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ABSTRACT

We consider the problem of image interpolation from an

adaptive optimal recovery point of view. Many different

standard interpolation approaches may be viewed through

the prism of optimal recovery. In this paper we review some

standard image interpolation methods and how they relate to

optimal recovery as well as introduce a broader, more gen-

eral and systematic approach to image interpolation using

adaptive optimal recovery.

1. INTRODUCTION

Any successful image interpolation method requires a good

image model. The standard bi-cubic interpolation assumes

that the image is locally cubic, in [3] the assumption is that

locally each pixel can be represented as a linear combina-

tion of the known neighboring pixels and in [2] we assumed

that the image had been passed through a known low-pass

filter, before decimation. One new category of interpolation

algorithms is based on learning. In particular, the idea is to

use the coarse scale image, or a collection of other similar

images, to learn something about the given image and then

use that knowledge to interpolate.

In this paper we give a brief review of the theory of op-

timal recovery [5, 7, 8]. We show how knowledge of the

quadratic class can be used in deriving some common in-

terpolation algorithms. Finally, we present a new and sys-

tematic method for learning the local quadratic signal class

and show how to use this for image interpolation. This

method is different and more systematically motivated than

the method we presented in [1].

2. OPTIMAL RECOVERY

In this section we briefly review the theory of optimal re-

covery as applied to the interpolation problem [8]. We then

apply this theory to develop a new adaptive approach to im-

age interpolation. The interpolation problem may be viewed

as a problem of estimating missing samples of an image.
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This latter problem can be examined using the theory of op-

timal recovery. The theory of optimal recovery provides a

broader setting, which illuminates the process of interpola-

tion, by providing error bounds and allowing calculation of

worst-case images which achieve these bounds.

Locally, at location
�

, we model the image as belonging

to a certain ellipsoidal signal class ✁
✁✄✂✆☎✞✝✠✟☛✡✌☞✎✍✏✝✒✑✔✓✕✝✠✖✘✗✞✙ (1)

where ✓ is derived from the local image pixels or may be

assumed known. Vector ✝ is any subset of the image con-

taining the missing pixel
�

. Vector ✝ is chosen such that any✚
linear functionals ( ✛✢✜✤✣✦✥✧✂✩★✪✣✬✫✞✫✬✫✭✣ ✚ ) of ✝ are assumed

known. If we note the actual values of the functionals by✮ ✜ we have ✛✢✜✰✯✱✝✒✲✕✂ ✮ ✜ . In this paper we assume that the

functionals are based on derivatives and/or actual pixel val-

ues of the decimated image. The known functionals ✛✢✜ , in

the local image, determine a hyper-plane ✳ .

The intersection of the hyper-plane and ellipsoid is a

hyper-circle in ✳ . The intersection depends upon the known

functionals of the local image and we call it ✴✶✵ . Formally,

✴✶✵✷✂✸☎✹✝✠✟☛✳✺✍✪✛ ✜ ✯✱✝✒✲✻✂ ✮ ✜ ✣✹✼✭✝✢✼✭✽✘✖✾★✏✙✿✣ (2)

For a linear mapping ❀ , the image of ✴ ✵ under ❀ is the

range of values that ❀ ✮ can take. The optimal recovery

problem is to select the value in ✳ which is a best approxi-

mation over all ❀ ✮ in ❀☛✴✶✵ . We want to minimize

❁ ✂❃❂✕❄❆❅✵❈❇❉✽❊✵
❋❍●�❏■❑� ❋

The Chebyshev center achieves this minimization. The Cheby-

shev center has been shown to be the minimum ▲ -norm sig-

nal on the hyper-plane determined by the known samples.

The solution to this problem is well-known: see [8, 7].

If the collection of known functionals is
✮ ✜ , the mini-

mum norm signal is ▼◆ . Signal ▼◆ is the unique signal in ✳
with the property,

✼❉▼◆ ✼✭✽❖✂ P❘◗❚❙❯✿❱❳❲ ✵✹❨✱❩❊❬ ❱ ✼❭✝✢✼✬✽ (3)



Our estimates signal ▼◆ must satisfy ✛ ✜ ✯✭▼◆ ✲❪✂ ✮ ✜ and we are

estimating ✛✕✯✭▼◆ ✲❫✂ ✮
. As shown in [8] there exist vectors❴ ✣ ❴❛❵ ✣✞✫✬✫✞✫✬✣ ❴✒❜ such that ✛✕✯ ●◆ ✲❝✂✆✯ ❴ ✣✪▼◆ ✲ ✽ and

✛ ✜ ✯ ●◆ ✲❞✂❡✯ ❴ ✜ ✣✏▼◆ ✲❢✽ (4)

where the parentheses denote a ✓ dot product. Vectors
❴ ✜

are known as the representers. From [8] the solution is given

by

▼◆ ✂
❜❣
✜ ❩ ❵✐❤ ✜

❴ ✜ (5)

where the constants ❤ ✜ are determined from the constraint

of equation (4).

