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Full knowledge of material elastic properties is required to facilitate design in 

many applications. The existence of misorientation between the geometric axes of the 

part and the material symmetry axes has in particularly created challenged in design 

of composite structure. In this thesis the potential for optimal identification of 

material symmetries for a general anisotropic material through a water immersion 

technique is explored. The concept is extensible to any class of symmetry groups and 

does not assume a-priori knowledge of the material. Initial experimental results for 

determining the elastic constants as well as locating the symmetry planes are 

presented. Many materials have not been investigated completely by a method such 

as the one described. The specific contribution of this work is to demonstrate this 

process for experimental data sets. The primary focus is on carbon-carbon composite 

material. The method is demonstrated using a single crystal with known properties. 
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1 INTRODUCTION 

In a number of applications both the elastic and damping characteristics of the 

materials are required. Therefore, knowledge of the material properties is necessary to 

facilitate design of a composite structure. Even in cases where the planes of symmetry 

of the material are nominally well defined, significant variations of these planes can 

exist due to fiber misorientation of the principal material axes with respect to the 

geometrical axes. For the most part, misorientation is caused by material lay-up errors 

or warpage during manufacturing. In natural materials such as bone or wood, growth 

patterns may also cause the misorientation. 

This thesis explores the mechanics associated with development of a water 

immersion technique for optimal recovery of elastic properties from ultrasonic 

measurements. Initial experimental results for determining the elastic constants and 

planes of symmetry are presented. Both single crystal and carbon-carbon composite 

materials are tested in this thesis. The single crystal used is a trigonal aluminum oxide 

with published elastic properties. For conlparison, the samples of carbon-carbon 

composite are provided by Applied Thermal Sciences (Saco, ME) and produced by 

Fiber Materials, Inc. (Biddeford, ME). However, the concept is extensible to any 

class of symmetry groups and does not assume a-priori knowledge of the material 

symmetries. 

In this technique, the phase velocity of an ultrasonic wave that is obliquely 

incident fiom a coupling liquid onto the test sample is determined. Water immersion 

is used in order to maintain good coupling between the sample and the ultrasonic 

transducers. Water immersion also makes it possible to generate the range of angles 



required for the measurement. The elastic constants can be reconstructed flom the 

velocity data by performing a Newton-Raphson nonlinear optimization to the 

experimental data as shown below. 

A technique for the identification of elastic symmetries that the material 

possesses is also described in this' thesis. From the knowledge of the symmetry 

properties, the principal axes with respect to its geometric axes are located. A method 

for determining the Euler's angles, which transfer the principal coordinate system to 

an observation coordinate system, is also presented in this work. 

This introduction flames the thesis statement: the optimal recovery of elastic 

properties of a general anisotropic material is possible through use of an immersion 

ultrasonic technique. The specific contribution of this work is to demonstrate this 

process for an actual experimental data set. Extensive theoretical literature exists in 

this area, and for some special cases experimental results have been shown. However, 

this thesis develops a full sequence of work from measurement of the material 

properties to the definition of the three dimensional orientation of the material axes 

relative to the geometric axes. 



2 LITERATURE REVIEW 

2.1 Method for the Determination of the Elastic Constants 

There are many methods used to measure the elastic constants of materials 

that are based on either the static 07 dynamic response of the material to an applied 

excitation [Schreiber et al., 19731. The earliest method for the determination of the 

elastic constants was static testing, such as tensile, compressive, and torsional tests 

[ Every and Schase, 20011. Since the 1950s, an increasing need has arisen to know the 

elastic properties for anisotropic solids. Anisotropic materials are characterized by 

many more independent elastic constants. As a result of the testing needs, dynamic 

methods have been developed. The dynamic methods include ultrasonic transmission 

[Chimenti, 1997; Safaeinili et al., 19951, resonance method [Migliori et al., 19971 

and light scattering. Compared to static methods, dynamic methods have many 

advantages. In most cases, dynamics methods are more accurate and are applicable to 

small samples. Dynamics methods also allow the study of viscoelasticity, dispersion 

and nonlinearities. However, the static methods require that multiple samples be used 

which requires more material and increases testing uncertainties in homogenous 

materials. 

The most widely used methods are, or have been adapted from [Hellwege, 

19791 : 

1. Bulk acoustic and ultrasonic wave techniques, including the ultrasonic 

wave transmission and pulse superposition methods. 

2. Resonance samples in the shape of rods, bars, parallelepipeds, plates, and 

more recently spheres. 



3. Static deformation. 

4. Light, neutron, and X-ray scattering, including Brillouin Scattering. 

The accuracy of the methods is different, and the above list is approximately 

in order of decreasing accuracy [Hellwege, 19791. The technique of ultrasonic 

transmission and Brillouin scattering are the most commonly used methods now 

[Hellwege, 19791. Brillouin scattering allows the measurements to be made on very 

small samples. Samples that are less than a few millimeters are possible. However, 

Brillouin scattering can not provide any information about the effect of temperature 

on the elastic constants. The method of ultrasonic transmission holds significant 

advantages if a full set of elastic constants is required. 

In this thesis the work focuses on techniques that use ultrasonic transmission 

for determining the elastic constants. Theoretical concepts are developed to allow the 

measurements to be understood. 

2.2 Ultrasonic Transmission 

The technique of using ultrasonic transmission to characterize material 

properties has developed significantly over the past fifteen to twenty years [Chimenti, 

19971. There are many references focusing on methods for obtaining the elastic 

constants using ultrasonic technique. Chimenti [I9971 gave an overall review of the 

various methods available. A more general overview is given in a reference on elastic 

properties [Levy, et al, 20011. 

Two primary techniques are used for ultrasonic transmission measurements. 

The immersion technique makes use of a sample immersed in liquid or in air 

[Safaeinili, 19951. The second method is direct contact through transmission, where 



the sample is in contact directly with the transducer [Buskirk and Cowin, 19861. The 

immersion technique has been reported to have a number of advantages over the 

contact technique. Markham [I9601 , Papadakis et al. [1991]. Hosten, [1991], Rokhlin 

and Wang [I9921 and others have stated that immersion methods are more 

I 

straightforward to apply and usually give better results. 

