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Abstract—In this paper, we consider a smart power infras-
tructure, where several subscribers share a common energy
source. Each subscriber is equipped with an energy consumption
controller (ECC) unit as part of its smart meter. Each smart meter
is connected to not only the power grid but also a communication
infrastructure such as a local area network. This allows two-way
communication among smart meters. Considering the importance
of energy pricing as an essential tool to develop efficient demand
side management strategies, we propose a novel real-time pricing
algorithm for the future smart grid. We focus on the interactions
between the smart meters and the energy provider through
the exchange of control messages which contain subscribers’
energy consumption and the real-time price information. First,
we analytically model the subscribers’ preferences and their
energy consumption patterns in form of carefully selected utility
functions based on concepts from microeconomics. Second, we
propose a distributed algorithm which automatically manages
the interactions among the ECC units at the smart meters and
the energy provider. The algorithm finds the optimal energy
consumption levels for each subscriber to maximize the aggregate
utility of all subscribers in the system in a fair and efficient
fashion. Finally, we show that the energy provider can encourage
some desirable consumption patterns among the subscribers by
means of the proposed real-time pricing interactions. Simulation
results confirm that the proposed distributed algorithm can
potentially benefit both subscribers and the energy provider.

I. INTRODUCTION

Electricity is currently provided through an infrastructure

consisting of utility companies, power plants, and transmission

lines which serve millions of customers. For example, the

electric power grid in the United States includes more than

3,100 electric utilities operating more than 10,000 power

plants, and there are about 157,000 miles of high voltage

electric transmission lines which bring energy to more than

131 million customers [1]. The dependency of almost all parts

of industry and different aspects of our life on electrical energy

makes this massive infrastructure a strategic entity.

Given the increased expectations of customers, both in

quality and quantity [1], the limited energy resources, and the

lengthy and expensive process of exploiting new resources, the

reliability of the grid has been put in danger and there is a

need to develop new methods to increase the grid efficiency.

Currently, the electricity consumption is not efficient in most

buildings (e.g., due to poor thermal isolation). This results in

the waste of a large amount of natural resources, since most of

the electricity consumption occurs in buildings [2]. In addition,

the arising of new types of demand such as plug-in hybrid

electric vehicles (PHEVs), which can potentially double the

average household load, have further increased the need to

develop new methods for demand side management (DSM).

There is a wide range of DSM techniques such as voluntary

load management programs [3]–[5] and direct load control [6].

However, smart pricing is known as one of the most common

tools that can encourage users to consume wisely and more

efficiently. Given the recent increases in the price of energy,

the users are more willing to improve the insulation conditions

of their buildings or try to shift the energy consumption

schedule of their high-load household appliances to off-peak

hours. DSM has been considered since the early 1980s [7]–

[11]. DSM can be used as a tool for load shaping, where the

electricity demand is being re-distributed over a certain period

of time (e.g., time-of-day, day-of-week). Broad categories of

load shaping objectives include peak clipping, load shifting,

valley filling, strategic conservation, and flexible load shaping

[7]. For example, peak clipping includes direct load control of

the utilities on customers’ appliances to reduce the peak load.

Several pricing schemes have already been proposed in the

smart grid literature. In general, flat pricing, peak load pricing,

and adaptive pricing are among the most popular approaches

to pricing which have been practiced extensively [12]–[15].

Flat pricing refers to those methods where the utility company

announces a fixed price for all periods. In peak load pricing,

the intended cycle is divided into several periods and a distinct

price value for each period is announced at the beginning of

the operation [14]. On the other hand, in adaptive pricing,

instead of announcing a pre-determined price for each period

of operation at the beginning of the day, the exact price value

for each period is calculated in real-time and is announced

only at the beginning of each operation period. Clearly, in

this method, the realization of random events and the reaction

of users with respect to the previous prices will influence the

price in the upcoming operation periods [12].

