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ABSTRACT The appropriate control andmanagement of reactive power is of great relevance in the electrical

reliability, stability, and security of power grids. This issue is considered in order to increase system efficiency

and to maintain voltage under the acceptable value range. In this regard, novel technologies as FACTS,

renewable energies, among others, are varying conventional grid behavior leading to unexpected limit

capacity reaching due to large reactive power flow. Thus, optimal planning of this must be considered. This

paper proposes a new application for a simple and easy implementation optimization algorithm, called Rao-3,

to solve the constrained non-linear optimal reactive power dispatch problem. Moreover, the integration of

solar and wind energy as the most applied technologies in electric power systems are exploited. Due to the

continuous variation and the natural intermittence of wind speed and solar irradiance as well as load demand

fluctuation, the uncertainties which have a global concern are investigated and considered in this paper.

The proposed single-objective and multi-objective deterministic/stochastic optimal reactive power dispatch

algorithms are validated using three standard test power systems, namely IEEE 30-bus, IEEE 57-bus, and

IEEE 118-bus. The simulation results show that the proposed optimal reactive power dispatch algorithms

are superior compared with two recent algorithms (Artificial electric field algorithm (AEFA) and artificial

Jellyfish Search (JS) algorithm) and other optimization algorithms used for solving the same problem.

INDEX TERMS Renewable energy, uncertainty, time-varying demand, optimal reactive power dispatch

(ORPD), RAO algorithm, backward reduction algorithm.

I. INTRODUCTION

Optimal reactive power dispatch (ORPD) is considered one

of the most very important conditions for the secure and eco-

nomic operation of power systems. It is achieved by suitable

coordination of the system equipment used to manage the

reactive power flow with the aim of minimizing the active

power losses and/or improving the voltage profile of the

system.

The ORPD aims at the control and management of reactive

power to minimize total active power loss, and a total of

The associate editor coordinating the review of this manuscript and
approving it for publication was Jagdish Chand Bansal.

voltage deviations, and the voltage stability margin improve-

ment while preserving equality and inequality constraints

within their acceptable limits [1], [2]. The active power losses

are set as an objective in the ORPD problem. In order to

achieve the desired objective, the generator bus voltages, set-

tings of passive devices such as transformers and shunt VAR

compensators are adjusted to reduce the active power losses.

The cumulative sum of voltage deviations of load buses is

also set as an objective. The purpose of this objective is to

ensure that voltages at consumer terminals are closed to the

required level (usually from 0.95 to 1.1 p.u.) with control of

reactive power flow. The ORPD problem is a nonlinear com-

plex optimization problem. These types of non-convex and
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non-linear optimization problems can be solved by classical

methods such as Newton-Raphson [3], the interior point [4],

linear programming (LP) [5], non-linear programming [6],

and Quadratic programming (QP) [7]. These classical meth-

ods suffer from massive computation, local optimal trapping

especially when it is used in large-scale systems [8].

Metaheuristic techniques are more suitable than classic

methods in solving non-linear optimization problems like

ORPD. There are many metaheuristic optimization tech-

niques were used to find the best solution for the ORPD

problem such as; Whale Optimization Algorithm (WOA) [9],

Particle SwarmOptimization (PSO) [10], Ant LionOptimizer

(ALO) [11], Improved Social Spider Optimization Algo-

rithm (ISSO) [12], Improved Antlion Optimization Algo-

rithm (IALO) [13], Genetic Algorithm (GA) [14], Ant

Colony Optimizer (ACO) [15], Opposition-Based Grav-

itational Search Algorithm (OGSA) [16], Wind Driven

Optimization Algorithm (WDO) [17], modified differen-

tial evolution algorithm (MDEA) [18], Specialized Genetic

Algorithm (SGA) [19], evolutionary programming [20], com-

prehensive learning particle swarm optimization [21], fuzzy

adaptive PSO (FAPSO) [22], seeker optimization algorithm

(SOA) [23], cuckoo search algorithm (CA) [24], Hybrid Evo-

lutionary Programming (HEP) [25], harmony search algo-

rithm [26], Teaching Learning-Based Optimization [27],

biogeography-based optimization [28], modified sine cosine

algorithm [29], water cycle algorithm [30], hybrid Fuzzy-

Jaya optimizer [31].

