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Maxim Rabinovich† Aaditya Ramdas∗,†
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Departments of Statistics∗ and EECS†, University of California, Berkeley

Abstract: Multiple hypothesis testing is a central topic in statistics, but despite

abundant work on the false discovery rate (FDR) and the corresponding Type II

error concept known as the false non-discovery rate (FNR), a fine-grained under-

standing of the fundamental limits of multiple testing has not been developed.

The main contribution of this paper is to derive a precise non-asymptotic trade-

off between FNR and FDR for a variant of the generalized Gaussian sequence

model. Our analysis is flexible enough to permit analyses of settings where the

problem parameters vary with the number of hypotheses n, including various

sparse and dense regimes (with o(n) and O(n) signals). Moreover, we prove that

the Benjamini-Hochberg algorithm as well as the Barber-Candès algorithm are

both rate-optimal up to constants across these regimes.

Key words and phrases: multiple testing, minimax lower bounds
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1. Introduction

The problem of multiple comparisons has been a central topic in statis-

tics ever since Tukey’s influential book (Tukey, 1953). In broad terms,

suppose that one observes a sequence of n independent random variables

X1, . . . , Xn, of which some unknown subset are drawn from a null distri-

bution, corresponding to the absence of a signal or effect, whereas the re-

mainder are drawn from a non-null distribution, corresponding to signals

or effects. Within this framework, one can pose three problems of increas-

ing hardness: the detection problem of testing whether or not there is at

least one signal; the localization problem of identifying the positions of the

nulls and signals; and the estimation problem of returning estimates of the

means and/or distributions of the observations. Note that these problems

form a hierarchy of difficulty: identifying the signals implies that we know

whether there is at least one of them, and estimating each mean implies we

know which are zero and which are not. The focus of this paper is on the

problem of localization.

There are a variety of ways of measuring type I errors for the local-

ization problem, including the family-wise error rate, which is the proba-

bility of incorrectly rejecting at least one null, and the false discovery rate

(FDR), which is the expected ratio of incorrect rejections to total rejec-
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tions. An extensive literature has developed around both of these metrics,

resulting in algorithms geared towards controlling one or the other. Our

focus is the FDR metric, which has been widely studied, but for which rel-

atively little is known about the behavior of existing algorithms in terms

of the corresponding type II error concept, namely the false non-discovery

rate (FNR). Indeed, it is only very recently that Arias-Castro and Chen

(2017), working within a version of the sparse generalized Gaussian sequence

model, established asymptotic consistency for the FDR-FNR localization

problem. Informally, in this framework, we receive n independent obser-

vations X1, . . . , Xn, out of which n1−βn are non-nulls, and the remainder

are nulls. The n− n1−βn null variables are drawn from a centered distribu-

tion with tails decaying as exp
(

− |x|γ

γ

)

, whereas the non-nulls are drawn

from the same distribution shifted by (γrn log n)
1/γ. Using this notation,

Arias-Castro and Chen (2017) considered the setting with fixed problem

parameters rn = r and βn = β, and showed that when r < β < 1, all

procedures must have risk FDR+FNR → 1. They also showed that in the

achievable regime r > β > 0, the Benjamini-Hochberg (BH) procedure is

We follow Arias-Castro and Chen (2017) in defining the FNR as the ratio of undis-

covered to total non-nulls, which differs from the definition of Genovese and Wasser-

man (Genovese and Wasserman, 2002).
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consistent, meaning that FDR + FNR → 0. Finally, they proposed a new

“distribution-free” method inspired by the knockoff procedure by Barber

and Candès (2015), and they showed that the resulting procedure is also

consistent in the achievable regime.

These existing consistency results are asymptotic. To date, there has

been no study of the important non-asymptotic questions that are of interest

in comparing procedures. For instance, for a given FDR level, what is the

best possible achievable FNR? What is the best-possible non-asymptotic

behavior of the risk FDR + FNR attainable in finite samples? And, per-

haps most importantly, non-asymptotic questions, regarding whether or not

procedures such as BC and BH are rate-optimal for the FDR+FNR risk,

remain unanswered. The main contributions of this paper are to develop

techniques for addressing such questions, and to essentially resolve them in

the context of the sparse generalized Gaussians model.

Specifically, we establish the tradeoff between FDR and FNR in finite

samples (and hence also asymptotically), and we use the tradeoff to de-

termine the best attainable rate for the FDR + FNR risk. Our theory is

sufficiently general to accommodate sequences of parameters (rn, βn), and

thereby to reveal new phenomena that arise when rn − βn = o(1). For a

fixed pair of parameters (r, β) in the achievable regime r > β, our theory
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leads to an explicit expression for the optimal rate at which FDR+FNR can

decay. In particular, defining the γ-“distance” Dγ (a, b) : =
∣

∣a1/γ − b1/γ
∣

∣

γ

between pairs of positive numbers, we show that the equation

κ = Dγ (β + κ, r)

has a unique solution κ∗, and moreover that the combined risk of any

threshold-based multiple testing procedure I is lower bounded asRn(I) & n−κ∗ .

Moreover, by direct analysis, we are able to prove that both the Benjamini-

Hochberg (BH) and the Barber-Candès (BC) algorithms attain this optimal

rate.

