, €3]] = 0). Using (4.10), we can also handle the fourth
line of (7.70); we find

S [Pt g V0N + g S VO N e | (50, + Byby)

PEPH T’EA*!IH-TEPH
= > [NBAgie(p) + N2 D Xelp — q)nq] (bEb*, + bpb_p)
pePu qeA* (7.73)
1 TV * 7k
“on 2 VI —a)/N)ng (b, + byby)
p,geN™:
pEPH, Py

Observe that

(€ N Y Re@byb—)| < COPWNG + 1260 3 oI~ Re@) g€

pEPn pEPn
< CO RN + D2 K2
< CO (4 1) K%

Using X, *n = n (because x¢(x)wy(x) = wy(x) in position space), we also find

‘<§7N2M > Relp—@)mg(Oph* bpb_p)€) | < CN L3302 (VL 1) 2| K2
pEPH,qeEA*
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Furthermore, we have

Ege S V- a/Nmbb,8)]
p,qEN™:
pEPH,qEPIc{
1 1 [V((p—q)/N)21Y? 1 1/2
< —[ s L e—g/N) ] S L PmelR] v + v
2N .. gl p?| . ldl
p,qEN*: p,gEN*:
PEPH,qEPE pPEPH,qEPR
< Ce NV 2| (Vg + 1))
(7.74)
From (7.73), we conclude that
+ ) [p p + = V(p/N v 2 V) np+r]( B bpby) < CEOTI2(K 1)
pEPy reA*:
p+rePy
(7.75)

for N large enough. As for the fifth line on the r.h.s. of (7.70), we can write it as

= Z[ (p/N) + Jif S V0N (b +b7,07)

pEPC reN*: p+rePy

1 =5 N * 7%
=35 Z (V(-/N) = fN,E)p(bpbfp + bfpbp) +&
pEPﬁI

(7.76)

where the error operator

1 7 % 7%
&y = IN Z V(lp— Q)/N)nq (bpb—p + b—pbp)
p,qEN*:
P,qEPE

can be bounded by £&; < CN~1/2(=%(K 4 1), similarly as in (7.74).
Combining (7.70) with (7.72), (7.75) and (7.76), we conclude that

o= trat 1) (2 ¢ 710 ama e, (Y525)

~ % N —N 1 =5 N * *
+ K+ Z V(P/N)apapT+ + 2 Z (V(-/N) * fn.e)p (bpb—p + b2, b7)
peEA’, pEP

1 ~
+— Z V(p/N) [by 40" paq +hec] +Vn + &
P,qEA] :p+q#0

with
+£E < CUO I (Hy +1) + CL™
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Observing that
+ Y V(p/N)apa, < CEYK+1),
pPEPH

that |V (p/N) — V(0)| < C|p|N~!, and that, by (4.6),

((V(-/N) % fe)p — 87|
< /dx N3V (Nz)fo(Nz)|e?* — 1| + '/N?’V(Nx)fg(Nx) —8rag| < C(lp| + )N
(7.77)

we arrive, with Q]e\% defined as in (4.23), at Gn ¢ = Gep + Eny, With an error Ex ¢ that
satisfies

+ Eny < CLOI 29y 4 O (7.78)

for all N large enough. This completes the proof of (4.24). The second bound in (4.25)
follows similarly, arguing as we did at the end of Prop. 7.2 (and noticing that the error
term & in (7.72) which is responsible for the factor ¢~ in (7.78) actually commutes

Let us now prove (4.22) and the first bound in (4.25). We have to control the off-
diagonal quadratic term and the cubic term appearing in g]e\ﬁf,z. We observe, first of all,
that

[4mag 3 (€ (bybp + 7,576} < dmag 3 NG+ 1) Iby¢

pePf] pEPfI (779)
< CL PNy + DV2E 1)

Using [far, [far, bpb—pl] = (fFNL /M) — f((N4 +2)/M))?byb_p, and a similar identity for
[fM, [fMa b;;b*,p]], we also obtain

[ama S (€ [ [, (boby +0507 )] < OM 20272 PRI+ 1) 21KV %€
pEPfI
(7.80)
It is possible to show an improved lower bound for the operator on the Lh.s. of (7.79),
by noticing that, for an arbitrary § > 0,

4 4
0< Y (mpyb;;+ 90 b_p> (mpyb,,+7f_%b* >

e V| Vol
« (47TC10)2 1 * “b*
PEPf PEP Peli

With (2.6), we commute

bopbt, =0b",b p+ (1N /N)— Nﬁla*fpa,p.
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Observing that

N-N,
* * *
bpbp = apTap < ayap

and that ZpePI‘; Ip|=2 < €=, we conclude that there exists a constant C' > 0, inde-
pendent of ¢ € (0;1/2) and of N, such that

dmag Y (bopby + b3b",) > —0K — C6 N, = C5 e (7.81)
PEPE

for any § > 0. As for the cubic term on the r.h.s. of (4.23), we have, switching to
position space,

‘\/— Z A(p/N)<§7(p+qa aq+hc)§>‘
P.aEN; :p+q#0 (7.82)
< /A2 dady NPV (N (2 — y))||aed ||| aeay] < Cll(Ny + 1)V2€)[Vi%] -
and analogously
1 ~
- Z V(p/N)<§7 [fM, [fM’(b;Jrqa*—paq‘f‘h-C.)HQ‘

VN P,gENT p+q£0 (7.83)

< CM72| FI% |V + )Y [V %l
Combining (7.78) with (7.79) and (7.82), we obtain (4.21). From (7.78), (7.81) and
(7.82), we infer (4.22). Combining instead the second bound in (4.25), with (7.80) and

(7.83) we find the first bound in (4.25) (because all other contributions to gjevffg commute
with NV 1)

8 Analysis of the excitation Hamiltonian Ry,

The goal of this section is to prove Proposition 5.2, which gives a lower bound on the
excitation Hamiltonian Ry, = e —Ageft N, ze with g&ff N s in (4.23) and the cubic phase

1
A= — Z [0y pa* ay — hoc.] (8.1)
re Py wePy,

introduced in (5.1), with the high momentum set Py = {p € A% : [p| > £7*} and the
low momentum set P, = {p € A* : |p| < £~P} for parameters 0 < 8 < a and £ € (0;1/2)
(in the proof of Prop. 5.2, we will assume o > 3 and /2 < 8 < 2a/3). To study the
properties of Ry, it is convenient to decompose

Q?\ggZDN—i-/C—l-QN,z—FCN-FVN
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with IC and Vy being the kinetic and the potential energy operators, as in (4.19), and

Dy = 4mag(N — Ny) + [V(0) — 4mag] Ny (1 — Ny /N),
Qne=V(0) > apap(l — N/Ny)+4dmag > [byb*, + bpby)]
pEPE pEPE (8.2)
1 ~
Cn=—= Z V(p/N) by, a0 jaq+ h.c.].
\/N P,qEAY :p+q#0

with Pf; = A%\ Pg. To study the contributions of these operators to Ry and to prove
Proposition 5.2 we will need a-priori bounds controlling the growth of the expectation of
the energy Hy = K+ Vy through cubic conjugation; these estimates are obtained in the
next subsection. As we did in Section 7, also in this Section we will always assume that
V € L3(R3) is compactly supported, pointwise non-negative and spherically symmetric.

8.1 A priori bounds on the energy

Our first proposition controls the commutator of the cubic phase (8.1) with the potential
energy operator Vy.

Proposition 8.1. There exists a constant C > 0 such that

Vi, A] = # S (PN ) ) Braat e+ he £y (83)

reA WeEPL
r#—uv
where
a— 1/2 1/2 a— 1/2
(€, 8y )| < CLOPR2IVI eI e || + CreDR v Pe| e e (8.4)

foralla >3 >0, £ € (0;1/2) and N large enough. Here K, =3 p
the kinetic energy associated to momenta p € P, = {p € A%, : |p| < £7P}.

2 %
p“aya, denotes

Proof. With

[a;-i—uazapatﬂru’ b:-{—vairav]
= [t 140 Opagtus 74|V 1 — (Np/N)aZ pay + bl [ag g apagi, a” )
= b;+ua;aq+ua*_rav6p,r+v + b;+ua;apa"_rav5q+u,r+v
A by 00 Qg Op Q0 g+ Dy O, g G0
= by @70, Op Qg uOg e — by y 0T 00 apaG 0y piu
and normal ordering the first two terms, we obtain

*

1 ~
Vv, Al = 75 > V((u—r)/N)nbk,,a* ,a, + G2+ O3+ 64 + hec.
ueEN* r€ Py veP,
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with

1 PN
Oy := —N3/2 Z V(U/N)nrb;Jrua:Jrvfuaira’pav
uEA™ pEAT,
re Py, vePr,
1 *
s := N3/2 Z V(U/N)nrb:+va;+ua**rfuapa” (8.5)
uEAT pEAT,
T’EPH,UEPL
1 *
Oy := _W Z V(U/N)nrb:Jrvaira;JruapaWru
ueN* ,peA? |
T’EPH;UEPL

The notation >_* indicates that we exclude choices of momenta for which the argument
of a creation or annihilation operator vanishes. Writing

1 * ~ i
o O V(u=r)/Nmby,at .
ueEN*
TGPH,UGPL
1 * A . . 1 * R ) .
=y O V= n/Nmbiaten = g 3 VA= n/Nbiat
u,rEN*, wEA* WEPL,
vePr re P U0}

and comparing with (8.3), we conclude that dy, = ©1 + O3 + O3 + ©4 + h.c., with

1 - 5 * *
@1 = _W Z V((u - T)/N)nrbu—i—va’—uav
ueN* vwePy,,
rePgU{0}

and with ©9, 03,0, as defined in (8.5).