In [32], Moth Swarm Algorithm (MSA) has been used

for ORPD considering the stochastic of renewable energy

generation and load. The ORPD problem considering load

uncertainty has been solved using an enhanced grey wolf

optimizer (EGWO) in [33]. ORPD with uncertainties in

load demand and renewable energy sources has been solved

based on SHADE algorithm [34], Fractional Calculus with

Particle Swarm Optimization Gravitational Search Algo-

rithm (FPSOGSA) [35], and improved lightning attachment

procedure optimization (ILAPO) [36]. In [37], Marine Preda-

tors Algorithm (MPA) has been used for solving ORPD

problems with time-varying load, wind, and solar energy

uncertainties. In [38], an enhanced firefly algorithm has been

introduced for multi-objective optimal active/reactive power

dispatch with uncertainties consideration. Also, in [39] a

quantum-behaved particle swarm optimization differential

mutation (QPSODM) algorithm is used to solve the multi-

objective ORPD with renewable energy uncertainty. From

an environmental, economic, and technical point of view,

the switch from fossil-fueled-based generation to renewable

energy sources is a must. This integration leads to reducing

greenhouse emissions, generation fuel cost, and enhancing

the system operation. The most applied technologies for

RES are the wind and solar energy generation systems. Due

to the continuous variation and the natural intermittence of

wind speed and solar irradiance, moreover, load demand

fluctuation there is an increasing concern of uncertainties of

electrical power systems [40]. As it is a strenuous duty for

effective planning, there are many approaches for modeling

system uncertainty comprising probabilistic methods [41],

possibilistic methods [42], hybrid possibilistic –probabilistic

methods [43], robust optimization [44]. A comprehensive

review of the stochastic techniques which have been imple-

mented for the optimization of solar-based renewable energy

systems has been presented in [45]. Moreover, Ref. [46]

has considered the uncertainty of the renewable distributed

generators for the management of battery energy storage

employing a double deep Q-learning method. Analyzing the

interdependency of natural gas, coal, and electricity infras-

tructures considering their operation constraints and wind

power uncertainties using a robust optimization model has

been introduced in [47].

The significant contributions of this research can be sum-

marized as follows:

� Solving ORPD problem considering uncertain wind, and

PV energy resources and time-varying load.

� Applying theMonte-Carlo simulation method for coping

with many scenarios considering load, solar irradiance,

and wind speed uncertainties.

� Proposing a new application for the Rao-3 algorithm for

solving the ORPD problem with and without RES.

� Comparing the performance of the Rao-3 algorithm with

the recent techniques for solving the ORPD problems.

� A comprehensive investigation of the deterministic and

stochastic OPRD problem with compliance with all con-

straints.

� A single and multi-objective stochastic optimization

framework for the ORPD problem.

� The results show the superiority of proposed optimal

reactive power dispatch algorithms based on three stan-

dard test power systems.

The rest of this manuscript is structured as follows; the

mathematical formation of ORPD is presented in Section II.

Section III presents the mathematical equations for represent-

ing the uncertainties of load demand and RES. Section IV

presents the developed ORPD algorithm based on the RAO-3

optimizer for solving the ORPD problem. Section V presents

the main obtained results and discussion. The conclusion

drawn from this research is introduced in Section VI.

II. PROBLEM FORMULATION

In this section, the mathematical formulation of the ORPD

as an optimization problem will be presented. The objective

function F of ORPD can be generally formulated as follows:

MinF(x, u) (1)

Sub. to gk (x, u) = 0 k = 1, 2, . . . ,m (2)

hn (x, u) ≤ 0 n = 1, 2, . . . , p (3)

where, x, u represent the state and control variables vectors,

respectively. The state vector comprises slack bus real power,

load bus voltage, generators reactive power, and transmission

line apparent power flow. On the other hand, generators’

bus voltage, injected reactive power of compensator and

VOLUME 9, 2021 23265



M. H. Hassan et al.: Optimal Reactive Power Dispatch With Time-Varying Demand and Renewable Energy Uncertainty

transformers tap setting constitute the control variable vector.

The state and control variables vectors are given as:

xT = [P1,VL ,QG, ST ] (4)

uT = [VG,QC ,TP] (5)

A. OBJECTIVE FUNCTIONS

As mentioned previously, the ORPD mainly aims at finding

the optimal working point of a given power grid. In this

paper, two objectives functions are used to achieve this goal

as follows:

i. Active power loss minimization:

F1 = PLoss =
NL
∑

i=1

Gij

(

V 2
i + V 2

j − 2ViVj cos δij

)

(6)

ii. Voltage deviation minimization:

F2 = VD =
NQ
∑

i=1

|Vi − 1| (7)

where, Vi is the voltage of bus i, Gij is line i − j

conductance and δij is the voltage phase difference.

While reaching the optimal operating point of a power

system based on the previous objective functions, the

equality and inequality constraints given by (8)-(16)

must not be violated.