One of the primary disadvantages of the contact technique is that it requires 

cutting the sample in various directions. The thickness of the sample also needs to be 

larger than 5 cm [Every et al., 20011. Other problems arise with contact methods 

when attenuation is measured. Attenuation is strongly influenced by the coupling 

agent between the transducers and the sample. In immersion techniques, the coupling 

fluid (water) is well behaved at all incidence angles and gives repeatable 

measurements as long as wetting of the sample is consistent. Even in more difficult 

cases, commercial surfactants are available to use in water-coupled systems. 

Identification of elastic constants fiom the measurement of wave velocity 

using immersion techniques involves evaluating the Christoffel's equation 

(C, n, nj - S , v 2 p ) ~  = 0 

where CdH are elastic constants to be determined, P, is the polarization vector, V is 

the phase velocity of the ultrasonic wave, Sik is the Kronecker delta symbol, p is the 

mass density of the testing material, and n is the wave propagation direction with 

components of n, , n, , n, . 

Christoffel's equation is a cubic equation in the form of pv2and applies to 

plane waves in both isotropic and anisotropic media. Two major approaches have 



been applied to find the solution of the Christoffel's Equation. Numerical techniques 

have been extensively developed and can be found in many references [Aristegui and 

Baste, 1997 and 2000 ; Chu et a]., 1994; Lee and Koc, 1989; Khathevich, 1962 and 

Neighbours et al., 19801. Some of the available methods include the optimization 

method (Least-Squares minimizatibn), principal invariants method [Khathevich, 

19621 and iterative methods [Neighbours, 19801. The other approach for solving the 

Christoffel's equation is the direct solution expressed in a closed form [Rokhlin, 

1992; McSkimin, 1959 and 1961 1. Use of the immersion technique is combined with 

an optimization approach for the determination of the elastic constants in this thesis. 

2.3 Identification of Material Symmetry fiom the Measurements of Wave 

Velocity 

Using either the immersion technique or the contact technique, the phase 

velocities measured at various directions in the material are not only used to 

determine elastic constants, they also contain information on the material symmetry. 

Knowledge of material symmetry is necessary for predicting its response to externally 

applied loads in some critical design applications. For example, coupled torsion and 

bending composite lay-ups are used in rotorcraft, and even in some simpler marine 

applications, where a specific misorientation of the symmetry axes relative to the 

geometric axes is required. Usually the symmetry axes and the geometric axes of the 

material are assumed to be coincident. However, misorientation between these two 

coordinate systems can exist in many cases [Sun and Peterson 2001; Aristegui and 

Baste, 19971. Material lay-up in industrial composite manufacturing, growth 

processes such as annual rings in wood, and manufacturing warpage can lead to axis 



misorientation. A general interest in the symmetry leads to the experimental 

determination of the material symmetry class explored in this thesis. 

Many studies have concentrated on the methods of determining the material 

symmetry axes. Among them, Cowin, Mehrabadi and their co-workers have shown 

continued activities in this area.' Cowin first classified ten distinct material 

symmetries by number and the orientation of the symmetric plane or axes the material 

may posses [Cowin and Mehrabadi, 19871. Locating the directions that are normal to 

these symmetric planes is equivalent to identification of the material symmetry. These 

directions must be a specific axis [Cowin, 19891 and a specific direction [Borgnis, 

19551. Upon knowing the elastic constants, a set of necessary and sufficient 

conditions for these directions to be normal to the symmetry plane was then 

established [Cowin, 1987, Cowin, 1989, Noms, 1988, and Noms , 19891. 

Cowin's theory that is used for identification of the material symmetry does 

not consider the uncertainties associated with the elastic constants. Aristegui and 

Baste [I9971 explicitly consider the uncertainties, but do not develop the idea of the 

symmetries. Another numerical technique is developed, double, namely the iterative 

numerical scheme, which use only the wave velocity measurements in an arbitrary 

coordinate system to find the material symmetry axes [Aristegui, 1997 and 20011. 

Like all numerical techniques, the issue of stability and reliability of the numerical 

algorisms have become critical and have been intensively studied [Chu, 1994 1. 



3 THEORETICAL BACKGROUND 

The theoretical background is outlined here to support the mechanics of the 

experiments. From these concepts the measurements are understood and the 

symmetry concepts can be developed. 
I 

3.1 Elastic Constants 

The infinitesimal strain tensor, ~ i , ,  describes the deformation in an acoustical 

excitation of a body. The strain is related to the particle displacenlent field u,, 

through the stress-displacement equation 

where u,. and u , , ~  are the first partial derivative of displacement with respect to the 

coordinate index jand i ,  respectively. The summation convention has been 

employed. 

By dynamics, the elastic restoring forces are defined in terms of stress field 

oij. The equation of motion in a fieely vibrating body is 

= pui 3.2 

where oii, is the partial derivative of stress with respect to coordinate index j . The 

superposed double dots, iii indicates the second partial derivative of displacement 

with respect to time. 

The constitutive equation, Hooke's Law, states that the stress is linearly 

proportional to the strain as well as the converse. In general [Auld, 19971 



with the summation over the repeated subscripts k and 1 .  The elements of the tensor 

Cijkl in Equation 3.3 are called elastic constants. Conceptually, Cijkl can also be 

referred to as "microscopic spring constants" [Auld, 19971. The elastic constants are 

1 

small for compliant materials and large for stiff materials. 

Since there are nine equations in Equation 3.3 (corresponding to all 

combinations of the subscripts i j )  and each contains nine strain terms, Cijk] has 

indeed a total of 92=81 components [Frederick, 19651. However, they are not all 

independent. The symmetry properties of the stress and strain 

indicate 

Ciikl = CjW = CiiIk = Cjilk 

Thus, the independent components of Cijkl are reduced from 81 to 62 = 36. If 

Poynting's Theorem is applied [Nadeau, 19641, which shows 

c,,, = c, , 

The number of independent constants are then further reduced to 21. This is the 

maximum number of independent elastic constants for any material symmetry. If the 

symmetry properties imposed by the microscopic nature of the material are 

considered, the number is typically less than 21. The number of independent 

constants has range fi-om 2 (isotropic) to 2 1 (triclinic). 