Based on a report of the U.S. Department of Energy

[16], smart grid is an electricity delivery system enhanced

with communication facilities and information technologies

to enable more efficient and reliable grid operation with an

improved customer service and a cleaner environment. By

exploiting the two-way communication capabilities of smart

meters it becomes possible to replace the current power system

with a more intelligent infrastructure [17]. From this and given

the importance of demand side management, in this paper,



we focus on the real-time interactions among subscribers and

the energy provider and introduce a novel real-time pricing

algorithm for the future smart grid. The contributions of this

paper can be summarized as follows:

• We propose a real-time pricing algorithm for DSM pro-

grams to encourage desired energy consumption behav-

iors among users and to keep the total consumption level

below the power generation capacity.

• In our system model, the subscribers and the energy

provider automatically interact with each other through a

limited number of message exchanges and by running a

distributed algorithm to find the optimal energy consump-

tion level for each subscriber, the optimal price values to

be advertised by the energy provider, and also the optimal

generating capacity for the energy provider.

• We model the subscriber’s preferences and their energy

consumption patterns in form of carefully selected utility

functions based on concepts from microeconomics.

• We formulate the real-time pricing as an optimization

problem to maximize the aggregate utility of all sub-

scribers in the system while minimizing the imposed

energy cost to the energy provider. Moreover, we include

constraints to limit the total energy consumption level of

all users to the total electricity generation capacity of the

system offered by the energy provider.

• We prove the existence and the uniqueness of the optimal

solution for the formulated optimization problem.

• Simulation results confirm that both subscribers and the

energy provider will benefit from the proposed algorithm.

This paper is organized as follows. The system model is

presented in Section II. In Section III, we formulate our design

as a convex optimization problem and propose a distributed

pricing algorithm. Simulation results are given in Section IV,

and conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider a smart power system consisting of a single energy

provider, several load subscribers or users, and a regulatory

authority. For each user, we assume that there is an energy

consumption controller (ECC) unit which is embedded in the

user’s smart meter. The role of the ECC is to control the user’s

power consumption, and to coordinate each user with other

users and also with the energy provider. All ECC units are

connected to each other and to the energy provider through a

communication infrastructure such as a local area network.

The intended time cycle for the operation of the users is

divided into K time slots, where K � |K|, and K is the set

of all time slots. This division can be based on the behavior

of the users and their power demand pattern: peak load time

slots, valley load time slots, and normal load time slots. Also,

let N denote the set of all users, where N � |N |. For each

user i ∈ N , let xk
i denote the amount of power consumed by

user i in time slot k. For each subscriber i ∈ N and each time

slot k ∈ K, we define the power consumption interval Ik
i as

Ik
i � [mk

i , Mk
i ] (1)

and the consumed power xk
i has to satisfy mk

i ≤ xk
i ≤ Mk

i .

Here, mk
i and Mk

i denote the minimum and the maximum

power consumption of user i, respectively. The minimum

power consumption level may represent the load from ap-

pliances such as refrigerator which always need to be on

during the day. The maximum power consumption level may

also represent the total power consumption level of household

appliances assuming that all appliances are on.

The regulatory authority ensures that the energy provider

will provide the minimum capacity to cover the minimum

power requirements of all users Lmin
k in each time slot.

Lmin
k �

∑

i∈N

mk
i , ∀k ∈ K. (2)

The generation capacity in each time slot k ∈ K is denoted by

Lk, which may differ among time slots. We also define Lmax
k

as the maximum generating capacity in each time slot k ∈ K.

A. User Preference and Utility Function

Each individual subscriber in a power system is an en-

tity which can behave independently. The energy demand

of each subscriber may vary based on different parameters.

