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Optimal Real-Time Operation Strategy for
Microgrid: an ADP Based Stochastic Nonlinear

Optimization Approach
Hang Shuai, Student Member, IEEE, Jiakun Fang, Member, IEEE, Xiaomeng Ai, Jinyu Wen, Member, IEEE,

Haibo He, Fellow, IEEE

Abstract—This paper proposes an approximate dynamic pro-
gramming (ADP) based algorithm for the real-time operation of
the microgrid under uncertainties. First, the optimal operation
of the microgrid is formulated as a stochastic mixed-integer
nonlinear programming (MINLP) problem, combining the AC
power flow and the detailed operational character of the battery.
For this NP-hard problem, the proposed ADP based energy man-
agement algorithm (ADP-EMA) decomposes the original multi-
time periods MINLP problem into single-time period nonlinear
programming (NLP) problems. Thus the sequential decisions can
be made by solving Bellman’s equation. Historical data is utilized
offline to improve the optimality of the real-time decision, and the
dependency on the forecast information is reduced. Comparative
numerical simulations with several existing methods demonstrate
the effectiveness and efficiency of the proposed algorithm.

Index Terms—Microgrid, real-time optimization, approximate
dynamic programming (ADP), AC power flow, battery.

I. NOMENCLATURE

Parameters

ag,bg,cg The fuel cost coefficients of generator g.

Csup,g The start up cost of generator g.

cbat Per KWh price for the battery.

D
p
i,t ,Q

q
i,t Active and reactive power demand of the

node i at time t, respectively.

Emax,Emin Maximum and minimum state-of-charge of

the battery.

Gi j,Bi j Real and imaginary parts of the nodal admit-

tance matrix, respectively.

Ii,m The element of the node - generator correla-

tion matrix.

K Polarisation constant of battery.

Nnode Total number of nodes in the microgrid.

Ns Total number of the generators which include

controllable generator, uncontrollable gener-

ator, and the battery.
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Pc,max,Pd,max Rated charge and discharge power of the

battery, respectively.

Pmin
g ,Pmax

g The minimum/maximum active power output

of the controllable generator g.

Pmax
l Maximum power transmission limitation of

lines l ∈ L.

Rup,g,Rdn,g Ramp-up and Ramp-down limits of the con-

trollable generator g.

Rin Internal resistance of the battery.

T Optimization horizon.

Tg,on,Tg,o f f Minimum on and off time of the controllable

generator g.

∆t Time step.

Vr,Cr Rated voltage and rated capacity of the bat-

tery respectively.

V min
i,t ,V max

i,t Minimum/maximum voltage limitations of

all nodes, respectively.

W A
t Actual value of stochastic variables.

W F
t Forecast value of stochastic variables.

ηd,min
t , ηc,min

t Minimum discharge and charge efficiency

limit of the battery, respectively.

εt Forecast error distribution.

Variables

Ct(·) Operation cost of the microgrid in time pe-

riod t.

Cbat,t Operation cost of the battery in time period

t.

Cl
bat,t Power consumption of a battery during

charge, which equals to the charging loss of

the battery.

Dl
bat,t Power consumption of a battery during dis-

charge, which equals to the discharging loss

plus the actual discharging power.

F∗
0 Optimal operation cost of the microgrid.

Pd
bat,t ,P

c
bat,t Discharge and charge power of the battery,

respectively.

Pg,t ,Pgrid,t Output of the generator g and the the power

exchange between microgrid and upper level

grid at time t.

Pl,t Power transmission of the line l at time t.

Ps,t ,Qs,t Active and reactive power generation of the

power source s at time t, respectively. s

includes the wind and solar power, MT, DE,
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battery, and the power grid.

pt Electricity price of the power market.

Sg,t Time of the controllable generator g has been

continuously operated or has been stopped

until time t.

St ,S
x
t State variables and post-decision state vari-

ables, respectively.

sdg,t , sug,t Shutdown indicator and startup indicator of

generator g, respectively.

sg,t On/Off state of the generator g during time

period t. sg,t ∈ {0,1}, where 0 represents

the off-line state and 1 represents the online

state.

t Time index.

Vi Voltage amplitude of the node i.

Vt(·) Value function.

V̄t(·) Approximated value function.

Wt Exogenous information.

xt Decision variables.

δi j,t Phase angle difference between node i and

j.

ηc
t ,ηd

t Charge and discharge efficiency of the bat-

tery, respectively.

II. INTRODUCTION

To reduce the dependence on fossil fuels and the release

of greenhouse gases, renewable energy such as the wind

and solar power have been vigorously developed worldwide

[1]–[4]. The microgrid, as an effective way to utilize dis-

tributed renewable energy takes the advantages of managing

the distributed generators (DGs), distributed energy storage

(DES), and local demands in a more decentralized way [5].

The energy management of microgrids ensures the optimal

coordination between various DGs and electricity loads to

provide cost-effective, high-quality and reliable energy. To

operate the microgrid more economically and efficiently, the

operational optimization research has been widely investigated

[5]–[12]. Generally, the existing work can be categorized into

the problem formulation and the optimization algorithms.