The four subscripts of Cijkl can be simplified to two subscripts by using 

following the abbreviated subscript notation: 



1 1 1  

2 22 

3 3 3 

4 23 or 32 

5 13 or 31 

6 12 or 21 

I 

A [6x6] symmetric matrix form of Cij is 

- 
CII c 1 2  C I 3  C I 4  C I S  C I 6  

'22 '23 '24 '25 '26 

c 3 3  c3.4 c 3 5  C 3 6  

'44 '45 '46 

S Y ~ .  c55 c56 

c, - 

The simplification from Cijkl to Cij involves a tensor transformation from a 

fourth order three-dimensional tenor Cijkl to a second order six-dimensional tensor 

Cijkl. The conversion procedure strictly follows the tensor transfom~ation law. Details 

of the transfom~ation properties can be seen in Section 3.3. More details on the 

conversion procedures can be found in Appendix. 

3.2 Anisotropic Media 

It has been pointed out in the preceding section that the independent number 

of elastic constants Cij can be reduced by considering symmetry properties of the 

material. A more mathematical explanation of this concept is that if the medium itself 

is symmetric with respect to a particular transformation of coordinates, then the stress 

and strain tensor must remain unchanged upon the same transformation. Therefore, 

the existence of the material's symmetry reduces the number of independent 

constants [Auld, 19901. 



Unlike an isotropic media, where the properties are identical in all directions, 

an anisotropic media is more complicated. However, most anisotropic media do have 

some degree of symmetry. Before proceeding with wave propagation in anisotropic 

solid, a brief discussion of the symmetry classes for anisotropic media is provided. 

In three dimensions, there' are 32 symmetric point groups that can be 

subdivided into 14 space lattices [ Musgrave, 19701. These lattices are further 

grouped into seven crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, 

cubic, trigonal, and hexagonal [Musgrave, 19701. The first three symmetry classes 

(triclinic, monoclinic, orthorhombic) are considered to be the lower symmetry 

systems that the elastic bodies typically exhibit. The remaining is considered to be 

higher systems [ Fedorov, 19681. The derivation of the symmetry groups can be found 

in textbooks [Flint, 19521. Figure 3.1 describes the relation between the axes and the 

angles of the unit cells in an anisotropic media. Some lower symmetry systems are 

given here to show how the symmetry properties reduce the number of independent 

elastic constants. 

Triclinic. This is the absence of any material symmetry existing in the solid. 

There are no relationships between the 2 1 elastic constants, and none are zero. 

Figure 3.1. Relation between axes and angles in conventional unit cell. 



Figure 3.2 (a) shows 3D space lattices in a triclinic crystal and the 

corresponding symmetry system. The angles a,P, y are not equal and none of the 

angles are equal to 90' [Musgrave, 19701. This result implies that no planes of 

symmetry exist in this system nor any rotational symmetry. 

- - 
Monoclinic. A single mirror symmetry plane (a plane contains axis a and c in 

Figure 3.2 (b)) with a twofold rotational symmetry axis (axis ) normal to it exists in 

a monoclinic crystal. Figure 3.2 (b) also shows that the angles a=y=900 and p#90°. 

The form of the elastic constant matrix for a monoclinic crystal is 

Figure 3.2. An illustration of 3D space lattices and some crystal symmetry 

systems. (a) triclinic (a#pq#9o0); (b) monoclinic (primitive, a--y=900, p+9o0); (c) 

orthorhombic (a=p=y=90@). 



The corresponding Cartesian coordinate system is taken to be the direction 

4 -- 
of b and x, x3 plane to be the symmetry plane. It is also applicable to set < parallel 

- 4- 

to b , x, x, to be the symmetry plane. In that case, C,, = C,, = C3, = C, = 0 ,  and 

C16, CZ6, C36, C4, are non-zero for a monoclinic material. 

Orthorhombic. Orthorhombic synunetry is characterized by three mutually 

perpendicular mirror symmetry planes and twofold rotational symmetry axes 

perpendicular to these planes with angle c ~ = ~ = ~ = 9 0 ~  as shown in Figure 3.2(c). A 

- - -  
common convention for orienting the Cartesian coordinate system is x, ,x, ,x3 being 

the three perpendicular symmetry axes. Orthorhombic has nine elastic constants. In 

some contexts, orthorhombic is sometimes referred to as orthotropic symmetry, 

which is also commonly used in composite materials. The elastic constants for the 

orthorhombic case take the fornl. 

3.3 Transformation Properties 

The elastic constants shown above are all given with respect to the 

corresponding crystal axes. However, this may not always be the circumstance faced 

in an engineering application. It may be more convenient to choose arbitrary axes for 

solving specific problems, or materials may be investigated where the uncertainty of 



the symmetry properties exists. It is therefore necessary to consider how the elastic 

constants behave if transferred into other coordinate systems. 

Since both stress (oij) and strain (ckl) are second order three dimensional 

tensors, they all satisfy the tensor transformation laws, which are 

where om,', are stress and strain tensors in the new coordinate system, 

respectively. a i j  is a [3x3] transformation matrix. The physical quantities of a i j  are 

direction cosines of the transformed coordinate axes with respect to its initial 

coordinate axes. The unit base vectors of the transfornled coordinate system ni are 

related to the ones as the initial coordinate system ni by 

Applying Equation 3.3 to Equation 3.6 gives 

Om; = C i j k / a m i a n j  'kl 

Inversion of Equation 3.7 and substitution into Equation 3.9 gives 

= c i jk / amian  ja aka p ,  ' i p  3.1 1 

Comparing Equation 3.1 1 with Equation 3.3 shows the elastic constants in the new 

coordinate system are 



Satisfjing the transforn~ation formula (Equation 3.12) is sufficient for the 

elastic constants Cijkl to be fourth order three-dimensional tensors. 