PMinGK ≤ PGK ≤ PMaxGK K = 1, 2, . . . ,NG (8)

QMinGK ≤ QGK ≤ QMaxGK K=1, 2, . . . ,NG (9)

VMin
GK ≤ VGK ≤VMax

GK K = 1, 2, . . . ,NG (10)

TMinn ≤ Tn ≤ TMaxn n = 1, 2, . . . ,NQ (11)

QMincn ≤ Qcn ≤ QMaxcn n = 1, 2, . . . ,NQ (12)

SLn ≤ SMinLn n = 1, 2, . . . ,NQ (13)

VMin
n ≤ Vn ≤ VMax

n K = 1, 2, . . . ,NQ (14)

PGi − PLi = Vi

Nb
∑

j=1

Vj
(

Gij cos δij+Bij sin δij
)

(15)

QGi − QLi = Vi

Nb
∑

j=1

Vj
(

Gij sin δij−Bij cos δij
)

(16)

The multi-objective functions are handled using the weighted

sum approach as given in (17):

F = Fi + k1

(

QGi − QlimGi

)2
+ k2

(

VLi − V lim
Li

)2

+ k3

(

SLi − S limLi

)2
(17)

where, k1, k2, k3 are the penalty factors, while x lim can be

determined from the following equation:

x lim =

{

xmax if x > xmax

xmin if x < xmin
(18)

However, the penalty factors usually depend on the opti-

mization problem and their values are selected by trial and

error approach [48]. The effect of the choice of these penalty

factors in the case of solving the optimal reactive power

dispatch problem has been studied in [48]. The study recom-

mended the weight factor values to be k1 = 10, k2 = 5 and

k3 = 5 [48]. Hence, these values are used in the current paper.

III. LOAD DEMAND AND RES UNCERTAINTIES

The continuous probability density function (PDF) is utilized

to incorporate the uncertainties in loads demand, wind, and

solar energy as:

A. MODELING THE SPEED WIND UNCERTAINTY

Weibull PDF can be applied for the wind speed uncertainty

modeling as [49]:

fν (ν) =
(

β

α

)

( ν

α

)(β−1)
exp

[

−
( ν

α

)β
]

0 ≤ ν < ∞ (19)

where, α, β are the Weibull PDF scaling and shaping param-

eters. Figure 1 shows the 1000 Monte-Carlo wind speed

distribution scenario utilizing Weibull PDF.

FIGURE 1. A 1000 Monte-Carlo wind speed distribution scenario utilizing
Weibull PDF (α = 9, β = 2) for the wind generator at bus 5.

As a function of wind speed, wind turbine output power

can be determined as follows [50]:

Pω (υω) =















0 for νω <νωi& νω >νωo

Pωr

(

νω − νωi

νωr − νωi

)

for (νωi ≤ νω ≤ νωr )

Pωr for (νωr ≤ νω ≤ νωo)

(20)

where, Pωr is the wind turbine rated output power

(Pωr = 3W), νωi = 3 m/s, νωo = 25 m/s and νωr = 16 m/s,

are the wind turbine cut-in, cut-out, and the rated speeds,

respectively. In this paper, the wind farm consists of 25 wind

turbines, and the total output power is 75 MW.

The probability of wind speed for each wind scenario is

calculated using (21).

τwind,k =
∫ νmaxk

νmink

fν (ν) dν (21)
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where, νmink , νmaxk denote the starting and ending points of

wind speed’s interval at k th scenario, τwind,k is the probability

of the wind speed being in scenario k .

B. SOLAR IRRADIANCE UNCERTAINTY MODELING

Formulation of the solar irradiance uncertainty can be

attained using the lognormal PDF as [51]:

fG (G) =
1

Gσs
√
2π

exp

[

−
(lnG−µs)

2

2σ 2
s

]

for G > 0 (22)

where, σs, µs are the stranded deviation and the mean

of the random variables which are selected to be equal

to 0.5 and 5.5, respectively [34].

FIGURE 2. PV unit solar irradiance scenarios (without zero irradiance).

Figure 2 shows the solar irradiance scenarios employing

the Monte-Carlo simulation. Due to sun unavailability during

half of the daytime, the initialization of zero irradiance with

50% is used. While the remaining 50% probability covers

the scenarios of solar irradiance generated using lognormal

distribution mean µs = 5.5 and standard deviation σs = 0.5.

The PV array output power as a function of irradiance can

be calculated as [52]:

Ps (G) =















Psr

(

G2

Gstd × Xc

)

for 0 < G ≤ Xc

Psr

(

G

Gstd

)

for G ≥ Xc

(23)

where, Gstd is the standard solar irradiance which equals

1000W/m2 while,Xc denotes a certain irradiance point which

is set as 120 W/m2 [34]. Psr , is the PV array output power

which equals 50 MW in this paper.

