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Abstract: This paper presents a comparative study for 
three evolutionary algorithms (EAs) to the Optimal Reactive 
Power Planning (ORPP) problem: evolutionary programming, 
evolutionary strategy, and genetic algorithm. The ORPP 
problem is decomposed into P- and Q-optimization modules, 
and each module is optimized by the EAs in an iterative 
manner to obtain the global solution. The EA methods for the 
ORPP problem are evaluated against the IEEE 30-bus system 
as a common testbed, and the results are compared against 
each other and with those of linear programming. 
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I. INTRODUCTION 

In general, the problem of optimal reactive power 
planning (ORPP) can be defined as to determine the amount 
and location of shunt reactive power compensation devices 
needed for minimum cost while keeping an adequate voltage 
profile. The ORPP is one of the most challenging problems 
since both objective functions, the operation cost and the 
investment cost of new reactive power sources, should be 
minimized simultaneously. The ORPP is a large-scale 
nonlinear optimization problem with a large number of 
variables and uncertain parameters. Various mathematical 
optimization algorithms have been developed for the ORPP, 
which in most cases, use nonlinear [l], linear [2], or mixed 
integer programming [3], and decomposition methods [4-7]. 
However, these conventional techniques are known to 
converge to a local optimal solution rather than the global 
one for problems sush as ORPP which have many local 
minima. 
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Recently, evolutionary algorithms (EAs) [8-151 have been 
used for optimization; in particular both the genetic 
algorithm and evo1ution;q programming have been used in 
the ORPP problem. The EA is a powerful optimization 
technique analogous to the natural selection process in 
genetics. Theoretically, this technique converges to the 
global optimum solution with probability one. It is useful 
especially when other optimization methods fail in finding 
the optimal solution. Evolutionary algorithm is an 
inherently parallel process. Recent advances in distributed 
processing architectures could result in dramatically reduced 
execution times, and it is now possible to do a large amount 
of computation in order to obtain the global instead of a local 
optimal solution. 

This paper investigates the applicability of the following 
three different EAs in the ORPP problem: evolutionary 
programming (EP), evolutionary strategy (ES), and genetic 
algorithm (GA). Rather than the usual approach of loss 
minimization Ell], the fuel cost minimization approach [4- 
7,101 is adopted as a direct measure of operation cost since 
the loss minimization does not guarantee the optimal 
operation with minimum fuel. The ORPP problem is then 
decomposed into the real power (P) and the reactive power 
(Q) optimization problem. The P-optimization is to 
minimize the operation cost by adjusting real power 
generation; while the ()-optimization is to adjust reactive 
power generation, transformer tap-settings, and the amount 
of Var source investment. The EA methods are evaluated 
against the IEEE 30-bus system [4-71 as a common testbed 
for comparison with each other and with linear 
programming. 

11. EVOLUT[ONARY ALGORITHMS 

The EAs, including Evolutionary Programming (EP), 
Evolutionary Strategy (lES), and Genetic Algorithm (GA), 
are artificial intelligence: methods for optimization based on 
the mechanics of natiiral selection, such as mutation, 
recombination, reproduction, selection, etc. Mutation 
randomly perturbs a candidate solution; recombination 
randomly mixes their parts to form a novel solution; 
reproduction replicates the most successful solutions found 
in a population: whereas selection purges poor solutions 
from a population. Starting from an initial generation of 
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candidate solutions, this process produces advanced 
generations with candidates that are successively better 
suited to their environment. 

These methods share many similarities. The EP is 
introduced first, and followed by ES and GA. 

A. Evolutionary Programming [l 11 

The initial population of control 
variables is selected randomly from the set of uniformly 
distributed control variables ranging over their upper and 
lower limits. The fitness score$ is obtained according to the 
objective function and the environment. 

The maximum fitness fma, minimum 
fitness fmin, the sum of fitness zf , and average fitness f& of 
this generation are calculated. 

