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Abstract In this paper an optimal method for distributed collision avoidance among

multiple non-holonomic robots is presented in theory and experiments. Non-holo-

nomic optimal reciprocal collision avoidance (NH-ORCA) builds on the concepts

introduced in [2], but further guarantees smooth and collision-free motions under

non-holonomic constraints. Optimal control inputs and constraints in velocity space

are formally derived for the non-holonomic robots. The theoretical results are va-

lidated in several collision avoidance experiments with up to fourteen e-puck robots

set on collision course. Even in scenarios with very crowded situations, NH-ORCA

showed to be collision-free for all times.

1 Introduction

Multi-robot systems are designed to achieve tasks by collaboration. A key require-

ment for their efficient operation is good coordination and reciprocal collision avoi-

dance. Moving a vehicle on a collision-free path is a well-studied problem in robot

navigation. The work in [4], [6] and [8] presents representative examples of collision

avoidance methods for single mobile robots. Basically, similar approaches as in the

single robot cases can be applied in the context of collision avoidance for multiple

robots. However, the increase in robot density and collaborative interaction needs

methods that scale well with the number of robots. The collision avoidance ap-

proaches are extended in [11] among others for multiple robots by decoupling path

planning and coordination. Other work investigated potential fields [5] and cooper-
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ative control laws [14] to direct a group of robots to their objectives while avoiding

collisions. Decentralized control helps lowering computational cost and introduces

additional robustness and flexibility to the multi-robot system.

In this paper, we develop and formally analyze a new collision avoidance strategy

for a group of non-holonomic robots. Mobile robots we see being deployed nowa-

days in research or industry are mostly non-holonomic. Therefore installations with

multiple robots in real world scenarios, such as multiple vacuum cleaners or colla-

borative monitoring and maintenance vehicles, require collision avoidance methods

that take the non-holonomic constraints of the robots into account.

Our approach builds on Optimal Reciprocal Collision Avoidance (ORCA) [2]

and extends it toward non-holonomic reciprocal collision avoidance. The robots are

controlled to stay within a maximum tracking error E of an ideal holonomic trajec-

tory. Control inputs for optimal tracking are derived from mapping holonomic onto

non-holonomic velocities. We focus on differential-drive robots in the following

work, even though our approach applies more generally for the class of feedback-

linearizable vehicles with non-holonomic kinematics, such as car-like robots or

differentially-driven robots with trailer.

Reciprocal Collision Avoidance (RVO) [3], a collaborative collision avoidance

method based on velocity obstacles, was reformulated as ORCA [2] and shown to

be solved efficiently through a low-dimensional linear program, which results in

completeness and a speed-up of the algorithm. Each robot makes a similar collision

avoidance reasoning and collision-free motion is guaranteed all time, but holonomic

robots are assumed and oscillations in the form of reciprocal dances can occur. The

extension in [12] combines both the concepts of basic velocity obstacles and RVO

to reduce the amount of oscillations. In addition, robot kinematics and sensor un-

certainty are included by enlarging the velocity cones, even though a formal proof

of collision-free motion is not given. The work in [15] generalizes RVO for robots

with non-holonomic constraints by testing sampled controls for their optimality.

As the method requires extensive numeric computation and relies on probabilistic

sampling, it may fail to find an existing feasible solution. The latest extension [13]

introduces a solution for differential-drive robots by applying ORCA on the robot’s

virtual center. This is in contrast to our approach of extending the robot’s radius,

which allows to decrease its extension to zero in crowded scenarios. [13] also relies

on the mapping between desired holonomic and non-holonomic velocities, but is

different from ours in how it is derived; moreover it further constrains the motion

of the robots. Another reactive collision avoidance method for unicycles based on

velocity obstacles was presented in [9], where inputs are obtained by a weighted

combination of the closest collision in normal and tangential directions.

The paper is organized as follows. We start with the problem formulation in Sec-

tion 2 and review the main concepts of ORCA. Then the proposed algorithm for

collision avoidance in a group of non-holonomic robots is presented in Section 3.

