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ABSTRACT In this paper, the chaotic bat algorithm (CBA) is applied to solve the optimal reactive power

dispatch (ORPD) problem taking into account small-scale, medium-scale and large-scale power systems.

ORPD plays a key role in the power system operation and control. The ORPD problem is formulated as a

mixed integer nonlinear programming problem, comprising both continuous and discrete control variables.

The most outstanding benefit of the bat algorithm (BA) is its good convergence for optimal solutions. The

BA, however, together with other metaheuristics, often gets stuck into local optima and in order to cope

with this shortcoming, the use of the CBA is proposed in this paper. The CBA results from introducing the

chaotic sequences into the standard BA to enhance its global search ability. The CBA is utilized to find the

optimal settings of generator bus voltages, tap setting transformers and shunt reactive power sources. Three

objective functions such as minimization of active power loss, total voltage deviations and voltage stability

index are considered in this study. The effectiveness of the CBA technique is demonstrated for standard IEEE

14-bus, IEEE 39 New England bus, IEEE 57-bus, IEEE 118-bus and IEEE 300-bus test systems. The results

yielded by the CBA are compared with other algorithms available in the literature. Simulation results reveal

the effectiveness and robustness of the CBA for solving the ORPD problem.

INDEX TERMS Chaotic bat algorithm, optimal reactive power dispatch, chaotic sequences.

I. INTRODUCTION

In 1962, Carpentier introduced for the first time the optimal

power flow (OPF) problem [1] and later on it was developed

by Dommel and Tinney [2]. Henceforth, the OPF has aroused

widespread interests among researchers in power system

operation and planning [3]. The ORPD problem is a special

case of the OPF problem and has an ever-increasing impact

on the reliability, security as well as economic operation of

power system [4].

From the mathematical optimization point of view,

the ORPD problem is regarded as a mixed integer nonlin-

ear programming problem which combines discrete control

variables such as tap setting transformers and reactive com-

pensators; and continuous variables such as generator bus

voltages [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

It is worth pointing out that the ORPD problem is

addressed in an attempt to minimize either total active power

transmission losses (PLoss), or total voltage deviation (TVD),

or enhance voltage stability index (VSI) while satisfying

specific operating and physical constraints [3].

Over the last decades, extensive efforts have been

undertaken to solve the ORPD problem using many clas-

sical optimization techniques including quadratic program-

ming [7]–[10], mixed integer programming [11], inte-

rior point method [12]–[14], Newton-based method [15],

linear programming [16], [17], non-linear programming [18],

dynamic programming [19], gradient-based algorithm [20],

decomposition approach [21] etc. Despite their excel-

lent convergence characteristics, these classical optimiza-

tion techniques fail to find the global solution due to

their non-convexity characteristics. Furthermore, they are

unable to handle the problems with discontinuous and

non-differentiable objective functions, as well as discrete
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variables. Hence they are inappropriate to address the ORPD

problem [3], [22].

The metaheuristic algorithms are typically inspired

from physical phenomena such as gravitational force,

electromagnetic force, inertia force, ray casting; animals’

behavior such as schools of fish, flocks of birds, herds

of land animals, ants, bees; or evolutionary concepts. The

metaheuristics have become outstandingly popular owing

to their simplicity, flexibility, derivation-free mechanism,

and local optima avoidance [23]. Therefore, the meta-

heuristic algorithms overcome the shortcomings associated

with the classical optimization algorithms [22], [24], [25].

Renowned metaheuristics include, among others, genetic

algorithm (GA) [26], differential evolution (DE) [27], particle

swarm optimization (PSO) [28], bat algorithm (BA) [29],

firefly algorithm (FA) [30], flower pollination algorithm

(FFA) [31], harmony search algorithm (HAS) [32], sim-

ulated anneal (SA) [33], gravitational search algorithm

(GSA) [34], ant colony optimization (ACO) [35], wolf search

algorithm (WSA) [36], grey wolf optimizer (GWO) [23],

whale optimization algorithm (WOA) [37], elephant search

algorithm (ESA) [38], ant lion optimizer (ALO) [39],

salp swarm algorithm (SSA) [40], dragonfly algorithm

(DA) [41], moth-flame optimization (MFO) [42], harris

hawks optimization (HHO) [43], grasshopper optimization

algorithm (GOA) [44], multi-verse optimization (MVO) [45],

sine cosine Algorithm (SCA) [46], etc.

In recent times, some of metaheuristics including genetic

algorithm (GA) [47]–[49], particle swarm optimization

(PSO) [50], [51], differential evolution (DE) [52], seeker

optimization algorithm (SOA) [53], gravitational search algo-

rithm (GSA) [24], [54], [55], harmony search algorithm

(HSA) [56], biogeography-based optimization (BBO) [57],

teaching-learning-based optimization (TLBO) [58], krill

herd algorithm (KHI) [59], bacteria foraging algorithm

(BFA) [60], gray wolf optimizer (GWO) [61], ant-lion opti-

mizer (ALO) [62], exchange market algorithm (EMA) [3],

moth-flame algorithm (MFA) [4], imperialist competi-

tive algorithm (ICA) [6], invasive weed optimization

(IWO) [63], bat algorithm (BA) [64], cuckoo search algo-

rithm (CSA) [65], etc, have been successfully employed to

address the ORPD problem.

The BA is a novel metaheuristic optimization algorithm,

introduced by Xin-She Yang in 2010, inspired by the

echolocation of micro-bats [66]. The BA has recently been

applied in numerous areas of research, including engineering

optimization problems [67]–[69], economic load dispatch

problems [70], microelectronic applications [71], schedul-

ing problems [72], biological systems [73], image process-

ing [74], classification, clustering and data mining [75]–[82],

etc.

In an attempt to ameliorate its performance, vari-

ous variants of BA have been proposed in the litera-

ture such as K-Means bat algorithm (KMBA) [75], fuzzy

logic bat algorithm (FLBA) [77], multi-objective bat algo-

rithm (MOBA) [69], binary bat algorithm (BBA) [82],

bat algorithm with differential operator and Lévy flights

(DLBA) [83], improved bat algorithm (IBA) [84], quantum-

behaved bat algorithm [85]–[87], etc.