Each selected parent, for example P,, is 
mutated and added to its population following the rule: 

1) Initialization: 

2) Statistics: 

3) Mutation: 

e+,,j =e,j+N(O,P (Fj-zj)-), A j = l , 2  ,..., n, (1) 
f" 

where n is the number of decision variables in an individual, 
Pi,j denotes the j" element of the i" individual; N ( p , o Z )  

where5 is the fitness of the randomly selected r'h individual, 
and the J;  is the fitness of the i" individual; and U, is 
randomly selected from a uniformly distributed set, U(0,l). 
When all 2m individuals, get their competition weights, they 
will be ranked in a descending order according to their 
corresponding value W,. The first m individuals are selected 
along with their corresponding fitnessJ to be the bases for 
the next generation. The maximum, minimum and the 
average fitness and the sum of fitness of current generation 
are then calculated in the statistics. 

5) Convergence test: If the convergence condition is not 
met, the mutation and the competition processes will run 
again. The maximum generation number can be used for 
convergence condition. Other criteria, such as the ratio of 
the average and the maximum fitness of the population is 
computed and generations are repeated until 

{fa"g / f m ) > S  (4) 

where 6 should be very close to 1, which represents the 
degree of satisfaction. If the convergence has reached a 
given accuracy, an optimal solution has been found for an 
optimization problem. 

represents a Gaussian random variable with mean p and B. Evolutionary Strategy [9,12] 
variance 0'; fmm is the maximum fitness of the old 
generation which is obtained in statistics; Tj and g j  are, 
respectively, maximum and minimum limits of the j" 
element; and P is the mutation scale, O< p 2 1, that could be 
adaptively decreased during generations. 

If any mutated value exceeds its limit, it will be giv'en the 
limit value. The mutation process (1) allows an individual 
with larger fitness to produce more offspring for the next 
generation [ 111. 

Several individuals (k) which have the 
best fitness are kept as the parents for the next generation. 
Other individuals in the combined population of size (2m - k)  
have to compete with each other to get their chances for the 
next generation. A weight value W, of the i" individual is 
calculated by the following competition: 

4) Competition: 

N 

t=l 
lq = CY,t , 

where N is the competition number generated randomly; W,,t 
is either 0 for loss or 1 for win as the i" individual competes 
with a randomly selected (Yth) individual in the combined 
population. The value of is given in the following 
equation: 

fr 1 if U, <--- 

0 otherwise, 
f, +h (3 1 Y,t = 

The evolutionary strategy is very similar to the 
evolutionary programming, and the difference is as follows: 

In the mutation process, each selected parent, for 
example P,, is mutated and added to its population following 
the rule, 

P,+,,j =e., +N(O,P Vdev) ,  j = L 2 , . - - , n ,  (5 )  

where n is the number of decision variables, v,, is fxed, 
and its value depends on the size of decision variables. 

In the competition process, the fitness of individuals of 
population size 2m are sorted in a descending order. The 
first m individuals are kept as the parents for the next 
mutation process. 

C. Genetic Algorithm [8,9,10-151 

Genetic algorithm (GA) emphasizes models of DNA 
selection as observed in nature, such as crossover and 
mutation, and are applied to abstracted chromosomes. This 
will be easily realized by a string representation, which costs 
additional encoding and decoding time. This is contrast in to 
ES and EP. which emphasize mutational transformations 
that maintain behavioral linkage between each parent and its 
offspring. The GA used in this paper is very similar to the 
algorithm that can be found in the standard literature on the 
topic [8,9,10-151, also known as the simple genetic 
algorithm. We use the three-operator GA with only minor 
deviations from the original. 
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used in the earlier generations and then switched to tail-tail 
crossover in the later genlerations for fine tuning. 

5) Mutation: The finatl genetic operator in the algorithm 
is mutation. Mutation is performed sparingly, typically after 
every 100-1000 bit transfers from crossover, and it involves 
selecting a string at random as well as a bit position at 
random and changing it from a 1 to a 0 or vice-versa. It is 
used to escape from a lclcal minimum. After mutation, the 
new generation is complete and the procedure begins again 
with thefitness evaluation of the population. 

1) Initial population generation: In this scheme, an 
initial population of binary strings is created randomly. 
Each of these strings represents one feasible solution to the 
search problem, i.e., a point in the search space or a domain 
satisfying constraints. 

2) Fitness evaluation: Next the solution strings are 
converted into their decimal equivalents and each candidate 
solution is tested in its environment. The fitness of each 
candidate is evaluated through some appropriate measure, 
such as the inverse of the cost function: 

f = l l ( a + C ) ,  (6) 

where C is the cost function to be minimized and a is the 
fitness function parameter. 