It is important to perfonn coordinate transformations directly in an 

abbreviated subscript notation (six dimensional tensor Cij) without the effort required 

to convert to full subscripts (three dimensional tensor Cijkl), and reconvert back to the 

abbreviated notation after applying the transformation law, as shown in Section 3.1 

(Equation 3.8). A very efficient technique for this purpose was developed by Bond 

[Bond, W. L. 19431. Construction of the six dimensional tensor Cij involves in the 

use of the symmetry properties of the stress and the strain. It also involves in 

construction of a [6x6] transformation matrices [MI, which is defined on the [3x3] 

transformation matrix [a]. [a] was introduced in the preceding section. [MI is defined 

and 

Equation 3.14 shows that Cij is in fact a second order tensor since the tensor 

transformation law applies here. Details of the derivation of Equation 3.13 and 3.14 

can be found in the Appendix. 



The primary advantage of this method is that it can be applied directly to 

elastic constants given in abbreviated subscript notation as shown in the previous 

section (Section 3.2). Most importantly, unlike some constructions of the compliance 

tensor, for which tensor properties do not apply, the mathematical operations can be 

conveniently shown for all elements in a higher dimensional tensor. An example is 

furnished in Appendix to illustrate the features of this approach. 

3.4 Waves in Anisotropic Solids 

In the previous sections, the nature of material symmetry was considered. To 

discuss wave propagation in an anisotropic solid, the kinematic relations Equation 3.1 

and equation of motion Equation 3. 2 should be revisited. 

.. 
0.. . = pui 

rl.1 
3.16 (3.2) 

The constitutive Equation 3.3 are substituted into Equation 3.1 5 and 3.1 5 to 

obtain 

Ci jk /uk , j /  = PU' 3.17 

where ukvj1 is the second partial derivative of displacement with respect to coordinate 

index j and I .  Double dot, ; i  indicates the second derivative of displacement with 

respect to time and p is the density of the material. 

A plane wave solution to this second order differential equation is assumed to 

be of the form 

A e i ( K ~ - ~ )  

uk = k P k  3.18 



where A, are components of the displacement amplitude; p, are unit displacement 

polarization vectors traveling in the directions determined by the relationship between 

the incident angles and the material symmetry axes; K = % is the wave number 

with wave speed in the solid c and frequency o [Auld, 19971. 

Substituting Equation 3.18 into Equation 3.17 gives an eigenvalue equation 

(Christoffel's Equation), then, 

(C,njn, -G,pV2)pk = 0 3.19 

This is a cubic polynomial in pv2, where V is the phase velocity of the 

ultrasonic wave, 6, is the Kronecker delta symbol, n is a unit vector in the direction 

of wave propagation with components of n, , n2, n3 . Equation 3.19 can be rewritten in 

matrix form: 

where 

is referred to as the Christoffel's tensor. 

Christoffel's tensor is indeed a second order tensor, subject to the symmetry 

condition rik=rki [ Hearrnon, 196 11. Therefore, six independent components of the 

Christoffel's tensor exist. Expansion of Equation 3.21 following indicia1 rules 



gives 

In order to have a nontrivial solution of the Chirstoffel's equation, the 

determinant of the coefficient matrix of Equation 3.20 must vanish [Musgrave, 

Since the Christoffel's tensor rik is symmetric, its eigenvalues pv2 are real 

and the eigenvectors p, are mutually orthogonal. Therefore, for any given direction 

n, three modes can be generated with different velocities and polarizations. For the 

principal propagation directions, pure propagation modes can be generated: one 

longitudinal wave when P=n, and two transverse waves when Pxn=O. In general, a 

quasi-longitudinal wave (QL) and two quasi-transverse waves (QT1 and QT2) are 

excited. The phase velocities corresponding to each of these wave modes are known 

to be hc t ions  of the elastic properties of the material [Musgrave, 19701. 



3.5 Ultrasonic Immersion Technique for Determining the Elastic Constant 

for a General Anisotropic Solid 

3.5.1 Introduction 

From the preceding section, the phase velocities of the ultrasonic wave are 
I 

related to the elastic constants of the sample through the Christoffel's equation 

(Equation 3.19). Also, as mentioned in the previous chapter, wave velocity 

measurement using an immersion technique is an ideal method for determining the 

elastic constants of a general anisotropic material. The general concept of this 

technique is to measure the phase velocities of the ultrasonic wave that is obliquely 

incident from liquid onto the testing sample. Water is used as the immersion media in 

order to have good coupling between the sample and the ultrasonic 

transducers [Hosten, 200 11. 

From the velocity data the elastic constants can be reconstructed by using an 

inverse technique [Hosten, 20011. Practically speaking, there is more data than the 

independent elastic constants [Every, 19921. Therefore, this is an over-detemined 

problem, which leads to the use of a nonlinear Newton-Raphson optimization 

approach to find a set of elastic constants. In this thesis, a basic optimization is 

adopted by minimizing the square of Equation 3.23 so as to obtain the set of elastic 

constants. 

To obtain accurate phase velocities of the waves, cross-correlation is used to 

measure the relative time delay between the reference signal propagating in the water 

only and the signal that results from the propagation through the sample [Peterson, 

1997 , Hosten, 20011. 



3.5.2 Wave Velocity Measurement through Immersion Technique 

The ultrasonic wave, typically an ultrasonic pulse in most experimental work, 

is generated by an electronic pulser, which excites a piezoelectric transducer, 

propagates through the water and the testing sample. The signal is received by 

another piezoelectric transducer ( ~ i h r e  3.3), then is amplified and acquired digitally. 

The transducers and the sample are all immersed in the water, the coupling media. 

For the convenience of measurement a coordinate system R = (x, , x, , x, ) is chosen in 

such a way that the origin of R is set at the center of the sample. Unit base vector XI 

is normal to the interface, unit base vectors xz and XJ follow the right hand rule. 

In general, for a fluid coupling of an ultrasonic wave into an anisotropic plate, 

and for an arbitrary incident angle 8, three modes of the wave are excited. A quasi- 

longitudinal wave (QL), a slow quasi-transverse wave (QT1) and a fast quasi- 

transverse wave (QT2) are generated in the solid (Figure 3.3). These waves propagate 

at different phase velocities and their velocity vectors all lie in the incident plane (a 

Figure 3.3. Illustration of ultrasonic wave velocity measurement through a 

reference media (Top) and through an anisotropic sample with incident anglee, 

(Bottom). 



plane consisting axis xl and the incident wave). If this plane coincides with a plane 

of the material symmetry, only one transverse wave and one longitudinal wave are 

generated [Auld, 19901. 