Thus far, chaos theory has been widely utilized to a broad-

spectrum of applications and to numerous metaheuristics in

an effort to further improve their performance such as provid-

ing better convergence speed and avoiding entrapment into

local optima [88]. In addition, the use of chaotic sequences

has proved to outperform the use random numbers in terms

of enhancing the performance of the metaheuristics (by tun-

ing certain parameters) [89], [90]. In literature, examples of

meta-heuristics which employ chaos include genetic algo-

rithm (GA) [91], harmony search algorithm (HSA) [92],

differential evolution (DE) [93], particle swarm optimization

(PSO) [94], imperialist competitive algorithm (ICA) [95],

krill herd algorithm (KHA) [96], gravitational search algo-

rithm (GSA) [97], bat algorithm (BA) [98], firefly algorithm

(FA) [99], cuckoo search algorithm (CSA) [100], butter-

fly optimization algorithm (BOA) [101], whale optimization

algorithm (WOA) [88], grey wolf optimization (GWO) [102],

moth-flame optimization (MFO) [103], salp swarm algorithm

(SSA) [104]–[106], etc.

Some chaos-based metaheuristics have been efficiently

applied to solve the ORPD problem [59], [107], [108]

as well as economic load dispatch (ELD) problem [90], [109],

[110], [111].

In the present work, the chaotic bat algorithm is imple-

mented on the standard IEEE 14-bus, IEEE 39 New Eng-

land, IEEE 57-bus, IEEE 118-bus and IEEE 300-bus test

power systems with the aim to demonstrate its performance

in solving the ORPD problem. The objective functions con-

sidered in this paper are the minimization of the active

power loss, minimization of the total voltage deviation and

minimization of the voltage stability index. The simulation

results approve that the CBA is more potential and effective

than the compared metaheuristic algorithms reported in the

literature.

The rest of the paper is organized as follows: Section II

presents the mathematical formulation of the ORPD problem,

the CBA algorithm is described in Section III, the imple-

mentation of the CBA algorithm on the ORPD problem is

described in Section IV, Section V presents the simulation

results along with the discussions, and Section VI draws the

conclusion of this paper.

II. PROBLEM FORMULATION

In this paper, three different objective functions are consid-

ered and described as follows:

A. OBJECTIVE FUNCTIONS

The purpose of the ORPD problem is to minimize either the

active power loss (PLoss) or total voltage deviation (TVD) or

voltage stability index (VSI) while simultaneously fulfilling

various equality and inequality constraints.
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The mathematical formulation of the ORPD problem in

general form is expressed as follows [3], [112], [113]:

Minimize J (x, u) (1)

Subject to

g (x, u) = 0 (2)

h (x, u) ≤ 0 (3)

where J (x, u) is the objective function to be minimized,

g (x, u) = 0 represents the equality constraints, h (x, u) ≤ 0

represents the inequality constraints.

x is the vector of dependent variables (state vector) includ-

ing:

- Load bus voltage VL .

- Generator reactive power output QG.

- Transmission line loading Sl .

Hence, the vector x can be expressed as:

xT =
[

VL1 . . .VLNPQ,QG1 . . .QGNG, Sl1 . . . SlNTL
]

(4)

where NG depicts the number of generators; NPQ is the

number of PQ buses and NTL is the number of transmission

lines.

u is the vector of independent variables (control variables)

including:

- Generator bus voltagesVG (continuous control variable).

- Transformer tap settings T (discrete control variable).

- Shunt VAR compensation QC (discrete control vari-

able).

Therefore, u can be illustrated as follows:

uT = [VG1 . . . ,VGNG,QC1 . . .QCNC ,T1 . . . TNT ] (5)

where NT and NC define the number of tap regulat-

ing transformers and number of shunt VAR compensators,

respectively.

1) MINIMIZATION OF ACTIVE POWER LOSS

The mathematical formulation of the ORPD problem for the

minimization of the active power loss ( PLoss) is expressed as

follows [113]:

Minimize J1 (x1, u1) = minimize PLoss

=

NTL
∑

k=0

gk

(

V 2
i +V 2

j −2ViVj cos δij

)

(6)

where J1 (x1, u1) denotes the active power loss minimization

function of the transmission network, gk is the conductance

of the branch k,Vi and Vj are the voltages of i th and jth bus,

respectively, NTL is the number of transmission lines, δij is

the phase difference of voltages between bus i and j.

2) MINIMIZATION OF TOTAL VOLTAGE DEVIATIONS

The voltage deviations at load buses are minimized in an

effort to enhance the voltage profile as well as the security of

the electric power network. Mathematically, the total voltage

deviations (TVD) at load buses are expressed as [3]:

Minimize J2 (x2, u2) = minimize TVD

=

NPQ
∑

i=1

∣

∣

∣
Vi−V

ref
i

∣

∣

∣
(7)

where J2 (x2, u2) is the total voltage deviation minimization

function, i is the element ofNPQ,V
ref
i is the reference voltage

magnitude at i th load bus which is taken as 1p.u.

3) IMPROVEMENT OF VOLTAGE STABILITY INDEX

The L− index/stability index is an index which plays a signif-

icant role in voltage stability of the power system. Its values

range from 0 to 1. In fact, the closer the L− index is to 0,

themore stable is the voltage stability; the closer the L− index

is to 1, the more unstable is the voltage stability [3].

The voltage stability index (VSI) or Lmax can bemathemat-

ically expressed as [3]:

Minimize J3 (x3, u3) = minimizeLmax

= min⌊max
(

Lj
)

⌋,

j=1, 2, 3, . . . ,NPQ (8)

where Lj is the voltage stability indicator (L− index) of

j th node.