For example, we can take into account the time of day,

climate conditions, and also the price of electricity. The energy

demand also depends on the type of the users. For example,

household users may have different responses to the same

price than industrial users. The different response of different

users to various price scenarios can be modeled analytically by

adopting the concept of utility function from microeconomics

[18]. In fact, we can model the behavior of different users

through their different choices of utility functions [4]. For

all users, we represent the corresponding utility function as

U(x, ω), where x is the power consumption level of the user

and ω is a parameter which may vary among users and also

at different times of the day. More formally, for each user, the

utility function represents the level of satisfaction obtained by

the user as a function of its power consumption. We assume

that the utility functions fulfill the following properties:
1) Property I: Utility functions are non-decreasing. That

is, users are always interested to consume more power if

possible until they reach their maximum consumption level.

Mathematically, this implies that we have

∂U(x, ω)

∂x
≥ 0. (3)

For notational convenience we define

V (x, ω) �
∂U(x, ω)

∂x
, (4)

as the marginal benefit [3], [4].
2) Property II: The marginal benefit of customers is a non-

increasing function and we have

∂V (x, ω)

∂x
≤ 0. (5)

In other words, the utility functions are concave and the level

of satisfaction for users can gradually get saturated. While the

class of utility functions that fulfill (3) and (5) is very large,

it is convenient to have a linear marginal benefit [3], [4].



3) Property III: We have to be able to rank the customers

based on their utilities. In our formulation, we assume, for a

fixed consumption level x, a larger ω implies a larger U(x, ω),
which can be expressed as

∂U(x, ω)

∂ω
> 0. (6)

4) Property IV: We assume the general expectation that no

power consumption brings no benefit, so we have

U(0, ω) = 0, ∀ω > 0. (7)

Various choices of utility functions are widely used in the

communications and networking literature [19]. However, re-

cent reports indicate that the behavior of power users can also

be accurately modeled by certain utility functions [3]. In this

paper, we consider quadratic utility functions corresponding

to linear decreasing marginal benefit [5]:

U(x, ω) =

⎧

⎨

⎩

ωx − α
2 x2 if 0 ≤ x ≤ ω

α
,

ω
α

if x ≥ ω
α
,

(8)

where α is a pre-determined parameter. Sample utility func-

tions from this class are shown in Fig. 1.

A subscriber that consumes x kW electricity during a

designated number of hours at a rate of P dollars per kWh is

charged Px dollars per hour. Hence, the welfare of each user

can simply be represented as

W (x, ω) = U(x, ω) − Px, (9)

where W (x, ω) is the user’s welfare function, U(x, ω) is

the utility function of the user, Px is the cost imposed by

the energy provider to the user, and x is the user’s power

consumption. For each announced price value P , each user

tries to adjust its power consumption x to maximize its own

welfare, and this can be achieved by setting the derivative of

(9) equal zero which means that at the optimal consumption

level, the marginal benefit of the user would be equal to the

announced price. For example, different power consumption

responses of a user with a decreasing linear marginal benefit

to two different announced prices are depicted in Fig. 2.

B. Energy Cost Model

We consider a cost function Ck(Lk) indicating the cost of

providing Lk units of energy offered by the energy provider

in each time slot k ∈ K. We make the following assumptions:

Assumption 1: The cost functions are increasing in the

offered energy capacity. That is, for each k ∈ K, we have

Ck(L̂k) ≤ Ck(L̃k), ∀ L̂k ≤ L̃k. (10)

Assumption 2: The cost functions are strictly convex. For

each k ∈ K, any 0 ≤ θ ≤ 1, and L̂k, L̃k ≥ 0, we have [20]

Ck(θL̂k + (1 − θ)L̃k) ≤ θCk(L̂k) + (1 − θ)Ck(L̃k). (11)

Piece-wise linear functions and quadratic functions are two

example cost functions that satisfy Assumption 1 and Assump-

tion 2. In this paper, we consider quadratic cost functions [10]:

Ck(Lk) = akL2
k + bkLk + ck, (12)
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Fig. 1. Sample utility functions for power subscribers (α = 0.3).
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Fig. 2. Different power consumption reactions of a subscriber to two different
announced prices (P1 = 0.2, P2 = 0.1 and α = 0.25).

where ak > 0 and bk, ck ≥ 0 are pre-determined parameters.