To formulate the optimization problem for the real-time

operation of the microgrid, both the network and the devices

need to be modeled. To simplify the problem, network power

flow constraints are usually neglected in most of the prior

works [5]–[7], [13], [14]. DC power flow is widely adopted

in transmission network [15], [16], but it is not suitable for

the distribution system level [17]. So for the microgrids,

the AC power flow is necessary to properly represent the

reactive power requirements, network power losses, node

voltage limitations, etc. [17]–[20]. On the other hand, accurate

component models are critical to obtaining executive operation

strategies. For instance, the nonlinear model of micro-sources

[21] and power electronic devices [14] have been well studied.

Energy storage system (ESS) is another essential device in

a microgrid, but the relationship between the efficiency of

energy conversion and the state-of-charge (SOC) is rather

complex [22], [23].

From the mathematical programming point of view, not only

the network constraints but also the devices such as energy

storages will introduce the nonlinearities to the microgrid op-

timization. In addition to these nonlinearities, discrete decision

variables (e.g., the on/off decisions of dispatchable generators

and charge/discharge decisions of the storage) will further

make the optimization become a non-convex problem. Conse-

quently, the optimal operation of the microgrid is formulated

as mixed-integer nonlinear programming (MINLP) problem.
Mathematically, there is no ultimate solution technique

for the MINLP problem [5]. Although MINLP solvers such

as CONOPT and BARON are commercialized, they cannot

find solutions in reasonable times even for a small-scale

system [25]. Some meta-heuristic methods [7]–[10] such as

particle swarm optimization (PSO) have been employed, yet

the computational burden rises exponentially with the number

of variables and constraints. The hierarchical optimization

methods [26] are also used, but the global optimality cannot

be guaranteed. In addition to nonlinearities, the uncertainties

brought by distributed renewable energy and demand side

makes the real-time scheduling of the microgrid even more

challenging. To cope with the uncertainties, several approaches

such as chance constraints method [27], scenario tree method

[28], etc. are proposed. When forecast error occurs, the day-

ahead scheduling needs to be adjusted [21] during real-time

operation. Model predictive control (MPC) is a commonly

used real-time optimization method [14], [17], [29] to re-

dispatch the flexible regulation devices in the microgrid.

However, the historical operational experiences are not fully

utilized in the above literature, so the performance of the

MPC based algorithms is influenced by the accuracy of intra-

day information. With the increasing number of facilities in

the microgrid and the system complexity, the scale of the

optimization problem raises, hence decomposition techniques

are needed to break the large-scale optimization into small

subproblems [17]. The hierarchical optimization methods are

also used in [26], [42]. The two stage stochastic optimal energy

and reserve management is proposed in [30], and the sliding-

window based online algorithm is proposed for real-time

energy management in [31]. In [32], [33], distributed energy

management algorithms, e.g., alternating direction method of

multipliers, are applied in the online optimization of microgrid.
To tackle the above-mentioned challenges such as nonlin-

earities, stochasticities, etc., the approaximate dynamic pro-

gramming (ADP) based energy management algorithm (ADP-

EMA) for the real-time operation of the microgrid under

uncertainties is proposed in this paper. ADP is a powerful

stochastic optimization modeling method. It decomposes a

multi-time-period optimization problem into a sequence of

time-indexed sub-problems [34]–[39]. These sub-problems are

solved successively forward through time over the optimiza-

tion horizon. Besides, ADP embeds empirical knowledge in

the decision process, so the sub-problems are connected by

the impact of the current decision on the future. The proposed

algorithm has following advantages.

1) the proposed algorithm is capable of decomposing the

multi-time-period optimization into the time-indexed

sub-problems. Thus the sequential decisions can be
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made by solving Bellman’s equation.

2) with the decomposition, the proposed algorithm partially

handles the mixed-integer nonlinear programming intro-

duced by practical considerations. The integral variables

are removed using the lookup tables following the prin-

ciples in [39].

3) the proposed algorithm can deal with the stochasticity

by embedding the empirical knowledge in the historical

operational data;

4) with the empirical knowledge embedded in the real-time

decision process, the proposed algorithm reduces the

dependency of optimality on the forecast information.

The contributions of this paper are two-fold. From the mod-

eling perspective, the detailed microgrid optimization model

is built, combining the AC power flow constraints and the

detailed battery model for the first time. The model can reflect

the charge/discharge characteristics and the operation cost of

the energy storage device. From algorithmic perspective, the

ADP based real-time energy management strategy (i.e., ADP-

EMA) for microgrid is proposed.

The remainder of the paper is structured as follows. Section

III formulates the battery model. Section IV formulates the

mathematical model of the microgrid. Then an ADP based

stochastic optimization algorithm for the microgrid operation,

i.e., ADP-EMA, is proposed in section V. Numerical simula-

tions are designed to demonstrate the validity of the proposed

ADP-EMA in section VI. Conclusions are summarized in

section VII.