The value of Lj is given by

Lj =

∣

∣

∣

∣

∣

1 −

NPV
∑

i=1

Fij
Vi

Vj

∣

∣

∣

∣

∣

(9)

Fij = − [Y1]
−1 [Y2] (10)

where i and j represent the elements of PV (Generator) and

PQ (Load) buses, respectively. [Y1] and [Y2] denote the

sub-matrices of the system Y bus which result from the

separation of PV and PQ buses as given in the following

equation:
[

IPQ
IPV

]

=

[

Y1 Y2
Y3 Y4

] [

VPQ
VPV

]

(11)

B. CONSTRAINTS

1) EQUALITY CONSTRAINTS

In (2), g is the set of equality constraints illustrating the load

flow equations as follows:

PGi − PDi − Vi

NB
∑

j=1

Vj
(

Gij cos δij + Bij sin δij
)

= 0 (12)

QGi − QDi − Vi

NB
∑

j=1

Vj
(

Gij cos δij + Bij sin δij
)

= 0 (13)

where NB is the number of buses, PGi and QGi are active and

reactive power generation at the i th bus, PDi and QDi are

active and reactive power demands at the i th bus, Gij and

Bij are the transfer conductance and susceptance between the

i th and the jth buses respectively.
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C. INEQUALITY CONSTRAINTS

In (3), h is the set of inequality constraints that consists of:

1) GENERATOR CONSTRAINTS

The generation bus voltages including slack bus and reactive

power outputs including slack bus must be restricted within

their lower and upper limits as follows:

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i = 1, 2, . . . ,NG (14)

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i = 1, 2, . . . ,NG (15)

where Vmin
Gi and Vmax

Gi are the minimum and maximum gen-

erator voltage of i th generating unit, Qmin
Gi and Qmax

Gi are

the minimum and maximum reactive power output of i th

generating unit.

2) TRANSFORMER CONSTRAINTS

Transformer tap settings are constrained within their lower

and upper limits as below:

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, 2, . . . ,NT (16)

where Tmin
i and Tmax

i depict the minimum and maximum tap

setting limits of i th transformer.

3) SHUNT VAR COMPENSATOR CONSTRAINTS

The lower and upper limits of the shunt VAR compensators

are given as:

Qmin
Ci ≤ QCi ≤ Qmax

Ci , i = 1, 2, . . . ,NC (17)

where Qmin
Ci and Qmax

Ci are the minimum and maximum VAR

injection limits of i th shunt compensator.

4) SECURITY CONSTRAINTS

These includes the constraints on voltages at load buses and

transmission line loadings as

Vmin
Li ≤ VLi ≤ Vmax

Li , i = 1, 2, . . . ,NPQ (18)

Sli ≤ Smax
li , i = 1, 2, . . . ,NTL (19)

where Vmin
Li and Vmax

Li are the minimum and maximum load

voltages of i th unit. Sli denotes apparent power flow of i th

branch and Smax
li denotesmaximum apparent power flow limit

of i th branch.

D. CONSTRAINT HANDLING

The independent variables of the ORPD problem are self-

constrained whereas the dependent variables are constrained

by means of the penalty functions. Hence, the equation (1)

becomes [3]:

Minimize

F = Fobj + λV

NPQ
∑

i=1

(

VLi − V lim
Li

)2
+ λQ

NG
∑

i=1

(

QGi − Qlim
Gi

)2

+λS

NTL
∑

i=1

(

Sli − S limli

)2
(20)

where Fobj denotes the objective function under considera-

tion i.e. J1 (x1, u1) or J2 (x2, u2) or J3 (x3, u3). λV , λG and

λS are the penalty factors related to load bus voltage limit

violation, generation reactive power limit violation and line

flow violation, respectively. V lim
Li ,Qlim

Gi and S limli are defined

as the limit values associated with load bus voltage, real

generation reactive power, and line flow, respectively. They

are expressed as follows

V lim
Li =











Vmax
Li if VLi > Vmax

Li

Vmin
Li if VLi < Vmin

Li

VLi if Vmin
Li ≤ VLi ≤ Vmax

Li

(21)

Qlim
Gi =











Qmax
Gi if QGi > Qmax

Gi

Qmin
Gi if QGi < Qmin

Gi

QGi if Qmin
Gi ≤ QGi ≤ Qmax

Gi

(22)

S limli =











Smax
li if Sli > Smax

li

Smin
li if Sli < Smin

li

Sli if Smin
li ≤ Sli ≤ Smax

li

(23)

III. CHAOTIC BAT ALGORITHM

A. BRIEF REVIEW OF THE BASIC BAT ALGORITHM

The BA mimics the echolocation behavior of the microbats

while searching for prey and avoiding obstacles [66].

Three rules have been suggested in [66] in order to idealize

the echolocation characteristics of microbats:

1) Each microbat utilizes echolocation to estimate the

distance between prey and surroundings.

2) Bats fly randomly with velocity V i at position X i with

a fixed frequency f min, varying wavelength λ and loud-

ness A0 to search for prey. They can automatically

adjust the wavelength (or frequency) of their emitted

pulses and adjust the rate of pulse emission r1 ∈

[0, 1],depending on the proximity of their target.

3) It is assumed that the loudness varies from a large

(positive) A0 to a minimum constant value Amin.

Each bat i has a position X i, a velocity V i, a frequency

f i in a d− dimensional space, and they should be updated

iteratively towards the current best position as follows

f i = f min + r1

(

f max − f min
)

(24)

V i (t + 1) = V i (t) + f i
(

X i (t) − Xbest (t)
)

(25)

X i (t + 1) = X i (t) + V i (t + 1) (26)

where r1 is a uniformly distributed random number in the

range [0, 1] ; f min and f max are the minimum and maximum

allowable frequencies while f i is the frequency for the i th

bat. For the present ORPD problem, the values of f min and

f max are set to 0 and 100, respectively as given in [66] and

in [90], t is the current iteration number, Xbest is the location

(solution), that has the best fitness in the current population.