The algorithm is driven towards maximizing this fitness 
measure. After the fitness of the entire population has been 
determined, it must be determined whether or not the 
termination criterion has been satisfied. This criterion can 
be any number of things. One possibility is to stop the 
algorithm at some finite number of generations and 
designate the result as the best fit from the population. 
Another possibility is to test if the average fitness of the 
population exceeds some fraction of the best fit in the 
population. If the criterion is not satisfied then we continue 
with the three genetic operations of reproduction, crossover, 
and mutation. 

3) Selection and reproduction: Fitness-proportionate 
reproduction is effected through the simulated spin of a 
weighted roulette wheel. The roulette wheel is biased with 
the fitness of each of the solution candidates. The wheel is 
spun N times where N is the number of strings in the 
population. This operation yields a new population of 
strings that reflect the fitness of the previous generation’s fit 
candidates. 

4) Crossover: The next operation, crossover, is performed 
on two strings at a time that are selected from the population 
at random. Crossover involves choosing a random position 
in the two strings and swapping the bits that occur after this 
position. In one generation the crossover operation is 
performed on a specified percentage of the population. 
Crossover can occur at a single position (single crossover), 
or at number of different positions (multiple crossover). 
Crossover can also be performed in two different means: 
Tail-tail and head-tail crossovers [10,13]. The tail-tail 
crossover is the usual crossover, where the tail ends of the 
two strings are swapped. In the head-tail crossover, on the 
other hand, the tail end of one string becomes the head of 
another string and vice-versa. The tail-tail crossover tends 
U, change the less significant bits; while the head-tail 
crossover gives more chance of changes by changing the 
more significant bits. The two crossover methods can be 
changed during iterations: the head-tail crossover can be 

III. PROBL,EM FORMULATION 

The optimal reactive ]power planning (ORPP) problem is 
to determine the optimal investment of Var sources over a 
planning horizon [5 ] .  The cost function to be minimized is 
the sum of the operation cost and the investment cost. The 
long-term ORPP is oftm decomposed into a three-level 
hierarchical optimizatioin problem using the maximum 
principle, the Bender’s decomposition, and the P-Q 
decomposition methods [7]. To highlight the use of EAs 
however, this paper considers a short-term ORPP, where the 
investment is to be performed only once [10,11]. 

A. Objective Functions 

The operation cost is often assumed to have single 
quadratic cost functions. In reality, the cost function has 
discontinuities corresponding to change of fuels [ 121. 
Therefore, it is more iippropriate to represent the cost 
function with piecewise quadratic functions. When using 
piecewise quadratic cost functions, the operation cost is 
defined as follows: 

c, = xci ( 4 )  
ielr‘g 

a, +bilP, +ci11:2 

ai2 +biz< +ci2pi2 

i f& S e  <e1 
ife, I< <e2 I 

(7) 

... \ ... ci = 

... I a, +bimP, +ci,,,pi2 if 4,,-1 I P ,  <Pi, 
where 

N ,  : the set of generators, 
ci (4 >: cost of the if” 1, Tenerator, 
a,,b,,cij: cost coefficients of the if* generator at 

P, : the generated power of the if” generator [MWI, 

- P i , P i :  minimum and maximum real power generation 

thej‘” power level, 

of the if” generator. 
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Since EAs use the objective function directly, rather than 
its derivatives, more realistic cost functions can be used for 
the ORPP problem. Most papers consider the transmission 
loss in the objective function. However, the minimization of 
loss does not guarantee the minimization of the operation 
cost unless all units have the same efficiency. Therefore the 
fuel cost has been used for both real and reactive power 
dispatch [4-71. 

The investment cost is simply the installation cost of the 
Var sources: 

where Nc is the set of compensators, C’ and e,, are, 
respectively, the fured and the unit costs for investment, and 
Qci is the amount of Var source invesment in discrete 
steps. This cost function assumes the capacitive 
compensators; however, the reactive compensator can also be 
included by replacing a ,  with Q . 