III. DETAILED BATTERY MODEL

Energy storage device is an important component in mi-

crogrids. Currently, the lead-acid battery and lithium battery

are most widely utilized energy storage devices, and hence

modeled in this work. According to practical experiences,

the efficiency of the battery depends on the physical state

of battery. Reference [23], [24] developed a novel battery

model according to the characteristics of lead-acid and lithium-

ion batteries. In the model, the charging and discharging

efficiencies are modeled as a nonlinear function of the charging

and discharging power and SOC of the battery:

Dl
bat,t =

103
(

Rin +
K

SOCt

)

V 2
r

(

Pd
bat,t

)2
+

(

103Cr.K (1−SOCt)

SOCt .V 2
r

+1

)

Pd
bat,t

(1)

Cl
bat,t =

103
(

Rin +
K

1.1−SOCt

)

V 2
r

(

Pc
bat,t

)2
+

103Cr.K (1−SOCt)

SOCt .V 2
r

Pc
bat,t

(2)

ηd
t =

Pd
bat,t

Dl
bat,t

(3)

ηc
t = 1−

Cl
bat,t

Pc
bat,t

(4)

The model proposed in [23] assumes that the maximum

charge/discharge power is constant. However, the laboratory

and field tests reveal that the charging and discharging power

limits of the batteries are related to SOC [22]. Their relation-

ship is established as follows:

0 ≤ Pd
bat,t ≤ min

{

P
d,max
bat,t (SOCt ,η

d,min
t ),Pd,max

}

(5)

0 ≤ Pc
bat,t ≤ min

{

P
c,max
bat,t (SOCt ,η

c,min
t ),Pc,max

}

(6)

From (1)-(4), the discharge efficiency is positively correlated

with SOC, while the charge efficiency and SOC are inversely

related. The charging and discharging efficiencies decreases

with the increase of the power at the same SOC. The right-

hand side of (5) and (6) can be calculated by (1)-(4) when

ηd,min
t and ηc,min

t are given, which are shown as follows:

P
d,max
bat,t (SOCt ,η

d,min
t )=

V 2
r SOCt(

1

η
d,min
t

−1)−103CrK(1−SOCt)

103(Rin ·SOCt +K)
(7)

P
c,max
bat,t (SOCt ,η

c,min
t )=

SOCtV
2
r (1−ηc,min

t )−103CrK(1−SOCt)

103 ·SOCt(Rin +
K

1.1−SOCt
)

(8)
The temporal evolution of the SOC can be formulated in a

discrete form

SOCt =







SOCt−∆t −
Dl

bat,t ∆t

Emax
, Pd

bat,t > 0

SOCt−∆t +
(Pc

bat,t−Cl
bat,t )∆t

Emax
, Pc

bat,t > 0
(9)

It should subject to the min/max capacities

Emin

Cr

≤ SOCt ≤
Emax

Cr

(10)

The operational cost of the battery is assumed to be propor-

tional to its charging and discharging power which can be

expressed as [23]

Cbat,t =

{

cbatD
l
bat,t∆t, Pd

bat,t > 0

cbatC
l
bat,t∆t, Pc

bat,t > 0
(11)

In addition to the operational characteristics (1)-(11), the

output power Pbat,t is calculated by

Pbat,t = Pd
bat,t −Pc

bat,t , ∀t (12)

The following constraint ensures that the battery cannot be

charged and discharged at the same time.

Pd
bat,t ·P

c
bat,t = 0, ∀t (13)

It can be seen from (1)-(13) that the battery model adopted in

this work is rather complex with highly nonlinear relationships

between variables and parameters.

IV. MATHEMATICAL MODEL OF THE MICROGRID

In this section, the optimization model for the energy

management of the microgrid is established. Only the sin-

gle microgrid is investigated. The microgrid is composed of

dispatchable sources (DS) including micro-gas turbine (MT),

diesel generator (DE), battery storage, and non-dispatchable

sources (NS) such as wind turbines (WT) and photovoltaic

(PV) panel. The optimization problem is to schedule the on/off

decision of dispatchable generators (DG) (e.g., MT and DE)

in DS, the charge/discharge status of the battery, the power

outputs of DS, and the power exchange between the microgrid

and the upper-level grid.

A. Objective Function

The real-time energy management of microgrid is formulat-

ed as a Markov Decision Processes (MDP). The optimization
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variables includes the state variables and the decision variables

[36]. State variables at time t include SOC of the battery SOCt ,

unit commitment sg,t , generation dispatch of DG Pg,t , power

purchased from electricity market Pgrid,t , generation dispatch

of NS Pr,t , active load Dt , reactive load Qt , and electricity price

pt . These variables are aggregated in vector St . The decision

variables xt include startup indicator sug,t , shutdown indicator

sdg,t of DG, and the power output of the battery Pbat,t . The

objective is to minimize the operation cost of the microgrid

over finite optimization horizon Γ = {∆t,2∆t, ...,T − ∆t,T}
which can be expressed as

F∗
0 = min

x∆t ,...,xT

E
{ T

∑
t=∆t

Ct(St ,xt)
}

(14)

Ct(St ,xt) = sg,t(agP2
g,t +bgPg,t + cg)∆t

+Csup,g(sg,t − sg,t−∆t)+ ptPgrid,t∆t +Cbat,t

(15)

where E(·) represents the expectation. sg,t is determined by

startup indicator sug,t and shutdown indicator sdg,t . The first

part of (15) represents the fuel cost of DG (e.g., MT and DE)

which is a quadratic function of the output power. The startup

cost of DG is also considered which is denoted by Csup,g; The

third part represents the cost related to the power exchange

between microgrid and upper-level grid; The operation cost

of the battery is represented by the last part of the objective

function Cbat,t .

B. Constraints

Following constraints are considered in this work.

1) Power flow constraints: In the microgrid, due to the

higher resistance-to-reactance ratio of the power cables, the

AC power flow constraints should be adopted in the problem

formulation.