At initialization, V i is assumed to be 0.
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A new solution for each bat can be generated locally

through random walk as follows

X i,new (t) =

{

Xbest (t) + r3A
i (t) if r2 > Ri (t)

X r (t) + r3A
i (t) else

(27)

where Ri (t) is the pulse emission rate, Ai (t) is the loudness,

r2 ∈ [0, 1] , r3 ∈ [−1, 1], r ∈ [1, 2, . . . ,Nb], r 6= i

is a randomly chosen integer, Nb is the number of bats or

solutions, X r (t) is a randomly chosen solution in the current

iteration, and different from the i th iteration.

The fitter solution is given by

X i (t) = X i,new (t) , if f
(

X i,new (t)
)

< f
(

X i (t)
)

, and

r4 < Ai (t) ∀i, i ∈ [1, 2, . . . ,Nb] (28)

where r4 ∈ [0, 1] is a uniformly distributed random number.

Once the bat has found its prey, the loudness keeps on

decreasing whereas the pulse rate emission keeps on increas-

ing. The loudness Ai and the pulse emission rate Ri are

iteratively updated as follows

Ai (t + 1) = αAi (t) (29)

Ri (t + 1) = Ri (0)
[

1 − exp (−γ t)
]

(30)

where Ai (0) ∈ [1, 2] and Ri (0) ∈ [0, 1] are randomly gener-

ated within their respective limits. For the sake of simplicity,

we set α = γ = 0.9, as in [66] and in [90].

B. CHAOTIC BAT ALGORITHM

In standard BA algorithm, the loudness and pulse emission

rate are two parameters that can be adjusted to control explo-

ration and exploitation of the BA algorithm and hence to

improve its performance. Furthermore, the replacement of

randomness by chaotic maps in adjusting the aforementioned

parameters has proved to be more effective [98].

In this paper, two variants of CBA are going to be consid-

ered:

1) CBA-III

In this CBA variant, the sinusoidal map has been used to

adjust the loudness as follows [90], [98]:

Ai (t + 1) = a
{

Ai (t)
}2

sin
(

πAi (t)
)

(31)

where a = 2.3,

Ai (0) ∈ [0, 1] , and is randomly generated.

2) CBA-IV

In this CBA variant, the sinusoidal map has been used to

adjust the pulse rate emission as follows [98]:

Ri (t + 1) = a
{

Ri (t)
}2

sin
(

πRi (t)
)

(32)

where a = 2.3,

Ri (0) ∈ [0, 1] , and is randomly generated.

IV. IMPLEMENTATION OF CBA TO ORPD PROBLEM

This section discusses the procedure of applying CBA to

solve the ORPD problem.

A. CBA-III

Step 1: The initial position (bat solution)X i and its velocity

V i of each bat are randomly generated within the specified

limits. The bat solution X i is a vector of the control variables

of the ORPD problem such as generator voltages, tap setting

transformers and shunt compensators.

For each i th bat, define pulse frequency f i at X i.

Initialize the pulse rate emission Ri and loudness Ai and

specify their lower and upper limit values.

Step 2: Evaluate the fitness values of all the bats using the

objective function of the problem defined in (6) or (7) or (8)

in accordance with the results of New-Raphson power flow

analysis [114].

Step 3: For each bat i, adjust the frequency f i using (24).

Step 4: Update the velocity and position of each bat in

accordance with (25) and (26) respectively.

Step 5: Generate a new solution by randomly walk based

on (27).

Step 6: Select the best among the old and new solutions,

with a probability Ai (t), by using (28).

Step 7: Update the values of Ri and Ai in accordance with

(30) and (31), respectively.

Step 8: Check for the equality constraints of the problem

(12)-(13) and the inequality constraints (14)-(19) of the pro-

blem.

Step 9: Go to step 2 until stopping criteria is met.

B. CBA-IV

Step 1: The initial position (bat solution)X i and its velocity

V i of each bat are randomly generated within the specified

limits. The bat solution X i is a vector of the control variables

of the ORPD problem such as generator voltages, tap setting

transformers and shunt compensators.

For each i th bat, define pulse frequency f i at X i.

Initialize the pulse rate emission Ri and loudness Ai and

specify their lower and upper limit values.

Step 2: Evaluate the fitness values of all the bats using the

objective function of the problem defined in (6) or (7) or (8)

in accordance with the results of New-Raphson power flow

analysis [114].

Step 3: For each bat i, adjust the frequency f i using (24).

Step 4: Update the velocity and position of each bat in

accordance with (25) and (26) respectively.

Step 5: Generate a new solution by randomly walk based

on (27)

Step 6: Select the best among the old and new solutions,

with a probability Ai (t), by using (28).

Step 7: Update the values of Ai and Ri in accordance

with (29) and (32), respectively.

Step 8: Check for the equality constraints of the prob-

lem (12)-(13) and the inequality constraints (14)-(19) of the

problem.
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Step 9: Go to step 2 until stopping criteria is met.

V. RESULTS AND DISCUSSION

In order to verify the performance and effectiveness of the

CBA algorithm for ORPD problem, the standard BA and

two different variants of CBA namely CBA-III and CBA-IV

have been tested on standard IEEE 14-bus, IEEE 39 New

England bus, IEEE 57-bus, IEEE 118-bus and IEEE 300-bus

test systems for the minimization of the active power loss,

total voltage deviations and voltage stability index objective

functions. All these algorithms were implemented in MAT-

LAB 2014a incorporated with MATPOWER 6.0 [115] and

run on PC i.e Lenovo Ideapad 100-15IKB, 2.1 GHz Intel

Pentium with 4GB RAM.

The population size is set to 120 (Nb = 120). The iteration

numbers are set to 100 for IEEE 14-bus test system; 200 for

IEEE 39 New England bus and IEEE 57-bus test systems; and

300 for IEEE 118-bus and IEEE 300-bus test systems. In this

simulation, 30 independent test trial runs were carried out for

all the test cases.

The performance capability of the CBA-IV for each objec-

tive function is indicated by bold faced results.

A. IEEE 14-BUS TEST SYSTEM

The IEEE 14-bus test system constists of five generators at

bus 1, 2, 3, 6, and 8; 20 branches 17 branches are trans-

mission lines and 3 branches are tap changing transformers;

and 2 shunt VAR compensators installed at buses 9 and 14.