An advantage of this approach is not only that we can

minimize the distance
❁ ✂❥❂✕❄✏❅ ✵ ❇ ✽❊✵ ❋❍●�❦■❧� ❋ , but we also

obtain bounds on the maximum error
❁

and we can find the

image which achieves this maximum error.

3. CONSTANT Q

As we mentioned in section two, the choice of ✓ is criti-

cal. If we assume that our quadratic class is constant over

the entire image, we can derive cubic interpolation. We as-

sume that our signals are observed at the output of a fil-

ter whose impulse response, in Matlab notation, is ♠✺✂♥ ✫ ♦✿♣✿q✪rs✣❞✫ ♣✿q✪t✈✉❚✣❞✫①✇✪✇✏♦s★✪✣ ■ ✫❘★✹✇✪②✏♦✪③ . The filter class

✁✄✂✆☎❊✝④✍⑤✝✧✂⑦⑥ ◆ ✣ ◆ ✟✠⑧⑩⑨✪✣ ❋❘❋ ◆ ❋❶❋ ⑨✌✖❷★❞✙ (6)

corresponds to the assumption that all of our signals are

modeled as the result of a bounded energy input applied

to the filter with unit pulse response ♠ . This low-pass ♠
may be familiar; it is the set of scaling equation coefficients

corresponding to the length-4 Daubechies wavelet. Sup-

pose we want to increase the sampling rate by a factor of 2.

Specifically, assume that we are given the 4 signal values,✝❸✯ ■ q✿✲❭✣✤✝❸✯ ■ ★✹✲❭✣✤✝❸✯✦★✹✲❭✣✤✝❸✯❹q✿✲ and we would like to estimate the

center sample, ✝✢✯❺r✈✲ . Since, as shown in [5] the best estimate

for signals in ✁ is a linear combination of the representers

of the samples, and the representers for the filter class are

simply the autocorrelation of the impulse response of the

filter, we have representers
❴

which are translates by 2 of

the autocorrelation

❻ ✂ ♥ ■ rs✫ r✿t✿✇✿✉✔r❼✫ r✪r✪r✿r❞r❼✫①✉✏t✈✇✪✉✶★✿✫ r✿r✪r✪r❝r❼✫①✉✏t✿✇✿✉✔r❼✫ r✪r✿r✪r ■ r❼✫ r✪t✈✇✪✉❆③
Interpolation with these weights is exactly the same as fit-

ting a cubic polynomial, ❽❸✯✱✝❾✲ to the the 4 known points and

using ❽✢✯❺r✿✲ as the estimate for the sample at index r . To es-

timate any even index sample, given the odd index samples,

we simply fit a cubic polynomial to the four points nearest

to the sample we want to estimate and then use the value of

that polynomial in the center as our estimate. We call this

piecewise-cubic interpolation. It is the optimal estimate for

x❿ TQ2
➀ x=c xTQ1x=c❿

Fig. 1. Training set ➁ and contours corresponding to✝ ✑ ✓✎➂❆✝➃✂➅➄ and ✝ ✑ ✓✎➆❈✝➇✂➈➄ . The training set ➁ is better

represented by the contour corresponding to ✝ ✑ ✓✎➂❈✝④✂➉➄
than the one corresponding to ✝ ✑ ✓➊➆❈✝✧✂➋➄ .

this filter class in the sense that the maximum error magni-

tude

❂✕❄❆❅✵✪➌✪➍
❋ ✝✢✯❺r✿✲ ■ ●✝✢✯❺r✈✲ ❋

is minimized.

4. LEARNING Q

In the previous section we discussed an image interpola-

tion example where ✓ had been fixed. Better results can

be obtained if ✓ is learned, adaptively and locally, from the

image.

Assume that a given training set ➁ is to be used for learn-

ing our matrix ✓ . For convenience, we further assume that➁ is a matrix with the training vectors as columns. These

training signals lie in a particular region of the space which

we assume to be representative of the signal we are trying

to interpolate. Our aim is to find a ✓ such that the ellipsoid

✝➎✑✢✓✕✝✧✂⑦➄✬➏❈➐❊➑✬➒❢➓✈➐❛➒
is representative of the training set ➁ as shown in Fig. 1.

What does this mean? We want a ✓ for which the contour

of ✝ ✑ ✓➔✝→✂➈➄ models the locus of the training set ➁ . Intu-

itively, the contour ✝ ✑ ✓➔✝➣✂✺➄ is an ellipsoid stretched in

the direction of the eigenvectors of ✓ . The stretch is largest

in the direction where ✓ has the smallest eigenvalues and

smallest in the direction where ✓ has the largest eigenval-

ues.