Vi,t

Nnode

∑
j=1

Vj,t(Gi jcosδi j,t +Bi jsinδi j,t) =
Ns

∑
s=1

Ii,sPs,t −D
p
i,t ∀t

Vi,t

Nnode

∑
j=1

Vj,t(Gi jsinδi j,t −Bi jcosδi j,t) =
Ns

∑
s=1

Ii,sQs,t −Q
q
i,t ∀t

(16)

where s ∈ {WT,PV,MT,DE,battery,grid};

2) Upper and Lower Limits of the Outputs of Dispatchable

Generators:

Pmin
g sg,t ≤ Pg,t ≤ Pmax

g sg,t ∀g,∀t (17)

3) Ramping Rates of Dispatchable Generators: For all the

generators

Pg,t −Pg,t−∆t ≤Rup,g∆t · sg,t−∆t+

Pmin
g (sg,t − sg,t−∆t)+Pmax

g (1− sg,t)

Pg,t−∆t −Pg,t ≤Rdn,g∆t · sg,t+

Pmin
g (sg,t−∆t − sg,t)+Pmax

g (1− sg,t−∆t)

(18)

4) Minimum ON/OFF Time Limits of Dispatchable Gener-

ators:
{

(sg,t−∆t − sg,t)(Sg,t−∆t −Tg,on)≥ 0

(sg,t − sg,t−∆t)(−Sg,t−∆t −Tg,o f f )≥ 0
∀g,∀t (19)

Sg,t is ON (if >0) or OFF (if <0) time counters of unit g until

time t.

5) Voltage Amplitude Constraints: For all the nodes in the

network, the voltage magnitude is bounded by

V min
i,t ≤Vi,t ≤V max

i,t ∀i,∀t (20)

6) Power cable capacity constraints: The power cable

capacity constraints are also considered

Pl,t ≤ Pmax
l ∀l,∀t (21)

7) Battery constraints: All the constraints are given by (1)-

(13).

From above equations, since the uncertainties introduced

by renewable energy, electricity price, and demand side, the

stochasticity is introduced to the formulated mixed-integer

nonlinear programming (MINLP) problem. For this kind of

problem, meta-heuristic algorithms, e.g., PSO, and hierarchical

optimization method [26] are available methods. However,

these optimization algorithms can not ensure the optimality

of the solution. Moreover, the algorithms are seldom applied

in real-time optimization process. This paper proposed to use

ADP algorithm to solve this stochastic MINLP problem and

obtain the real-time operation strategy simultaneously. The

following part sets up the process of using ADP to solve the

problem.

V. APPROXIMATE DYNAMIC PROGRAMMING BASED

ENERGY MANAGEMENT ALGORITHM

ADP is an effective method to solve MDP problem. Us-

ing this approach, the original multi-time period stochastic

MINLP optimization can be decomposed into several single-

period NLP sub-problems, as shown in the Fig. 1. This

time-dependent decomposition method reduces the difficulty

of solving the original problem. Before the presenting of

Multi-time Period Stochastic MINLP

Stochastic 

NLP

Stochastic 

NLP

Stochastic 

NLP

t=1 t=t1 t=T

Fig. 1. Decomposition of MINLP optimization using ADP.

the proposed real-time energy management algorithm, we

first define the state variables, decision variables, exogenous

information, and transition function which are basic elements

to MDP [39].

A. Definition of Basic Elements

1) State Variables & Decision Variables: According to

section IV-A, the state variables can be defined as

St = {SOCt ,sg,t ,Pg,t ,Pgrid,t ,Ppv,t ,Pwt,t ,Dt ,Qt , pt} (22)
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The exogenous information at time t is

Wt = {P̂pv,t , P̂wt,t , D̂t , Q̂t , p̂t} (23)

where Wt represents the information that first arrives between

t − ∆t and t. P̂pv,t is the change in the PV power between

forecast value and actual one. Similarly for the other elements

in Wt .

The decision variables of the problem can be defined by

xt = {sug,t ,sdg,t ,Pbat,t} (24)

2) Transition Function: The transition function St+∆t =
SM(St ,xt ,Wt+∆t) can map the current state St to the next

state St+∆t according to the decision xt and the exogenous

information Wt+∆t . The SOC transition function is shown in

equation (9). The ON/OFF state transition function of DG is

given by

sg,t+∆t =

{

1, if sug,t = 1,sdg,t = 0

0, if sug,t = 0,sdg,t = 1
(25)

The transition of other elements in St can be calculated by:

W A
t+∆t =W F

t+∆t +Wt+∆t (26)

where W A
t+∆t = {Ppv,t+∆t ,Pwt,t+∆t ,Dt+∆t ,Qt+∆t , pt+∆t} and

W F
t+∆t = {PF

pv,t+∆t ,P
F
wt,t+∆t ,D

F
t+∆t ,Q

F
t+∆t , pF

t+∆t}.

B. ADP Based Optimization Approach

1) Lookup Tables Approximation: According to MDP the-

ory, the stochastic optimization problem of the form (14) can

be reformulated as the MDP problem and solved recursively

using the Bellman’s equation (27).