In total, this system contains 10 control variables including

five generators, three tap changing transformers and two

shunt capacitors. Further details are found in [52], [58], [116].

The total demand of the system are

Pload = 259MW (active power demand),

Qload = 73.5MVAR (reactive power demand).

The initial total generations and power losses are given by
∑

PG = 272.39MW (active power of generators),
∑

QG = 82.44MVAR (reactive power of generators),

PLOSS = 13.49MW (active power losses),

QLOSS = −54.54MVAR (reactive power losses).

The control variable limits are listed in Table 1 in p.u.

[58], [116].

TABLE 1. Control variable limits for IEEE 14-bus test systems [58], [116].

1) CASE 1: MINIMIZATION OF ACTIVE POWER LOSS

The standard BA, CBA-III andCBA-IV algorithms are imple-

mented on the IEEE 14-bus test system for the minimization

of the active power loss defined in (6) taking into account the

penalty terms defined in (20).

Table 2 illustrates the best results yielded by the standard

BA, CBA-III, CBA-IV and those yielded by other algorithms

reported in the literature including DE [52], MTLA-DDE

[116], MGBTLBO [58], SARGA [49], etc.

According to simulation results from Table 2, the best

(minimum) power loss PLoss offered by the CBA-IV algo-

rithm is 12.2923 MW which is also better than that obtained

by the other algorithms compared with it.

Table 3 provides the comparison of statistical results such

as the best active power loss (Best), the worst active power

loss (Worst), the mean power loss (Mean), the standard

deviation (Std) and the percent of power loss reduction

(% P save); yielded by different algorithms available in

the literature for IEEE 14- bus system. From Table 3, it is

seen that the CBA-IV algorithm outperforms other algo-

rithms as it can achieve a power loss reduction of 8.88%

(from the initial power loss) compared with 8.75% by CBA-

III, 8.74% by MGBTLBO [58], 8.7% by BA, 8.68% by

JAYA [117], 8.3% by DE-ABC [118], 8.1% by IGSA-

CSS [24], 8% by CSSP4 [119], 7.72% by DE [120], 7.717%

by DEEP [121],7.05% by GSAPSO [54], 4.39% by MTLA-

DDE [116], 3.86% by PSO [122], 2.03% by SARGA [49],

1.87% by PSO-AM [123], 1.86 by DE [52] and 1.68% by

PSO-CM [123].

The outperformance of the CBA-IV over CBA-III and

the standard BA is due to the sinusoidal map that has been

employed to adjust the pulse rate emission as discussed

in (32).

The convergence characteristics of active power loss (over

100 iterations) yielded by (the best solutions of) the standard

BA, CBA-III and CBA-IV algorithms for IEEE 14-bus are

shown in Fig.1. From this figure, it observed that the CBA-IV

FIGURE 1. The convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 14-bus test power system with the minimization
of PLoss objective function.
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TABLE 2. Optimal settings of control variables for IEEE 14-bus test
systems with the minimization of PLoss. Objective function.

TABLE 2. (Continued.) Optimal settings of control variables for IEEE
14-bus test systems with the minimization of PLoss. Objective function.

gives better convergence characteristics than CBA-III and BA

algorithms.

2) CASE 2: MINIMIZATION OF TOTAL VOLTAGE DEVIATION

For the present case, the minimization of the Total Volt-

age Deviations (TVD) discussed in (7) is considered as the

objective function together with the penalty factors defined

in (20).

The best results yielded by the CBA algorithm are

tabulated in Table 4 together with the results of the

CBA-III, BA and IGSA-CSS [24]. According to Table 4,

it can be observed that the CBA-IV yielded a TVD value

of 0.0330 compared with the results 0.0332, 0.0336 and

0.0339 achieved by CBA-III, CBA and IGSA-CSS [24]

respectively. It is also recognized from Table 5 that an

improvement of 31.10% in TVD has been achieved by using

CBA-IV in comparison to 30.69% with CBA-III, 29.85%

with BA and 29.22% with IGSA-CSS [24]. The Fig.2 illus-

trates the comparison of the convergence characteristics of

TVD for IEEE 14-bus system. From this figure, it is clear

that the convergence characteristics of TVD for the CBA-IV

outperforms those from the compared algorithms.
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TABLE 3. Statistical results for IEEE 14-bus test system with the
minimization of PLoss. Objective function.

FIGURE 2. The convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 14-bus test power system with the minimization of
TVD bjective function.

3) CASE STUDY 3: IMPROVEMENT OF VOLTAGE STABILITY

INDEX

In this case, the CBA algorithm is employed to minimize the

Voltage Stability Index (VSI) discussed in (8) as the objective

function together with the penalty terms defined in (20).

TABLE 4. Optimal settings of control variables for IEEE 14-bus test
systems with the minimization of TVD objective function.

TABLE 5. Statistical results for IEEE 14-bus test system with the
minimization of TVD objective function.

The table 6 shows the best results obtained using the

CBA-IV alongside with the CBA-III and the BA. From this

table, it can be seen that an L− index value of 0.0170

is obtained by the CBA-IV compared to 0.0174 with the

CBA-III and 0.0179 with the BA. The statistical results

for the present case are summarized in Table 7. According

to Table 7, it is found that the CBA-IV also provides the

smallest Best, Mean and Std values than the CBA-III and

the BA. The comparison of convergence characteristics of

VSI for IEEE 14-bus system is depicted in Fig.3. According

to this figure, it can be recognized that the convergence
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TABLE 6. Optimal settings of control variables for IEEE 14-bus test
systems with the minimization of VSI objective function.

TABLE 7. Statistical results for IEEE 14-bus test system with the
minimization of VSI objective function.

characteristics from the CBA-IV outperforms the conver-

gence characteristics from the CBA-III and the BA.