Calculating the solar irradiance probability could be

attained from [53]:

τsolar,m =
∫ Gmaxm

Gminm

fG (G) dG (24)

C. UNCERTAINTY MODELING OF LOAD DEMAND

The normal distribution PDF can be used to represent load

modeling uncertainty as [54]:

fd (Pd ) =
1

σd
√
2π

exp

[

−
(Pd − µd )

2

2σ 2
d

]

(25)

where,µd and σd are the mean and standard deviation values,

respectively. While Pd denotes the probability density of load

normal distribution. Load demand Monte- Carlo scenarios

created using normal distribution PDF (sample size 1000,

µd = 70, σd = 10) as shown in Figure 3.

FIGURE 3. Monte-Carlo simulation of demand scenarios.

Load demand probability and expected load scenario can

be attained using the following equations [49]:

τd,i =
∫ Pmaxd,i

Pmind,i

1

σd
√
2π

exp

[

−
(Pd − µd )

2

2σ 2
d

]

dPd (26)

Pd,i =
1

τd,i

∫ Pmaxd,i

Pmind,i

Pd

σd
√
2π

exp

[

−
(Pd − µd )

2

2σ 2
d

]

dPd (27)

where, Pmind,i ,P
max
d,i represent the border limits of interval i.

D. LOAD GENERATION MODEL

Combining load scenarios, wind speed, and irradiation model

probabilities can be attained bymultiplying their probabilities

in (21), (24), and (26) as:

τs = τd,i × τsolar,m × τwind,k (28)

E. BACKWARD REDUCTION ALGORITHM

Using the backward reduction algorithm (BRA) in scenario

reduction steps are illustrated in [34]. Table 1 lists the des-

ignated demonstrative scenarios with their corresponding

probabilities. Each row in this table provides data for each

scenario including the percentage of loading, wind speed,

solar irradiance, wind power, PV power, and the probability

for the scenario.
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TABLE 1. Designated scenarios and corresponding parameters for studied scenarios.

IV. OVERVIEW OF RAO-3

Rao is a recently developed optimization algorithm [55].

There are three proposed Rao algorithms namely Rao-1,

Rao-2, and Rao-3. It’s selected for use in this research as

a population-based algorithm due to its simplicity, ease of

implementation in optimization applications.Moreover, it has

fewer control parameters as it has not a metaphorical expla-

nation. The swarm size is the only control parameter that

needs adjustment once the stop condition is attained. Like

iterative optimization algorithms, Rao algorithms explore

the search space to get iteration finest solution, iteration

worst solution, and arbitrary exchanges among the swarm.

In [55], the performance Rao method has been validated

using 23 benchmark functions, 25 unconstrained benchmark

functions and 2 standard constrained optimization problems.

The experimental results have been shown that the RAO

algorithm can guarantee the performance of explorations

while achieving superior exploitations, thus maintaining an

outstanding balance between exploitations and explorations,

which reflects the superior performance of the algorithm in a

statistical sense compared with other algorithms. Roa method

has been used for solving several engineering optimization

problems [56]–[61].

The three algorithms of Rao are similar in their steps but

they only differ in the movement equation as illustrated in the

following steps and depicted in Figure 4 [60]:

1. Express population size Npop, the dimension of opti-

mization variables, dim, Minimum and Maximum lim-

its of variables, Varmin,Varmax and the predetermined

stop criteria.

FIGURE 4. Flowchart for implementation of Rao-3 algorithm.

2. Random initialization of population and corresponding

fitness function evaluation.

3. Extract the best and worst solutions from the popula-

tions based on their objective function values.
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4. Update the new solution for all population p =
1, 2, . . . ,Npop, in the current k th iteration which

depends on the selected Rao- algorithm as follows:

a) Rao-1 Algorithm, the following equation is used

to find the updated solution x ′:

x ′
m,p,k = xm,p,k + r1,m,k

(

xm,q,k − xm,w,k

)

(29)

where, xm,p,k ism
th variable value for the pth solu-

tion during the ith iteration. The best candidate

solution is denoted by xm,q,k while xm,w,k is the

value of the worst solution.

b) The Rao-2 algorithm, the following equation is

used to obtain the updated solution:

x ′
m,p,k = xm,p,k + r1,m,k

(

xm,q,k−xm,w,k

)

+r2,m,k

×
(∣

∣xm,p,k or xm,d,k

∣

∣−
∣

∣xm,d,k or xm,p,k

∣

∣

)

(30)

where r1,m,k , r2,m,k are random numbers in the

range of [0, 1] for the mth variable value in ith

iteration. The additional term in (30) represents

the random interaction through the population.

c) Rao-3 algorithm, the following equation is used

to obtain the updated solution:

x ′
m,p,k = xm,p,k + r1,m,k

(

xm,q,k −
∣

∣xm,w,k

∣

∣

)

+ r2,m,k

(∣

∣xm,p,k or xm,d,k

∣

∣

−
(

xm,d,k or xm,p,k

))

(31)

5. In this phase, the cost function is evaluated according to

the updated population. The objective function values

are sorted to get the best solution to be compared with

the old solution. If the new solution is better than its old

value, then the old value will be updated by the new one.