I 

- C l  

B. P-Q Decomposition 

the Q-optimization module, and the P-optimization module. 

minimize the sum of the operation cost: 

The ORPP problem is decomposed into two subproblems, 

I )  The P-module: In this module, the objective is to 

c p =  C d i C b ,  (9) 
k N 1  

where Cb is the operation cost (6) for load level 1, dl is the 
duration of load level I, and Nl is the set of load levels. The 
minimization is with respect to the real power generations Pg 
for each load level subject to the real and reactive power 
balance of the power system which can be solved by calling 
the load flow program, and the following inequality 
constraints: 

-gt P . < ~ . < P g i  - gr - 

where P, and 0, are generator real and reactive powers, 
respectively, T are transformer tap-settings, V are bus 
voltages, and Qc are the reactive power output of 
compensators. 

The real power generations Pg are the optimization or 
decision variables for the P-module, which are self- 
constrained. Since the generator bus voltages, transformer 
tap-settings and capacitor investments are the optimization 

variables in the Q-module, they are fixed in the P-module, 
and thus the constraints are automatically satisfied. The load 
bus voltages and the generator reactive powers are state 
variables, which can be constrained by augmenting them as 
the quadratic penalty terms to the objective function. The P- 
optimization module is therefore changed to minimize the 
following generalized objective function: 

where Nl is the set of load buses and hVi and 3Lgi are the 
penalty weights and Sat(x) is the saturation function defined 
bY 

if x < x  

i f_x<x<Z (12) 
i f X > ,  

2) The Q-module: In this module, the objective function 
is to minimize the sum of the operation cost and the 
investment cost, 

CQ = c p  +CI,  (13) 

with respect to transformer tap-settings T,  generator bus 
voltages and the Var source investment ; subject to the 
real and reactive power balance equations which can be 
solved by calling the load flow program, and the inequality 
constraints (10). 

The transformer tap-settings, generator bus voltages and 
the Var source investment are the optimization or decision 
variables for the Q-module, which are self-constrained. 
Since the real power generations are obtained from the last 
P-module, they should satisfy the constraint. The voltages of 
load buses and the reactive powers of generators are state 
variables, which may be out of limits, and penalties are also 
added to the objective function. The formulation of the 
penalty parts are the same as the procedure in the P-module. 
Then the Q-module is to minimize the generalized cost 
function as follows: 

7 1  F + z hVi (vi - sat(% >12 

+ . C k g l  <Qgl - S 4 Q g  ))’ }- 

ieNl 
(14) 

Z E N ~  

The P-Q decomposition is now complete. The 
optimization variables for the P-optimization subproblem are 
generator real power outputs, and those for the Q- 
optimization subproblem are generator voltage magnitudes, 
Var source investments, and transformer tap-settings. The 



security constraints are the operating limits of these control 
variables, line flows, and the state variables. 

The P- and Q- modules were solved sequentially to obtain 
local optimal values of the optimization variables for each 
module. The computation diagram of the ORPP problem is 
shown in Fig. 1. 

E3 Ep EP+ES GA 

Fig. 1. Flow chart for ORPP by using EAs. 

mutation rate 0.01 
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- 

IV. SIMULATION RESULTS 

I P-module using EAs 

A comparative study is performed for the three 
evolutionary algorithms (EAs) and the linear programming 
(LP) by solving the optimal reactive power planning (ORPP) 
problem for the IEEE 30-bus system as a testbed [4-71. 
String representations and simulation parameters for EAs 
are discussed, and the modification of fuel costs with 
piecewise quadratic cost functions and the simulation results 
and the convergence speeds of EAs are given. 

1) String representation is an important factor in solving 
the ORPP problem using the GA. In order to accommodate 
different decision variables, Le., the investment or operation 
variables, the following representation method is used. 

A string consists of substrings; the number of substrings 
is equal to the number of decision or control variables. In 
the P-optimization problem, it is the total number of 
generators and each substring represents the generator real 
power output. In the Q-optimization problem, on the other 
hand, the decision variables are generator voltage 
magnitudes, the maximum Var limits of compensators, and 
transformer tap settings. The simulation parameters for the 
three EAs are given in Table I and Table 11. 