B. IEEE 39 NEW ENGLAND BUS TEST SYSTEM

The IEEE 39 New England bus test system comprises 10 gen-

erators at the buses 30, 31, 32, 33, 34, 35, 36, 37, 38 and

39; 46 lines; 5 tap changing transformers at lines 12-11, 10-

32, 22-35, 2-30 and 19-20; and 6 shunt VAR compensators

installed at buses 1, 5, 10, 14, 22 and 27. Totally, the IEEE

39-bus test system contains 21 control variables including

ten generators, five tap changing transformers and six shunt

capacitors. See [124] and [125] for further details.

FIGURE 3. The convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 14-bus test power system with the minimization of
VSI objective function.

TABLE 8. Control variable limits for IEEE 39-bus test systems [124].

The control variable limits are listed in Table 8

in p.u. [124].

1) CASE 1: MINIMIZATION OF ACTIVE POWER LOSS

Table 9 presents the best results yielded by different algo-

rithms for the minimization of the active power loss of the

IEEE 39-bus test system. It can be observed that the CBA-IV

gives the best active power loss which is 35.9971 MW.

The comparative statistical results are illustrated in Table 10.

It can be seen from Table 6 that a 17.44 % decrease (from

the initial power loss of 43.6 MW) in active power loss is

achieved with the CBA-IV algorithm, which performs better

than other algorithms compared with it. The comparative

convergence characteristics of active power loss over 200 iter-

ations yielded by the standard BA, CBA-III and CBA-IV

are presented in Fig.4. It can be observed from Fig.4 that

the CBA-IV gives better convergence characteristics than the

CBA-III and BA algorithms.

2) CASE 2: MINIMIZATION OF TOTAL VOLTAGE DEVIATION

Table 11 presents the solution of the ORPD problem obtained

by using the CBA-IV algorithm in order to minimize the

TVD of the IEEE 39-bus system. It is seen that the CBA-IV

out-performs other algorithms compared with because the

CBA-IV provides a TVD value of 0.0739 against 0.0796 with

the CBA-III and 0.0825 with the BA. The statistical analysis

of the present case is illustrated in Table 12. It is observed

that the CBA-IV offers the minimum Best, Mean and Std

values in comparison to the CBA-III and the BA. In addition,

Fig.5 depicts the comparison of the convergence characteris-

tics for TVD obtained by CBA-IV with the other approaches.
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TABLE 9. Optimal settings of control variables for IEEE 39-bus test
systems with the minimization of PLoss. Objective function.

3) CASE STUDY 3: IMPROVEMENT OF VOLTAGE STABILITY

INDEX

The solution of the ORPD problem for minimizing the VSI

of the IEEE 39-bus system by using the CBA-IV algorithm

FIGURE 4. The convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 39-bus test power system with the minimization
of PLoss objective function.

TABLE 10. Statistical results for IEEE 39-bus test system with the
minimization of PLoss. Objective function.

FIGURE 5. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 39-bus test power system with the minimization of
TVD objective function.

is shown in Table 13. It is observed that the CBA-IV

out-performs other algorithms compared with it because

the CBA-IV offers an L− index value of 0.0113 against

0.0130 with the CBA-III and 0.0136 with the BA. Table 14

shows the statistical results for this case. Furthermore,
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TABLE 11. Optimal settings of control variables for IEEE 39-bus test
systems with the minimization of TVD objective function.

Fig.6 illustrates the comparison of the convergence char-

acteristics for VSI obtained by CBA-IV with the other

methods.

TABLE 12. Statistical results for IEEE 39-bus test system with the
minimization of TVD objective function.

FIGURE 6. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 39-bus test power system with the minimization of
VSI objective function.

C. IEEE 57 BUS TEST SYSTEM

The IEEE 57 bus test system comprises 7 generators at

the buses 1,2,3,6,8,9 and 12; 80 transmission lines; 15 tap

changing transformers and 3 shunt VAR compensators

installed at buses 18, 25 and 53. Totally, the IEEE 57-bus test

system contains 25 control variables including 7 generators,

15 tap changing transformers and 3 shunt capacitors.

Refer to [53], [63] and [118] for further details.

The total demand of the system are

Pload = 1250.8MW (active power demand),

Qload = 336.4MVAR (reactive power demand).

The initial total generations and power losses are given by
∑

PG = 1279.26MW (active power of generators),
∑

QG = 345.45MVAR (reactive power of generators),

PLOSS = 28.462MW (active power losses),

QLOSS = −124.27MVAR (reactive power losses).

The control variable limits are listed in Table 15 in

p.u. [118].

1) CASE 1: MINIMIZATION OF ACTIVE POWER LOSS

Table 16 illustrates the best results obtained by different

algorithms to minimize the active power loss of the IEEE

57-bus test system. From Table 16, the CBA-IV algorithm

leads to 21.9627 MW active power loss which is better

than the active power losses obtained by the other compared

algorithms. The comparative statistical results are illustrated
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TABLE 13. Optimal settings of control variables for IEEE 39-bus test
systems with the minimization of VSI objective function.

in Table 17. It can be seen from Table 17 that a 22.84 %

reduction (from the initial loss of 28.462MW) in active power

loss is achieved with the CBA-IV algorithm, which performs

TABLE 14. Statistical results for IEEE 39-bus test system with the
minimization of VSI objective function.

TABLE 15. Control variable limits for IEEE 57-bus test systems [118].

FIGURE 7. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 57-bus test power system with the minimization
of PLoss objective function.

better than other algorithms. The comparative con-vergence

characteristics of active power loss over 200 iterations yielded

by the standard BA, CBA-III and CBA-IV are presented

in Fig.7. It can be observed from Fig. 7 that the CBA-IV gives

better convergence characteristics than the CBA-III and BA

algorithms.

2) CASE 2: MINIMIZATION OF TOTAL VOLTAGE DEVIATION

The best results of TVD minimization for IEEE 57-bus sys-

tem achieved by the CBA-IV, CBA-III and CBA algorithms

are tabulated in Table 18. According to this table, it can

be seen that the CBA-IV outperforms other algorithms

compared with it as the CBA-IV gives a TVD value of

0.6399 against 0.6413 with CBA-III, 0.6434 with BA,

0.6501 with NGBWCA [127], 0.6634 with ALC-PSO [130]

and 0.6982 with OGSA [128]. The statistical results obtained

by different methods are presented in Table 19. According to

this table, it can be seen that the CBA-IV is able to enhance

the TVD value by 48.13% with respect to initial TVD value,

in comparison to 48.01% with CBA-III, 47.84% with BA,
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TABLE 16. Optimal settings of control variables for IEEE 57-bus test
systems with the minimization of PLoss. Objective function.