III. REAL-TIME PRICING FORMULATION

In this section, we formulate the interactions between the

users and the energy provider as an optimization problem and

analyze the existence and uniqueness of the solution. In our

model, the energy provider announces the price of electricity

in real-time based on the total load demand.

A. Optimization Problem Formulation

From a social fairness point of view, it is desirable to utilize

the available capacity provided by the energy provider in such

a way that the sum of the utility functions of all subscribers

is maximized and the cost imposed to the energy provider is

minimized. However, each subscriber will choose its consump-

tion level to maximize its own welfare function introduced in

(9). These individually optimal consumption levels may not be

socially optimal for a general price announced by the energy

provider. To align these individual optimal consumption levels

with the social optimal case, we need to adopt the sum of

all utility functions minus the cost imposed to the energy

provider as the objective function while the consumption levels

of all users are coupled via the limited available generation

capacity. Having a centralized control over all subscribers,

and also being provided with complete information about the



subscribers’ needs, an efficient energy consumption schedule

can be characterized as the solution of the following problem:

maximize
xk

i
∈Ik

i
, Lmin

k
≤Lk≤Lmax

k
,

i∈N , k∈K

∑

k∈K

∑

i∈N U(xk
i , ωk

i ) − Ck(Lk)

subject to
∑

i∈N xk
i ≤ Lk, ∀k ∈ K,

(13)

where U(xk
i , ωk

i ) is defined in (8), Ck(Lk) is defined in (12),

and ωk
i is the ω parameter of user i in time slot k.

The problem formulated in (13) is a concave maximiza-

tion problem and can be solved using convex programming

techniques such as the interior point method (IPM) [20] in a

central fashion. However, the problem arising in solving (13)

in a central manner is that we need to know the exact utility

function of users. Since it is assumed that the utility parameter

ωk
i for each user i ∈ N is private, the energy provider may

not have sufficient information to solve problem (13).

B. Dual Decomposition Approach

We notice that (13) can be solved independently for each

time slot k ∈ K. In other words, we have the following

optimization problem for each fixed time slot k ∈ K:

maximize
xk

i
∈Ik

i
, i∈N , Lmin

k
≤Lk≤Lmax

k

∑

i∈N U(xk
i , ωk

i ) − Ck(Lk)

subject to
∑

i∈N xk
i ≤ Lk.

(14)

Problem (14) is again convex and can be solved easily in a

centralized manner. In practice, this problem has to be solved

in a distributed fashion. Although the objective function in

(14) is further separable in xk
i and Lk, the variables xk

i and Lk

are coupled by the imposed constraint that the total consumed

power cannot exceed the available capacity in (14).

For primal problem (14), the Lagrangian is defined as [20]:

L(x, Lk, λk)=
∑

i∈N U(xk
i , ωk

i ) − Ck(Lk)
−λk(

∑

i∈N xk
i − Lk),

=
∑

i∈N (U(xk
i , ωk

i ) − λkxk
i )

+λkLk − Ck(Lk),

(15)

where λk is the Lagrange multiplier and x = (xk
i , i ∈ N ) for

a fixed k ∈ K. Due to the separability of the first term in the

Lagrangian, we can write the objective function of the dual

optimization problem as [20]:

D(λk) = maximize
xk

i
∈Ik

i
, i∈N , Lmin

k
≤Lk≤Lmax

k

L(x, Lk, λk)

=
∑

i∈N Bk
i (λk) + Sk(λk),

(16)

where

Bk
i (λk) = maximize

xk
i
∈Ik

i

U(xk
i , ωk

i ) − λkxk
i , (17)

and

Sk(λk) = maximize
Lmin

k
≤Lk≤Lmax

k

λkLk − Ck(Lk). (18)

The dual problem is

minimize
λk>0

D(λk). (19)

The first term in D(λk) in (16) can be decomposed into N

separable subproblems in form of (17), which can be solved

by the users, and another subproblem in form of (18), which

can be solved by the energy provider.