To conclude the proof of the lemma, we show next that each error term ©;, with
j=1,2,3,4, satisfies (8.4). We start with ©;. For any & € .FEN, switching (partly) to
position space and applying Cauchy-Schwarz, we find

) 1/2
o9l s ol [ doty V@) S Il sl

re{0}UP§ ,vePy,

1/2
<| [t MY S lPlege] T ®9)

re{0}UPg ,vePL,
Cp—o—B/2

1/2 1/2
IV el |

Denoting by 7y € L%*(A) the function with Fourier coefficients 1y (p) = nyx(p € Pn)
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and using (4.14), we can bound the term O2 on the r.h.s. of (8.5) by

6.026)1 = | iz [ dody NV = ) 3 e By o)

vE Py,

] ) 1/2
T [ ety NV NG =) T DIV ]
vEP],

) , ) 1/2
X |:/A2 dxdy N“V(N(x —y)) Z [v]*|lazasd| ]

veEP],
< CUDP Ve i e
The remaining contributions ©3 and ©4 can be controlled similarly. We find

(6,001 = | o [ oty NV =) S et i)

TEPH,UEPL

1 9 , Y2
= \/—N[/m dedy N°V(N(z —v)) Y. [ ?[brobaiy]| }

T‘EPH,UEPL

1/2
X [/A2 drdy N*V(N(z —y)) > n?!v!zHaxavﬁHz]

T‘GPH,UGPL

Cr—h/2 N
< v i ) < oo v )

as well as

(€, 046)] = \%ﬁ [ oty NV @ =) 3D e b:+va*ra;axays>\

T‘GPH,UGPL

1 [/ 2 PP b
< dedy N°V(N(z =) Y. |r|*n?axay]|
VN LJa2 r€ Py vePL

1/2
X [/ dzdy N*V(N(z —y)) Z |T|2Hbr+vardm£”2:|
A2 T‘GPH,UGPL
< PPk |
Choosing N > £73%/2 (to control the r.h.s. of (8.6)), we obtain (8.4). O

With the help of Prop. 8.1, we can now control the growth of the expectation of the

energy Hy w.r.t. cubic conjugation.
Lemma 8.2. There exists a constant C > 0 such that

e Mner < CHy + CL Ny + 1) (8.7)

for all a > B >0 with a« > 4/3, s € [0;1], £ € (0;1/2) and N € N large enough.
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Proof. We apply Gronwall’s lemma. For a fixed & € }EN and s € [0;1], we define

fe(s) = (&, e Hne )

Then
fi(s) = (&, e [IC, Ale*t€) + (€, e Vv, Ale™€) (8.8)
Let us first consider the second term. From Prop. 8.1, we find
1 > * *
VN, Al = N33 Z (V(-/N)xn)(r) [by a0’ ap +hic] + by,

TEA:,’UGPL,T‘#*’U

where the operator ¢y, satisfies (8.4). Switching to position space and applying Cauchy-
Schwarz, we find

—1 v —S * * s
'Ns/z ST (VN ) (1) (€ 0" age A@‘
TGA:,UEPL,T‘#*’U

/ dzxdy N3/2V(N(x —yNn(z —y) Z e (g, eSAEL;ELZaveSAQ‘
A2 vE Py,

Clin o) s T s 2 12
< Al iz Asu[ | dody NV = )| 3 ot }
vEPr,

(8.9)

< OV e eIV e
because, by (4.17), ||7]|cc < CN and
A 2
/dxH Z ewa:avesAérH — Z <65A£,a:aU€SA£> < <€SA£,N+€8A£>
A UEPL UEPL

Together with (8.4), using o > /3, we conclude that
(€ e A Px, Alee)| < Ol e A Hne )

if N is large enough. Let us consider the first term on the r.h.s. of (8.8). We compute

1 * *
K, A] = i Z 2r?n, (b}, 0 ay + hc]
TEPH,UGPL
2 * *
+ — Z U, [brﬂa,rav + h.c.] (8.10)
T‘GPH,UEPL

2
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We use (4.10) to rewrite the first term on the r.h.s. of (8.10) as

1

Ti=——= > (V/N)sfno) () [bat,a, +he]
N 7’€A’_‘HUGPL7
r#—v
1 ~ —~
T 7 Z (V(-/N) % fn0)(r) [bfa* ap + h.c.]
N rePg,vePr, (8.11)
r#—uv
—1 < i * *
+ N Z N3N(Xe * fne)(r) [bpa® ay + hoc]
re Py wePy,

=:T11 + T2+ Tis
Since || f¢|lco < 1, the contribution of T;; can be estimated as in (8.9); we obtain
(€ e T ee)| < Ve eI e (8.12)

The second term in (8.11) can be controlled by

) c 1/2
et Tuetgl <) T pPlbaore e
rePf veEPL r#—v

1/2
x [ 3 |r|—2uave“£u2]

rePf vEPL r#—v

< QLo 2esAg| ||V P e |

Finally, since (Y * fN,g)(r) = Xe(r) + N7n,, the explicit expression

oy Am (sin(lr]) cos(llr
) = 7z (L - coostelr) )

and the bound (4.8) imply that |(x¢ * fN7g)(T)| < Cf|r|72, for N large enough. With
Lemma 4.1, the third term on the r.h.s. of (8.11) can thus be estimated for a > 4/3 by

K& G_SAT13€SA§>{

CZ‘ 1/2 1/2
[Zmu N2 esAfsuﬂ [ 3 rrwﬁuavesAsu?] (8.13)

rePy rePy,vePy,

< OO e AN Per ]| < Ol e e N e |

So far, we proved that

(€, T1€)| < CL 2|1y esAe|| |V} % esg| (8.14)
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for all £ € F=N Let us now consider the second term on the r.h.s. of (8.10). We find
+

(€, e Tyet 48|
1/2

C 2] .
< 3| 2 I et S et (8.15)

rePy TEPH,UGPL

< CrPR e gl e e |
Together with (8.14), we conclude that
(6, eI, Ale™ )| < Clg e Hye™ ) + CUo (€, e N e )
With Prop. 5.1, we obtain the differential inequality

|[fé(s)] < Cfels) + CE, (Nt + 1))
By Gronwall’s Lemma, we find (8.7). O

The bound (8.7) is not yet ideal, because of the large constant proportional to £=¢
multiplying the number of particles operator A'y. To improve it, it is useful to consider
first the growth of the low-momentum part of the kinetic energy operator. For 6 > 0,

we set
2 %
Ky = g p a,ap
pEAT:|p|<0

Comparing with the definition given in Prop. 8.1, we have K1, = Ky_,-5.

Lemma 8.3. There exists a constant C > 0 such that
e AR et < CKy + OO A (U +1) (8.16)

for alla > >0 with a > 4/3, £ € (0;1/2), 0 <9 < £~ — ¢, s€[0;1] and N € N
large enough.

Proof. For a fixed £ € .FEN, we consider the function g¢ : [0;1] — R, defined by
ge(s) == é&,e_SAngeSA@. For r € Py and v € P, we observe that |r 4+ v| > |r| — |v| >
£~ — {77 > @. Hence, we obtain
(Ko, A] = > mbi,at, Ko, au] + hec.
T‘EPH;UEPL
1 >k *
= — i Z [v|*n, bf,,a* a4y + h.c.

rePyg,vePr:|v|<6

2l
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We estimate

—1 - * *
\/N Z ‘0‘27’]7’<§,6 SAbr+Ua_raU€8A§>‘
rePy wePr:|v|<0
! |v]
STUN 2 gl telleeane il il ]

rePg,vePr:|v|<6

ol ) o 1/2
Tl T i ePlba et
ré Py wePy:|v|<6

1/2
[ 3 rnrﬂvﬁuaves%ﬂ

ré Py wePy:|v|<6

< ORI e 116y e
Hence, using K < Hy and Lemma 8.2,
|(9uge) (5)] < CL2E, ™M Hye™ ) + Cye(s) < OO, (Hu +1)€) + Ce(s)
Gronwall’s Lemma implies (8.16). O

With Lemma 8.3 we can now improve the estimate of Lemma 8.2 for the growth of
the expectation of the potential energy Vy.

Corollary 8.4. There exists a constant C' > 0 such that
e AVnett < C(Hn +1) (8.17)

for allae>4/3 and 0 < f < 2a/3, £ € (0;1/2) small enough, s € [0;1] and N € N large
enough.

Proof. For & € ]:_EN, consider the function he : [0;1] — R defined through he(s) :=
(&, e AVnesAE). By Prop. 8.1, we have

1 ~
he(s) = N2 ) ZI; ) (V(-/N) % n) (r)(§, e ([bry 0" pay + hic])eE)
re 1,1}6 LT F—v

+ <£’ 6_8A5VN68A£>
where
—s s 1/2 s 1/2 s a— 1/2 s s
(€, 6740y e546)| < OV et eI 2ese|| + CrPeD2 |y 2esAg ||/ 2es4¢|

The estimate (8.9), in the proof of Lemma 8.2, shows moreover that

—1 V% —S >k * S
‘N3/2 Z (V(/N)*n)(r) (& e Abrﬂa_raye Ag)
rGAi,vEPL,r;ﬁfv

< C|[VN et eIV e
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With Proposition 5.1, Lemma 8.2 and Lemma 8.3 (with # = ¢=%), we deduce that

|Be(s)] < CIIVN e Ae)? + C(1+ 20730) (g, (M + 1)€) < Che(s) + C(&, (Hn + 1)€)

because < 2a/3. Notice that, for £ € (0;1/2) small enough, we have 27 < £=%; thus,
we may choose indeed § = ¢~ in Lemma 8.2. Applying Gronwall’s Lemma to the last
bound concludes (8.17). O

Finally, we consider the growth of the kinetic energy operator; in this case, we do
not get a bound uniform in ¢; still, we can improve the result of Lemma 8.2 and the
estimate we obtain is sufficient for our purposes.