At the core of our analysis is a simple comparison principle. The flex-

ibility of the resulting proof strategy allows us to identify a new critical

regime in which rn − βn = o(1), but the problem is infeasible, meaning

that if the FDR is driven to zero, then the FNR must remain bounded

away from zero. Moreover, we are able to study some challenging settings

in which the fraction of signals is a constant π1 ∈ (0, 1) and not asymp-

totically vanishing, which corresponds to the setting βn = log(1/π1)
logn

, so that

βn → 0. Perhaps surprisingly, even in these regimes, the BH and BC al-

gorithms continue to be optimal, though the best rate can weaken from

polynomial to subpolynomial in the number of hypotheses n.
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1.1 Related work

1.1 Related work

As noted above, our work provides a non-asymptotic generalization of re-

cent work by Arias-Castro and Chen (2017) on asymptotic consistency in

localization, using FDR + FNR as the notion of risk. It should be noted

that this notion of risk is distinct from the asymptotic Bayes optimality

under sparsity (ABOS) studied in past work by Bogdan et al. (2011) for

Gaussian sequences, and more recently by Neuvial and Roquain (2012) for

binary classification with extreme class imbalance. The ABOS results con-

cern a risk derived from the probability of incorrectly rejecting a single null

sample (false positive, or FP for short) and the probability of incorrectly

failing to reject a single non-null sample (false negative, or FN for short).

Concretely, one has RABOS
n = w1 · FP + w2 · FN for some pair of positive

weights (w1, w2) that need not be equal. As this risk is based on the error

probability for a single sample, it is much closer to misclassification risk or

single-testing risk than to the ratio-based FDR + FNR risk studied in this

paper.

Using the notation of this paper, the work of Neuvial and Roquain

(2012) can be understood as focusing on the particular setting r = β, a

regime referred to as the “verge of detectability” by these authors, and

with performance metric given by the Bayes classification risk, rather than

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing)



1.1 Related work

the combination of FDR and FNR studied here. In comparison, our re-

sults provide additional insight into models that are close to the verge of

detectability, in that even when βn = β is fixed, we can provide quanti-

tative lower and upper bounds on the FDR/FNR ratio as rn → β from

above; moreover, these bounds depend on how quickly rn approaches β.

These conclusions actually make it clear that a further transition in rates

occurs in the case where r = β exactly for all n, though we do not ex-

plore the latter case in depth. We suspect that the methods developed in

this paper may have sufficient precision to answer the non-asymptotic min-

imaxity questions posed by Neuvial and Roquain (2012) as to whether any

threshold-based procedure can match the Bayes optimal classification error

rate up to an additive error ≪ 1
logn

.

For the special case of γ = 2, Ji and Jin (2012) and Ji and Zhao (2014)

prove bounds for localization that are closely related to, but distinct from,

our bounds on the overall risk. Both deal with sparse high-dimensional

regression: the former work proposes a new method called UPS for variable

selection that has advantages over Lasso and Subset Selection in certain set-

tings, while the latter builds on the first to prove upper and lower bounds

for multiple testing using the so-called mFNR and mFDR. These metrics

replace the expected ratio in the definitions of FDR and FNR (see defi-
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1.1 Related work

nition (2.3) below) by a ratio of expectations—a modification that should

lead to qualitatively similar behavior as n becomes large. The resulting

bounds in both papers can be used to recover our bounds up to polyloga-

rithmic factors in the special case where γ = 2. The main advantage of their

work, relative to ours, is the handling of dependence between the p-values.

Unlike our work, however, they do not establish the tradeoff between FDR

and FNR when both quantities can decay to zero at different rates, and

as mentioned they only consider γ = 2. Nor do they consider regimes

where sparsity and signal strength vary with n. Our results can handle this

more general setting, which encompasses dense regimes with qualitatively

different behavior from the more commonly investigated sparse one.

The above line of work is complementary to the well-known asymptotic

results by Donoho and Jin (2004; 2015) on phase transitions in detectabil-

ity using Tukey’s higher-criticism statistic, employing the standard type I

and type II errors for testing of the single global null hypothesis. Note

that Donoho and Jin use the generalized Gaussian assumption directly on

the PDFs, while our assumption (2.5) is on the survival function. Just as

in Arias-Castro and Chen (2017), Donoho and Jin also consider the asymp-

totic setting with rn = r and βn = β, which they sometimes call the RW

(rare and weak) model. We are not aware of any non-asymptotic results for
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1.1 Related work

detection akin to the results that the current paper provides for localization.

Our paper is also complementary to work on estimation, the most

notable result being the asymptotic minimax optimality of BH-derived

thresholding for denoising an approximately-sparse high-dimensional vec-

tor (Abramovich et al., 2006; Donoho and Jin, 2006). The relevance of our

results on the minimaxity of BH for approximately-sparse denoising prob-

lems lies primarily in the use of deterministic thresholds as a useful proxy for

BH and other procedures that determine their threshold in a manner that

has complex dependence on the input data (Donoho and Jin, 2006). Unlike

the strategy of Donoho and Jin (2006), which depends on establishing con-

centration of the empirical threshold around the population-level value, we

use a more flexible comparison principle. Deterministic approximations to

optimal FDR thresholds are also studied by Chi (2007) and Genovese et al.

(2006). Other related papers are discussed in Section 5, when discussing

directions for future work.

The remainder of this paper is organized as follows. In Section 2, we

provide background on the multiple testing problem, as well as the partic-

ular model we consider. In Section 3, we provide an overview of our main

results: namely, optimal tradeoffs between FDR and FNR, which imply

lower bounds on the FDR+FNR risk, and optimality guarantees for the
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BH and BC algorithms. In Section 4, we prove our main results, focusing

first on the lower bounds and then using the ideas we have developed to

provide matching upper bounds for the well-known and popular Benjamini-

Hochberg (BH) procedure and the recent Barber-Candès (BC) algorithm

for multiple testing with FDR control. Proofs of some technical lemmas are

given in the appendices.

2. Problem formulation

In this section, we provide background and a precise formulation of the

problem under study.