Vt(St) = min
xt

{Ct(St ,xt)+E(Vt+∆t(St+∆t)|St)} (27)

Vt+∆t(St+∆t) =
T

∑
τ=t+∆t

{Cτ(Sτ ,xτ)} (28)

Vt+∆t(St+∆t) is the value function which represents the opera-

tion cost from t +∆t to T when system start from state St+∆t .

Dynamic programming (DP) algorithm is a basic algorithm

to solve the MDP problem by backward through time. DP

solves (27) from the last period t = T to the first one t = ∆t to

get the optimal value function Vt(St) (t ∈ Γ). Then we solve

the Bellman’s equation forward through time to obtain the

optimal solution. However, DP will encounter “the curse of

dimensionality” due to computing the expectation value in (27)

is computationally intractable [39].

ADP is an algorithmic strategy that steps f orward through

time which enables it to solve a variety of multi-time peri-

od optimization problems. One of its basic ideas is to use

approximated value functions which are updated iteratively

in the training process to avoid computing the optimal value

function in DP. There are plenty of methods to approximate

value functions, for example, parametric representations [34],

nonparametric representations [37], [40], [41], and lookup

tables [42]. Lookup tables are basic yet a effective way to

approximate value function, and it is adopted in this paper.

The details of the lookup tables approximation are presented

as follows.

To overcome the curse of dimensionality in information

space, Wt , the post-decision formulation of Bellman’s equation

is formulated as follows

Vt(St) = min
xt

{Ct(St ,xt)+V x
t (S

x
t )} (29)

where Sx
t is the post-decision state [39] which represents the

system state after the decision xt has been made but before the

new information Wt+∆t has arrived. V x
t (S

x
t ) is the post-decision

value function. It represents the operation cost from time t to

T when the system being in state Sx
t . From (27) and (29),

the relationship between post-decision value function and the

expectation of value function is shown as

V x
t (S

x
t ) = E(Vt+∆t(St+∆t)|St) (30)

The expectation in (29) is eliminated by introducing the post-

decision value function. But the function V x
t (S

x
t ) is not known

in prior. In this work, we use value tables to approximate

this function. The approximated value function is denoted by

V̄ x
t (S

x
t ).

The value table establishes the mapping between the discrete

system variables and the future operating costs of the system.

First, we discrete the state variables and decision variables, as

shown in (31). G represents the elements in St and xt . dG is

the mesh size of variable G.

∆G =
Gmax −Gmin

dG

(31)

To reduce the size of the state space and decision space, we

set the mesh size of the continuous variables in St and xt to be

1, except SOCt and Pbat,t . In this work, the discrete variables

in St are the ON/OFF state of MT and DE. So, the size of the

state space St is M = 22 ·dSOC. The size of the value table is

M×T .

2) Value-table Updating Method: The value table is updated

in each iteration to obtain the optimal solution. At anytime

t and iteration n, ADP is recursively computing the sample

realization of the value of being in the state Sn
t using the

approximated value function obtained in the previous iteration

v̂n
t = min

xn
t

{Ct(S
n
t ,x

n
t )+V̄

x,n−1
t (Sx,n

t )} (32)

where v̂n
t is a Monte Carlo (MC) estimate of the value being in

the state Sn
t ; n indicate the variable in the nth iteration. Then

the value table can be updated according to

V̄
x,n

t−∆t(S
x,n
t−∆t) = (1−αn)V̄ x,n−1

t−∆t (Sx,n
t−∆t)+αnv̂n

t (33)

where αn is the stepsize, and αn ∈ (0,1). Note that we just

update the value respected to the state, S
x,n
t−∆t , we visited in

the iteration for every time step. The value function updating

process is shown in Fig. 2.

ADP proceeds by estimating the approximation function

V̄ x
t (S

x
t ) iteratively. In every time step t, it needs to traverse all

feasible decisions xt ∈ Xt and find optimal decision by solving

(32). Xt is the feasible decision space which is determined

according to the constraints (1)-(10), (19), and (12)-(13). For

a feasible decision xt , it just indicates the on/off decisions

of the dispatchable units and the charge/discharge power of

the battery. The output power of all dispatchable units and
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n=1

t=1 t=2 t=3 t=T

n=2

n=N

t

s

transition direction of 

the state

visited state in the first 

iteration

visited state in the second 

iteration

visited state in the Nth 

iteration

Initial value table

Fig. 2. The value function updating process of the value table.

the power exchange between microgrid and power grid are

still unknown. These variables are determined by economic

dispatch (ED) algorithm using interior point method. The goal

of the ED is to minimize the operation cost Ct(St ,xt) in (11)

under the constraints (16)-(18) and (20)-(21). Substitute all

the operation cost Ct(S
n
t ,x

n
t ) respect to all the decision xn

t in

(32) to obtain the optimal decision and v̂n
t . Then, using (33)

to update the element V̄ x
t (S

x
t ) in the value table.

C. Training Process of the ADP-EMA

The iteration process of the ADP-EMA is shown in Fig.