Corollary 8.5. There exists a constant C' > 0 such that
e A < Ce A2 (1 4+ 1) (8.18)

for alla > 4/3 and 0 < 8 < 2a/3, s € [0;1], £ € (0;1/2) small enough and N € N large
enough.

Proof. For a fixed & € }EN define j¢ : [0;1] = R by je(s) := (€, e754KesAE). From
(8.10) and (8.11), we infer that

K, Al = T11+ Tio+ Tz + To

with T11,T12,T13, T2 as in (8.10) and (8.11). Combining (8.12) with Prop. 5.1 and
Corollary 8.4, we find

(674 Tue )] < CIVPe g IV Pee) < Ol (v +18) . (819)
From (8.13), Prop. 5.1 and Lemma 8.2, we obtain

(€, e~ AT 3e%4E)| < 322 | KL 284 || NV T 2es4g |

) (8.20)
S CLHE (Hy +1)6) < O (R +1)8)
Using (8.15), Lemma 8.2 and Lemma 8.3, we arrive at
(€ e TaetE)| < CLP KA e el < C6 (i + 1)) (821)

Hence, to show (8.18), we only need to improve the bound on Tj. To this end, we set
0 = ¢~ —5(78/4 and we decompose

1 ~ —~
Tio=—= Y. (V(/N)* fne)(r)bi,a,a,
N 0<|r|<0
vEPL, r#—v

1 ~ ~
= Z (V(-/N) * fne)(r)by 0™ ay
\/N 0<|r|<e—e,
vEPL ,r#£—v

=:Ti21 + Ti22
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With Prop. 5.1 and Lemma 8.3, we estimate

-5 s c S - s
(€ e A Time™e)| < i Y Irlllacrbrroet el r~ lave ]
0<|r[<8,

vEPL r#£—v
< ol Ky Pe A IV Perhel| < oo (g, (i +1)€)
On the other hand, since Ze<|r|<z—a |r|=2 < C¢~5, we find, by Prop. 5.1 and Lemma 8.2,
—sA sA c sA 1 sA
(€, e T191€°¢)| < — Vi S Irllacrbrpoe® 1] ave |

0<|r|<e=<,
vEPL r#£— v

< CUPP e || PesAel| < Cem @A (g (Hy + 1)¢)
Combining the last two bounds with (8.19), (8.20), (8.21), we obtain
Ge(s)] < COTHDe (Hy +1)€)
for all s € [0;1]. Integrating over s, we arrive at (8.18). O

8.2 Analysis of e 4DyeA

In this section we study the contribution to Ry, arising from the operator Dy, defined
n (8.2). To this end, it is convenient to use the following lemma.

Lemma 8.6. There exists a constant C' > 0 such that

‘ Z Fp(&as (e apap — a,ap)&2)
pent (8.22)

< COP| Fllool (Ve + D)V [|(Vs + 1) 26|

forall a, 8 >0, &,& € ffN, Fet>*(A), L€ (0;1/2) and N € N large enough.

Proof. The lemma is a simple consequence of Proposition 5.1. We write

ZF aap — ayap) /ds ZFBS aap,A]eSA

PEAT PEAT

and compute

Z Fp[a;ap, Al = \/_ Z (Frgo + F_p — Fy)neby, ja” La, +hec.
pEAi rePr,vePr
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By Cauchy-Schwarz, we find with the help of Proposition 5.1 that

1 * *
= X (Pt P B b e 6)

T‘GPH,UGPL

C||F
<= 5 indlaeella bl
TEPH,UEPL

< COPIF N + D)6V + 1)V26|
Since the bound is uniform in the integration variable s € [0; 1], we obtain (8.22). O
Proposition 8.7. There exists a constant C > 0 such that
e ADye? = dmag(N — Np) + [V(0) — 4mag] N (1 = Ny /N) + 0py

where

(€, 0Dy )] < CLPE (NG +1)8)
foralla, >0, £ € ffN, ¢ € (0;1/2) and N € N large enough.
Proof. Recall from (8.2) that

Dy = 4mag(N — Ny) + [V(0) — 4mag] Ny (1 — Ny /N)

Lemma 8.6 implies that
:I:{eA [47Ta0(N - N})+ [‘7(0) - 477110]/\/}} e

_ [47ra0(N — Ny + [V(0) - 47m0]f\/+} } < Cl2(N, +1)

As for the contribution quadratic in Ay, we can write
N7HE [ NEet - NE] €)
= N7H{&, [eNpe =N &) + N7HE, [e7 N e — ML) &)
with & = e AN e4¢ and & = N €. Applying again Lemma 8.6, we obtain
INTHE [e Ve — VR €
< ONTUO| N+ D2 [IV + Y26 + [V +1)126
Using (twice) Prop. 5.1, we find
IV +D)M28 ] = [V + D)Y2e 4N eg] < ClIVE +1)%2¢]
Hence,we conclude that
INTHE [e N2 — VR 6
< ONTHPY(N + D)2V + 1)P2E) < Ce (W + )Y
O
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8.3 Contributions from e 4Ke4

In this subsection, we consider contributions to Ry, arising from conjugation of the
kinetic energy operator K = Zpe At an;;ap. In particular, in the next proposition, we

establish properties of the commutator [, A].
Proposition 8.8. There exists a constant C > 0 such that

K, A] = —% S (PN # ) () (B ga” g + hic)

PEAY GEPL,pF—q

8mag %
+ Vi Z [bp+q " g+ h.c.] + dx

pEPF,qEPL,p#—q

where
(€, 5c)] < (B2 4 eI (N + Kn) V2] (8.23)

forall o, >0, £ € ffN, ¢ € (0;1/2), N € N large enough. Moreover, we have

D R AL AEAIE]

peprqGPL,p#fq
< OO (N + 1) K2 + oD e Iy e |
+ CeIet )

(8.24)

forall o, >0, £ € ffN, ¢ € (0;1/2) and N € N large enough.

Proof. The bound (8.23) is a consequence of Egs. (8.10), (8.11), (8.13), (8.15) in the
proof of Lemma 8.2, and of the observation that, from the estimate (7.77),

‘ \/_ Z [(‘?(/N) * ]?N,K)(p) - 87Tﬂo] (€, bp+q 7paq§>
Pg.qePr,p#—q
SONT2 3 pplibpraapéllacll < CNTNER Mg ING |

PEPf,qEPL,p#—q

which is bounded by the r.h.s. of (8.23) if N is large enough. Let us now focus on (8.24).
We have

&Tﬁ Z [b;+qa aq,A] + h.c.

€ P ,qEPL,p#—q

87Ta0 * * * * *
= g N [bp+qa_paq, by 0" Gy — ava_rbrﬂ] + h.c.
re Py pePy,
qGUEPL pFE—qrF#—v

(8.25)
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We split the commutator into the four summands

[0 4 0" pag, Uiy a® ay — aha_ybyio] = (b4 bhya® a] + [aha—rbr, by ) a” ,aq

+ b*+q([a_paq,br+va_rav] + [asa_ybyiy, a” - q])

(8.26)
We compute
[;+q, o0 pay]a’ pg = =y Ub*_ra_paqépﬂ,v =—by b ,a ; v@q0ptq.v (8.27)
as well as
[apa_rbr gy, by la” aq
=(1- N+/N)a:ja¢+qaqar+v5p+qﬁr + (1 = Ny /N)agavbp+g,—r0rtv,—p
(1 _N+/N) Qy q r—o@— Taq5p+q r+v T+ (1 _NJr/N)a:av(Serq 7“+U6 rp
- N ' a ;+qa—pa rlriolq — N~ ! :; ; r—v@— Taqér-i-vrp N~ ! ay Z-l—rar-l-vaqépr
(8.28)
Similarly, we find
b;—l—q[a’*—pa’(b bi—i—va*—ra’v] - b;—l—r—l—vb*—p —raU(S(IJ"JrU + bp rb:-‘,-v —pavé%*r (8 29)
b:; Ubi-l—v —raq5*p71’
and
o ql@pa—rbr o, a2 paq] = by anagbeyw0rp — by @t by yOg 0
* (8.30)
+ by —p Oy @by Oriv —p

Taking into account that 6, ), = 04— = Op4vq = 0 for » € Py,p € Pfj,q,v € P, we
obtain, inserting these formulas into (8.25),

7

877:? Z [b;kﬂrq a_pQq, A} +h.ec = Z T; +h.c.
PEPE qEPL,p#—q j=1
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where

16ma
T, = — 0 b, b ak
N r4+ovY—r q v q
r€Pp;q,vePy,
qFV,rFE—
87‘(‘00 -
TQ = N E 777,(1 —N+/N)avar+qaqar+v,
rePp;q,vePy,
q+TPIc{7T7é7q7T7éiv
Yy = N E n-(1 = Ny /N)asa,,
rePpg,vePy,
r+vePf;
87‘(‘00
Y, = v E (1 =Ny /N)a}, Uy y@—rlyg,
r€Pp;q,vePy,
q—r—vEPE
8rrag (8.31)
T5 = —W E ’I’}T v p+qa a_ ranr+vazq,
TePvaeP]S?
qQUEPL pF—qr#—v
877110
To:= — N2 E nrvqrva’ rQq;
rePp;q,vePy,
r+vePf ,q#r+v
877110
T7 = — N E MNr bp+va,pa bT’-H)a
re Py pePg,
vEPL;p,r#E—v
87TC10 ¥ %
Tg = T E bq r—uv Ua bq

r€PH;q,vEP,
r+vE P qAT+v

In fact, T collects the contribution from (8.27) and the non-vanishing contribution from
(8.29), T9 — T corresponds to the five non-vanishing terms on the r.h.s. of (8.28), T7
and Yg reflect the two non-vanishing terms on the r.h.s. of (8.30).