2.1 Multiple testing and false discovery rate

Suppose that we observe a real-valued sequence Xn
1 : = {X1, . . . , Xn} of

n independent random variables. When the null hypothesis is true, Xi is

assumed to have zero mean; otherwise, it is assumed that the mean of Xi is

equal to some unknown number µn > 0. We introduce the sequence of bi-

nary labels {H1, . . . , Hn} to encode whether or not the null hypothesis holds

for each observation; the setting Hi = 0 indicates that the null hypothesis

holds. We define

H0 : = {i ∈ [n] | Hi = 0}, and H1 : = {i ∈ [n] | Hi = 1}, (2.1)
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2.1 Multiple testing and false discovery rate

corresponding to the nulls and signals, respectively. Our task is to identify

a subset of indices that contains as many signals as possible, while not

containing too many nulls.

More formally, a testing rule I : Rn → 2[n] is a measurable mapping

of the observation sequence Xn
1 to a set I(Xn

1 ) ⊆ [n] of discoveries, where

the subset I(Xn
1 ) contains those indices for which the procedure rejects the

null hypothesis. There is no single unique measure of performance for a

testing rule for the localization problem. In this paper, we study the notion

of the false discovery rate (FDR), paired with the false non-discovery rate

(FNR). These can be viewed as generalizations of the type I and type II

errors for single hypothesis testing.

We begin by defining the false discovery proportion (FDP), and false

non-discovery proportion (FNP), respectively, as

FDPn(I) : =
card(I(Xn

1 ) ∩H0)

card(I(Xn
1 )) ∨ 1

, and FNPn(I) : =
card(I(Xn

1 )
c ∩H1)

card(H1)
.

(2.2)

Since the output I(Xn
1 ) of the testing procedure is random, both quan-

tities are random variables. The FDR and FNR are given by taking the
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2.1 Multiple testing and false discovery rate

expectations of these random quantities—that is

FDRn(I) : = E

[card(I(Xn
1 ) ∩H0)

card(I(Xn
1 )) ∨ 1

]

, and FNRn(I) : = E

[card(I(Xn
1 )

c ∩H1)

card(H1)

]

,

(2.3)

where the expectation is taken over the random samples Xn
1 .

It is worth noting that our definition of FNP and FNR, which follows

that of Arias-Castro and Chen (2017), differs from an alternative definition

of FNRalt, where the denominator is set to the number of non-rejections.

In general, however, the number of non-rejections will be close to n for any

procedure with low FDR and thus in the sparse regime, the FNRalt would

trivially go to zero for any procedure that controls FDR at any level strictly

below one. Our definition is therefore better suited to studying transitions

in difficulty in the multiple testing problem.

In this paper, we measure the overall performance of a procedure in

terms of its combined risk

Rn(I) : = FDRn(I) + FNRn(I). (2.4)

Finally, when the testing rule I under discussion is clear from the context,

we frequently omit explicit reference to this dependence from all of these

quantities.
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2.2 Tail generalized Gaussians model

2.2 Tail generalized Gaussians model

In this paper, we describe the distribution of the observations for both nulls

and non-nulls in terms of a tail generalized Gaussians model. Our model

is a variant of the generalized Gaussian sequence model studied in past

work (Arias-Castro and Chen, 2017; Donoho and Jin, 2004); the only dif-

ference is that whereas a γ-generalized Gaussian has a density proportional

to exp
(

− |x|γ

γ

)

, we focus on distributions whose tails are proportional to

exp
(

− |x|γ

γ

)

. This alteration is in line with the asymptotically generalized

Gaussian (AGG) distributions studied by Arias-Castro and Chen (2017),

with the important caveat that our assumptions are imposed in a non-

asymptotic fashion.

For a given degree γ ≥ 1, a γ-tail generalized Gaussian random variable

with mean 0, written asG ∼ tGGγ(0), has a survival function Ψ(t) : = P
(

G ≥ t
)

that satisfies the bounds

e
−|t|γ

γ

Zℓ

≤ min{Ψ(t), 1−Ψ(t)} ≤
e

−|t|γ

γ

Zu

, t ∈ R, (2.5)

for some constants Zℓ > Zu > 0. (Note that t 7→ Ψ(t) is a decreas-

ing function, and becomes smaller than 1 − Ψ(t) at the origin.) As a

concrete example, a γ-tail generalized Gaussian with Zℓ = Zu = 1 can

be generated by sampling a standard exponential random variable E and

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing)



2.3 Threshold-based procedures

a Rademacher random variable ε and putting G = ε
(

γE
)1/γ

. We use

the terminology “tail generalized Gaussian” because of the following con-

nection: the survival function of a 2-tail Gaussian random variable is on

the order of exp(−|x|2/2), whereas that of a Gaussian is on the order of

1
poly(x)

exp(−x2/2). In particular, this observation implies a tGG2 random

variable has tails that are equivalent to a Gaussian in terms of their expo-

nential decay rates.

In terms of this notation, we assume that each observation Xi is dis-

tributed as

Xi ∼



















tGGγ(0) if i ∈ H0

tGGγ(0) + µn if i ∈ H1,

(2.6)

where our notation reflects the fact that the mean shift µn is permitted

to vary with the number of observations n. See Section 3.1 for further

discussion of the scaling of the mean shift.