To measure the phase velocity, the length of the wave path through the plate 

must be known. The relative time dklay q between the transmitted signal through the 

sample and the time through a known media must also be obtained. In this case the 

known media is the water path without the sample. The time delay is obtained by 

cross correlation [Peterson, 19971. The length of the wave path is obtained by Snell- 

Descartes Law [Auld, 19901. The velocities then can be calculated by the formula 

[Hosten, 20011: 

where Vo is the wave velocity in the water, ti is time delay, Oi is the incident angle, 

d is the thickness of the sample, and (xl, cp) indicts the wave incident plane. 

For identifying the elastic constants of a general anisotropic material, 

experimental data is collected from four incident planes (xl, cp), where cp=oO, 4s0, 90' 

and 135' are called the azimuthal angles [Aristegui, 19901. This procedure can also be 

explained by saying the testing plate is rotated through a certain angle (cp=oO, 45O, 90' 

and 1354 with respect to the xl axis. 

An illustration of the geometric coordinate system R and the incident planes is 

given in Figure 3.4. 



3.5.3 Reconstruction of Cij from Measured Phase Velocities 

3.5.3.1 Fundamentals 

The elastic constants can be reconstructed if a large number of wave velocity 

data points are available by performing a Newton-Raphson nonlinear optimization. 
1 

The secular equation, Equation 3.2 1, for the optimization is 

In the general case, three phase velocities corresponding to the three wave 

modes are three solutions of this non-linear cubic equation. Due to experimental 

errors, every measured phase velocity V is approximately the solution of Equation 

3.25 

where f (V,, , CU) is the left hand side of Equation 3.25 and V,, (n) indicates the 

phase velocities measured from the four incident planes described in section 3.5.2. 

Reconstruction of all the twenty-one components of Cij can be performed by 

Liauid O(I,P; 1 

j- 
Figure 3.4. Diagram of the coordinate system R=(xl, x2, x3) and incident angle 

associated with the sample (Left). Wave propagation in the incident plane (XI, pi)  

(Right). 



minimizing an objective function F (C,), which is the sum of squares of the secular 

Equation 3.26. 

with 

where n =all data points collected from the four incident planes. 

Equation 3.28 shows that the method minimizes the effect of random 

deviations of experimental data on the results of reconstruction. The wave velocity 

measurements are indeed embodied in each objective function to be minimized. There 

are more experimental data points than the number of the independent elastic 

constants. Therefore Equation 3.26 is constructed from an over-determined system of 

the functions f (V,, , CU ) [Every, 19901. Contrary to another method [Rokhin et al., 

19921 that considers the direct solutions of Christoffel's Equation (Equation 3.19), 

this minimization problem requires no mode distinction [Aristegui and Baste et al., 

19971. This is simply because each of the modes generated is the solution of 

Christoefll's Equation and should satisfy Equation 3.25. For the general case, the 

velocity data are collected from four incident planes (xl, 04, (xl, 454, (xl, 90'1, and 

(xl, 135') associated with various incident angles. 

3 S.3.2 Procedures for Optimization 

In this thesis, the minimization was performed by using a standard MATLAB 

optimization function, which is based on the Newton-Raphson method described 

above. A successful implementation of optimization requires reasonable estimates of 



the elastic constants as initial values to feed into the algorithm. In this work, a single 

crystal of aluminum oxide was used to test both the analysis and measurement work. 

The initial elastic constants for the algorithm were obtained from a material handbook 

[ Hellwege, 19791. 

The procedures of the optimjzation for reconstruction of the elastic constants 

Cij used in this thesis are as follows: 

(1). A set of phase velocities Ve,,(l), ... Ve,(n), which correspond to each of 

these wave modes, is measured. from four incident planes. Twenty-five different 

incident angles are needed at each of the four incidental planes to make up a total of 

100 data points. 

(2). Using a trial set of elastic constants coij as an initial guess to construct a 

f O ( Ye,, C,: ) , and an objective function F O ( Cij  ) to be minimized through Equation 

3.26 and Equation 3.28, ri can be obtained using Equation 3.8. 

(3). At each step (kth) of the iteration, an error e, , which is defined as the 

difference between the C: and the desired C,, will result. The closer the  it are to 

the Cij, the smaller, on the average, the error will be. 

(4). This procedure may be iterated until 

ek - ek-, = cik) - cJk-') s E 3.29 

where E is a pre-assigned tolerance of a very small quantity [Pierre, 19691. In this 

thesis, &=lo4, for the test case. 



3.5.3.3 Notes on Convergence and Error Issue on the Optimization 

Approach 

The Newton-Raphson formula for finding roots of an equation 

is given by [Kunz, 1957 ] 

To determine the convergence of iteration in the Newton-Raphson method, a 

Taylor's series is used to expand f (C, )at one of the iterations ~i:. 

By using Equation 3.29 and Equation 3.30, Equation 3.3 1 turns into [Kunz, 

19571 

A general rule for convergence of this method is given by Kunz (1957). If the 

absolute value of f '(4) , for any C; in an upper bound region, is small enough in 
2f ' c ; )  

the neighborhood of the root Cij, and if the cIk is known to approximate the Cij, then 

cijk" approximate the Cc , therefore, the (k+ 1)th iteration converges. 

The quality of this optimization approach depends on the quality of the first 

approximation and the rapidity of convergence of the procedure. There is no 

guarantee that a given procedure will converge, or that it will converge to the desired 

solution [Meyer, 19751. It sometimes happens that a given procedure may converge 



to a local minimum that is not the absolute minimum sought. This can be checked by 

starting at a different set of initial guess to check if it ends up with the same minimum 

[Meyer, 19751. 

With the immersion method, the procedure of identification of Cij can reache 

errors at as low as a few per~enta~e'points level. A statistical error analysis may also 

be more appropriate for approaching realistic values [Hoston, 20011. 