To conclude the proof of Prop. 8.8, we show that all operators in (8.31) satisfy (8.24).
By Cauchy-Schwarz, we observe that

ce>
enol<= D IllagWr + 1" 2ellrlla—rag-varss (Vs +1)72%]

rePy;q,vePL,
qFV, T FE—

< CPEPR|(N, + 1)V I3

The expectation of Yo is bounded by

C _
(& T28)] < > Inrllalllagarvélllgl ™ lavar o]
r€P;q,vePr,
q+T‘€PI‘?I7T¢—q7T¢—’U

< CLODR eIV ¢
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where we recall the notation Ky, = K)-s = Z‘p‘d,g p2a;§ap for the low-momenta kinetic

energy. It is simple to see that Y5 < CN =N and the expectations of the terms
T4, Tg and Tg can all be estimated by the expectation

> e |0l [|avag—r—oll[v]~Hla—ragg]]
rePy;q,vePL,
r|<(€=>+207F),g—r—v#0

< CLe=P2 | eIV ¢

2l

(€, (Ta+To+ Ts)E)| <

Finally, the expectations of T5 and Y7 can be bounded by

|<£’ T5£>‘
ce —1 all/2 602
<Nz > nellplla—pavap o€l Ipl ™" Irllla—rarivaql] < CEHICZE
7€ Py ,pEPf,
qUEPL pF—qrF#—v
and by

ce _
e8] < S S ilpllapape ol bl sar i€l < OF 2R
TEPH,pEPf17
UGPL;pyr#iv

8.4 Analysis of e 1Qy e”

In this subsection, we consider contributions to Ry arising from conjugation of Qy g,
as defined in (8.2).

Proposition 8.9. There exists a constant C > 0 such that

e QN et = V(0) Z asap(l — Ny /N) + 4mag Z [b2b", + bpb_p] + 00y,
pEPE PEPH

where
£ 0gy, < CLOA2 (3 +1) (8.32)

foralla>4/3, 0 < 5 < 2a/3, £ € (0;1/2) small enough and N € N large enough.

Proof. Proceeding as in the proof of Proposition 8.7, it follows from Lemma 8.6 that

+ [17(0) D e tapa,(1— N/Npet —=V(0) > aray(l— N/Ny)

pePS pePS (8.33)
< CLH N, 4 1)
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Let us thus focus on the remaining part of RE\Z,’X). We expand

dmag 3 (A [opbt, + bpboplet = [0, + byby))

pePg
(8.34)
—4m0/ ds Yy e Abrbe,, Ale™ + hee.
pePg
We compute
[b5b* b0 pay — aha_pbrgy] = by, [B30% ), a* au] + [aha_rbyry, U5bT]
where
bi—l—v [b;b*—p’ a rav] - b:-{—vb*—vb* 7"(5*1777) + 51771})
and

[aza, br4v, pb* ] = bybybr iy (0—rp + rp) + (1 — Ny /N)bZ,_ana r(Or+v,p + Ortv,—p)
— 2N_1bza:ar+v(5p,_r +0pp) —2N~ 16;‘,(1*_1,%(1 S
Using the fact that 6, _, = 0, , = 0 forr € Py and p € Pf;, we find that )
h.c. = Z?:N‘I%' + h.c.), where

2
Opi= —— > mbr b,
\/NT‘EPH,UEPL

perg, [0V A+

2
@2 = \/—N Z (1_N+/N) —r— Ua’Ua’_
re€Pg,vEPL:r+vEPE
2 * Xk
3= — N2 Z bpa_pava rQpiy

r€Ppg,wePL,pePY

Let us now bound the expectation of the operators ®;,i = 1,2,3,. By Cauchy-Schwarz,
we find that

€, 16)] < \— (6, vb*rb*vs>\
\/_TEPHZ;GPL "
C
<= ] [0] "N+ 1Y€ [0l [bybypobr (N + 1) 72|
WTEP;EPL
< CeO=P2 (N + 1)V 1K) 3¢
as well as
2
L =D DI ORIy

re€Py,vEPL:r+vEPE

C

<7 3 Il W 4 Y2 olllaobrr o]
\/N rE Py, vePr,

< CLeAR|(NV + 1)V2¢ 1K %l

7



To bound ®3 we notice that

ce _
628 <o 2 el + 1) 2€lpl rlllarar o
re€Py ,weP,pEPE;
< o)
With (8.34), we conclude that

+ [4711:10 > (e [epbt, + bybplet = [Bpe, + b,,b_,,]ﬂ
pEPE

1
<C / ds e AT+ Kp + 1) + 9K e
0
Finally, we apply Prop. 5.1, Lemma 8.3 and Cor. 8.5 to conclude that
+ [zmo > (e*A [b2b" , + bpb_p] e — [b3b%, + bpbp])} <2y +1)
pEPfI

Together with the estimate (8.33), we arrive at (8.32). O

8.5 Contributions from e “Cye”

In this subsection, we consider contributions to Ry, arising from conjugation of the
cubic operator Cy defined in (8.2). In particular, in the next proposition, we establish
properties of the commutator [Cy, A].

Proposition 8.10. There exists a constant C' > 0 such that

2 =5 =5 * (N B N+)
Cx Al == D [VO/Ne + V(o +0)/Nn]ajan———= + dc,
T‘GPH,UEPL

where

€. den )] < CEOD P2V + N, + 1)V K2 -
+CUOOR| (KL + Vi + N )Y '
forall a, >0, £ € (0;1/2) and N € N large enough.
Proof. We have
1 % * * * * *
[Cn,A] = N Z V(p/N)ne [b5, 0" pag, by ,a” .ay — aya_pbyiy] +hec.

P,qENY :p+q#0

T‘EPH;UEPL
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From (8.26), (8.27), (8.28), (8.29) and (8.30) we arrive at

[Cn, Al = % Yo VO/Nm+V((r +0) /N)nr}a;;avNT +Y (55 +hec)
rePg,vePr j=1

where

== 2 VO/Nmb b et ey,
re Py vePy,,
PEAT ipFv

= Y VN NN
rePmgvePr,
PEN L r#E—p

1 ~
~ > Vp/Nm(l = Ny /N)aja” ya rarivp,
re Py wePr,
pEAT r+v£p
1 ~
4= — N2 Z V(p/N)nrayag, 0 ,a—rarivaq,
T‘GPH,UEPL,
P,q€AY :p+q7#0

w
|
|

[
no

|

|

[1]
w
I

- 1 >

5=~ N2 Z V((r+v)/N)nrayay_,_,a—raq,
rePg vePr,
qENT irtv#£q

1 i % %
6= — N2 E V(T/N)nravanrra?"-‘rvaq
TEPH,UEPL,
qEA’_‘F:r;éfq

1 i *
= N Z V(p/N)nrbp+r+vbipairav,
T‘GPH,UGPL,
pEATL rtvFE—p

1 ~
ES = N Z V(p/N)nTb;—T‘b:-f—Ua*—pav7
rePy,vePL,
pEAj‘r:r;éfp
- 1 o
So= - >, V/Nmb b0t ag
re Py, vePy,
qGAj_:q;év

§ : > * *
V(T/N)nrbquravaquJrv,

TEPH,UGPL,

qENT r#—q

[1]

[1]
L
|

[
IS
|

2=
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as well as

_ 1 s
r€Pp,vePr,
pEAT ipF—v
- 1 ,
=12 = N Z V((?" + U)/N)TI?" q—r— vy @— bq
rePy.vePy,

qENY :qFT+v

In fact, the first term on the r.h.s. of (8.36) arises from the second and fourth terms on
the r.h.s. of (8.28), together with their Hermitean conjugates. The commutator (8.27)
yields Zj, the remaining terms from (8.28) produce the contributions Zy to =g, from
(8.29) we find the operators Z7 to Zg and from (8.30) we obtain =0, =11, Z12.

To conclude the proof of the proposition, we have to show that all terms Z;, j =
1,...,12, satisfy the bound (8.35). The expectation of Z; can be controlled with Cauchy-
Schwarz by

_ ol )
[(eE0l < Do ImllWVe + DY Paupglirlla—sariap(Ne +1) 7%
TRty

< CLOPDRIW, + D)X %]
The same bound applies (after relabeling) to Zg; we find
(€, Z08) | < CBEP2||(Ny + 1)V 2¢||| KM 2|

Also the expectations of the terms =9, =3 and (again after relabeling) of the terms =,
26,210, =12 can be bounded similarly. We find

1(§, Z28)| + [{§; Z3E)| + {6 EsE) | + {6, Z66)| + (€, E108) | + (€, Z126) |

cre
< > <!nr!Haua—p§H\r + vlllarsva—r—p&ll + [nr]lla—pavé|Irllla—rarro—pé]
7"€PH,U€PL,]76/\*+

+ [elllavap—r—o€lllr(lla—rapll + e |llavapr&lllr + vfllarvapt]]
+ [rlllapranklllr + vlllarrvaps | + \nr\Hap—r—vaué“H!rH\a—rapﬂ\)
< CPEPR(NL + 1)V ¢

To control the remaining terms, we switch to position space and use the potential energy
operator Vy. We start with Z4. Applying Cauchy-Schwarz, we find

(6291 = | [ty VYNGE-0) S mleaaata o)

T‘EPH,UEPL

1
< [ dedy N*V(N@ =) > [elllavieayé|lla—rarioiat]
A2 T‘EPH,UEPL

< e Pel IV
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Next, we rewrite Z7, Zg and =17 as

= — 2 i(r+v)z Tk sk
Er = //\2 dxdy NV (N(x —y)) Z !r+v) bxbya,,,av,

TEPH,UEPL

Eg= [ daxdy N*V(N(z— e bbyar ,ay
8 //\2-%'3/ ((1‘ y)) Z xyr—f—va’?