6. Finally, the termination criterion will be investigated.

If this condition isn’t attained, go to Step 3 else print

the optimal solution of the optimization problem.

V. SIMULATION RESULTS AND DISCUSSION

In the present work, the standard configurations of the IEEE

30-bus, IEEE 57-bus systems, and IEEE 118-bus are consid-

ered for the implementation of selected cases of deterministic

ORPD. Moreover, comparing the results of those cases using

the proposed Rao-3 algorithm with recent results concluded.

All generators in standard configurations are thermal gener-

ators. While a modification to the IEEE 30- bus system by

replacing the thermal generator at bus 5 with wind power

generating source and the thermal generator at bus 8 with

a photovoltaic (PV) power unit is considered. Optimal loca-

tions of the wind farm and PV power generation depend

on several factors such as wind speed and solar radiation,

respectively [58]. In this paper, the locations of wind and PV

units are selected as in [34], with the aim of comparing the

obtained results with those mentioned in [34].

This will lead to executing stochastic ORPD including a

wind generator and a PV unit. Figure 5 shows a diagram of

the modified system.

FIGURE 5. The customized IEEE 30-bus system with wind power
generator and PV power unit.

This section investigates the capability of the Rao-3 opti-

mization algorithm to solve the ORPD problem with and

without considering the uncertainty of renewable energy

resources [62]. IEEE 30-bus, 57-bus, and 118-bus are con-

sidered as test systems. Two recent optimization techniques,

Artificial electric field algorithm (AEFA) [63], and artificial

Jellyfish Search (JS) [64] algorithms as well as other well-

known algorithms are used to validate the proposed algorithm

to solve the ORPD problems. Table.11 in the appendix sum-

marizes the details of studied cases; configuration, variables

number, and limits. Generators data for the IEEE 30-bus and

IEEE 57-bus systems are given in the Appendix, Table 9, and

Table 10. The limit setting for control variables of the IEEE

118-bus system is presented in Table 12 in the Appendix.

The proposed Rao based ORPD is executed via MATLAB

2016a platform using an Intel R© core TM i5-7200U CPU,

2.50 GHz, 8 GB RAM Laptop. Test system-1: IEEE 30-bus

test system (Base-case).

A. TEST SYSTEM-1 (BASE CASE): IEEE 30-BUS SYSTEM

Case (1) will handle the minimization of real power loss

(Ploss) while Case (2) will investigate the minimization of

cumulative voltage deviation (VD) of PQ buses for the

standard configuration of the IEEE 30-bus system. These

two cases consider more realistic mixed-integer optimization

problems where the capacitor banks and transformer taps are

treated as discrete variables. The capacitor can be switched

in discrete steps of 0.2 MVAr and transformer tap settings

can be changed in steps of 0.02 p.u. from 0.90 to1.10 p.u.
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TABLE 2. Results of studied cases for 30-bus system.

The optimization technique performs a rounding operation in

order to handle these discrete variables [34].

As the generators’ active power settings (except the swing

generator) are necessary for the ORPD, the values of the

active power are carefully selected around the generators’

specified limits. The values of the active power of generators

are listed in Table 9 in the Appendix. Besides cases 1 and 2,

the other two cases Case (1a) and Case (2a) are investigated

with the same aim of minimizing Ploss and the total VD,

respectively.

These cases consider the setting values of the active power

of generators which are presented in [65], and also listed

in Table 9.

Table 2 provides all the control variables’ settings and their

permissible limits to study the objective function of 4 cases

(i.e. Case (1), Case (2), Case (1a), and Case (2a)) related to the

IEEE 30-bus system. The negative values of reactive power

imply the absorption of reactive power by the generator.

Figure 6 shows the voltage profile of PQ buses for the four

study cases.

In Case (1) and Case (1a), voltage values of a few PQ buses

increased and became close to the maximum limit to achieve

minimum power loss. While in Case (2) and Case (2a) of

reducing the cumulative VD shall not drive to an increase of

voltage because the main objective in these cases is to keep

the buses voltage nearby 1.0 p.u.
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FIGURE 6. PQ buses Voltage profiles for the investigated cases of IEEE
30-bus test system.