2.3 Threshold-based procedures

Following prior work (Arias-Castro and Chen, 2017; Donoho and Jin, 2004),

we restrict attention to testing procedures of the form

I(Xn
1 ) =

{

i ∈ [n] | Xi ≥ Tn(X
n
1 )
}

, (2.7)
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2.4 Benjamini-Hochberg (BH) and Barber-Candès (BC) procedures

where Tn(X
n
1 ) ∈ R+ is a data-dependent threshold. We refer to such meth-

ods as threshold-based procedures. The BH and BC procedures both belong

to this class. Moreover, from an intuitive standpoint, the observations are

exchangeable in the absence of prior information, and we are considering

testing between a single unimodal null distribution and a single positive

shift of that distribution. In this setting, it is hard to conceive of rea-

sonable procedures that would reject the hypothesis corresponding to one

observation while rejecting a hypothesis with a smaller observation value.

It will be convenient to reason about the performance metrics associated

with rules of the form

It(X
n
1 ) =

{

i ∈ [n] | Xi ≥ t
}

, (2.8)

where t > 0 is a pre-specified (fixed, non-random) threshold. In this case,

we adopt the notation FDRn(t), FNRn(t) and Rn(t) to denote the metrics

associated with the rule Xn
1 7→ It(X

n
1 ).

2.4 Benjamini-Hochberg (BH) and Barber-Candès (BC) proce-

dures

Arguably the most popular threshold-based procedure that provably con-

trols FDR at a user-specified level qn is the Benjamini-Hochberg (BH) pro-

cedure. More recently, Arias-Castro and Chen (2017) proposed a method
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2.4 Benjamini-Hochberg (BH) and Barber-Candès (BC) procedures

that we refer to as the Barber-Candès (BC) procedure. Both algorithms

are based on estimating the FDPn that would be incurred at a range of

possible thresholds and choosing one that is as large as possible (maximiz-

ing discoveries) while satisfying an upper bound linked to qn (controlling

FDRn). Further, they both only consider thresholds that coincide with one

of the values Xn
1 , which we denote as a set by Xn =

{

X1, . . . , Xn

}

. The

data-dependent threshold for both can be written as

tn
(

X1, . . . , Xn

)

= min
{

t ∈ Xn : F̂DPn

(

t
)

≤ qn
}

. (2.9)

The two algorithms differ in the estimator F̂DPn

(

t
)

they use. The BH

procedure assumes access to the true null distribution through its survival

function Ψ and sets

F̂DP
BH

n

(

t
)

=
Ψ
(

t
)

#
(

Xi ≥ t
)

/n
, for t ∈ Xn. (2.10)

The BC procedure instead estimates the survival function Ψ(t) from the

data and therefore does not even need to know the null distribution. This

approach is viable when #
(

Xi ≤ −t
)

/n is a good proxy for Ψ
(

t
)

, which our

upper and lower tail bounds guarantee; more typically, the BC procedure is

applicable when the null distribution is (nearly) symmetric, and the signals

are shifted by a positive amount (as they are in our case). Then, the BC
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estimator is given by

F̂DP
BC

n

(

t
)

=

[

#
(

Xi ≤ −t
)

+ 1
]

/n

#
(

Xi ≥ t
)

/n
, for t ∈ Xn. (2.11)

With these definitions in place, are now ready to describe our main results.

3. Main results

We now turn to a statement of our main results, along with some illustra-

tions of their consequences. Our first main result (Theorem 1) characterizes

the optimal tradeoff between FDR and FNR for any testing procedure. By

optimizing this tradeoff, we obtain a lower bound on the combined FDR

and FNR of any testing procedure (Corollary 1). Our second main result

(Theorem 2), shows that BH achieves the optimal FDR-FNR tradeoff up to

constants and that BC almost achieves it. In particular, our result implies

that with the proper choice of target FDR, both BH and BC can achieve

the optimal combined FDR-FNR rate (Corollary 2).

3.1 Scaling of sparsity and mean shifts

We study a sparse instance of the multiple testing problem in which the

number of signals is assumed to be small relative to the total number of

hypotheses. In particular, motivated by related work in multiple hypothesis

testing (Arias-Castro and Chen, 2017; Donoho and Jin, 2004, 2015; Jin and
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3.1 Scaling of sparsity and mean shifts

Ke, 2014), we assume that the number of signals scales as

card(H1) = mn = n1−βn for some βn ∈ (0, 1). (3.12)

Note that to the best of our knowledge, all previous results in the literature

assume that βn = β is actually independent of n. In this case, the sparsity

assumption (3.12) implies that all but a polynomially vanishing fraction of

the hypotheses are null. In contrast, as indicated by our choice of notation,

the set-up in this paper allows for a sequence of parameters βn that can vary

with the number of hypotheses n. In this way, our framework is flexible

enough to handle relatively dense regimes (e.g., those with n
logn

or even

O(n) signals).

The non-null hypotheses are distinguished by a positively shifted mean

µn > 0. It is natural to parameterize this mean shift in terms of a quantity

rn > 0 via the relation

µn =
(

γrn log n
)1/γ

. (3.13)

As shown by Arias-Castro and Chen (2017), when the pair (β, r) are fixed

such that r < β, the problem is asymptotically infeasible, meaning that

there is no procedure such that Rn(I) → 0 as n → ∞. Accordingly, we

focus on sequences (βn, rn) for which rn > βn. Further, even though the

asymptotic consistency boundary of r < β versus r > β is apparently
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3.2 Lower bound on any threshold-based procedure

independent of γ, we will see that the rate at which the risk decays to zero

is determined jointly by r, β and γ.

3.2 Lower bound on any threshold-based procedure

In this section, we assume :

βn

(i)

≥
log 2

log n
⇐⇒ n1−βn ≤ n/2, and (3.14a)

max{βn,
1

log
γ−1/2

γ n
}

(ii)
< rn

(iii)
< rmax for some constant rmax < 1.

(3.14b)

Condition (i) requires that the proportion π1 of non-nulls is at most 1/2.