T‘EPH,UEPL

=1 = — | dxdy N*V(N(z — T DD A by
11 //\2xy (N(z —y)) Z € M0y 0yG—rOr

T‘EPH,UEPL
Thus, we obtain
(€20 < [ dody NVY 3 astgartlinl] 32 ot
vEPr,
1/2
< oy [ / I ]
v’ €Py,
< Cr vy eIV el
as well as
|<£a ES£>| + |<£’ Ell£>|
<C [ dxdy N*V(N(z —y))
A2
x>y <!v!_1H%dyarﬂﬂ\\mHv\Hav§H + Cﬁa\ﬁr\de@yfll!T\Ha—rbwrvﬁ\\)
T‘EPH,UEPL
< PRIk el + cee PR e 12
Collecting all the bounds above, we arrive at (8.35). O

8.6 Proof of Proposition 5.2

Let us now combine the results of Sections 8.1-8.5 to prove Proposition 5.2. Here, we
assume « > 3 and /2 < § < 2a/3.
From Prop. 8.7 and Prop. 8.9 we obtain that

RN3>47TC10(N N+) [ (0) 47TC10]N+(1—N+/N)
Z apap(1 =Ny /N) 4+ 4mag Z [bb*, + bpb_p)]

pEP pePE
1
FE4Cy+ Yyt [ ds e K+ Cy 4 Vi, Al
0
— P2y 4+ 1)
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with Cy defined as in (8.2). From Prop. 8.1, Prop. 8.8 and Prop. 8.10, we can write,
for N large enough,

K +Cn + Vn, A]
> _\/—N Z V(p/N) [bp+qa_paq + hC] + ﬁ Z [bp+qa_paq —+ hc]
pEAi,qEPL, pEPF,qEPL,
PF—q PF—q
2 1 94 *
5 2 [VO/Nm V(@ +0)/Nmajau(l = Ni/N)
rePy,vePr

— C(2 4 LTI N+ Yy + Kp) — C(P@F2 oy gBatB)/t 4 gra=2yi

From Prop. 5.1, Lemma 8.3, Cor. 8.4 and Cor. 8.5 and recalling the definition (8.2) of
the operator Cy, we deduce that

1
/ ds e*SA[IC +CnN + VN,A] 54
0

1
_ 8mag
> [ dse SA[—CN+ b, a* a,+h.c.
/0 N Z [p+q pq ]

pEPE,qEPL,
PF£—q
2 % 1 * (N — N+) sA
+ N Z [V(T’/N)Ur +V((r+ v)/N)nr]aUavT] e
T’EPH;UEPL
1 ' U —s * * s
i VN / s Z V(p/N)e* 4 [bqaZ 0 + hoc]e
0 peAt gepy,

PF—q

— O a2 g 23y (Y 4 1)
(8.37)

The expectation of the operator on the fourth line can be estimated after switching to
position space with Cor. 8.4 and Cor. 8.5. We find

1 1 R
‘\/—N /0 - Z V/NIE eSAb;+qa*paquA§>‘

pEA’ qEPT,

p#—q
1
g/ ds / dxdy N5/2V(N(x—y))HdwayeSAfHH Z ei‘”aquA{H
0 A2 4EP; (8.38)
1 ' , 1/2
< C/ ds ||V]1V/268A£H|:/ dx Z eila=a )x(GSAf,a;/aquA@]
0 A

q,9'€Pf

1
= Cfﬁ/o ds [VY2esAg |26 e | < CoB8—e)/A) (3 + 1)V 2]
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Next, we consider the term on the third line of (8.37). With Lemma 4.1, part ii), and
since o > 1, we have
Cl=*v

N

& 3 [P+ P+ 0)/N ) = (16700 27 (0)]| <

rePy
for every v € Pr. With Lemma 8.6, Prop. 5.1 and Lemma 8.3 we obtain, for N > ¢73,

+ [% > [VE/Nme + V((r +v)/N)m] B_SAa;aU%esA

T‘EPH;UEPL

oy 270)] 3 st D) 839

vEP],
S CNTYUB 4022 (Hy +1) < ClP(Hy + 1)

To handle the second term on the second line of (8.37), we apply Prop. 8.8 and then
Prop. 5.1, Lemma 8.3 and Cor. 8.5 to conclude, again for N > ¢=3%

87'('00 1 _sA SA )
+ ds { SAp*E . a* age’” — bt a’ia]—l—h.c.
( /N Jo Z p+q%—p%a p+q%—pQa

pEPE ,qEPL,
psﬁ q
877110 7tA * tA
< dt [prrq ,paq,A]e
pePc ,qEPL,
p# q

< C(€(2a—36) + g(afﬁ)/2)(’HN +1)

As for the first term on the second line of (8.37), we use again Prop. 8.10. Proceeding
then as in (8.39), we have

1 1 s
/ds eSACNeSA:CN—i—/ ds/dtetA[CN,A]etA
0

(N
< Cn + [16mao — 2V(0)] Y aja p% (8.40)
peEPL

+ O (B2 4 2038) (U + 1)

Inserting the bounds (8.38)-(8.40) into (8.37) and using additionally the simple bounds

0< > ara, < Y ara, <K

pEPFNPy pEP}
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and

87Ta0 * * p —1
T 2 Eheta)| s o 3 bl alla]

PEPE,QEPT, pEPE,qEPT,

PF—q PF£—q
Céﬁ—a/Q 1/2 1/2
< S | Y laPlose ]
\/N qu]f
< COol 2
we arrive at
N —
RN7g > 47T00(N — N+) + 47‘1’&0 J\/'Jr%
* (N_N+) % 7%
+8mag Y | apap——— +dmag Y [Bb7, +byby] (8.41)
pEPE, pEP '
87'('00 * * K
TN > (05,07 yag +hee] + (1= CL)(Hy +1)

PEPE .qEN] :pF—q

with £ = min[(a — f)/4;a — 3; 8 — a/2; 2a — 3/3] > 0 under the assumptions o > 3 and
a/2 < < 2a/3.
We define now the function v, € L (A) by setting

ve(z) := 8may Z e = 8rag Z e

pe{0}UPE peEA*:|p| <t~

In other words, vy is defined so that 7y(p) = 8mag for all p € A* with [p| < £7 and
Vg(p) = 0 otherwise. Observe, in particular, that 7y(p) > 0 for all p € A*. Proceeding as
n (2.4), but now with V(p/N) replaced by vy(p), we find that

1 & (N —1)
UN NZW(%—%) Uj\}: N 47TC10(N—N+)+47TC(0N+

1<j

(N —Ny)
N

N-N
+8mag a;ap% +dmag > (Upb*, + bpb_p)

pEP pePE

877110 * % %
/N Z [by 10" pag + aga_pbpq]
PEPE gAY pF—q

4mrag " "
+ N Z OptrQqQpQg+r

P,qENL rEPr#E—p,—q
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Comparing with (8.41) and noticing that

47TC10 C
N Z (&5 ap yraqapag+§) < N Z lap+ragéllllapagrE||
p,qEA’jr,TEP;I: p,qui,rePf{:
r#—p,—q r#£—p,—q
05730‘ )
<
< Il

we conclude that

N
1
Rye > Uy | > v —ay) | Uy + (1= CLYHy — CLPNT /N = Ct° - (8.42)

i<j

Following standard arguments, for example from [19, Lemma 1], we observe now that,
since vy(p) > 0 for all p € A*,

N N
0§/A2dxdyug(x—y) Zé(:ﬂ—:ﬂj)—N [Z&(y—xi)—N]

j=1 i=1
N N
= Z Vg(.%'i — .%'j) — NQﬁg(O) =2 Zw(mi — .%'j) + NI/g(O) — NQﬁg(O)
ij=1 i<j

This implies that

N
1 N _3a
N E ve(x; —x5) > EV((O) —v(0) > 4ragN — C¢73

1<J
From (8.42), we finally obtain
Ry > dnagN + (1 — CL5YHy — CLPNE /N — Ce3

This completes the proof of Proposition 5.2.

A Properties of the scattering function

In this appendix we give a proof of Lemma 4.1 containing the basic properties of the
solution of the Neumann problem (4.1).

Proof of Lemma 4.1. Part i) and the bounds 0 < f,,w, < 1 in part ii) follow from [7,
Lemma A.1]. We prove (4.6). We set r = |z| and my(r) = 7 fo(r). We rewrite (4.1) as

— () + SV )me(r) = Aame(r) (A1)
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Let R > 0 be the radius of the support of V, so that V(z) = 0 for all z € R? with
|| > R. For r € (R,N/] we can solve (A.1) explicitly; since the boundary conditions
fe(N£) =1 and (0, f¢)(N{) = 0 translate into my(N¢) = N¢ and my(N¢) = 1, we find

my(r) = )\21/2 sin(Aé/Q(r — NY{)) + N/ COS()\;/Q(T — NY)) (A.2)
With the result of part i), we obtain

me(r) =r—a —i—éﬁr—l a0
o OTaNE T 2(Ne)

r® + O(ag(NO)™) (A.3)
for all » € (R, N/] (the error is uniform in ). Using the scattering equation we can write
N¢ N¢
/V(x)fg(x)dac = 477/ drrV (r)mg(r) = 871/ dr (rmy (r) + Xermy(r))

0 0
Integrating by parts, we observe that the first contribution on the r.h.s. vanishes (because

my(NC) = Nt, my(N¢) = 1 and my(0) = 0). With the result of part i) and with (A.3),
we get

8Ty /ONz dr ng(r) = 8Ty (UV;):S + O(ao(N€)2)> = 8mag + (’)(a%/éN)

which proves (4.6).