4 ON STRUCTURE OF THE ELASTIC SYMMETRY OF AN ANISOTROPIC 

MATERIAL 

4.1 Determination of Normals to the Symmetry Planes 

Based on knowledge of the,elastic constants Cijkl of an anistropic material, 

identification of elastic symmetry possessed by the material was developed by Cowin 

(1987, 1989) and Norris (1988). Two tensors Aij (Voigt tensor) and Bij (dilatational 

modulus) are required to deternine the elastic symmetry planes of the material. These 

tensors are defined by: 

If the abbreviated subscript notation Cij is used through the Cijkl (Section 

3.5.3.1), by applying the indicia1 notation, tensors A (Voigt tensor) and B (dilatational 

modulus) can be expressed in temls of the components of Cij 

A vector is normal to a symmetry plane of a linear elastic material if and only 

if the vector is an eigenvector of tensor A and B respectively. These normals are in a 

specific direction and define a specific axis by Cowin's theory of (1989). Once the 

specific directions and specific axes are obtained by solving the eigenvector problem 

of A and B, the elastic symmetry of the anisotropic material can be determined. 



An example is given here to demonstrate the procedure. A set of elastic 

constants of a carbon-carbon composite material is used. The values of the elastic 

constants (in GPa) were obtained from our initial work [Sun, M. and Peterson, M. 

20011, where a contact technique [Buskirk et al, 19861 was applied for ultrasonic 

measurement. 

[el = 

With a rotation through 30' about the x3 coordinate axis, a new set of elastic 

18.839 0 0 0 

3.1112 0 0 

constants that are not in its principal coordinate system were determined using 

GPa 4.4 

Equation 3.13. The rotation is taken as counterclockwise as one looks to the origin 0 

along the axis of rotation [Shame, 19661. The transformation matrix [a], with respect 

to the fixed coordinate system R, is 

A [6x6] Bond transformation matrix [MI was defined by Equation 3.14 (see 

section 3.3). Thus, 

18.839 0 0 -1.1265 
GPa 

3.6379 - 0.9123 0 



where C' are the transformed elastic constants in the rotated coordinate frame. 

Tensor A and B as defined in Equation 4.1 were found. These tensors are 

then used to obtain the unit normals to the planes of symmetry. 

1 O 

Eigenvectors of A and B are: 

[ ~ e c  - A] = 

-0.500 0 -0.866 

Equation 4.8 shows that all three pairs of eigenvectors of the A and B are 

coincident. Therefore, all three eigenvectors are unit vectors to the planes of 

symmetry that were assumed in the original elastic constant set (Equation 4.4). These 

three eigenvectors are 

e, = -0.5 n, - 0.866n2 + On, 

e2 =On, +On2 + n, 

e, = -0.866 n, + 0.5 n2 + On, 

where n, are unit base vectors of the coordinate system. Figure 4.1 illustrates the 

locations of the symmetry planes and the corresponding normals to the symmetry 

planes. 



Theoretically, for an orthotropic material, the three eigenvectors of tensor A 

and B are coincident and are aligned with their crystallographic directions [Cowin, 

19871. For a monoclinic media, only one pair of eigenvector is identical. In the case 

where none of the eigenvectors is in common indicates that the material tested 

possesses triclinic symmetry. 
I 

However, due to the experimental errors in the measurements, the 

eigenvectors of A and B do not exactly line up. Since the eigenvectors of A and B are 

orthogonal eigenvectors, respectively, a nornlal to the symmetry plane is contained in 

an angle around the average directions between the closest eigenvectors of A and B 

[Aristegui, 20001. The closest eigenvectors of A and B can be determined by 

investigating the angular deviation between each pair of eigenvectors. In general the 

eigenvector pair that exhibits the small angular deviation is considered to be a good 

estimate of a normal to a symmetry plane [Aristegui, 20001. A detailed procedure for 

determining the orientation of a normal to a symmetry plane is in Section 7.3. 

Figure 4.1. Illustration of unit normals to the symmetry planes. el, e2 and e3 are 
the normal to th e symmetry plane without rotation. el , e2 , and e3* indicate the case 
of rotation of 30 O with respect to x3. 



4.2 Recovery of Principal Coordinate System 

Once the normals to the symmetry planes are known, recovery of the principal 

coordinate system becomes relevant. In some design applications, knowledge of the 

principal coordinate system is necessary to predict the misorientation between the 

symmetry axes and the geometric dxes within the material. It can also increase the 

understanding of the warpage and coupled deformation. 

As described in section 3.2, seven symmetrical crystal systems exist. Each 

system is characterized by the number of symmetry planes it possesses and the 

orientations of these symmetry planes. The orientation of a principal coordinate fiame 

R' with respect to an observation coordinate system R can be specified by a set of 

Euler's angles 6= (a, P, y). Recalling Section 3.3 gives that the Euler's angles indeed 

relate the two coordinate systems R' and R through a set of successive rotations 

between the two systems. 

No general agreement on the notation of Euler's angles exists, but one of the 

most common, namely, a, P, and y, in sequence, is shown in Figure 4.2. The initial 

coordinate system R with a set of Cartesian axes XI, xz, x3 is first rotated through an 

angle a about the x3 axis. A further rotation through angle P about the transformed XI 

brings the body into a coordinate system R' .  Finally a rotation y about the 

transformed x3 put the system into a coordinate system R' with a set of Cartesian 

axes xIP, xZP, and x ~ ~ .  The rotations are performed as counterclockwise as one looks to 

the origin 0 along the axis of rotation [Shame, 19661. It is also important to recall 

that the orientation of the rotated coordinate frame is dependant on the order of the 

rotations. 