Condition (ii) asserts that the natural requirement of rn > βn is not enough,

but further insists that rn cannot approach zero too fast. The constants

log 2 and γ−1/2
γ

are somewhat arbitrary and can be replaced, respectively,

by log 1
πmax

for any 0 < πmax < 1 and γ−1+ρ
γ

for any ρ > 0, but we fix

their values in order not to introduce unnecessary extra parameters. As

for condition (iii), although the assumption rn < 1 is imposed because the

problem becomes qualitatively easy for rn ≥ 1, the assumption that it is

bounded away from one is a technical convenience that simplifies some of

our proofs.

Our analysis shows that the FNR behaves differently depending on the

closeness of the parameter rn to the boundary of feasiblity given by βn. In
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3.2 Lower bound on any threshold-based procedure

order to characterize this closeness, we define

rmin = rmin(κn) : =



















βn + κn +
log 1

6Zℓ

logn
if κn ≤ 1− βn −

log 3
log 16

logn
,

1 +
log 1

24Zℓ

logn
otherwise.

(3.15)

Here κn is to be interpreted as the “exponent” of a target FDR rate qn, in

the sense that qn = n−κn . The rate qn may differ from the actual achieved

FDRn, but it is nonetheless useful for parameterizing the quantities that

enter into our analysis. When we need to move between qn and κn, we shall

write κn = κn(qn) = log(1/qn)
logn

and qn = qn(κn) = n−κn . For mathematical

convenience, we wish to have the target FDR qn to be bounded away from

one, and we therefore impose one further technical but inessential assump-

tion in this section:

qn ≤ min
{ 1

24
,

1

6Zℓ

}

⇐⇒ κn ≥
logmax

{

24, 6Zℓ

}

log n
. (3.16)

The theorem that follows will apply to all sample sizes n > nmin,ℓ (subscript

ℓ for lower), where

nmin,ℓ := min

{

n ∈ N : exp

(

−
n1−rmax

24(Zℓ ∨ 1)

)

≤
1

4

}

(3.17)

=
⌊

[24(Zℓ ∨ 1) log 4]
1

1−rmax

⌋

, (3.18)

which is an explicit known function of the problem parameters and can

therefore be computed whenever the problem setting is fixed.
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3.2 Lower bound on any threshold-based procedure

Finally, for γ ∈ [1,∞) and non-negative numbers a, b > 0, let us define

the associated γ-“distance”:

Dγ (a, b) : =
∣

∣a1/γ − b1/γ
∣

∣

γ
. (3.19)

Our first main theorem states that for rn > rmin(κn), the FNR decays as a

power of 1/n, with exponent specified by the γ-distance.

Theorem 1. Consider the γ-tail generalized Gaussians testing problem

with sparsity βn and signal level rn satisfying conditions (3.14a), and (3.14b),

and with sample size n > nmin,ℓ from definition (3.18). Then, for any choice

of exponent κn ∈ (0, 1) satisfying condition (3.16), there exists a minimum

signal strength rmin(κn) from definition (3.15), such that any threshold-

based procedure I that satisfies FDRn(I) ≤ n−κn must have its FNR lower

bounded as

FNRn(I) ≥



















1
32

if rn ∈
[

βn, rmin

]

c(βn, γ) n
−Dγ(βn+κn,rn) otherwise,

(3.20)

where c(βn, γ) : = c0 exp
(

c1β
1−γ
γ

n

)

, with (c0, c1) being positive constants

depending only on (Zℓ, Zu, γ).

The proof of this theorem is provided in Section 4.1. Note that the theorem

holds for any choice of κn ∈ (0, 1). In the special case of constant pairs
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3.2 Lower bound on any threshold-based procedure

(β, r), this choice can be optimized to achieve the best possible lower bound

on the risk Rn(I) = FDRn(I) + FNRn(I). Since we obtain this lower

bound by optimizing the sum of the FDR and FNR lower bounds

from Theorem 1, we want to balance the contributions from these

two bounds. Doing so requires us to set the FDR rate κ equal to

the corresponding FNR rate Dγ (β + κ, r), which leads to a fixed-

point equation for the overall rate, as summarized below.

Corollary 1. When r > β, let κ∗ = κ∗(β, r, γ) > 0 be the unique solution

to the equation

κ = Dγ (β + κ, r) . (3.21)

Then the combined risk of any threshold-based multiple testing procedure

I is lower bounded as

Rn(I) & n−κ∗ , (3.22)

where & denotes inequality up to a pre-factor independent of n.

The proof of this corollary is provided in Appendix S3. Figure 1 provides an

illustration of the predictions in Corollary 1. In particular, panel (a) shows

how the unique solution κ∗ to equation (3.21) is determined for varying

settings of the triple (r, β, γ). Panel (b) shows how κ∗ varies over the
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3.3 Upper bounds for some specific procedures
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Figure 1: Visualizations of the fixed-point equation (3.21). (a) Plots com-

paring the left- and right-hand sides of the fixed-point equation. (b) The

optimal exponent κ∗ as a function of r and β.

interval (0, 0.5), again for different settings of the triple (r, β, γ). As would

be expected, the fixed point κ∗ increases as a function of the difference

r − β > 0.

3.3 Upper bounds for some specific procedures

Thus far, we have provided general lower bounds applicable to any thresh-

old procedure. We now turn to the complementary question—how do these

lower bounds compare to the results achievable by the BH and BC al-

gorithms introduced in Section 2.3? Remarkably, we find that up to the

constants defining the prefactor, both the BH and BC procedures achieve
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3.3 Upper bounds for some specific procedures

the minimax lower bound of Theorem 1.