FIGURE 7. The convergence characteristics of the proposed Rao-3, AEFA,
and JS algorithms for studied cases of power losses for the IEEE 30-bus
system (a) Case 1 (b) Case 1a.

The convergence characteristics of the Rao-3, AEFA, and

JS algorithms for the Case (1) & Case (1a), and Case (2) &

Case (2a) are shown in Figure 7 and Figure 8, respectively.

FIGURE 8. The convergence characteristics of the proposed Rao-3, AEFA,
and JS algorithms for studied cases of voltage deviations minimization for
IEEE 30-bus system (a) Case 2 (b) Case 2a.

In Figures 7 and 8, the focus has been made on the proposed

Rao-3 and JS algorithms, because the results of AEFA is

the worst in these cases. The least power losses obtained

by the proposed algorithm in Cases (1) and Case (1a) are

4.4124 MW and 4.8612 MW, respectively, although the opti-

mal value of VD in Case (2) and Case (2a) are 0.08830 p.u.

and 0.0873 p.u, respectively.

Table 3 shows a comparison of the results obtained by the

proposed algorithm in the current study with certain previ-

ously published ORPD results. There are few references in

the table which specifically address the active power settings

of the specific generators. All these references are presumed

to have tracked the given data in [65].

The proposed algorithm achieves the optimum solution in

Case 1 (4.4124 MW) compared with the two recent AEFA

and JS algorithms and the other published algorithms as

shown in Table 3. The detailed analyses of infeasible solu-

tions using some algorithms in Table 3 are mentioned in [34].

In a comparison of Case (2) and Case (2a), the results of

previous papers using several algorithms reached relatively
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TABLE 3. Results comparison of investigated cases for IEEE 30-bus system.

lower values of VD, but no publication listed here checked the

actual reactive power generation status or the PQ-bus voltage

profile [34].

B. TEST SYSTEM-2 (BASE CASE): IEEE 57-BUS SYSTEM

Minimizing Ploss and cumulative VD for the IEEE 57-bus

system have been studied in Case (3) andCase (4). The setting

values of the generators’ active power for the IEEE 57-bus

system have been listed in Table 10.

In Case (3) and Case (4), the active power of thermal units’

isn’t adjusted to zero. Three thermal units are selected with

zero active power in Case (3a) and (4a). Hence, they are either

absorbing or producing reactive power.

Like the IEEE 30-bus system, Table 4 provides the set-

tings of all control variables and their permissible limits to

study the objective function of the four cases (i.e. Case (3),

Case (4), Case (3a), and Case (4a)) related to the IEEE 57-bus

system. Figure 9 shows the voltage profile of PQ buses for

the four cases of the IEEE 57-bus system. The convergence

characteristics of the Rao-3, AEFA, and JS algorithms are

displayed in Figure 10 for Case (3) and Case (3a) while

Figure 11 shows the convergence characteristics of the pro-

posed Rao-3, AEFA, and JS for Case (4) and Case (4a).

Because the results of the JS technique are the nearest to those

obtained by the Rao-3, the focus in the convergence curves

has been made on both of them. All convergence curves of

Figures 10 and 11 prove that the Rao-3 gives the best solutions

for the ORPD problem.

Table. 5 presents the results IEEE of the 57-bus sys-

tem obtained by the developed algorithm compared with

those obtained by other well-known optimization techniques.

The developed algorithm achieves the optimal solution in

Case (3) with 18.1494 MW compared with the solution

obtained by the SHADE-EC algorithm (18.4000MW).While

the SHADE-EC and the Rao-3 achieve the best solutions

in Case (3a) among the results of all algorithms listed

in Table.7, these solutions are 23.3031MWand 23.3040MW,

respectively. The Rao-3 algorithm achieves also the opti-

mal solution (0.6160 p.u.) in Case (4) compared with the

SHADE-EC algorithm (0.62632 p.u.) while the SHADE-EC

and Rao-3 achieve the best result in Case (3a) among the
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TABLE 4. Numerical results of studied cases for IEEE57-bus system.

results of all algorithms by 0.59673 p.u.and 0.5993 p.u.,

respectively.

C. TEST SYSTEM-3: MODIFIED IEEE 30-BUS TEST SYSTEM

In this subsection, the modified IEEE 30-bus system is stud-

ied. In the modified test system, the thermal generator at

bus #5 is substituted by a wind turbine generator while the

thermal generator at bus #8 is replaced with a PV unit. The

load demand, wind turbine generated power, and PV power

is variable based on diverse scenarios as explained previ-

ously. Shunt reactive power compensators and transformer

tapping settings are discrete steps as in Case (1) and Case (2).