3. From the figure, the original MINLP problem is decom-

posed into T NLP sub-problems. For every feasible decision

xt , we solve the ED problem to obtain the operation cost

Ct(St ,xt). However, the ED problem is a nonlinear program-

ming problem (without integer variables) solving which is

time-consuming. If in each iteration and each period, ED

problem is solved for every feasible decision. This will take

much time until the algorithm reaches convergence. But note

that for the same state variable St and decision variable xt ,

the operation cost Ct(St ,xt) is deterministic. If the exogenous

information is deterministic, there is no any uncertainty in the

state transition process. Thus, when the ADP algorithm is used

to solve the deterministic MINLP problem, to speed up the

convergence rate, we establish a one-period contribution func-

tion table which is used to store the Ct(St ,xt) corresponding

every state-decision pair (St ,xt). So, in the following iteration,

we will not need to solve ED problem if the (St ,xt) pair has

occurred in the previous iterations. For the stochastic case, as

the system state Sn
t is different in different iteration n, so the

above one-period contribution function table will not speed up

the convergence rate.

D. Real-Time Operation Strategy

The goal of the real-time optimization is to find the optimal

decisions under the operation strategy π . In ADP decision

Generate a training scenario using MC simulation

Initialization: discrete state and decistion 

sapce, then initialize the value table

According to St, compute feasible decision space Xt

according to (1)-(10) , (12)-(13), and (19)  

Select a decision xt from Xt

Solve ED problem using  interior 

point method

Y

N

Update value table using (33)

t<T

Obtain optimal decision xt by (32), and 

the next state by (9), and (25)- (26)

t=t+

N

Y

n<N

Output the value table

n=n+1

N

Y

Y

N

All feasible decisions

 have been visited 

(St,xt) has 

occurred before
Store 

Ct(St,xt)

Enumerate 

decision space

Fig. 3. Training process of the ADP-EMA.

framework, the strategy is defined as a function that determines

a decision given the available information in state St . After

sufficient training, value table can be obtained and then used

in real-time decision as follows:

XADP−EMA
t (St) = argmin

xt

{Ct(St ,xt)+V̄
x,N

t (Sx
t )} (34)
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It is worth to note that V̄
x,N

t (Sx
t ) is the final approximated

value function in the training process. As shown in Fig. 4, by

stepping forward through time, we can obtain the ADP-EMA

based optimal operation strategy of the system. The online

decision process just use the current state information and the

approximated value function.

t1 t1+ t

t1+ t t1+2 t

t=t1

t=t1+ t

Solving equation (34)

Solving equation (34)

Fig. 4. ADP based real-time decision process.

MPC and myopic policy are another two kinds of commonly

used real-time energy management policy. MPC method solves

the optimization problem over time horizon H (H < T ) at

every time step t using the near future forecast information,

while only the decision of current time t is implemented. Then

we repeat the optimization process at the next time t+∆t using

the newly arrived forecast information. The real-time decision

process of MPC can be described using Fig. 5. For instance,

Fig. 5. MPC based real-time decision process.

in time t = 10 we can obtain the updated PV power forecast

from t = 11 to t = 14. In the figure, we show 5 intra-day

forecast scenarios. The real-time operation decision of MPC

at time t = 10 can be obtained by solving (35). Similarly, in

time t = 11 we get the actual system information of current

time and the updated forecast from t = 12 to t = 15, then

the optimal decision xt=11 can be calculated. The MPC based

real-time optimization policy is shown as,

XMPC
t (St) = arg min

xt ,xt+∆t ,··· ,xt+H

t+H

∑
t ′=t

Ct ′(St ′ ,xt ′) (35)

The myopic policy does not use any forecast information

in the optimization. For the classical myopic policy (without

tunable parameters), the impact of the current decisions on

the future is ignored [39]. The myopic policy based real-time

optimization is shown as,

X
Myopic
t (St) = argmin

xt

Ct(St ,xt) (36)

To evaluate the performance of the real-time operation strat-

egy, the optimization error en
π for scenario n using operation

strategy π can be calculated by

en
π =

Fn
π −Fn

B

Fn
B

(37)

Here Fn
π and Fn

B are the objective function obtained from real-

time energy management strategy π and the baseline solution

for the nth scenario, respectively.

VI. NUMERICAL ANALYSIS

In this section, the performance of the ADP-EMA algo-

rithm is examined by numerical experiments on a microgrid

benchmark. The schematic diagram is shown in Fig. 6. The

microgrid includes dispatchable generators, i.e., MT, DE,

the non-dispatchable generators i.e., PV, WT, and a battery.

The length of the power cables between all nodes is shown

in Fig. 6. For brevity, the types of all the cables are set

to be the same. The cable parameters are R = 0.64Ω/km,

X = 0.1Ω/km. The parameters of the dispatchable generators

and battery are provided from Table I to Table III. For all the

simulations below, the SOC and the charge/discharge power

of the battery are uniformly discretized into 12 states and 14

states, respectively, i.e. dSOC = 12 and dPbat
= 14. The power

factor of all loads in the microgrid is the same and is set to be

0.9. The optimization horizon of all simulations is set to be

24h, and we set ∆t = 1h. All case studies have been run using

Matlab 2012 on a 64-bit windows based computer with 4GB

of RAM and Intel Core i5 processor clocking at 2.7GHz.

DEMT

WT

PV

ESS

Distribution network

Transformer

10/0.4kV

AC

DC

AC

DC

PCC

Load 1 Load 2 Load 3
Load 4

50m

50m

100m

80m

30m

100m

100m

200m

150m

Fig. 6. The schematic diagram of the microgrid.