We state these achievable results in terms of the fixed point κ∗ from

equation (3.21). Moreover, they apply to all problems with sample size

n > nmin,u (subscript u for upper), where

nmin,u := min

{

n ∈ N : exp

(

−
n1−rmax

24

)

≤
1

Zun

}

= min
{

n ∈ N : n ≥ [24 log(Zun)]
1

1−rmax

}

. (3.23)

Just as we did for (3.18), we note that this lower bound on n is explicitly

computable from problem parameters.

In order to state our results cleanly, let us introduce the constants

cBH :=
Zu

36Zℓ

, cBC :=
Zu

48Zℓ

, and ζ := max
{

6Zℓ,
1

6Zℓ

}

, (3.24)

and require in particular that rn ≥ rmin (κn (cAqn)) for algorithm A ∈

{BH,BC}. Note that cA < 1 since Zℓ ≥ Zu by definition, and that the

introduction of cA into the argument of rmin only changes the minimum

allowed value of rn by a conceptually negligible amount of O
(

1
logn

)

.

Lastly, we note that BC requires an additional mild condition that the

number of non-nulls n1−βn is large relative to the target FDR qn = n−κn

(otherwise, in some sense, the problem is too hard if there are too few

non-nulls and a very strict target FDR). Specifically, we need that both

quantities cannot simultaneously be too small, formalized by the assump-
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3.3 Upper bounds for some specific procedures

tion:

∃nmin,BC such that for all n ≥ nmin,BC we have
3cBC

4
·

qn
log 1

qn

· n1−βn ≥ 1.

(3.25)

We note that when rn = r and βn = β are constants, this decay condition

is satisfied by qn = n−κ∗ .

Our second main theorem delivers an optimality result for the BH and

BC procedures, showing that under some regularity conditions, their per-

formance achieves the lower bounds in Theorem 1 up to constant factors.

Theorem 2. Consider the βn-sparse γ-tail generalized Gaussians testing

problem with target FDR level qn upper bounded as in condition (3.16).

(a) Guarantee for BH procedure: Given a signal strength rn ≥ rmin(κn(cBHqn))

and sample size n > nmin,u as in condition (3.23), the BH procedure

satisfies the bounds

FDRn ≤ qn and FNRn ≤
2ζ2β

1−γ
γ

n

BH

Zu

· n−Dγ(βn+κn,rn), where ζBH := ζ
cBH

.

(3.26)

(b) Guarantee for BC procedure: Given a signal strength rn ≥ rmin(κn(cBCqn))

and sample size n > max{nmin,BC, nmin,u} as in condition (3.25), the
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3.3 Upper bounds for some specific procedures

BC procedure satisfies the bounds

FDRn ≤ qn and FNRn ≤
2ζ2β

1−γ
γ

n

BC

Zu

· n−Dγ(βn+κn,rn) + qn, where ζBC := ζ
cBC

.

(3.27)

The proof of the theorem can be found in Section 4.2. For constant

pairs (r, β), Theorem 2 can be applied with a target FDR proportional

to n−κ∗ to show that both BH and BC achieve the optimal decay of the

combined FDR-FNR up to constant factors, as stated formally below.

Corollary 2. For β < r and q∗ = c∗n
−κ∗ with 0 < c∗ ≤ min

{

1
24
, 1

6Zℓ

}

, the

BH and BC procedures with target FDR q∗ satisfy

Rn . n−κ∗ . (3.28)

The proof of this corollary is given in Appendix S5. To help visualize

the result of the corollary, Figure 2 displays the results of some simulations

of the BH procedure that show correspondence between its performance

and the theoretically predicted rate of n−κ∗ .

Despite the optimality, Figures 1 and 2 paint a fairly dark picture from a

practical point of view: while asymptotic consistency can be achieved when

r > β, the convergence of the risk to zero can be extremely slow, exhibiting

“nonparametric” rates far slower than n−1/2. Figure 2 shows in particular

that the decay to zero may be barely evident even for sample sizes as large
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3.3 Upper bounds for some specific procedures
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Figure 2: Results of simulations comparing the predicted combined risk

with the actual experimentally-observed risk for the BH procedure. Agree-

ment is good across the board and improves as the gap (r − β) increases.

We believe the latter phenomenon arises because the sampling error is a

smaller fraction of the risk as the separation increases.

as n = 250, 000, even with comparatively strong signals. The “nonpara-

metric” nature may arise because the dimensionality of the decision space

increases linearly with sample size, and asymptotically, the upside of having

increasing data seems to just overcome the downside of having to make an

increasing number of decisions. However, non-asymptotically, one cannot

hope to drive both FDR and FNR to zero at any practical sample size in

this general setting, at least when the mean signal lies below the maximum
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3.3 Upper bounds for some specific procedures

of the nulls (i.e., rn < 1).

Intuition for the γ-distance. The distance Dγ plays a crucial role

because of the scaling of order statistics under the tGGγ model. If

W1, . . . ,Wn are iid from a tGGγ

(

0
)

model, then—ignoring constants

inside the logarithm—we expect the ith-largest order statistic W(i)

to be around
(

γi log n
)1/γ

if i ≪ n/2 and around −
(

γi log n
)1/γ

if

n− i ≪ n/2. If an algorithm is to achieve an FNR on the order of

n−κ′
, it must succesfully identify all but the smallest n−κ′

fraction of

true signals. The algorithm’s cutoff for rejection must thus exceed

the m−n−κ′
m order statistic of the signals, which is approximately

µ−
(

γ log
m

n−κ′m

)1/γ
=

(

γr log n
)1/γ

−
(

γκ′ log n
)1/γ

. (3.29)

If we suppose that the FDR is also vanishing at a rate n−κ, then

first of all the algorithm must identify about (1 ± o(1))m indices

as signals, since otherwise either the FDR or FNR would fail

to vanish. Second, it must be that the n−κm-th, or equivalently

n1−β−κ-th, largest null is of the order of the quantity in (3.29).
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3.3 Upper bounds for some specific procedures

Combining these insights, we obtain the relation

(

γ
(

β + κ
)

=
(

γr log n
)1/γ

−
(

γκ′ log n
)1/γ

,

which after rearranging yields the heuristic

κ′ =

(

r1/γ −
(

β + κ
)1/γ

)1/γ

. (3.30)

The theorems and corollaries in this paper together show that

this intuition is exactly right.