The theory of principal components provides us with

vectors ☎✞↔ ❵ ✣✬✫✬✫✞✫✬✣✤↔ ☞ ✙ which minimize the sum of the errors:

↕ ✂ ❣
✵ ❱ ➌✿➙ ✼❭✝ ✜

■➃➛✔➜ ✯✱✝ ✜ ✲✞✼ ⑨ (7)



where ➛✔➜ ✯✱✝ ✜ ✲ is the projection of ✝ ✜ on the span of☎✞↔ ❵ ✣✬✫✬✫✞✫✬✣✤↔ ☞ ✙ . In other words, the principal component vec-

tors are the directions in which the contour ✝ ✑ ✓➔✝✺✂➝➄
needs to be stretched. That means that we want them to

also be the eigenvectors of matrix ✓ .

Next, what are the eigenvalues of ✓ ? The principal

component vectors are the eigenvectors corresponding to

the largest eigenvalues of ➁❞➁ ✑ . The direction of the set ➁
is that of the eigenvector corresponding to the largest eigen-

value of ➁❞➁ ✑ . We want the ellipsoid ✝ ✑ ✓➔✝❦✂❷➄ to have the

most stretch in that same direction. As mentioned above,

the smallest eigenvalues of ✓ determine the most stretch in✝ ✑ ✓➔✝❡✂➞➄ . Therefore, we want ✓ to have small eigen-

values corresponding to the eigenvectors which had large

eigenvalues in ➁❞➁ ✑ and ✓ to have large eigenvalues cor-

responding to the eigenvectors which had small eigenval-

ues in ➁❞➁ ✑ . One direct way is to let the eigenvalues of ✓
be the reciprocal of the eigenvalues of ➁❞➁ ✑ and the eigen-

vectors of ✓ be the eigenvectors of ➁❞➁ ✑ . In other words,✓➟✂➠✯❹➁❝➁ ✑ ✲❭➡
❵
. If, in constructing ✓ , we were to consider

only the largest principal component and the corresponding

eigenvalue, our interpolation result would pretty much sim-

plify to the results of [6].

A alternative motivation for this ✓ is the following. As-

sume that the image pixels of interest, represented as the

vector
�

, are a weighted combination of these typical, nearby

configurations: � ✂✾➁✔➢
where ➢ is the weight vector needed to estimate � . We fur-

ther assume that the simplest explanation of � is the best

(Occam’s Razor) by assuming that we use the weight vector

with minimum sum squared value, i.e. with the minimum of➢➥➤❘➢ . This assumption leads us to the requirement on � that� ➤✏➦➁ ✑ ➦➁ � is minimum, where the matrix ➦➁ is the pseudo in-

verse of ➁ . This gives us the adaptive quadratic signal class

for the pixels on the fine scale:

✁✄✂❡➧✿✝✠✟✠✡ ☞ ✍✏✝ ✑ ✓➔✝➨✖❧✗❆➩ (8)

where the matrix ✓✄✂ ➦➁✔➫ ➦➁ . This gives the same ✓ as the

one mentioned previously.

Finally, what’s left to do is to choose a training set ➁ . It

would be nice if the training set could be chosen from the

high resolution version of the image, but we can’t measure

that. Instead, we simply assume that a similar ➁ based on

the available coarse scale pixels is a good approximation to

our desired ➁ . This assumption is similar to that used by Li

[3] in estimating covariance matrices.

5. RESULTS

We compared the locally adaptive ✓ approach with bicubic

(i.e. fixed ✓ approach) and fractal-based interpolation [9].

Results can be seen in Fig. 2 and Fig. 3. In both cases, the

locally adaptive ✓ outperforms the bi-cubic interpolation.

We also obtained slightly better results when compared with

the methods of [3] and [9]. More results can be found at

http://ww.ee.cornell.edu/ ➦ splab.

6. CONCLUSION

In this paper we presented a new method for image inter-

polation. The method is based on adaptively determining

the quadratic signal class from a set of training vectors and

then using optimal recovery to estimate the missing pixels.

The method outperforms standard interpolation techniques,

such as cubic and linear interpolation. It also seems to fair

well against other recently published interpolation methods

[3, 9].

The quadratic signal class is determined from a set ➁ of

training vectors. More work needs to continue on how the

training set ➁ is selected adaptively.
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Fig. 2. Interpolation by four. Constant ✓ (bi-cubic) (top),

[9] (center) and locally adaptive learned ✓ (bottom).

Fig. 3. Interpolation by two. Constant ✓ (bi-cubic) (top),

[9] (center) and locally adaptive learned ✓ (bottom).