In Section 4, we give a formal analysis of the non-holonomic controls that lead to

optimal tracking of holonomic velocities and prove collision-free motion. Section 5

demonstrates the method in experiments with up to fourteen robots and shows suc-

cessful collision avoidance and smooth trajectories.
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Fig. 1 Non-holonomic tracking error. The holonomic trajectory is tracked by the differential-drive

robot moving along the non-holonomic trajectory within tracking error εH .

2 Problem formulation

2.1 Kinematic model of differential-drive robot

First the kinematic model for the differential-drive robot is introduced. The basic

trajectories of the non-holonomic robots considered in this work are defined by

two sections, an arc of circumference covered with constant speed v, followed by

a straight line path with constant speed v1, as illustrated in Fig. 1. The basic non-

holonomic controls (v(t),ω(t)) consist of the linear and angular velocities

v(t) =

{

v = ω R , for 0 ≤ t ≤ t1
v1 , for t > t1

, ω(t) =

{

ω , for 0 ≤ t ≤ t1
0, for t > t1

. (1)

Note that in our formulation the robots have no constraints in acceleration, neverthe-

less, these could be easily included by adding to the complexity of the formulation.

Although the planned trajectory is a circular sector followed by a straight line seg-

ment, the robots perform only a part of the circular segment and then recompute,

which results in final trajectories that are much more complex.

The kinematic constraints are given by |v(t)| ≤ vmax,ω = vmax−|ω(t)| lw
2

, |ω(t)| ≤
ωmax =

2vmax
s

lwKvs
and vmax =

vmax
s
Kvs

, where the wheel speed is bounded by −vmax
s ≤ vs(t) =

(

v(t)± lw
2

ω(t)
)

Kvs ≤ vmax
s , with vs(t) the angular velocity of the right and the left

wheel respectively, lw is the distance between the wheels and Kvs a conversion

factor. The system parameters that are relevant for the locomotion of the e-puck

robot (refer to Section 5) are given by: lw = 0.0525 m, vmax
s = 1000 steps/s, Kvs =

7674.6 steps/m, vmax = 0.13 m/s and ωmax = 4.96 rad/s.

The set of non-holonomic controls SNHC = {(v(t),ω(t)) |Eq. (1) and kinematic

constraints} is defined as the feasible subset of the controls (v(t),ω(t)) given by

Eq. (1), i.e. the controls satisfying the kinematic constraints.
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2.2 Set of allowed holonomic velocities

The underlying idea of the approach here presented is that a particular non-holo-

nomic robot is able to track a certain set of holonomic motions within a given ma-

ximum tracking error E . Therefore, increasing the radius of each robot by its fixed

value E guarantees collision-free trajectories, even in the case of non-holonomic

robots. The tracking error εH is quantified by consideration of the robot’s kinema-

tics and can be bounded by a certain value E through limiting the set of holonomic

trajectories to be tracked.

In Fig. 1 the trajectories for both holonomic and non-holonomic robots are pre-

sented. If the velocity v1 of the non-holonomic robot in Eq. (1) is fixed to the speed

of the holonomic robot VH , the maximum error in tracking a holonomic trajectory

at constant velocity vH =VH(cos(θH),sin(θH)) is given at time t1, and represented

by εH . Note that the tracking error might as well be decreased with a more com-

plex control scheme. However, it never increases under the non-holonomic controls

according to Eq. (1). Let us fix v1 =VH in the following.

Thus, for a given holonomic velocity vHi
= vH and control inputs (v,ω) at time

t = k∆ t, where k ∈ N is the iteration index and ∆ t the time step, the value of the

tracking error εH is given by simple geometry

ε2
H(v,w,VH ,θH) = (VHt1 −Rsin(θH))

2 +(R(1− cos(θH)))
2

= V 2
Ht2

1 −
2VHt1 sin(θH)

ω
v+

2(1− cos(θH))

ω2
v2
. (2)

For non-holonomic robots and fixed a maximum tracking error E , the set of al-

lowed holonomic velocities SAHV is given by the velocities vH for which there exists

a control input within the set of non-holonomic controls SNHC that guarantees a

tracking error lower or equal than the given maximum tracking error E at all times.