TABLE 16. (Continued.) Optimal settings of control variables for IEEE
57-bus test systems with the minimization of PLoss. Objective function.
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TABLE 16. (Continued.) Optimal settings of control variables for IEEE
57-bus test systems with the minimization of PLoss. Objective function.

TABLE 16. (Continued.) Optimal settings of control variables for IEEE
57-bus test systems with the minimization of PLoss. Objective function.

VOLUME 8, 2020 65843



S. Mugemanyi et al.: ORPD Using CBA

TABLE 17. Statistical results for IEEE 57-bus test system with the
minimization of PLoss. Objective function.

FIGURE 8. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 57-bus test power system with the minimization of
TVD objective function.

47.29%with NGBWCA [127], 46.22%with ALC-PSO [130]

and 43.40% with OGSA [128].

Moreover, the comparison of the convergence characteris-

tics for TVD obtained by CBA-IV with the other methods is

shown in Fig.8.

3) CASE STUDY 3: IMPROVEMENT OF VOLTAGE STABILITY

INDEX

Table 20 presents the best results of minimization of the VSI

for IEEE 57-bus system by using the CBA-IV algorithm.

It is seen that the CBA-IV outperforms other algorithms

compared with it, because the CBA-IV provides an L− index

value of 0.1608 against 0.1789 with CBA-III, 0.19001 with

OGSA [128], 0.190709 with SOA [53] and 0.1917 with BA.

Table 21 sums up the statistical results performed by different

algorithms for the present case.

Besides, the comparison of the convergence characteristics

for VSI yielded by CBA-IVwith the other approaches is illus-

trated in Fig.9. According to this figure, it can be recognized

that the CBA-IV convergence characteristic outperforms the

CBA-III as well as the BA convergence characteristics.

TABLE 18. Optimal settings of control variables for IEEE 57-bus test
systems with the minimization of TVD Objective function.
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TABLE 18. (Continued.) Optimal settings of control variables for IEEE
57-bus test systems with the minimization of TVD Objective function.

TABLE 19. Statistical results for IEEE 57-bus test system with the
minimization of TVD objective function.

FIGURE 9. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 57-bus test power system with the minimization of
VSI objective function.

D. IEEE 118 BUS TEST SYSTEM

The IEEE 118 bus test system comprises 54 generators,

186 transmission lines, 9 tap changing transformers and

14 shunt VAR compensators. Totally, the IEEE 118-bus test

system contains 77 control variables. Refer to [53], [63],

[115] and [116] for further details.

The total demand of the system are

Pload = 4242MW (active power demand),

Qload = 1438MVAR (reactive power demand).

The initial total generations and power losses are given by
∑

PG = 4375.36MW (active power of generators),
∑

QG = 881.92MVAR (reactive power of generators),

PLOSS = 133.357MW (active power losses),

QLOSS = −785.11MVAR (reactive power losses).

The control variable limits are listed in Table 22 in p.u.

[53], [116].

1) CASE 1: MINIMIZATION OF ACTIVE POWER LOSS

The best results achieved by different algorithms for the

minimization of the active power loss are tabulated in the

Appendix section. The comparative statistical results are
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TABLE 20. Optimal settings of control variables for IEEE 57-bus test
systems with the minimization of VSI objective function.

TABLE 21. Statistical results for IEEE 57-bus test system with the
minimization of VSI objective function.

TABLE 22. Control variable limits for IEEE 118-bus test systems [53], [116].

FIGURE 10. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 118-bus test power system with the minimization
of PLoss objective function.

presented in Table 23. According to Table 23, the CBA-IV

algorithm leads to 113.7040 MW active power loss which

is better than the active power losses obtained by the other

algorithms compared with it. In addition, it can also be seen

from Table 23 that a 14.74% reduction (from the initial loss

of 133.357 MW) in active power loss is achieved with the

CBA-IV algorithm, which performs better than other algo-

rithms compared with it. The comparative convergence char-

acteristics of active power loss over 300 iterations obtained by

the standard BA, CBA-III and CBA-IV are shown in Fig.10.

It can be observed from Fig.10 that the CBA-IV yields

better convergence characteristics than the CBA-III and

BA algorithms.

2) CASE 2: MINIMIZATION OF TOTAL VOLTAGE DEVIATION

The best results of TVD minimization for IEEE 118-bus

system yielded by the CBA-IV, CBA-III and CBA algorithms
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TABLE 23. Statistical results for IEEE 118-bus test system with the
minimization of PLoss. Objective function.

TABLE 24. Statistical results for IEEE 118-bus test system with the
minimization of TVD objective function.

are shown in the Appendix section. The statistical results

of this case are summarized in Table 24. According this

table, it is seen that the CBA-IV outperforms other algorithms

compared with it as the CBA-IV gives a TVD value of

0.3032 against 0.3059 with CBA-III, 0.3172 with BA and

FIGURE 11. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 118-bus test power system with the minimization of
TVD objective function.

TABLE 25. Statistical results for IEEE 118-bus test system with the
minimization of VSI objective function.

FIGURE 12. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 118-bus test power system with the minimization of
VSI objective function.

0.3262 with ALC-PSO [130]. Futhermore, the CBA provides

the smallest Best, Mean and Std values in comparison to

CBA-III and BA.

The comparison of the convergence characteristics for

TVD obtained by CBA-IV with the other methods is depicted

in Fig.11 and shows the robust performance of the CBA-IV

for larger dimension systems.
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TABLE 26. Control variable limits for IEEE 300-bus test
systems [62], [136].

TABLE 27. Statistical results for IEEE 300-bus test system with the
minimization of PLoss objective function.