Transformations from the initial R to the coordinate system R' may also be 

obtained through three-transformation matrix a (a ) ,  a(P) ,  a (y )  as shown in Section 

3.3. 

where 

Figure 4.2. Euler's angles. 



and 

c a c y - s a c p s y  s a c y + c a c p s y  

- c a s y - s a c p c y  - s a s y + c a c p c y  s p c y  

sa sp - c a  sp cP 

c = COS; s = sin 

" "I 
Locating the principal coordinate system RP (if it exists within the material) is 

equivalent to the determination of the set of angular unknowns, 6=(a, P, 7). Each of 

the angular unknowns corresponds to a normal to the symmetry plane and transforms 

the coordinate system from R' to R. In general, two rotations of the coordinate 

system are enough to characterize the orientation of the principal coordinate system 

RP [Auld, 1990. Aristegui, 20001. In other words, any principal coordinate system RP, 

with respect to the observation coordinate system R, can be characterized by a set of 

angular unknowns with at least one of these unknowns being equal to zero. Therefore 

the transformation matrix [MI in Equation 4.12, if y=O as in this thesis, can be 

reduced to 

[ 
cos(a) sin(a) ' 1  4.13 [M] = - sin(a) cos(p) cos(a) cos(b) sin(p) 

sin(a) sin(p) - cos(a) sin(P) cos(p) 

To demonstrate the procedure of determining the Euler's angles of a principal 

coordinate system with respect to the observation coordinate system, the example 

given in the preceding section, is considered again. Following a counterclockwise 

rotation through 30' (a)  about the x3 axis as it was introduced in section 4.1, a 

counterclockwise rotation through 10' (P) about the transferred XI is performed 



(Figure 4.3) to obtain the elastic constant C" in a transferred coordinate system R". 

In this case y=O. 

Normals to the symmetry planes (eigenvectors of tensors A and B) with 

c t 1 =  M'c*(M*)-~ 

respect to the transformed coordinate h e  R " are obtained (see section 4.1) 

- - 

where n, ", n, ", n, " are the unit base vectors of the coordinate system R ". 

Since any of the eigenvectors in 3.1 1 is a normal to the symmetry plane, the 

- - 
47.999 36.891 39.747 0.520 0.320 -1.813 

33.665 26.371 - 0.003 1.534 - 10.498 

19.745 - 2.530 2.260 - 11.019 

3.178 - 0.824 - 0.264 

SYm. 4.459 1.321 

- 2.802 - - 

Euler's angles 6=(a, P, 0) can be extracted fiom any one of the three components of 

4.14 
GPa 

the eigenvectors in Equation 3.1 1 .  

Therefore 



Figure 4.3 illustrates the Euler's angles of a non-principal observation 

coordinate system R" with respect to its principal coordinate system RP in a carbon- 

carbon composite. 

For the case where the material possess higher symmetries (tetragonal, 

hexagonal or isotropic, see section 3.2), the principal coordinate system can be 

identified, based on the symmetry model assumed. The orientation of the axes is 

found by investigating the deviation between the elastic constants reconstructed in RP 

and the one satisfying the chosen symmetry model [ Aristegui, 19971. In the case 

where the material possesses only a single symmetry plane, identification of the 

symmetry is reduced to finding one unknown of the Euler's angles with the two other 

angles zero. On the other hand, if no symmetry can be determined by section 4.1, 

three Euler angles S=(a, P, y) are necessary to search for RP [ Aristegui, 19971. 

Figure 4.3. An illustration of Euler's angles of an observation coordinate 
system R" with respect to its principal coordinate system RP. R" is obtained fiom RP 

by two rotations a=30° and P=1o0. 



5 SIGNAL PROCESSING 

To obtain accurate relative time delays, the cross-correlation was used 

[Peterson, 19971. Cross-correlation algorithms were used to estimate the transmit time 

difference (7) between two signals. In this thesis an ultrasonic waveform transmitted 
I 

through water (the reference signal) is compared to a signal through an unknown 

sample. The sample used in this set up is a single crystal of alunlinum oxide. 

5.1 Time Delay Estimation-Cross Correlation 

Cross correlation is a mathematical operation that is to measure the similarity 

of two waveforms [Proakis, et. al, 19971. It is widely used to estimate the relative 

time between two signals. Therefore, in radar, digital communications and other areas 

in science and engineering, cross correlation has broad applications [Proakis, et. al, 

19971. The basic concept of the cross correlation is discussed as well as its 

relationship to time delay estimation problem. 

5.2 Cross Correlation-Measure of Similarity 

Assume two real time donlain signals x(n) and y(n) are available. The 

samples are evaluated at discrete intervals and satisfy all discrete time sampling 

constraints. The cross correlation between these two signals is defined by 

where 7 is time shift or time delay parameter and the subscript xy indicates the 

signals used in the cross-correlation. Recall that the inner product of two vectors in a 

finite dimensional domain is 



where 0 5 n 5 N - 1 is the domain of interest. 

Let y(n) = x(n - z) in Equation 5.2. When z=0, signal x(n) and x(n - z) are 

identical. The inner product (Equation 5-2) is at a maximum. In general, the shift 

parameter between two signals always occurs at the peak of cross correlation [ Silvia, 

19861. Compared to Equation 5-2, the cross correlation (Equation 5-1) is actually the 

inner product of x(n) and y(n), which is a function of shift parameter z. Therefore, 

the cross correlation, like other inner products, measures the degree of similarity 

between two signals. In general, the cross correlation function is neither symmetrical, 

nor mimodal [Silvia, 19861. 

Figure 5.1 shows two signals and the corresponding cross correlation. In this 

case, y(n) is indeed a delayed version of x(n) (y(n) = x(n - 4)). The peak of the 

cross correlation and its corresponding shift index ( z  = -4) show that the time shift 

between these two signals is -4, where the negative sign indicates y(n) is being 

delayed by the x(n) . 

5.3 Relative Time Delay Estimation 

In this thesis, the method of cross correlation was used to measure the relative 

time delay to a reference signal that results from the wave propagation through a 

water path. An unknown signal, which is from the wave that has propagated through 

the sample, is used in the computation. The relative time delay is determined by 

locating the time at which the cross-correlation r,, is at a maximum. This is the point 



when the signals are most similar. The (average group) phase velocity V of the 

ultrasonic waves propagating through the sample, introduced in Section 3.5.2, can be 

estimated by 

where Vo is the wave velocity in the water, Ti is time delay, ei is the incident angle, 

d is the thickness of the sample, and (x,, 9) indicts the wave incident plane 

Because the specimen used is quite thin, material dispersion from the visco- 

elasticity of the material is not significant [Peterson, 19971. In addition, the specimen 

is of suficient width that there is no significant geometric dispersion present in the 
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Figure 5.1. Cross correlation. (a) signal x(n); (b) signal y(n) =x(n-4); (c) cross 
correlation r,, between x(n) and y(n). 



signals. It is important to note that the use of the cross correlation results only in a 

measure of the relative difference in the velocity. Therefore, the cross correlation can 

be used to determine the difference in wave velocity between the reference sample 

and the unknown sample. For the range of velocities considered, the only 

geometrical dispersion that would' only impact the measurement exists if large 

differences in the phase velocities present between the unknown and the reference 

signal [Peterson, 19971. As a result, unlike absolute measurements of velocity even 

in finite specimens, the effect of dispersion can be assumed to be minimal. Figure 5.2 

gives an illustration of the cross-correction between the reference signal (ultrasonic 

pulser in water) and the unknown sample (ultrasonic pulser through aluminum oxide 

immersed in water). 
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Figure 5.2. A plot of cross correlation. (a) a reference signal (signal through 
water only); (b) an unknown signal (signal through aluminum oxide); (c) cross 
correlation between (a) and (b). 