The set of allowed holonomic velocities is defined as

SAHV = {vH ∈ R
2 | ∃(v(τ),ω(τ)) ∈ SNHC, ||p+ τ ·vH − p̂k(τ)|| ≤ E ∀τ ≥ 0},

(3)

where p̂k(τ) is the expected robot position at time k∆ t + τ if controls (v(τ), ω(τ))
are applied at time k∆ t.

In order to obtain smooth trajectories, the time t1 to achieve the correct orienta-

tion θH can be fixed to a minimum value T . Note that this value must be at least

equal to the time step ∆ t of the controller. t1 is kept fixed for the following sections.

In Section 4 the closed form of SAHV and the mapping between the sets SAHV and

SNHC, as well as the proof of collision-free motion, are derived.
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2.3 Optimal reciprocal collision avoidance

ORCA [2] is a velocity-based approach to collision avoidance that provides a suf-

ficient condition for guaranteeing collision-free motion among multiple holonomic

robots. Given a group of n disk-shaped robots with radius ri and velocity vi ∈ R
2

at position pi in the plane R
2, each robot tries to reach an assigned goal point gi by

selecting a preferred velocity v
pre f
i ∈ R

2. The objective is to choose an optimal vi,

which lies as close as possible to v
pre f
i , such that collisions among the robots are

avoided for at least a time horizon τ .

In the case of holonomic robots with velocities vH ∈R
2, the velocity obstacle for

robot i ∈ [1,n]⊂ N with ri at pi induced by any robot j ∈ [1,n], j 6= i, with r j at p j

is defined as the set of relative velocities v̄ = vHi
−vH j

between robots i and j

VOτ
i| j =

{

v̄ |∃t ∈ [0,τ] , t · v̄ ∈ D(p j −pi, ri + r j)
}

, (4)

with D(p,r) = {q |‖q−p‖< r} the open ball of radius r. The set of collision-free

velocities ORCAτ
i| j for robot i with respect to robot j can geometrically be cons-

tructed from VOτ
i| j (see Fig. 2 left and center). First, the minimum change

u = (argmin
v̄∈∂VOτ

i| j

‖v̄− (vopt
i −v

opt
j )‖)− (vopt

i −v
opt
j ) , (5)

which needs to be added to v̄ to avoid a collision, is computed. v
opt
i is the opti-

mization velocity, set to the current velocity vcurrent
Hi

of the robot. This gives good

results as shown in [2]. Then ORCAτ
i| j = {vHi

|(vHi
− (vopt

i + cu)) ·n ≥ 0} follows

as described in [2]. n denotes the outward normal of the boundary of VOτ
i| j at

(vopt
i −v

opt
j )+u, and c defines how much each robot gets involved in avoiding a col-

lision. c = 1
2

means both robots i and j help to equal amounts to avoid colliding with

each other; c = 1 means robot i fully avoids collisions with a dynamic obstacle j.

Likewise, the velocity obstacle can be computed for static obstacles following [2].

The set of collision-free velocities for robot i, ORCAτ
i , is given by

ORCAτ
i = SAHVi

∩
⋂

j 6=i

ORCAτ
i| j , (6)

with SAHVi
the set of allowed holonomic velocities under the kinematic constraints

of robot i. For holonomic robots, SAHVi
= D(0,V max

Hi
). Fig. 2 on the right shows the

set ORCAτ
i for a configuration with multiple robots, where SAHVi

is approximated

by the convex polygon PAHVi
for a differential-drive robot.

The optimal holonomic velocity for robot i is to be found as

v∗Hi
= argmin

vHi
∈ORCAτ

i

‖vHi
−v

pre f
i ‖. (7)
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Fig. 2 Left: configuration with two non-holonomic robots. Center: VOτ
i| j and ORCAτ

i| j for a holo-

nomic robot at pi with ri + ε and vcurrent
Hi

, generated by a holonomic robot at p j with r j + ε and

vcurrent
H j

. Right: constraints in velocity generated by ORCAτ
i| j from multiple robots, together with

the set PAHVi
taking into account the kinematics of the robot. The region of collision-free velocities

ORCAτ
i is highlighted and v∗Hi

is displayed.