We consider now part iii). Combining (A.3) for r € (R, N¢| with wy(r) < 1for r < R,
we obtain the first bound in (4.7). To show the second bound in (4.7), we observe that,
for 7 € (R,N/], (A.2) and the estimate in part i) imply that |f(r)] < Cr~2, for a
constant C' > 0 independent of N and ¢, provided N{ > 1. For r < R we write,
integrating by parts,

my(r)r —me(r) 1

fitr) = PR 2 [ assmie
With (A.1) and since 0 < f, < 1, we obtain
10001 =[5 [ dss [V mito) — ama(s)]|
171
=5 [g /qux V() fo(z) + A /I$I<de fg(:ﬂ)] <C(Vlls +1)

for a constant C' > 0 independent of N and ¢, if N/ > 1 and for all 0 < r < R. This
concludes the proof of the second bound in (4.7).

To show part iv), we use (4.4) and we observe that, by (4.5), (4.6) and f; < 1, there
exists a constant C' > 0 such that

2 . R .
B/ < 25 (VN + Fu)(0) + O (Re % F) O)
2 2
< [ [ v+ ce | Xz(w)fe(Nw)dw] <<
forall N e Nand />0, if N¢ > 1. O
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B Proof of Eq. (1.7)

In this section we outline the proof of (1.7) from [18], adapting it to the translation
invariant case. We follow the main steps summarized in [18, Section 2| and indicate
some minor modifications due to the translation invariant setting. The proof follows
very closely [18] and we reproduce it here for the convenience of the reader only. Before
we start, let us define the Gross-Pitaevskii functional Eqp : Dgp — R by

Eap(u) = p%\:* [ﬁ@,y? + 47m0\(yﬂ\\2 * W)pﬂ _ /A [yvu(x)P + 47ra0\u(x),4] dx

on the domain

Dep = {u eL’(n): Y plal)? < oo} — O(-A) (B.1)
peEA*

Here, Q(—A) C L?(A) denotes the form domain of the Laplacian —A with periodic
boundary conditions. In particular, we have that the set of functions

{x =Y e iue Q(A), M € N} c C*(T3)

peA*:|p|<M

is a form core for —A. Since we work with periodic boundary conditions, we identify in
the following by slight abuse of notation the box A = [0;1]® with the unit torus T% and
denote by H*(A), k € Ny, the Sobolev spaces on T? s.t. for example H'(A) = Q(—A).

Lemma B.1. The Gross-Pitaevskii functional Egp has a unique, positive minimizer in
DgpN{u € L?(A) : ||ull2 = 1}, given by the constant function pg = Ljp. Moreover, any
minimizer 1 € Egp in Dgp N {u € L2(A) : ||lulla = 1} is given by 1 = cpg for some
constant ¢ € C with |c| = 1.

Proof. Let v € Dgp N {u € L?*(A) : ||lu|l2 = 1}. Then we can bound
2712 4 2712 _
Eap () 2 max (P*[9pl*) + dmaol|s|z > mex (P*1pl*) + 4mag > d7ag = Eaplpo) (B.2)

because, by Holder’s inequality, [[¥]la = [|olla/zll¢lla > [|#ll2 = 1. This shows that
o is a minimizer of Egp in Dgp N {u € L3(A) : ||lullz = 1}. Moreover, (B.2) is strict
whenever maxpep- (p?[Uy|?) > 0. This implies that any minimizer ¢ € Dgp N {f €
L2(A) : ||f]l2 = 1} of Egp is such that its Fourier transform (ip)peA* satisfies 1/p\p =0 for
all p € A% = A*\ {0}. Hence, 1 = cpp and from |[¢||2 = 1, it follows that |c[ =1. O

Step 1. (Dyson’s Lemma). In this step we prove a lower bound for Hy, defined
in equation (1.1), through a Hamiltonian with a less singular interaction potential. To
reach this goal, we have to translate [15, Lemma 4] to the translation invariant setting.
The adaptation is straightforward and we only recall the proof for the convenience of
the reader.
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Lemma B.2. Let v € L3(R?) be compactly supported in the ball of radius Ry < 1/2
with scattering length a(v) > 0, let Ry < R < 1/2 and denote by xr the characteristic
function of the ball of radius R centered at xo =0 € A. Let p € (*°(A*) with 0 < p, <1,
pp = pg whenever |p| = |q| and such that h = (1 — p)¥ € L*(A) is bounded (h is the
function with Fourier coefficients (1 — p,), for all p € A*). Define gr € L*(A) by

9r(z) = sup [h(z —y) — h(z)| (B.3)
ly|[<R
and jr € L*(A) by
jr(z) = 167 GR(0)gr(z) = 167gp(z) /A 9r(y) dy (B.4)

Then, for any positive, radial function u supported in {z € A : Ry < |z| < R} with
u(0) = 4w and for any € > 0, we have in the sense of forms

a(v)

—Vpp xr(x) ppV + 1v(ac) > (1-¢e)a(v)u(z) — —

5 Jr()

Here, =N p,xr(x)p,V localizes the Laplacian —A with periodic boundary conditions both
in position space using X and in momentum space using p (p acts as multiplication with
pp in Fourier space).

Proof. 1t is sufficient to show that for any smooth, periodic ¢ € C*(A), we have for
¢ € L*(A), defined by &, = ppiy, that

[ [Fe@r+gommer] @z [ [a-eaen@er L] e

(B.5)

We prove (B.5) first in the special case where u(z) = R=26(|z| — R), § denoting as usual
the Dirac d-measure. The general case follows then by integrating over Br(0).

We denote by f, the solution of the zero-energy scattering equation for v in R3, i.e.

(—A—i—%v)fU:O (B.6)
with f,(z) — 1 as |z| — co. Recall that f, =1 — a(v)/|z| for |x| > Ry and that
[ (IW8@P + 5o@l (@) do = tmae) (B.7)
R3

Denote by v a complex-valued function which is supported on the unit sphere S? with
Js2 |v|? =1 and identify it with the map on R? taking values v(x/|z|). We define

< 1
A= [ IVED) Vi) detg [ o)

lz|<R
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Applying Cauchy-Schwarz, performing an angular integration over |v|? and using (B.7),

we arrive at ‘ ’2

/M[!st( )I* + <>rw< 2] d z% (B3)

Hence, it is enough to prove a lower bound for |A|?. By partial integration, we obtain
[ v@VEw) Vi@ o=~ [ (60)V@) Vi) + @ @ AL ) di
le|<R |z|<R

a(v) =
+ R /|m|R§(x)V(x) dwp

= — I/.%'_.%' T X w T)vixr) aw
- [ peE@sn@ b G [ E@we) don

where wgr denotes the surface measure for the surface of the ball of radius R and where
we used that Vv(z)-V f,(x) = 0 (because v is supported on the sphere and fU is a radial
function). With (B.6) and {(z) = ¥(z) — (h *¢)(z) — [y bz —y)¥(y) dy, the
previous identity implies that

_M _xyxw—w * x)v(x)dw
A= [ Fewton =G5 [ e H@en

_|_/ (h ) (2)v(z)Af, (z)dx

z|<R

-2 /M Tawle)on + [ T /Mh(x =) duy) o

where du(y) = —a(v)R2v(y)d(ly| — R) dy + v(y)Af,(y) dy is supported in the ball of
radius R. Notice that we have used that h(z) = h(—x) for all z € A, by defintion. We
find that [, du(y) = 0 and, by Cauchy-Schwarz, that

J i =aw) [ 1w+ [ 1 / ) dr = 2a(0) [ 1] < 4v/ate)

In particular, with (B.3) and (B.4), this implies that

/AE(m) [/Lng h(z —y) du(y)H < 4ﬁa(v)/{\y¢(x)\gR(x) dz

o [ 10t Pinte) o) "

Finally, choosing v to be proportional to ¢ restricted to the sphere of radius R, that is,
v(z) = ([qo [W(Ry)[>dy)~1/?1(Rz) for all 2 € S%, we find

a2 ([ peran) e [ wertmee)”
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and hence, by Cauchy-Schwarz,

AP .
s /M“(”)< R |(x / (@) 2

Together with (B.8), the last inequality implies (B.5) for u(z) = R™2§(|z| — R). For a
general u, we integrate the last inequality with R replaced by s € [0; R] over u(s)s?ds
with u(s) = u(x) for |z| = s and use that fOR s?u(s)ds = 1, by assumption. Since
s+ js(x) is monotonically increasing, this shows

a(v) .
£

/KR [\Vs(w)!%%v(w)lww)\?] dmz/A[(1—e)a(v)u(m)yw(x)\2— Jr@ ()] da

O

Following the notation of [18], we denote by © : R? — R a radial, smooth function
st. 0 < O(x) <1 forall z € R O(x) =0 for [z| < 1 and O(x) = 1 for |z| > 2.
Moreover, we denote by U : R?> — R a non-negative, radially symmetric and smooth
function supported in {z € R?: 1 < |z| < 1} with

U(0) = /11&3 U(zx) de = 4mag

Here, ag denotes the scattering length of the potential V € L3(R?), which we assume to
be supported in the ball of radius Ry > 0.