Table 9 in the appendix provides the active power thermal

generator settings values (except swing generator). Hence,

the swing bus must be able for achieving the balance of

real power whenever there is a shortage in the supply from

these renewable energy sources. The ultimate value of the

active output power of the swing generator is considered

high enough (200 MW) in this research which satisfies load

needs even if the active power output from the RES is

zero.

The range of the wind power generator and the PV unit

VAR is assumed almost in the range of [−0.4, 0.5] p.u.

within their range of real output power. An explanation for

this assumption is given in [46]. Table 9 in the appendix

lists these values of reactive power. The two objectives

(Ploss & VD) of the ORPD problem are minimized as

single objectives, and then, jointly, as a multi-objective

function.

D. SINGLE OBJECTIVE STOCHASTIC ORPD

The stochastic ORPD with uncertain wind power has been

proposed in [49], [74] where the detailed information about

stochastic ORPD has been presented in [34]. The minimiza-

tion of expected power loss (EPL) in Case (5) needs an

optimization algorithm to run 25 times for 25 scenarios.
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FIGURE 9. Voltage profiles of PQ buses for the studied cases of 57-bus
system.

FIGURE 10. The convergence curves of the proposed Rao-3, AEFA, and JS
algorithms for studied cases of Ploss for 57-bus system (a) Case 3
(b) Case 3a.

For each scenario, Table 6 provides the minimized value

of power loss (Ploss). Defining the scenario probability as

1SC and minimized power loss is Ploss, the estimated power

FIGURE 11. The convergence curves of the proposed Rao-3, AEFA, and JS
algorithms for studied cases of VD for IEEE 57-bus system (a) Case (4)
(b) Case (4a).

FIGURE 12. Optimum values of PV bus voltages for studied scenarios
in Case 5.

loss (EPL) is evaluated for all scenarios as follows:

EPL =
Nsc
∑

sc=1

1scXPloss,sc (32)

where, NSC denotes the total number of evaluated scenarios.

Similarly, VD for every scenario is minimized in Case 6.
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FIGURE 13. Optimal values of PV bus voltages for studied scenarios
in Case 6.

TABLE 5. Results comparison of evaluated cases for the IEEE 57-bus
system.

Table 7 presents the optimized values of VDsc for all scenar-

ios. The expected voltage deviation (EVD) over all scenarios

is expressed as:

EVD =
Nsc
∑

sc=1

1scXVDsc (33)

The value of EPL obtained for Case (5) is 2.4998 MW and

EVD for Case (6) is 0.06314 p.u. In Table 6, the power loss is

the lowest value when system loading is at its minimum level

(scenario 9, loading = 42.659%). Minimum loading implies

the lowest current in the network and hence low power loss.

FIGURE 14. Voltage profiles of Load bus for the extreme scenarios in
Cases 5 and 6.

FIGURE 15. Upper and lower reactive power values of the generators for
all scenarios in Case 5.

FIGURE 16. Reactive power values of the generators for all scenarios
of Case 5.

In the contrast, the highest value of the power loss is achieved

when the system loading is at its maximum level with the

absence of wind power (scenario 24, loading = 98.525%,

wind power = 0 MW). Because of the lack of wind power,

the swing generator has to supply surplus power to relatively

faraway loads.
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TABLE 6. Single-objective ORPD evaluated cases with time-varying demand and uncertain renewable power.

TABLE 7. Multi-objective ORPD evaluated cases with time-varying
demand and uncertain renewable power.

The EVD results can also be examined in the same

approach. With the lowest loading level (scenario 9), the bus

voltage levels are maintained all over the network near to

FIGURE 17. Optimal VAR compensator settings for all scenarios of Case 5.

the desired 1.0 p.u. Due to the low current in scenario 9,

a minimum aggregate VD is attained in this scenario. On the

contrary, when network loading is maximum and the unavail-

ability of wind turbine power in scenario 24, this leads to the

highest aggregate VD of the system.

Figure 12 and Figure 13 show the optimal values of the

control variables for all scenarios in Case 5 and Case 6,

respectively. Generally, the values of generator buses voltage

in Case 5 are higher than those in Case 6. It is noted that

bus#11 has the highest value of voltage setting, especially in

Case (6) because it is directly linked to the adjacent load buses

without any parallel reactive power compensators.

Figure 14 displays the PQ buses voltage profiles of

scenario 9 and scenario 24 for both Case (5) and Case (6).
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TABLE 8. Single-objective ORPD evaluated cases with time-varying demand and uncertain renewable power.
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TABLE 8. (Continued.) Single-objective ORPD evaluated cases with time-varying demand and uncertain renewable power.

TABLE 9. The IEEE 30-bus system generators data.