FIGURE 13. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 300-bus test power system with the minimization
of PLoss objective function.

TABLE 28. Statistical results for IEEE 300-bus test system with the
minimization of TVD objective function.

3) CASE STUDY 3: IMPROVEMENT OF VOLTAGE STABILITY

INDEX

The best results of minimization of the VSI for IEEE i118-bus

system achieved by the CBA-IV algorithm are illustrated in

FIGURE 14. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 300-bus test power system with the minimization of
TVD objective function.

TABLE 29. Statistical results for IEEE 300-bus test system with the
minimization of VSI objective function.

FIGURE 15. The Convergence characteristics of the standard BA, CBA-III
and CBA-IV for IEEE 300-bus test power system with the minimization of
VSI objective function.

the Appendix section. Table 25 provides the comparison in

terms of statistical results for this case. It is observed that

the CBA-IV outperforms other algorithms compared with it

because the CBA-IV provides an L− index value of 0.0570

against 0.0587 with CBA-III, 0.0608 with QOTLBO [134]

and 0.06126 with BA.
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TABLE 30. Optimal settings of control variables for IEEE 118-bus test
systems with the minimization of PLoss. Objective function.

TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.
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TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.

TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.
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TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.

TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.
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TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.

TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.
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TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.

TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.
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TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.

TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.
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TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.

TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.
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TABLE 30. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of PLoss. Objective function.

The comparison of the convergence characteristics for VSI

yielded by CBA-IV with the other approaches is illustrated

in Fig.12 and reveals that the CBA-IV is able to achieve a

good performance for larger dimension systems.

E. IEEE 300 BUS TEST SYSTEM

The IEEE 300-bus test system comprises 69 generators,

411 transmission lines, 107 tap changing transformers and

14 shunt VAR compensators. Totally, the IEEE 300-bus test

system contains 190 control variables. See [62] and [136] for

further details.

The control variable limits are listed in Table 26 in p.u. [62]

and [136].

1) CASE 1: MINIMIZATION OF ACTIVE POWER LOSS

Table 27 illustrates the comparative statistical results obtained

by different algorithms in minimizing active power loss for

IEEE 300 bus system. From Table 27, the CBA-IV algorithm

leads to 373.6675 MW active power loss which is better than

the active power losses obtained by the other algorithms com-

pared with it. The comparative convergence characteristics of

active power loss over 300 iterations yielded by the standard

BA, CBA-III and CBA-IV are presented in Fig.13. It can be

observed from Fig. 13 that the CBA-IV gives better conver-

gence characteristics than the CBA-III and BA algorithms.

2) CASE 2: MINIMIZATION OF TOTAL VOLTAGE DEVIATION

The comparative statistical results of TVD minimization for

IEEE 300-bus system achieved by the CBA-IV, CBA-III and

CBA algorithms are shown in Table 28. It is observed that

the CBA-IV outperforms other algorithms compared with

because the CBA-IV provides a TVD value of 1.1182 against

1.1462 with CBA-III, 1.1585 with BA. The comparison of

the convergence characteristics for TVD yielded by CBA-IV

with the other approaches is given in Fig.14 and reveals that

the CBA-IV is able to achieve a good performance for larger

dimension systems.

3) CASE STUDY 3: IMPROVEMENT OF VOLTAGE STABILITY

INDEX

The comparative statistical results of VSI minimization for

IEEE 300-bus system yielded by the CBA-IV, CBA-III and

CBA algorithms are tabulated in Table 29. According to this

table, it is seen that the CBA-IV outperforms other algo-

rithms compared with it as the CBA-IV gives an L− index

value of 0.3536 against 0.3556 with CBA-III and 0.3570

with BA.

The comparison of the convergence characteristics for VSI

obtained by CBA-IV with the other methods is presented

in Fig.15 and shows the robust performance of the CBA-IV

for larger dimension systems.

VI. CONCLUSION

In this paper, two variants of chaotic bat algorithm (CBA),

namely CBA III and CBA IV have been successfully applied
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TABLE 31. Optimal settings of control variables for IEEE 118-bus test
systems with the minimization of TVD objective function.

TABLE 31. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of TVD objective function.

VOLUME 8, 2020 65857



S. Mugemanyi et al.: ORPD Using CBA

TABLE 31. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of TVD objective function.

TABLE 31. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of TVD objective function.
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TABLE 31. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of TVD objective function.

TABLE 31. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of TVD objective function.
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TABLE 31. (Continued.) Optimal settings of control variables for IEEE
118-bus test systems with the minimization of TVD objective function.

to solve the ORPD problem. Their performance as well as

their effectiveness were evaluated on standard IEEE 14-bus,

IEEE 39 New England bus, standard IEEE 57-bus, standard

IEEE 118-bus and standard IEEE 300-bus test systems. The

results yielded by CBA variants were compared to those

available in the literature along with those of the standard ver-

sion of BA. The simulation results approve that the CBA-IV

outperforms other compared algorithms in terms of effective-

ness and robustness for solving the ORPD problem.

TABLE 32. Optimal Settings of control variables for IEEE 118-bus test
systems with the minimization of VSI objective function.
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TABLE 32. (Continued.) Optimal Settings of control variables for IEEE
118-bus test systems with the minimization of VSI objective function.

TABLE 32. (Continued.) Optimal Settings of control variables for IEEE
118-bus test systems with the minimization of VSI objective function.
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TABLE 32. (Continued.) Optimal Settings of control variables for IEEE
118-bus test systems with the minimization of VSI objective function.

TABLE 32. (Continued.) Optimal Settings of control variables for IEEE
118-bus test systems with the minimization of VSI objective function.
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TABLE 32. (Continued.) Optimal Settings of control variables for IEEE
118-bus test systems with the minimization of VSI objective function.

For future researches, CBA will be utilized to address

some other power system optimization problems such as

the ORPD problem considering FACTS devices, optimum

capacitor placement, optimum VAR sizing and allocation,

design of power system stabilizers, short-term electricity load

forecasting, short-term wind power forecasting, etc.

APPENDIX

See Tables 30–32.
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