Lemma B.3. Let v € (2, 2) and let N be large enough s.t. N~7 > 2Ry/N. Then, for
all s > 0,0 < e <1 and for Hy as defined in (1.1), there exists a constant C' > 0,
independent of N,s and e, such that

1—e)? CN2-2755
( - Py — — (B.9)

N
Hy > Zp?(l —(1- e)@(s_lpi)) +

i=1

Here, p? corresponds to —Ay, in Fourier space and Wy is defined by

Wy =Y NTUN(2; — x5)) [[ 2N (2, — ;) (B.10)
i#£] k#i,j

Proof. As explained in [18], the proof is an application of Lemma B.2 with the choice
R=N7,v=N?V(N.), a(v) = ag/N and p, = O(s!p) for p € A*, using [15, Eq. (50)
and (52)]. Indeed, arguing as in [15, Eq. (52)], the resulting function h = (1—-©(s~1.))V
in Lemma B.2 is such that h4(.) = s 2h(./s) has bounded and integrable gradient, with
the upper bounds independent of s > 0. Observe that h has only finitely many non-zero
Fourier coefficients so that for instance

Vhs() = V(s h(/s)) <Cs Y pl<C

peA*ilp|<2s
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By writing h(.) = s3h4(s.), it follows that jg, defined in (B.4), satisfies |jgr| < R?s® =
N~27s5. Then, for points y; € A, j = 1,..., N — 1, with min; |y; — yx| > 2N, we
have ijl xr((z —y;)) < 1. Hence, Lemma B.2 implies

N—-1 N 1
_ 1 1-— CagN—27s°
PO+ 5 3 NV ) = LS v -y - GO
j=1 j=1

Applying this bound in each coordinate x;, multiplying both sides of the inequality by
(1 —¢) and using that [, ,; ;©(2N7 (2 — z;)) < 1 we obtain the claim. O

Step 2. (Second Moment Estimate). In the next step, we analyse the Hamiltonian

N
:ZEJr(l_

=1

where we let h = p*(1— (1 —€)O(s'p)) + 1 (defined as a multiplication operator in
Fourier space) and where hi denotes the corresponding many-body operator acting on
the i-th variable only. Comparing with the r.h.s. of (B.9), we added here a constant to
make sure that h; > 1 foralli=1,... N (we will remove it when we will compare Hy
with H ~). The next key step is_ bound the second moment of Hy from below in terms
of the second moment of Z 1 h;. To this end, we need the following lemma, which is
the adaptation to the translation invariant setting of [18, Lemma 3.2] (similar results
have been previously established in the study of the dynamics, for example in [8, Lemma
6.4]).

Lemma B.4. Let 0 < W € LY(A) N L%(A) and consider the multiplication operator
W(z —y) on L*(A x A). Then, we have for all0 <6< 3,0<e <1 and s> 0 that
i) 0<W(z—y) <CO[Wl32(=Aq),
i) 0<W(r—y) < CsWli(l—An)"(1—Ay)°
iit) haW(x —y) + W(z —y)hs
> =CO(IWll2+ (1+ )W lz/2)(1 = Az)(1 =~ A,)

(B.11)

where 7% denotes the opemtm;ﬁ acting only on the x-variable (recall that the parameter
s > 0 enters the definition of h).

Proof. The first two bounds 1), ii) follow similarly as in [18, Lemma 3.2], using Holder’s
and Sobolev’s inequalities on the torus (see e.g. [1] for a proof of Sobolev’s inequality
on the torus) and the fact that the discrete Fourier transform of the Green function of
(1 — A)°~! with Fourier coefficients (1 + p?)°~1, p € A*, is square summable in A* for
any 0 <4 < i

Using partial integration on the torus, Cauchy-Schwarz and the bounds (B.11) i) and
ii), we may proceed as in [18, Lemma 3.2] to deduce that

(=A:)W(z —y) + W(z - y)(=Az) = =C([W]iz2 + [[W]l2)(1 — Az)(1 = 4y) (B.12)
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Indeed, to prove (B.12), consider first smooth, periodic functions W € C*°(A) and
f € C®(A x A). On such functions, —A acts as the usual Laplacian in R3. Hence, the
fact that V,(W(x —y)) = —=V4(W(x — y)) and partial integration yield

<f7 ((_Ax)w(x - y) + W(.%' - y)(_Ax))f>

= 2/ Vo f(z,y) "W (z — y) dedy + 2 Re Vo f(2,y)Ve(W(z —y)) f(2,y) dedy
AxA AxA

> 2Re /A (VTG @) + (VT @) f @ )W (o =) dady

(B.13)

Bounding the first term on the r.h.s. of (B.13) by Cauchy-Schwarz and the estimate i) in
(B.11) and the second term on the r.h.s. of (B.13) by Cauchy-Schwarz and the estimate
ii) in (B.11) (with § = 0), we conclude (B.12), for smooth, periodic W € C*°(A) and
test functions f € C°(A x A). Since C®(A x A) is dense in H*(A x A) (in fact, the
set of smooth, periodic functions with only finitely many non-zero Fourier coeffficients
is an operator core for —A in A x A with periodic boundary conditions), we obtain the
operator bound (B.12) on H?(A x A) for smooth, periodic W € C*(A). Finally, for a
general W € L'(A)N L%(A) we can approximate it in L2(A) by W e C*°(A) and use the
simple bound

s 1/2
W — )& — o) PIf )2 dxdy)
AxXA

<l W = Wl g2y (fs (1 — Ag) (1 — Ay) f)1/?
<12y IW = W2

by the estimate ii) in (B.11) (with 6 = 0). This shows (B.12). Finally, to prove the
bound iii) in (B.11), we write

[(=Auf, (W =W))< [ Fllz2a) (/

haW(z — ) + W(z — y)ha
=2W(z—y)+e {(—Ax)W(UC —y)+ Wz - y)(_Am)]

+ (1= 2) [p2(1 = O p))W (@ — ) + W(w — y)p(1 - O(s'p,))]

To bound the first line on the r.h.s. of the last equation, we drop the term 2W (z—y) > 0
and apply (B.12). To control the second line, on the other hand, we use that 0 <
(1 —06(s7!p)) < x(Jp| < 2s) for any s > 0 and we proceed as in [18, Eq. (3.9) to
(3.10)].

O

Lemma B.4 is used to deduce the following crucial result (similar estimates have been
previously used in the analysis of the time-evolution, for example in [9, Prop. 5.1] in the
mean field setting, or in [8, Prop. 3.1] in the Gross-Pitaevskii regime).
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Lemma B.5. For every0 <e <1,s>0and~y € (% %) s.t. N™7 > N~=2/3 4s N — oo,
we have, for sufficiently large N,

)? > %<Zh> (B.14)

Proof. We proceed exactly as in the proof of [18, Lemma 3.1], which is based on Cauchy-
Schwarz estimates, the operator bounds from Lemma B.4 and considering several cases
to analyse the different contributions to Wy, defined in (B.10). We can apply the same
analysis in our setting and conclude (B.14). 0

Step 3. (Three-Body estimate). In this step, we bound H N from below by a mean
field Hamiltonian, up to errors which are given in terms of powers of Hy. We observe,
first of all, that the operator Wy defined in (B.10) is such that

Wy > Y 2NYUN(w;—a;))— > NTUN (2 —25)) > (1-OQN" (2, — ;)
1<i<j<N 1#£j k#1,j

The second term on the r.h.s. vanishes if |z, — ;| > N7 for all k # 1, j; it gives instead
an important contribution when there is at least one additional particle close to ¢ and
j. The next lemma allows us to control this three-body term.

Lemma B.6. For every0 <c<1,s>0andy € (3;2), s.t. N7 > N=2/3 4s N — oo,
we have, for sufficiently large N,

STNIUN (25— 25)) Y (1= O@N (ag — ) < Ce s N~ (Hy)*
i#] k#i,5

for some constant C(e,s) > 0, which depends on e,s but is independent of N. In
particular,

N

1— )2 ~
Z (ChnlDs N eNVUN (2 — ;) — CosN~D72(Hy)' (B.15)
i=1 1<i<j<N

Proof. We proceed as in the proof of [18, Lemma 3.4], which is based on the bounds
from Lemma B.4. O

Step 4. (Convergence of Ground State Energy). Using Lemma B.3, Lemma B.5 and
Lemma B.6, we are now able to show the convergence of the ground state energy per
particle of the Hamiltonian Hy to the minimum of the Gross-Pitaevskii functional Egp
in the limit N — oo. The proof follows from the same arguments as in [18]. We recall the
main steps for completeness only. Since the minimizer of the Gross-Pitaevskii functional
Egp is unique and since we do not include magnetic fields in our analysis, some steps of
the analysis of [18] can be slightly simplified. The proof relies crucially on the Quantum
de Finetti Theorem which we state as in [18].
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Theorem B.7 (Quantum de Finetti). Let $) be a separable Hilbert space and assume that
(VN )Nen 1S a sequence with Py € ®é\§/m5’) and ||Yn|ls = 1 for each N € N. Forn € N, let
’y](\?) = trpq1,. N|YN)(YN]| denote the n-particle reduced density matriz associated with
(1)

Y. Assume that ’y]\} converges, as N — 00, in trace class norm topology. Then, up
to a subsequence, there exists a (unique) Borel probability measure jn on the unit sphere
S($) in 9, invariant under the action of S, such that, for every n € N,

tm_ [ - | L | <o

N—oo

Before we start to prove the energy convergence (1.5), let us define the energy func-
tionals £yf for 0 < e <1 and s > 0 by

€25 (u) = (u, ) + (1 — £)24rag /A lu(z)[* da

on the domain Q(—A) = H!(A), defined in (B.1). Recalling that

h=(1-¢e)p*(1—0O(s'p)) +ep” +1

we may argue as in the proof of Lemma B.1 to show that E;E has a unique, positive
minimizer in Q(—A)N{u € L?(A) : ||u|| = 1} given by the constant function ¢y = 1}, for
any fixed 1 > & > 0 and s > 0 . The minimum of & in Q(—A)N{u € L*(A) : |lul| = 1}
is therefore

Exi(po) = (1 — &)*4mag + 1 (B.16)
and any other minimizer of Elffi is given by cpq for some ¢ € C with |c| = 1.