3 NH-ORCA: Optimal reciprocal collision avoidance under

non-holonomic constraints

In each time-step NH-ORCA consists of the following three main steps: first, VOτ
i| j

and ORCAτ
i| j are computed for holonomic robots of radius ri + Ei, r j + E j at pi,

p j with velocity vcurrent
Hi

, vcurrent
H j

. Second, SAHVi
is computed for fixed Ei and Ti

and approximated by a convex polygon PAHVi
. Moreover, ORCAτ

i is generated with

respect to the neighboring robots and an optimal holonomic velocity is selected

from the set of collision-free velocities defined by Eq. (6); thereby, the preferred

velocities of the robots are taken into account. This is represented in Fig. 2 where

E = Ei = E j. Finally, the selected holonomic velocity is mapped to the correspond-

ing non-holonomic control inputs, which guarantee collision-free motion. A detailed

description of the algorithm is provided in Algorithm 1.

The closed-form expression from Eq. (13) (in Section 4) is evaluated to compute

the maximum allowed holonomic velocities, this is the set SAHVi
. In general, SAHVi

is not convex for a given Ti. In our implementation of NH-ORCA, the area of SAHVi

is approximated by a convex polygon PAHVi
that lies inside SAHVi

. This simplifies

the optimization problem. Note that PAHVi
can be precomputed due to rotational in-

variance and at each iteration be aligned with the current orientation of the robot.

As ORCAτ
i is a convex region formed by linear constraints, a quadratic optimization

problem with linear constraints is formulated. Eq. (7), where SAHVi
is substituted

by PAHVi
, can efficiently be solved by methods from computational geometry. The

optimization velocity v
opt
i that is used in the optimization is set to the current holo-

nomic velocity vcurrent
Hi

of the agent, but other choices are possible. The mapping to

non-holonomic optimal control inputs follows from Eq. (9) (in Section 4).

NH-ORCA can be applied to heterogeneous groups of robots with different kine-

matic constraints, sizes, maximum tracking errors Ei and lower bounds Ti.



Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots 7

Algorithm 1 Non-Holonomic Reciprocal Collision Avoidance.

Require: Fixed Ei and Ti. Group of differential-drive robots i ∈ [1,n] provided with:

- internal parameters: pi, vcurrent
Hi

, θi, v
pre f
i , ri, Ei, Ti.

- external parameters (obtained from sensing or communication): p j , vcurrent
H j

, r j +E j with j 6= i.

1: Compute PAHVi,0
from closed-form expression of SAHVi,0

and zero orientation, Eq. (13).

2: loop

3: for i ∈ {1, ...,n} do

4: Compute PAHVi
by rotating PAHVi,0

to match orientation θi.

5: for j ∈ {1, ...,n}, j 6= i do

6: Compute VOτ
i| j for holonomic robots of radius ri +Ei and r j +E j at pi and p j with

vcurrent
Hi

and vcurrent
H j

.

7: Compute ORCAτ
i| j .

8: end for

9: Construct ORCAτ
i = PAHVi

∩⋂

i 6= j ORCAτ
i| j .

10: Compute optimal collision-free holonomic velocity v∗Hi
following Eq. (7).

11: Map v∗Hi
to (vi,ωi) following Eq. (9).

12: Apply controls.

13: end for

14: end loop

4 Formal analysis

In our analysis the symmetry of the tracking with respect to both axis and its rota-

tional invariance is exploited. Therefore, the considerations are limited to the case

of tracking holonomic velocities in R
2
+ and zero orientation of the agent. It is clear

that the analysis extends likewise to entire R
2 and general orientation of the robot.