FIGURE 18. Upper and lower reactive power values of the generators for
all scenarios in Case 6.

Upper and lower ranges of reactive power contributions of

all generators, actual ultimate and lowest values of reactive

power across all scenarios for Case (5) and Case (6), respec-

tively are displayed in Figure 15, and Figure 18. The reactive

power values of the generators for all scenarios in Case (5)

and Case (6) are shown in Figure 16, and Figure 19, respec-

tively. Also, the optimal VAR compensator settings for all

scenarios in Case (5) and Case (6) are displayed in Figure 17,

and Figure 20, respectively.

E. MULTI-OBJECTIVE STOCHASTIC ORPD

In this subsection, both Ploss and VD minimization will be

achieved as a multi-objective function (MO-ORPD). The

weighted sum approach [27], [38], [75], is used to convert two

objectives ormore to a single objective, where each optimized

function is multiplied by weight factor before summation of

FIGURE 19. Reactive power values of the generators for all scenarios of
Case 6.

the cost functions [75], [76]. The cost function forMO-ORPD

can be formulated as:

LVDobj = λlPloss + λvdVD (34)

where, Ploss and VD are evaluated using (2) and (3), respec-

tively. The weight factor values are λl = 1 and λvd = 10.

Case (7) with the above-declared cost functions is executed

on themodified 30-bus system. The conditions of this case are

the same as in Cases (5) and (6). Table 7 lists the objective

values (LVDobj), scenario-based losses (Ploss,), and voltage

deviations (VDsc). In this case, EPL and EVD values are

higher than those values in Cases (5) and (6). The main
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TABLE 10. The IEEE 57-bus system generators data.

FIGURE 20. Optimal VAR compensator settings for all scenarios of Case 6.

FIGURE 21. Reactive power values of the generators for all scenarios of
Case 7.

FIGURE 22. Optimal VAR compensator settings for all scenarios of Case 7.

reason is that the multi-objective optimization tries to achieve

the best compromise solution of the constituting cost func-

tions. Figure 21 displays the reactive power values of the

FIGURE 23. The convergence curves of Rao-3, AEFA, and JS algorithms for
the studied case of Ploss for the 118-bus system (Case 8).

FIGURE 24. Values of the Ploss during 20 runs for the 118-bus
system (Case 8).

generators for all scenarios of Case (7) while the optimal VAR

compensator settings for all scenarios in Case (7) are shown

in Figure 22.

F. TEST SYSTEM-4: IEEE 118-BUS TEST SYSTEM

The IEEE 118-bus test system consists of 54 generators, 9 tap

changing transformers, 12 capacitor devices, and 2 reactor

devices. The total system demand is 4242 MW [62]. Table 6

presents the optimal settings of control variables correspond-

ing to the best value of real power losses. In this table,

the solutions obtained by Rao-3 are better than those obtained

by other metaheuristics algorithms. Figure 9 depicts the

convergence characteristics of the proposed Rao-3, JS, and

AEFA algorithms. Figure 5 displays the values of the power
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FIGURE 25. Voltage profiles of Load buses for the 118-bus system (Case 8).

TABLE 11. Designated scenarios and corresponding parameters for the scenarios.

loss during 20 runs for the 118-bus system. Figure 9 shows

the voltage profile of PQ buses of the IEEE 118-bus system

obtained by the proposed Rao-3.

VI. CONCLUSION

In this research, a new application for the Rao-3 algorithm

has been proposed to solve the non-linear optimal reactive

power dispatch problem. The integration of wind and solar

energy generation systems as the most applied technologies

for RES has been considered. In addition, the time-varying

load and uncertainties of wind and solar energy resources

have been investigated. Deterministic ORPD solutions for

two standard systems (IEEE 30-bus and 57-bus) with only

thermal generators have been performed in the first section

of this paper. Afterward, stochastic ORPD solution in case

of considering time-varying load, the uncertainty of wind

and solar PV units have been considered by a scenario-

based approach for the adapting 30-bus system. Various sce-

narios were created by Monte Carlo simulations. EP, and

TABLE 12. Limit setting for control variables of IEEE 118-bus system.

EVD values have been calculated with the optimization of

network parameters under several scenarios of load demands,

wind power, and PV power. Finally, Deterministic ORPD
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solutions for the standard IEEE 118-bus with only thermal

generators have been performed. The results provided the

effectiveness and superiority of the proposed single-objective

and multi-objective algorithms in solving the deterministic

and stochastic ORPD problem compared with two recent

algorithms (AEFA and JS) and other optimization algorithms

used for the same problem. They readily lead the search

process towards the feasible zone and subsequently ensure

quick convergence to the global optimal solution.

APPENDIX

See Tables 9–12.
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