Regime of linear sparsity: We turn to the regime of linear sparsity—

that is, when the number of signals scales as π1n for some scalar π1 ∈ (0, 1).

Recalling that we have parameterized the number of signals as n1−βn , some

algebra leads to βn =
log 1

π1

logn
, so both Theorem 1 and Theorem 2 predict an

upper and lower bound on the risk of the form

c0 exp
(

c1

[

log n

log 1
π1

]
γ−1

γ
)

· n−κ∗ . (3.31)

Note that here we overload the exponent κ∗ to the case when it is noncon-

stant. In order to interpret this result, observe that if rn = r is constant,

then κ∗ = r
2γ

− o(1), so the rate is n−r/2γ up to subpolynomial factors

in n. On the other hand, if rn = 1

log
γ−1/2

γ n

is at the extreme lower limit

permitted by the lower bound (ii) in (3.14b), then it is not hard to see
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that κ∗ ≈ log−
γ−1/2

γ n, which ensures that nκ∗ ≫ exp
(

log
γ−1

γ n
)

, so that

the risk (3.31) still approaches zero asymptotically, albeit subpolynomially

in n.

4. Proofs

We now turn to the proofs of our main results, namely Theorems 1 and 2.

The proofs of the associated corollaries can be found in the appendix.

4.1 Proof of Theorem 1

The main idea of the proof is to reduce the problem of lower bounding

the FNRn of threshold-based procedures that use random, data-dependent

thresholds Tn, to the easier problem of lower bounding the FNRn of threshold-

based procedures that use a deterministic, data-independent threshold tn.

We refer to the latter class of procedures as fixed threshold procedures, and

we parameterize them by their target FDR qn = n−κn . Concretely, we de-

fine the critical threshold, derived from the critical regime boundary rmin

from equation (3.15), by

τmin(κn) : =
(

γrmin

(

κn

)

log n
)1/γ

≡ τmin(qn) : =

(

γrmin

(

log(1/qn)

log n

)

log n

)1/γ

.

(4.32)
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4.1 Proof of Theorem 1

Here and throughout the proof, we express τmin and rmin as functions of qn

rather than κn; this formulation turns out to make certain calculations in

the proof simpler to express.

From data-dependent threshold to fixed threshold: Our first step

is to reduce the analysis from data-dependent to fixed threshold proce-

dures. In particular, consider a threshold procedure, using a possibly ran-

dom threshold Tn, that satisfies the FDR uppper bound FDRn(Tn) ≤ qn.

We claim that the FNR of any such procedure must be lower bounded as

E[FNPn

(

Tn

)

] ≥
FNRn

(

τmin

(

4qn
))

16
. (4.33)

This lower bound is crucial, as it reduces the study of random threshold

procedures (LHS) to study of fixed threshold procedures (RHS). Its proof

can be found in Appendix S1.

Our next step is to lower bound the FNR for choices of the threshold

t ≥ τmin(qn):

Lemma 1. For any t ≥ τmin(qn), we have

FNRn(t) ≥



















ζ2β
1−γ
γ

n

Zℓ
· n−Dγ(βn+κn,r) if r > rmin

(

κn(qn)
)

,

1
2

otherwise,

(4.34)

where ζ was previously defined (3.24).
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4.1 Proof of Theorem 1

The proof of this lemma can be found in Appendix S2. Armed with

Lemma 1 and the lower bound (4.33), we can now complete the proof of

Theorem 1. We split the argument into two cases:

Case 1: First, suppose that r ≤ rmin(κn(4qn)). In this case, we have

FNRn(Tn)
(i)

≥
FNRn

(

τmin

(

4qn
))

16

(ii)

≥
1

32
,

where step (i) follows from the lower bound (4.33), and step (ii) follows

by lower bounding the FNR by 1/2, as is guaranteed by Lemma 1 in the

regime r ≤ rmin(κn(4qn)).

Case 2: Otherwise, we may assume that r > rmin(4qn). In this case, we

have

FNRn(Tn)
(i)

≥
FNRn

(

τmin

(

4qn
))

16

(ii)

≥

(

4ζ
)2β

1−γ
γ

n

Zℓ

· n−Dγ(βn+κn,r).

Here step (i) follows from the lower bound (4.33), whereas step (ii) follows

from applying Lemma 1 in the regime r > rmin(κn(4qn)). With some further

algebra, we find that

FNRn(Tn) ≥
1

Zℓ

exp
(

2 log
(

4ζ
)

· β
1−γ
γ

n

)

n−Dγ(β+κn,r) = c0 exp
(

c1β
1−γ
γ

n

)

n−Dγ(β+κn,r),

where c0 : = 1
Zℓ

and c1 : = 2 log
(

4ζ
)

. Note that since Zℓ > 0 and ζ ≥ 1,

both of the constants c0 and c1 are positive, as claimed in the theorem

statement.
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4.2 Proof of Theorem 2

4.2 Proof of Theorem 2

We now sketch the proof that the Benjamini-Hochberg (BH) and Barber-

Candès (BC) algorithms achieve the minimax rate (3.20) when rn > rmin(κn(cAqn)),

where A ∈ {BH, BC} and cA is the algorithm-dependent constant defined

in (3.24). For reasons of space, the details are relegated to Appendix S4.