4.1 Selection of non-holonomic controls

In this section, the control inputs (v,ω) for optimal tracking of a given holonomic

velocity vH are found. The controls for the non-holonomic robot are chosen as those

that minimize the tracking error εH , while achieving the correct orientation in the

fixed given time T . If this is impossible due to the robot’s constraints, the robot

performs a turn in place by rotating at maximum speed until the correct orientation

is reached, i.e. ω = min
(

θH
T
, ωmax

)

. In general, t1, θH and ω are related by ω = θH
t1

.

With everything else fixed, the linear velocity that minimizes Eq. (2) is given by

v∗ =
VHt1 sin(θH)ω

2(1− cos(θH))
=VH

θH sin(θH)

2(1− cos(θH))
. (8)
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The optimal linear velocity might not be feasible due to the limits on the linear and

angular velocities. Therefore, the optimal controls are

RA1 : ω =
θH

T
≤ ωmax and v = v∗ ≤ vmax,ω

RA2 : ω =
θH

T
≤ ωmax and v = vmax,ω

RB : ω = ωmax and v = 0. (9)

If the optimal controls are chosen, the maximum tracking error ε2
H(vH) committed

in each of the regions are derived from Eq. (2) and Eq. (8) and given by

RA1 : ε2
H =

(

2(1− cos(θH))− sin2(θH)

2(1− cos(θH)

)

T 2V 2
H (10)

RA2 : ε2
H =V 2

HT 2 − 2VHT 2 sin(θH)

θH

vmax,ω +
2T 2(1− cos(θH))

θ 2
H

v2
max,ω (11)

RB : εH =VHt1 =VH

θH

ωmax

. (12)

4.2 Construction of SAHV

The closed form of the set of allowed holonomic velocities SAHV is derived for fixed

E and T in this section. For a given orientation θH of the holonomic velocity, the

maximum holonomic speed VH that can be successfully tracked with εH ≤ E is

computed (see Fig. 3). Note that for feasibility, the maximum holonomic speed is

limited by the robot’s maximum linear velocity VH ≤ vmax. Otherwise the tracking

error would increase after time t1.

Theorem 1. Both the optimal linear velocity v(VH) and the tracking error εH(VH)
are monotonically increasing with respect to the holonomic speed VH for fixed θH .

Proof. From Eq. (8)-(9) it directly follows that, with everything else fixed, the op-

timal linear velocity v is monotonically increasing with respect to the holonomic

speed VH . The monotonicity of εH(VH) is derived from Eq. (10)-(12). Due to li-

mited space, the proof is omitted. ⊓⊔

Theorem 2. The maximum holonomic speed V max
H that can be tracked with εH ≤ E

for a fixed θH is given by

V max
H =



























min

(

E

T

√

2(1−cos(θH ))

2(1−cos(θH ))−sin2(θH )
, vmax

)

if

{

θH
T

≤ ωmax

v∗
E
≤ vmax,ω

min

(

−β+
√

β 2−4αγ
2γ , vmax

)

if

{

θH
T

≤ ωmax

v∗
E
≥ vmax,ω

min
(

E ωmax
θH

, vmax

)

if θH
T

≥ ωmax,

(13)
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where v∗
E
, α, β , γ are given by

v∗E =
E

T

θH sin(θH)

2(1− cos(θH))

√

2(1− cos(θH))

2(1− cos(θH))− sin2(θH)
, (14)

α = T 2
, β =−2T 2 sin(θH)

θH

vmax,ω , γ =
2T 2(1− cos(θH))

θ 2
H

v2
max,ω −E

2
. (15)

Proof. Denote vvmax
H

and ωvmax
H

the linear and angular velocities for optimal tracking

of the maximum holonomic velocity vmax
H , given by V max

H and θH .

The proof is divided for regions RA1, RA2 and RB. Recall from Theorem 1 that,

v(VH) and εH(VH) are monotonically increasing with respect to VH . This is impli-

citly used in the proof. In all cases the value of the maximum holonomic speed V max
H

must be limited to vmax following VH ≤ vmax.

- Region RA1: Assume ωvmax
H

= θH
T

<ωmax. Consider the case where vvmax
H

< vmax,ω .