Yes 

Yes 
b 

I number of uarents I 2.5 I 25 I 25 1 2 5 1  

Global Optimal 
P ,Q ,V,N 

cost 

NA: Not Applicable 

TABLE 11. SIMULATION PARAMETERS IN GA 

I 3 I 0.000 

GA 

2.200 I 0.00415 

I 1 2 2 0.000 

2) The fuel cost coefficients of the piecewise quadratic 
cost functions are given in Table 111, which are generated 
from the original single quadratic cost functions [4]. Small 
units (at buses 5, 8, 11, and 13) are represented by two 
segments, while large units (at buses 1 and 3) are by three 
segments of fuel curves. 

As shown in the P-. and Q-optimization modules, the 
formulation is general to include a number of different load 
levels to optimally balance the savings in the operation cost 
against the cost of capital investment. However for 
simplicity, only the peak. load condition [4] is considered for 
the comparative study. This scenario, obviously, will give an 
optimistic savings in the operation cost, and therefore could 
suggest over-investment. 

3.300 0.03500 

TABLE111 
COST COEFFICIENTS 0 1 2  PIECEWISE QUADRATIC FUNCTION 

cost coefficients 
b I  c 

*F3 204  1 I 0.000 1 1.900 1 0.00355 I 
I 1  2 3 I 2 I 0.000 I 2.000 I 0.00375 I 

2 3 I 2 I 0.000 I 1.750 I 0.01750 I 
I I 3 I 0.000 I 2.050 I 0.02350 

3 I 15 30 50 I 1 I 0.000 I 1.000 I 0.06250 
I 2 I 0.000 I 1.200 I 0.08250 
I 1 I 0.000 1 3.250 1 0.00834 

25 40 
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4.4645 
5.0405 
4.7493 
4.4741 
4.2969 

3) The initial load flow, with generator voltages set to 1.0 
P.u., showed that the voltage magnitudes at the load buses 
14-30 were all below the lower operating limit of 0.95 P.u., 
and the operation cost was as high as 903.31 $/hr. First for 
optimal power flow, the P-optimization module and the Q- 
optimization module without the investment were run by 
using both LP [6] and ES. Real power distribution, voltage 
magnitudes and transformer tap-settings were optimized to 
minimize the oueration cost. The results of LP and ES 
showed that, all the control variables and state variables 
were within their hard limits, but for some load buses, such 
as buses 18-26, 29, and 30, the voltages were very close to 
their lower limits. Thus, more reactive power from other 
Var sources were needed to improve the voltage profde. As 
we compared the optimal power flow results, ES gave 
slightly higher voltage profile at slightly lower operation cost 

4) For the ORPP problem, the candidate buses for 
reactive power compensation are 15, 17, 20, 23, 24 and 29. 
All are shunt capacitors with the investment cost of 0.02 
$/Mvar per unit hour. The fixed cost for installation is 
neglected for simplicity. However, the site-dependent fixed 
cost can be incorporated in additional substrings in EAs; the 
number of additional substrings being equal to the number of 
candidate buses. The investments are made in discrete steps: 
2.5, 5,  7.5, ... ) 30 Mvars, which become the upper limits 
QCi in the operational constraints (10). In both LP and 
BAS, when the constraints are violated in any iteration, 
additional steps of the investments are made in the candidate 
buses in the Q-optimization module and the iteration is 
repeated. 

and power loss. r i  

- 

TABLE IV. OPTIMAL OPEMlTON WITH INVESTMENT 

(A) WAL POWER AND REACTIW POWER DISTRIBUTION 

4.4418 
5.0644 
4.7540 
4.4762 
4.2865 

(B) BUS VOLTAGES 

Inv. cost ($/hr) 
Total cost ($/hr) 

Q TAP-SETIINGS, CAPACI’IWEVARS, AND COSTS 

0.75 
802.62 

Variable I LP 
Nii I 1.0155 

N36 I 0.9930 
QC~sWvar) I 3.05 

. .  , 

QcZS@fvw) I 3.09 
Gen. cost ($/hr) 1 801.87 

Es 
1.0290 
1.0337 
1.0298 
1.0274 
6.5218 
6.4387 
6.8332 
6.6059 
6.4141 
6.3411 
6.6167 
801.125 