The proof strategy for both algorithms is essentially the same. Given

a target FDR rate qn, we apply each algorithm qn as the target FDR level

and prove that the resulting threshold satisfies tA ≤ τmin(cAqn) with high

probability. Letting τmin,A = τmin

(

cAqn
)

, we can formulate the specific

claims we seek as:

P
(

tBH > τmin,BH

)

≤ exp
(

−
n1−rmax

24

)

(4.35)

and

P (tBC > τmin,BC) ≤ qn + exp
(

−
n1−rmax

24

)

. (4.36)

The known properties of the algorithms guarantee the required FDR

bounds (as studied by Arias-Castro and Chen, 2017; Foygel Barber and

Candès, 2015; Benjamini and Hochberg, 1995), while the following converse

to Lemma 1, coupled with the probabilistic upper bounds (4.35) and (4.36),

provides the requisite upper bounds on the FNR.
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Lemma 2. If rn > rmin

(

cqn
)

and t ≤ τmin(cqn) for some c > 0, then we

have

FNRn

(

t
)

≤

(

max
{

c, 1/c
}

· ζ
)2β

1−γ
γ

n

Zu

· n−Dγ(βn+κn,r),

where constant ζ is defined in (3.24).

5. Discussion

Despite considerable interest in multiple testing with false discovery rate

(FDR) control, there has been relatively little understanding of the non-

asymptotic trade-off between controlling FDR and the analogous measure

of power known as the false non-discovery rate (FNR). In this paper, we ex-

plored this issue in the context of the sparse generalized Gaussians model,

and derived the first non-asymptotic lower bounds on the sum of FDR

and FNR. We complemented these lower bounds by establishing the non-

asymptotic minimaxity of both the Benjamini-Hochberg (BH) and Barber-

Candès (BC) procedures for FDR control. The theoretical predictions are

validated in simple simulations, and our results recover recent asymptotic

results (Arias-Castro and Chen, 2017) as special cases. Our work intro-

duces a simple proof strategy based on reduction to deterministic and data-

oblivious procedures. We suspect this core idea may apply to other multiple

testing settings: in particular, since our arguments do not depend on CDF
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asymptotics in the way that many classical analyses of both global null

testing and FDR control procedures do, we hope they will be possible to

adapt for other problems described below.

As mentioned after the statement of Theorem 2, the practical impli-

cations of our results are somewhat pessimistic. Even for rather simple

problems having r − β of constant order, the resulting rate at which the

risk tends to zero can be far slower than n−1/2. (Indeed, it seems like such

a parametric rate is only achievable when γ = 1, rn → 1, βn → 0.) Hence,

in practice, one must carefully consider whether good FDR or good FNR is

more important, as achieving both may not be possible unless most of the

signals to be identified are rather large.

Future directions

We have focused on establishing a non-asymptotic tradeoff between FDR

and FNR in what is arguably the simplest interesting model of the prob-

lem. By way of contrast, a large part of the multiple testing literature in

recent years has focused on the development of valid FDR control proce-

dures that can gain power or precision by explicitly using prior knowledge

and structure in various ways: whether through null-proportion adaptiv-

ity (Storey, 2002; Storey et al., 2004), grouping of hypotheses (Foygel Bar-
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ber and Ramdas, 2016; Hu et al., 2010), prior or penalty weights (Benjamini

and Hochberg, 1997; Genovese et al., 2006), or other forms of structure (Li

and Foygel Barber, 2016; Ramdas et al., 2017).

Similarly, the issue of dependence—either positive or arbitrary—between

test statistics has been an area of focus (Benjamini and Yekutieli, 2001;

Blanchard and Roquain, 2008; Ramdas et al., 2017). (Dependence has

already been explored for the higher criticism statistic applied to the detec-

tion problem (Hall and Jin, 2008; Jin and Ke, 2014; Hall and Jin, 2010).)

Non-exchangeability of hypotheses, either in the context of multiple scales

of signal strength, or in the context of online FDR procedures, has also

been studied (Foster and Stine, 2008; Javanmard and Montanari, 2015).

Due to the increasing importance of the structured, dependent, and

non-exchangeable settings, developing analogues of our results for those set-

tings is a worthwhile direction for future work. It is, furthermore, far from

clear that known procedures are optimal under assumptions of structure,

dependence, or various kinds of non-exchangeability, so that an improved

understanding of the fundamental difficulty of the multiple testing prob-

lem under such assumptions may also yield improved algorithms. Chen and

Arias-Castro (2017) have made progress in this direction by providing up-

per bounds for existing procedures for the online FDR problem (Javanmard
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and Montanari, 2015), but much still remains unknown.

Finally, a general proof technique for establishing non-asymptotic lower

bounds in multiple testing remains an important direction for future work.

In this work, we pursued an approach based on reduction to a class of non-

adaptive procedures, and this principle could perhaps be applied to other

multiple testing problems. Our arguments are, however, based on analytical

calculations, and they are therefore sensitive to the specific observation

model under consideration. One especially pressing problem is thus to

develop approaches that depend on more intrinsic structural properties of

the test statistic distributions and that are less brittle when it becomes

inconvenient to reason about the analytical forms.

Supplementary Materials

The supplementary materials contain proofs that—for space reasons—

we could not accommodate in the main body. These include parts of proofs

of theorems, as well as proofs of corollaries and technical lemmas.
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