The holonomic speed which gives a tracking error equal to the maximum εH = E

is found by solving Eq. (10), which gives the top value V max
H of Eq. (13). The li-

near velocity for optimal tracking of vmax
H is then given by Eq. (14), obtained by

substituting V max
H into Eq. (8), which is feasible if v∗

E
≤ vmax,ω = vmax − θH lW

2T
. If

this holds, vvmax
H

= v∗
E

. Otherwise, the solution is found in region RA2.

- Region RA2: Assume ωvmax
H

= θH
T

<ωmax. Consider the case where vvmax
H

= vmax,ω .

The tracking error is given by Eq. (11) and from Theorem 1, the maximum

holonomic speed V max
H satisfies εH = E . The solution is given by solving,

0=α(V max
H )2+βV max

H +γ , where from Eq. (11), α = T 2, β =− 2T 2 sin(θH )
θH

vmax,ω

and γ = 2T 2(1−cos(θH ))

θ 2
H

v2
max,ω −E

2. From Theorem 1, the maximum holonomic

speed is given by the solution of largest value, hence the middle value V max
H

of Eq. (13). The associated linear velocity for optimal tracking is given by

vvmax
H

= vmax,ω = vmax− θH lW
2T

. Finally, the value of the maximum holonomic speed

V max
H must be limited to vmax following VH ≤ vmax.

- Region RB: Assume ωvmax
H

= ωmax. In this case, a rotation in place is performed.

Therefore vvmax
H

= 0. Recalling Eq. (12) and Theorem 1, the maximum holonomic

speed V max
H from Eq. (13) bottom is obtained. ⊓⊔

Similar results are derived for the case where the angular velocity ω is limited by

ω̂ < ωmax. This leads to smoother trajectories and, independently of the chosen T ,

in place rotations are avoided.
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Theorem 3. Consider ω ≤ ω̂ < ωmax. The maximum holonomic speed V max
H that

can be tracked with εH ≤ E for a fixed θH is given by

V max
H =















































min

(

E

T

√

2(1−cos(θH ))

2(1−cos(θH ))−sin2(θH )
, vmax

)

if

{

θH
T

≤ ω̂
v∗
E
≤ vmax,ω

min

(

−β+
√

β 2−4αγ
2γ , vmax

)

if

{

θH
T

≤ ω̂
v∗
E
≥ vmax,ω

min

(

E ω̂
θH

√

2(1−cos(θH ))

2(1−cos(θH ))−sin2(θH )
, vmax

)

if

{

θH
T

≥ ω̂
v∗
E
≤ vmax,ω

min

(

−β̂+
√

β̂ 2−4α̂ γ̂
2γ̂ , vmax

)

if

{

θH
T

≥ ω̂
v∗
E
≥ vmax,ω

(16)

where v∗
E
, α, β , γ are given by Eq. (14) and (15). α̂, β̂ , γ̂ are given by

α̂ =
θ 2

H

ω̂2
, β̂ =−2θH sin(θH)

ω̂2
vmax,ω , γ̂ =

2(1− cos(θH))

ω̂2
v2

max,ω −E
2
. (17)

Proof. The proof is analogous to that of Theorem 2, where the optimal controls are

given by ω = min( θH
T
, ω̂) and v = min(v∗, vmax,ω). ⊓⊔

Remark 1 Maximal SAHV . The maximal set of allowed holonomic velocities Smax
AHV

is given by a maximization of the maximal holonomic speed V max
H over T for a fixed

orientation θH , Smax
AHV =

⋃

T∈[∆ t,∞) SAHV . In this case the time T is not constant, but

varies as a function of the orientation θH .

Remark 2 Polygonal approximation PAHV . Due to the particular non-convex shape

of the SAHV two options are described. First, the best approximation is obtained by

dividing SAHV in two complementary regions, one for forward and one for back-

ward driving. Then, the problem is solved for one region (the one pointing towards

the desired goal) and if unfeasible, for the opposite region in a second step. This

region is represented by PAHV,A in Fig. 3. Alternatively, a faster but more restrictive

implementation is obtained by using the biggest rectangle contained inside SAHV .