We can show that strong duality holds, and we can solve the

dual problem (19) instead of the primal problem (14). In this

case, we can obtain the solution of the dual problem λk∗, and

each individual subscriber and also the energy provider can

simply solve their own local optimization problem determined

by (17) and (18) to obtain xk∗
i and L∗

k, respectively.

The key idea which motivates us to propose a real-time

pricing algorithm can be understood if we compare the local

problem (17) that has to be solved by each individual user

with (9), introducing each user’s welfare. In fact, if the energy

provider would be able to charge the users at a rate P = λk∗,

and each individual user tries to maximize its own welfare

function, it will be guaranteed by strong duality that the total

power consumption will not exceed the provided capacity.

C. Distributed Algorithm

We explained in the previous section that by charging the

users with the solution of the dual problem λk∗, we can

achieve the solution of primal problem (14). Interestingly, it

is possible to solve the dual problem in an iterative manner

using the gradient projection method, and in this case we have

λk
t+1= [λk

t − γ
∂D(λk

t )
∂λk ]+

= [λk
t + γ

(
∑

i∈N xk∗
i (λk

t ) − L∗
k(λk

t )
)

]+,

(20)

where t ∈ T , and T is the set of time instances at which

the energy provider updates λk. Here, xk∗
i (λk

t ) is the local

optimizer of (17), and L∗
k(λk

t ) is the local optimizer of (18)

for a given λk
t , respectively. Also, λk

t is the value of λk in

instance t ∈ T , and γ is the step size. The interaction between

the energy provider and the subscribers is depicted in Fig. 3.

The distributed algorithms of each subscriber and the energy

provider are summarized in Algorithms 1 and 2, respectively.

Consider Algorithm 1. In Line 1, each subscriber starts with

its initial condition, which is assumed to be random. Then, the

loop in Lines 2 to 6 describes the responses of each subscriber

to the newly announced price λk. Within this loop, each

subscriber receives the new value of λk in Line 3 and solves

local problem (17) to get the optimal consumption xk∗
i (λk)

corresponding to the new value of λk in Line 4. In Line 5, the

user communicates the new value of xk∗
i (λk) to the energy

provider. We note that in each time slot k ∈ K, users apply

their new loads only after the algorithm has converged.

In Algorithm 2, the energy provider starts with random

initial conditions in Line 1. The loop in Lines 2 to 11 continues

during the operational cycle of the system. Within this loop,

the energy provider updates λk in each instance t ∈ T in Lines

4 and 5. It further calculates the new value of Lk(λk) which



Fig. 3. Illustration of the operation of the proposed algorithm and the
interactions between the energy provider and subscribers in the system.

Algorithm 1 : Executed by each subscriber i ∈ N .

1: Initialization.

2: for each t ∈ T
3: Receive the new value of λk from energy provider.

4: Update the consumption value xk∗
i (λk) by solving (17).

5: Communicate the updated xk∗
i (λk) to energy provider.

6: end for

maximizes its welfare and updates its information about the

total consumption level of the system in Lines 7 to 9.

We note that network utility maximization has already been

applied successfully in computer networking. The problem

formulation in this section is similar to the congestion control

problem in the Internet (e.g., [19]). However, the pricing

algorithm in this paper differs from the rate allocation problem

for the Internet in two aspects: (a) The capacity can be adjusted

by the energy provider and may change periodically while the

capacity constraint in [19] is fixed; (b) We consider the energy

cost imposed to the energy provider and formulate the problem

as utility maximization together with cost minimization.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results and assess

the performance of our proposed distributed algorithm. In our

simulation model, we assume there are N = 10 subscribers.