1.05 
802.175 

1.0199 
1.0286 I ::8% 

4.7567 I 4.7358 
801.58 I 801.41 

5)  The results of the ORPP by using LP and EAs are 
given in Table W .  The results show that all the control 
variables and state variables, such as voltage magnitudes, 
transfonner tap-settings, real power and reactive power 
generations are within their hard limits. The results of ES, 
EP, and EP+ES are very close and comparable with those of 
LP, and the average differences of voltage magnitudes and 
real power generations are within 5/1000. The power loss 
and the operation cost of LP is slightly higher than those of 
EAs. It is noted that ES showed the least operation cost at 
the expense of the highest investment cost; while the 

(sum of the generation and the investment costs). Table 
N ( C )  showed that two of the four tap-settings are reversed 
in direction in LP; while they all are in the same direction in 
all EAs. This resulted in the fairly even investment of Var 
sources in all seven candidate buses for EAs, while it is not 
the case for LP. It should be noted that the capacitive Vars, 
Qc, shown in the table are the operational values after the 

combined EP and E8 (EP+ES) showed the least total cost 
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Iter 
0 
P 

investment, which are in general less than the maximum 
limits, , given by the investment in discrete steps, 

The total cost of each P- and Q-modules in each iteration 
of ORPP are shown in the Table V. The iteration process is 
alternating as Q-P-Q-P-, etc. It is shown in the table that 
only 4 or 5 iterations of P- and Q-modules are required for 
convergence. 

1 2 3 4 5 
961.07 802.12 802.00 802.19 801.90 
802.56 801.95 802.30 801.90 801.93 

TABLE V. TOTAL COST DURING ITEXATIONS OF ES FOR ORPP 

Each P- or Q-module converges in at least 30 
generations. The CPU time of VAX for each generation is 
about 1.85 seconds, and in the ORPP problem, the CPU time 
for EAs to reach the global minimum is therefore at least 
1.85 x 30 x 5 seconds. However, for LP, it needs about 13 
iterations to reach a local minimum, and the total CPU time 
is only around 7 seconds in VAX. Although the EAs take 
longer than LP, the formulation is straight forward and can 
handle arbitrary cost functions which may not be convex; 
and moreover, they can find the global minimum, while LP 
can only find a local minimum. 

6) Within the EA family, the characteristics of ES, EP 
and GA were compared. For fair comparison, the same 
conditions are set for all decision variables of the Q-module, 
and only the P-module was run. Sample results are given in 
Table VI. The optimal real power distribution and the 
operation cost are very close for all methods. However, the 
number of generations to converge are different for different 
methods, and also different for different runs in the same 
method. Thus these programs were run in batch file for 5 
times, and the average of the best fitness in each generation 
was calculated, which are shown in Fig. 2 and Fig. 3.  Tn the 
EP+ES method, at first the EP process is called, and the best 
fitness of these generations decreases rapidly; then after 10 
generations, ES process is called to continue the calculation. 
It is shown that, the ES and ES+EP methods need nearly the 
same number of generations (on average) to converge, while 
the EP and GA methods need almost twice as much time to 
converge. 

TABLE VI. COMPARISON OF EA'S FOR P-OPTIMIZATION 

802' I 
0 10 20 30 40 50 60 70 

generation numbers 

Fig. 2. Convergence comparison for EkF in the P-module 

"V" 

0 10 20 30 40 50 60 
generations 

Fig. 3. Convergence characteristics of GA in the P-module 

V. CONCLUSIONS 

0 

In this paper, the ORPP problem was solved by 
minimizing the total cost which includes the operation cost 
and the investment COSI,. The IEEE 30-bus system with 
piecewise quadratic cost functions is selected as a testbed. 
The results of ORPP by using different EA methods are 
almost identical. When the results are compared with the 
LP's, the EAs seem to be better; the total cost and the power 
loss are slightly lower, while all the hard limits are satisfied. 
Moreover, the P- and Q-modules of EAs can be easily 
formulated for general1 piecewise cost functions, not 
necessarily convex, whille for LP, it is quite difficult. The 
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characteristics of EAs are also compared. The ES needs less 
generations to converge in either P- or Q-modules, but it has 
a higher probability to fall into a local minimum. The EP 
needs more generations to converge, however, it is less likely 
to fall into a local minimum. When the EP is combined with 
ES, it only needs nearly the same number of generations to 
converge as ES, but with the improved robustness in finding 
the global minimum. 
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