This region is represented by PAHV,B in Fig. 3 on the right.

Remark 3 Behavior in the limits. Two limit cases might be considered:

- Limit T → 0. For θH = 0 trajectories are straight lines; in fact, ω = 0 holds

independent of T and therefore perfect tracking is achieved for VH ≤ vmax.

For θH ∈ (0, π
2
] and fixed θH , θH

T
→ ∞ is obtained; therefore, rotation in place

with ω = ωmax and v = 0 is always the chosen trajectory. This reduces to time

optimal trajectories, each composed of straight line segments alternating with

turns in place as seen in [1].

- Limit E → 0. For θH = 0 trajectories are straight lines; again, ω = 0 holds in-

dependent of T and therefore perfect tracking is achieved for VH ≤ vmax. For

θH ∈ (0, π
2
], it can be seen from Theorem 2 that trajectories are reduced to turn-

ing in place at angular velocity ω = min
(

θH
T
,ωmax

)

and v = 0.
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Fig. 3 Left: SAHV for fixed E and varying T . Tmax(θH) denotes the variable T that results in the

maximal set Smax
AHV . Right: SAHV for fixed T and varying E . Two polygonal approximations PAHV,A

and PAHV,B are shown for E = 0.01 m and T = 0.35 s.

Remark 4 Variable maximum tracking error E . NH-ORCA guarantees collision-

free trajectories for non-holonomic robots, that is ri + r j ≤ d(pi,p j). To guarantee

feasibility of the computation of the VOτ
i| j, ri + r j + Ei + E j ≤ d(pi,p j) must be

satisfied, i.e. the extended radii of the robots must not be in collision. This might

happen for fixed Ei and ωi 6= 0 but is assuredly avoided by having Ei and E j stepwise

decreasing when robots are close to each other.

4.3 Collision-free motion

Finally, the proof that NH-ORCA guarantees collision-free motions among multiple

non-holonomic robots is presented.

Theorem 4. The trajectories of all robots are guaranteed to be collision-free.

Proof. First, planned trajectories for the holonomic robots of radius ri + Ei are

collision-free, if solutions of ORCA exist, as proven in [2]. Otherwise the cons-

traints given by ORCAτ
i| j must be relaxed by decreasing τ until the problem be-

comes feasible, thus becoming a 3D optimization [2]. Second, planned trajectories

for non-holonomic robots stay within distance Ei of the planned trajectories for ex-

tended holonomic robots, if Ti ≥ ∆ t. Note that this only guarantees that the distance

between two non-holonomic agents is greater than the sum of their radii. To gua-

rantee feasibility of the velocity obstacles computation, and thus completion of the

method, Remark 4 must hold in addition.

Trajectories planned for the non-holonomic robot are collision-free. Due to the

time-discrete implementation, after each time-step a new collision-free trajectory is

computed. Therefore, the trajectories of all agents, given as concatenation of seg-

ments, are collision-free. ⊓⊔
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Remark 5 Deadlocks. NH-ORCA guarantees collision-free trajectories for non-

holonomic robots but convergence to a goal destination is not fully guaranteed.

While robots are in movement, deadlocks will not appear (as seen in our experi-

ments in Section 5. Nevertheless, when robots reach their goal, their behavior is

close to that of static obstacles. If they are approached by another robot, a deadlock

situation may result as the robot’s velocity that is closest to its preferred velocity

might become zero in order to avoid collisions. This is inherited from the original

method for holonomic agents [2] and can be resolved by waypoint navigation [7].

5 Experimental results

We have evaluated the proposed collision avoidance method and the theoretical re-

sults by experiments with real robots. A group of fourteen e-puck robots [10] is used

in the experiments. The e-puck is a small disk-shaped differential-drive robot. To en-

able reliable communication and tracking of the e-pucks, the robots were enhanced

with a generic radio receiver and eight infrared LEDs. Red-colored disks were fur-

ther added on top of each robot for better visual appearance. The following parame-

ters for the NH-ORCA computation are selected: E = 0.01 m, T = 0.35 s, τ = 7 s,

V pre f = 0.1 m/s and r = 0.05 m the radius of the modified e-puck.