Proposition B.8. Let 0 <e <1, s> 0 and~ € (%, %) Then

_ info(Hy) )
lim —————= = (1 —¢)%4dmag + 1
Ngnoo N ( ) mao +
Proof. The upper bound follows easily by testing Hy with gpgg’N , so that we only need
to prove the lower bound. Following the notation from [18], we denote by 1y a ground
state vector for Hy. Such a vector exists, because Wy > 0 and because h has compact
resolvent. Lemma B.5 and the ground state equation imply that

(b, hihathn) < Ce s
for some C; s independent of N. Denoting by Aw’](\lf) the k-particle reduced density matrices
associated to 1y, equation (B.15) implies that

lim M > liminf [tr (%5](\})) +(1—e)tr (NYUNY(z — y))%(\?))} (B.17)

N—o0 N—o0
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Since h has compact resolvent and since the previous bound shows that tr (E%(\})) is
uniformly bounded in N, standard arguments (see for instance the argument before [14,

(1)

Theorem 2]) imply that, up to a subsequence, 7, converges to a limit in trace class
norm. By Theorem B.7, this shows that there exists a probability measure j on the unit
sphere S(L%(A)), which is invariant under the action of S*, such that for every k € N

lim h}é)— / W) (u®F| dfi(u)| = 0 (B.18)
S(L2(A)

N—oo

In particular, by h >0 and Fatou’s Lemma, we find that
liminf tr ?ﬁ(l) > / u, hu dp(u B.19
it o () 2 [ ) di) (B.19)

The last bound implies in particular that any u € L?(A) in the support of i lies in the
form domain Q(h), which is equal to Q(h) = Q(—A) = H'(A), by definition of h.

To deal with the interaction term on the r.h.s. of (B.17), we cannot apply Fatou’s
Lemma directly; we use a localization argument instead. Denote by X(?L < () the spectral
projection of h onto (—00; (). Since I has compact resolvent, X(E < () is a finite rank
operator for every ¢ > 0. We let P = x(h < ¢)®? and Q¢ =1— P. Since NYU(N7.)
is pointwise non-negative, the Cauchy-Schwarz inequality yields the operator bound

NPU(N(z —y)) = (Pe + Qo)NYU (N (z — y)) (P + Q¢)
> (1= §)PNYU(NY(x — )P — 6 QNP U(N (z — y)) Q¢

Using the bound ii) in (B.11) and the fact that —A < C’as%, one arrives at
NYU(N(z —y)) — BENYU(NY (@ — y)) P > —Ce o(671¢7Y% 4 6)hyhg

Taking the trace against %(3) and using that ({/; N, Elﬁzi ~N) < C:s, the last bound implies
together with the choice § = ¢~1/10 that

tr (NYU(NY(z — 9))70) — tr (PNITU(NY ( — 9)) PAY) > —Ce (110

But then, since the operator norm of P.N3U (N7 (z —y))P; is bounded uniformly in N
by the bound ii) in (B.11) and by the definition of P, the convergence (B.18) implies

liminf tr (N37U(N“/(x - y)ﬁ](\?))

N—oo

> lim inf / (Peu®?, NYYU (N (z — y)) Peu®?) dfi(u) — Ce o0
S(L2(A))

N—o0

:@m/' (R < Qs dfiu) — Ca i~ H/10
S(L2(A))
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Here, we have used in the last step that P is a finite rank projector and that
im0 (u®2, NYU(NY (2 —y))u®?)e = drag||ul|} for every u € H'(A). Letting ¢ — oo,
using Fatou’s Lemma and recalling (B.19) and (B.16), we obtain

lim infolHy) > / {(u,ﬁu) + 4mag(1 — 6)2Hu||3] dii(u) > 4mag(l —e)? + 1
S(L2(A))

N—oo

This proves the claim. O

Corollary B.9. Let En denote the ground state energy of Hy, defined as in (1.1).
Then 5
. N

lim — =4

Ngnoo N o
Proof. 1t is enough to prove the lower bound, the upper bound follows from Prop. 4.2
by testing Gy with the vacuum in }EN. By equation (B.9) and Proposition B.8, we
have for every fixed 0 < ¢ < 1, s > 0 that
inf O’(f:IN)

lim inf =2 > lim inf
N—o0 N—o0

—1=(1-¢)*mag

Since € > 0 is arbitrary, this proves the claim. O

Step 5. (Convergence of Ground States). In this last step, we conclude the proof of
(1.7). We summarize the main steps from the proof of [18].
The proof is based on a Feynman-Hellmann principle. For v € L?(A) and k € N, let

k!
Sok = Nh-1 Z ‘U®k><v®k‘i1,---7ik

1<i1 <1 <<, <N

Lemma B.10. Let Hy be defined as in (1.1). Then, for every v € L*(A) and k € N,
we have that

.. .info(Hy — Syk) . 2k
1 f — > f & — |{v,
RN 2 em@n o ol

Proof. The Lemma is obtained along the same lines as Proposition B.8 and Corollary
B.9, we refer to the proof of [18, Lemma 4.3] for the details. We remark that, compared
to the proof of Proposition B.8, one needs to argue in addition that

lim 1 inf h—1 1—¢)%4 - 2k
i tim (it (GG D) (1= 2ol ()

e—0s5—00 ),||u||2:1
= inf Eap(u) — (v, u)|**
ueHl(A)7||U||2:1( ap(u) = [{v,u)] )

This follows from a standard compactness argument from [14], using (in our setting on
the torus) that —A 41 has compact resolvent. For the details of the argument, we refer
to [18, Section 4B, Step 1]. O
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Proposition B.11. Let Hy be defined as in (1.1) and let (Yn)nen be a normalized
sequence in L2(A™) such that

lim (YN, HNYn)

= 47‘1’&0
N—oo N

Then, denoting by wo the constant function po = 1)z and by (7](\1;))N€N the k-particle
reduced density matrices associated to (Y n)nen, we have that

lim tr |78 — 1655 (541 = 0 B.20
N N leo Mo | ( )
Proof. The assumption on (¢¥n)nen and Lemma B.10 imply that

lim sup tr ([0®F) (0@ |7 ®)) < 47ay — inf Eap(u) — [(v, u)|?*
msuptr (%) 0P Y) < dmag = int - (Eop() — (0. 00/)

for any v € L?(A) and k € N. Replacing v by A/R)y in the previous bound shows that

1
li ¢ ®ky @k, K)) = [y _ inf I — A(w, u) |
1]{[rgsup r ([0%%) (v yy7) < )\{ Ay ueHl(}xI;,Hqu:l( ap(u) |{(v,u)] )}

Now, denote by uy a normalized minimizer of u +— Egp(u)—A|(v,u)|**. Then (uy, —Auy)
is uniformly bounded in A so that, choosing a sequence A\; — 0 as j — oo, the sequence
(ux;)jen has a weakly convergent subsequence in H L(A). Since —A + 1 has compact
resolvent, we find that uy; — ug in L?(A) and pointwise a.e. in A as j — oo, choosing
possibly a further subsequence. By Fatou’s lemma, we conclude that ug must be a
minimizer of Eqp so that

1
lim su —|:47TC(0— inf Eap () — N[ (v, u)[? ] < v, o) |2
moup 3-[amag — it (Eor() = Al 0] < g0
Here, we used the uniqueness of the minimizer of Eqp, by Lemma B.1. In particular,
the last bound implies that

lim sup tr (|v®k>(v®k|7](\];)) < |{w, goo>|2k (B.21)
N—o0
for any v € L2(A) and any k € N.
Arguing next as in the proof of Proposition B.8, the Quantum de Finetti Theorem
B.7 implies that, up to a subsequence, there exists a probability measure p on the unit
sphere S(L?*(A)), which is invariant under the action of S*, such that for every k € N

N—oo

lim Mé)— / ) (W®F| dp(u)| = 0 (B.22)
S(L2(A)

To conclude the proposition, we use the bound (B.21) to show that the measure p is
supported on the set of minimizers of Egp, i.e. on {cpg € L?*(A) : c € C,|c| = 1}. Once
this is proved, we immediately conclude (B.20) from (B.22).
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To show that ; has support in {epg € L2(A) : ¢ € C, |c| = 1}, assume by contradiction
that there exists vg € L?(A) in the support of y s.t. vg is not a minimizer of Egp. Denote
by By the set of points in the support of p s.t. ||[v — vg|l2 < d. Then, there must exist
some § € (0; 3) s.t.

(v, @o)| <1 — 362 (B.23)

for all v € B;. If this was not the case, we would find a sequence (v;);en in the support
of ju converging in L2(A) to vy as well as to (. But this contracticts our assumption
that vy is not a minimizer of Egp. Hence, pick such a § € (0;3) s.t. (B.23) holds true.
By the triangle inequality, we also have that |(v,u)| > 1— 252 for all u,v € Bs. But then
(B.21) and (B.22) imply that

p(Be =262 < [ o) dutu)auto)
< [ NP du(e) < (Ba)(1 - 350

In particular, by letting & — oo in the previous bound, we find that u(Bs) = 0, which is
a contradiction to the fact that vy € p(Bs) is in the support of p and that p is a Borel
measure. This concludes the proof. U

Proposition B.11 completes the proof of (1.7).
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