A. Algorithm Validation in Deterministic Case

For the deterministic case, we need to solve a MINLP

problem. The forecast information of the power generation
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TABLE I
PARAMETERS OF THE MT AND DE

Generators Pmax (kW) Pmin (kW) cSU
m ($) T min

on (h) T min
o f f (h)

MT 30 10 2 1 1
DE 30 10 3 1 1

TABLE II
THE FUEL COST COEFFICIENTS OF MT AND DE

Generators a ($/(kW )2
h) b ($/kWh) c ($)

MT 0.00051 0.0397 0.4
DE 0.00104 0.0304 1.3

of PV, WT, and the total active load demand is shown in Fig.

7. The electricity price of the power market is shown in Fig.

8.
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Fig. 7. The power from PV, WT, and the load demand.
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Fig. 8. The electricity price of the power market.

1) Algorithm Validity Simulation: DP and PSO are com-

monly used methods to solve NP hard problem. To illustrate

the validity of the ADP-EMA algorithm, the optimization

result of ADP-EMA is compared with PSO algorithm [43],

myopic policy, and DP method. The parameter setting of

the PSO is as follow. The initial swarm population is 25.

The maximum iteration number is 150. The position updating

equation of the swarm is the same with [43]. The optimization

results of the algorithms are listed in Table. IV and Fig. 9.

It can be found that the ADP-EMA algorithm converges in

about 1200 iterations. Furthermore, it is observed that ADP-

EMA takes less computational time than PSO and obtained

a better solution. Comparing DP and ADP-EMA, the former

TABLE III
PARAMETERS OF THE BATTERY

Item
Emax

(kWh)
Emin

(kWh)
Pb,max

(kW)
Pb,min

(kW)
cbat

($/kW)
Vr

(V)
Value 60 18 12 0 0.059 60

TABLE IV
THE OPTIMIZATION RESULT OF THE DETERMINISTIC CASE

Algorithm Cost ($) Iteration Number Computation Time (s)

Myopic 102.68 - 9.26
PSO 95.68 80 208.53

ADP-EMA 90.26 1200 66.4
DP 89.49 - 1595.9
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Fig. 9. The convergence process of (a) the ADP-EMA algorithm, (b) the
PSO algorithm.

can obtain global optimality by precisely solving Bellman’s

equation. The later, on the contrary, can obtain near optimal

solution using approximated value functions. But the compu-

tational efficiency of DP is not as computationally efficient

as ADP. From the simulation result, ADP-EMA solution to

be within 0.86% of optimal and the algorithm using much

less computational time compared with DP. Finally, myopic

policy performs worst among all these algorithms. This result

is expected since myopic policy cannot consider the influence

of current decision on the future which means it is not a global

optimization algorithm.

2) Comparison Study of the Different Battery Models: To

compare the optimization results of different battery models,

two cases are designed. In Case 1, the charge/discharge power

limits of the battery is set to be the constant value; In Case

2, the charge/discharge power limits are the function of SOC.

The maximum charge/discharge power can be calculated by

(8)-(9).

For the two cases, the simulation results are shown in Fig.

10 - Fig. 11. From Fig. 10, the MT is always on line as the

fuel cost of MT is lower than other sources. During time 0h-

9h DE is turned off, as the electricity price in power market

is below 0.1$/kWh which cheaper than DE generation. From

Fig. 11 (a), it is observed that the battery stores energy in

midnight when the electricity price is low, then discharges

when the load demand is high in period 12h-13h, and charges

again before the peak hour 21h. Lastly, the energy in the

battery is discharged to the lower bound in order to store

energy in midnight. From the figure, it is observed that the

operating SOC window of Case 2 is narrower compared to

Case 1 as a result of the variable power limits of the battery.

The simulation result is consistent with the conclusion in [22].

The charge/discharge power losses of the battery in the two

cases are shown in Fig. 11 (b). The total power losses of

the battery in Case 1 and Case 2 are 5.468 kWh and 5.375

kWh, respectively. Besides, the operation cost in Case 2 is

higher than the Case 1 since the variable power limits of

charge/discharge process decreased the arbitrage ability of the

battery.
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Fig. 10. (a) The output power of all sources for Case 1. (b) The output
power of all sources for Case 2.
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Fig. 11. (a) The SOC of the battery. (b) The charge/discharge efficiency of
the battery.

B. Off-Line Training & Real-Time Optimization

1) Off-Line Training: To demonstrate that the ADP-EMA

can address the uncertainties, the following stochastic cases

are designed. Assume that the day-ahead forecast error of

the wind power εw
t , solar power ε

pv
t , electricity price ε

p
t , and

load ε load
t obey Gaussian distribution. Let εw

t ∼ N(0,0.12),
which means the standard deviation of the wind power forecast

error is set to be 10 % of its mean value. Similarly, let

ε
pv
t ∼ N(0,0.12), ε load

t ∼ N(0,0.052), ε
p
t ∼ N(0,0.052). Based

on these statistics, 1200 historical scenarios are generated

using MC simulation and shown in Fig. 12.