The test setup consists of a central workstation with radio transmitter and an

overhead camera mounted on a frame above a flat floor plate of 1.2 m x 1.4 m. The

robots’ positions and orientations are detected and read into the workstation, where

the NH-ORCA is computed for each robot in a decentralized way. The resulting

velocities are then broadcasted to the e-pucks in each iteration. The e-puck robots

and the workstation form a closed control loop running at a frequency of 10 Hz.

The results of two experiments are presented, which confirm the theoretical fin-

dings from Section 4. In the first experiment four e-puck robots are placed in square

shape and consecutively exchange positions with each other. Fig. 4 on the left il-

lustrates a subsequence of the robots exchanging positions in diagonal directions.

On the right, the trajectories for two out of the four robots are shown when moving

along the square’s vertical edge to swap positions. As can be seen from the trajec-

tories of the first experiment, not only collision-free but also smooth and visually

appealing motions are obtained for the differential-drive robots with the NH-ORCA

algorithm.

In cases of symmetry and in order to avoid reciprocal dances [12], the closest

point on the velocity obstacle VOτ
i| j is selected clockwise for Eq. (5). This gives

preference to right-side avoidance in cases of full symmetry.

In the second experiment, fourteen e-pucks are lined up on a circle and move

all together to their antipodal positions on the circle’s boundary. This experiment

demonstrates that the distributed NH-ORCA algorithm scales with the number of

robots, and that it can moreover be applied without any change in the set of param-

eters for scenarios with many robots (the same parameters as in the first experiment

with only four robots are used). The robots successfully solve a very crowded sce-
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Fig. 4 Experiment 1 with four e-puck robots. Left: e-pucks exchanging positions in diagonal di-

rection. Right: e-pucks exchanging positions vertically. Both sequences and trajectories are smooth

and collision-free.

Fig. 5 Experiment 2 with fourteen e-puck robots. The sequence shows collision-free transition of

the e-pucks through the circle center to the antipodal position on the circle’s boundary.

nario while avoiding collisions at all times. In such scenarios with many robots, a

slow-down of the robots can be noticed in areas of increased robot density. This

results from the stronger constraints on the feasible set of velocities, and is in corre-

spondence with Theorem 2 and Remarks 3 and 4 (tendency of increasingly turning

in place).

In cases where the optimization becomes unfeasible, zero inputs can be selected

for the robots. Alternatively, implementation of Remark 4 and of the 3D optimiza-

tion guarantee feasibility while leading to a decrease in the time of collision τ . As a

result, faster motions are achieved for the robots in Experiment 2. The robots can get

infinitely close from the fact that no safety area is added, but collisions are avoided.

Further experiments studied different scenarios, including scenarios with dynamic

obstacles. A video showing the conducted experiments in full length accompanies

the paper.

6 Conclusion and outlook

In this work, a fast and distributed method for local collision avoidance among

non-holonomic robots, so-called NH-ORCA, is presented on the basis of multiple

differential-drive robots. Formal proofs of collision-free motion (valid both for con-

tinuous and discrete control) are derived and several experiments are performed

verifying the results. NH-ORCA achieves smooth and visually appealing trajecto-

ries for non-holonomic robots, as demonstrated in the first experiment. Furthermore,
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the method successfully deals with very crowded situations, as shown in the second

experiment with a larger group of fourteen robots.

In future work, it would be interesting to extend the method here presented to

other non-holonomic vehicle dynamics. We believe this can be achieved by modi-

fying the set of allowed holonomic velocities SAHV . In accordance with [2], another

line of research is to combine NH-ORCA with global path planning and to look

closer at the avoidance of deadlock situations. For less controlled environments, or

full integration of sensing and actuation, the method should be extended to com-

pensate for uncertainties. Eventually, the method could be generalized for higher

dimension and applied to underwater or aerial robots in R
3.
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