The entire time cycle is divided into 24 time slots representing

the 24 hours of the day. The minimum and the maximum

power requirements of all users vary in each time slot, and

the minimum generating capacity to meet the minimum power

requirements is guaranteed. However, we also assume the

maximum generating capacity Lmax
k is equal to the maxi-

mum total power requirements of all the users, so we have

Lmax
k =

∑

i∈N Mk
i , for all k ∈ K.

We also assume the ω parameter of each user is selected

randomly from the interval [1 , 4] and remains fixed within the

entire cycle. Parameter α of the utility function introduced in

Algorithm 2 : Executed by the energy provider.

1: Initialization.

2: repeat

3: if time t ∈ T
4: Compute the new value of λk using (20).

5: Broadcast the new value of λk to all the subscribers.

6: else

7: Update the capacity value Lk(λk) by solving (18).

8: Receive xk∗
i (λk) from all the subscribers i ∈ N .

9: Update the total load
∑

i∈N xk∗
i (λk) accordingly.

10: end

11: until end of intended period.

(8) is chosen to be 0.5, and we set the parameters of the cost

function introduced in (12) to ak = 0.01, bk = 0, and ck = 0.

Simulation results for the total consumed power for the pro-

posed algorithm are shown in Fig. 4. As illustrated in Fig. 4,

due to real-time interaction of the subscribers and the energy

provider, the two curves corresponding to the total power

consumption of the users and the desired generating capacity

of the energy provider coincide. The high utilization of the

available resources while keeping the total power consumption

below the desired threshold is one of the advantages of the

proposed algorithm. As expected, the generating capacity and

also the total power consumption are bounded within the

minimum and the maximum total power requirements of all

the users in each time slot.

To have a baseline scheme for comparison with the proposed

real-time pricing strategy, we also consider a fixed pricing

scenario with a hard constraint to keep the total consumption

below the generating capacity without interaction with the

users. In the fixed pricing algorithm, the energy provider

announces a price for each time slot k ∈ K at the beginning

of the time slot which guarantees for any type of users with

different choices of the ω parameter that the total consumption

level will not exceed the generating capacity. Therefore, in

the fixed pricing algorithm, the worst case situation where

the ω parameter of all the users assumes the maximum value

ωmax = 4 is being considered. Hence, the price in each time

slot k ∈ K can be calculated as

P k
fixed = ωmax −

Lkα

N
. (21)

Simulation results for the aggregate utility of all users for the

two different methods are shown in Fig. 5. We can see that

the aggregate utility is much higher for our proposed real-time

pricing algorithm than for the fixed pricing algorithm.

Last but not least, our proposed distributed real-time pricing

algorithm can also benefit the users. Let us consider 24 time

slots with different power requirements for different users

in each time slot. Simulation results for the time averaged

welfare of each individual subscriber for our proposed real-

time pricing algorithm as well as the fixed pricing algorithm

are shown in Fig. 6. We can see that the average welfare of

each individual subscriber is much higher for our proposed
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Fig. 4. Total consumed power when the proposed pricing algorithm is used.
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Fig. 5. Obtained aggregate utility of all users when our proposed real-time
pricing algorithm as well as a fixed pricing algorithm are used.

algorithm than for the fixed pricing algorithm.

V. CONCLUSIONS

In this paper, we proposed an optimal real-time pricing

algorithm for DSM in the future smart grid. The proposed

algorithm is based on utility maximization. It can be imple-

mented in a distributed manner to maximize the aggregate

utility of all users and minimize the cost imposed to the energy

provider while keeping the total power consumption below the

generating capacity. Simulation results confirmed that by using

our proposed optimization-based real-time pricing model, not

only the energy provider, but also the users will benefit. The

ideas developed in this paper can be extended in several

directions. A system with multiple energy providers can be

considered. The effect of malicious users can also be explored.
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