Then these 1200 scenarios are divided into 60 groups for the

batch training. The average optimization error of ADP-EMA

TABLE V
PERCENTAGE OF OPTIMALITY FOR DECISIONS GENERATED FROM THE

ADP-EMA

Batch index (m) 10 20 30 40 50 60
Percentage o f

Optimality (%)
60.48 75.87 83.75 92.60 92.61 98.23
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Fig. 12. (a) The sampled wind power scenarios. (b) The sampled solar
power scenarios. (c) The sampled electricity price scenarios. (d) The sampled
demand scenarios.

is given by:

ERRm =
1

Nbatch

Nbatch

∑
n=1

en
ADP−EMA (38)

ERRm indicates the average deviation of the ADP-EMA solu-

tion to the baseline solution for the mth batch. Nbatch is the total

scenario number in each batch. We set Nbatch = 20. en
ADP−EMA

represents the optimization error of ADP-EMA for the nth

scenario which can be calculated by (37). The convergence

process of the algorithm is illustrated in Table V. After 60

batches of training, the algorithm can reach 98.23% optimality.

This means the proposed algorithm is effective to solve the

stochastic MINLP problem.

2) Real-Time Optimization: After the off-line training with

the 1200 scenarios in day-ahead, in the following cases, the

well-trained value table will be tested to demonstrate the real-

time optimization ability of the ADP-EMA.

The intra-day updated forecast generally more accurate

than day-ahead value. In the simulation we assume all the

intra-day forecast error obey Gaussian distribution and let

εw
t ∼ N(0,0.052), ε

pv
t ∼ N(0,0.052), ε load

t ∼ N(0,0.022), ε
p
t ∼

N(0,0.032). The future forecast information in the following

H = 4 hours are updated at each time step. Firstly, we will

compare the performances of ADP-EMA and MPC algorithm

in real-time optimization. As the problem is MINLP problem,

we nested PSO in the MPC optimization process. Under differ-

ent intra-day forecast scenarios, the optimized operation costs

are different. We picked 10 scenarios and the corresponding



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2855039, IEEE

Transactions on Sustainable Energy

10

TABLE VI
THE OPTIMIZED OPERATION COST UNDER DIFFERENT INTRA-DAY

FORECAST SCENARIOS USING MPC

Intra−day Forecast

Scenario
1 2 3 4 5

Cost ($) 104.09 104.05 103.07 103.52 102.83
Intra−day Forecast

Scenario
6 7 8 9 10

Cost ($) 104.06 104.11 103.89 102.94 104.53

results are listed in Table. VI. It is worth noting that the actual

solar generation curve, wind generation curve, electricity price

curve, and load curve are all the same for the 10 scenarios.

The only differences between the scenarios are the near-future

forecast information. It is observed from the result that the

performance of the MPC method is affected by the updated

forecast. While ADP successively solves Bellman’s equation

to get the optimal decision of each time and it reduces the

dependency on future forecast information. So the intra-day

forecast scenarios will not affect the performance of ADP.

Using the proposed ADP-EMA method, the optimization cost

of the microgrid is 97.17 $. We can find that ADP-EMA

outperforms MPC. This is because MPC just lookahead H

hours, so the local optimal solutions are obtained. However,

the approximated value table enables ADP-EMA can evaluate

the influence of the current decisions on all the following

periods. So ADP-EMA can obtain a better solution.

From the above simulation results, it can be found that

ADP-EMA is not affected by intra-day forecast errors. The

myopic policy is a commonly used real-time optimization

method which also does not need future forecast information.

In the following simulation, we use myopic policy to optimize

microgrid operation and compare its performance with ADP-

EMA. MC method is adopted to simulate 200 sets of test

scenarios according to the day-ahead forecast and the forecast

error distribution information. We assume the forecast error of

the test data obeys the same distribution as the training data.

The real-time optimization results of the two algorithms are

shown in Fig. 13. From the result, the average optimization

error of the ADP-EMA and myopic policy are 1.80% and

13.75%, respectively. It is observed that ADP-EMA obtains

better performance in real-time decision process compared

with myopic policy.
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Fig. 13. Real-Time optimization error of ADP-EMA and myopic policy.

3) Robustness of the ADP-EMA: When the day-ahead fore-
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Fig. 14. Optimization error of ADP-EMA corresponding to (a) wind power
uncertainty, (b) pv power uncertainty, (c) electricity price uncertainty, (d)
demand uncertainty.

cast error distribution of the test scenarios are different from

the training scenarios, the real-time optimization performance

of the algorithm may be different. To demonstrate ADP-EMA

is robust to the wind power prediction error, we set the stand

deviation of the wind power forecast σWT increases from

0.05 to 0.20. The simulation result is shown in Fig. 14 (a).

The similar simulations are also conducted for PV, electricity

demand, and electricity price which are shown in 14 (b)-(d). It

can be found that the real-time operation strategy is robust to

these uncertainties. The average optimization error is always

below 3%.

VII. CONCLUSION

This paper proposes the lookup tables based ADP algo-

rithm for the real-time energy management of the micro-

grid under uncertainties. The AC power flow constraints and

the detailed battery model are considered in the operational

model. The detailed battery model proposed in this paper

builds the relationship between the SOC and the min/max

charge/discharge power limits. For the formulated MINLP

optimization problem, we propose an ADP based energy

management algorithm. The simulation results demonstrate

the effectiveness of the proposed ADP-EMA. Comparative

studies with myopic algorithm and model predictive control

validate the applicability of the proposed ADP-EMA in real-

time decision process with reduced dependency on forecast

information. The proposed algorithm is promising to provide

a new framework for the real-time energy management of the

microgrid. In the future work, the proposed algorithm will be

applied in the optimization of multiple microgrids.
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