6 EXPERIMENTAL SYSTEM 

6.1 Experimental Setup 

The experimental arrangement used is shown in Figure 6.1. Two matched 

immersion transducers with center qequency of 2.25 MHz (Parametric, Model v306) 

are placed on each side of the sample. One is the transmitting transducer (a focused 

transducer with a diameter of 12mm) and the other is a receiving transducer (a flat 

transducer with a diameter of 12mm). The position of the transmitting transducer is 

fixed along the center of the sample. The position of the receiving transducer is 

adjusted manually to the peak of the signal. Alternatively, it is possible to compute 

the position using Snell's law [Hosten, 20011. To ensure that the measurements are 

performed in different directions, a plate of the sample (aluminum oxide, Alfa Aesar), 

with a diameter of 25.4 mm and a thickness of 3.4 mm, is obtained and mounted onto 

- oscilloscope 

Ultrasonic Pulser h--ll 

/ 
Water 

F Specimen 
Pre-Amplifier 

Figure 6.1. A schematic drawing of the experimental system for measuring 
elastic constants with immersion method. 



a goniometer to adjust the angles. The azimuthal angle cp, which characterizes the 

incident plane is varied manually and the incident angle 8 is controlled by the 

goniometer, respectively. 

A photograph of the experimental set up is given in Figure 6.2. 

I 

6.2 Experimental Measurements 

An ultrasonic signal is generated by an electronic pluser/receiver (Parametrics, 

Model 5072 PR), which excites a piezoelectric transducer with a center frequency of 

2.25 MHz and a diameter of 12 rnrn. The wave is obliquely incident onto the sample 

surface and is transmitted through the sample with mode conversion depending on the 

angles. The signal is received by a piezoelectric transducer and then amplified by a 

pre-amplifier (l'ararnetrics, Model 5662). The received signal is averaged and 

Figure 6.2. A photograph of the experiment setup for measuring the elastic 
constants with the through-transmission technique. The left top shows the testing 

sample, a single crystal of aluminum oxide, in this system. 



digitized by a digital oscilloscope (Tektronix, Model TDS 520A). Signals are 

transferred to a personal computer. All the measurements were conducted in a water 

tank where the temperatures were monitored by an ATD prose. 

The measurements were performed with 4 incident planes (xl, <p), where 

azimuthal angle <p=oO, 45', 90°, 1 3 9 '  associated at a range of different incident angles. 

In each of the incident planes, 25 measurements were carried out corresponding to 25 

incident angles (0' to 24'). At each incident angle, the relative time delay was 

measured from the signals received. Only the highest amplitude mode, which 

contained higher energy indeed, was measured. The two quasi-transverse modes in 

some cases have such similar arriving time that, at certain angles, the signals overlap. 

Overlapping signals has the potential to complicate the characterization and make the 

distinction of the two modes very difficult. However, the immersion ultrasonic 

technique and the optimization algorithm do not require that the QL, QTI or QT2 be 

distinguished. Therefore, the determination of the elastic constants from the measured 

velocity data is more straightforward than the signals suggest. 

To determine phase velocity of the received signal through the sample, cross 

correlation was performed between the reference and unknown signal. The reference 

signal was obtained by aligning the two transducers and placing them parallel at a 

distance, which allows the sample to be placed between the transducers. The 

reference signal is acquired by measuring the water path without placing the sample 

between them. The velocity can be found from 



where V, was the reference velocity at the measured temperature. 

6.3 Choice of Sample Material 

The immersion ultrasonic through-transmission technique, as well as the 

optimization routine presented, are applicable regardless of the symmetry groups of 

the materials. Theoretically, any homogeneous anisotropic material can be used in 

this work. However, there are some further restrictions involved, such as solubility of 

the material in water, physical size and available geometry of the material. With these 

constraints, a single crystal of aluminum oxide (Medal base, 99.9%, Alfa Aesar) was 

selected. Aluminum oxide has a trigonal system with 6 independent elastic constants. 

Handbook values for the properties of the sample are used [Hellwege, 19791 as the 

initial guess for the optimization algorithm as well as for result comparison. The 

elastic constants in GPa are 

r495 160 115 -23 o o 1 

where 

sym. 146 -23 

167.5 1 

The specimen geometry is a parallel disk with diameter of 25.4 mm and a 

thickness of 3.2 rnm. The specimen has random axis orientation so that the 



optimization algorithm can be tested as well as the technique to find the 

misorientation between the measurement axes and the material axes. Since handbook 

properties are available, reasonable accuracy can be determined. 



7 RESULTS AND DISCUSSIONS 

The ultrasonic phase velocities for 25 signals in the four incident planes (XI, 

(P), (P=o', 45', 90°, 135', were calculated from the measured time delay using 

Equation 6.1. An observation coordinate system R = (x, , x, , x, ) was set up such that 
I 

XI was normal to the sample plate; x2 and x3 were as shown in Figure 7.1. The origin 

of the coordinate system R was set at the center of the sample. 

7.1 Results of Measured Phase Velocities 

Results of the measured phase velocities are shown as a function of incident 

angle Bi, where i= 0°...24' in Figure 7.2. The theoretical phase velocities calculated 

from the reconstructed elastic constants are compared with the experimental data in 

Figure 7.2. The measured data are seen as starting points and the solid lines are 

calculated values. Figure 7.2 shows that the experimental data matches well with the 

calculated phase velocity curves. 

Figure 7.1. An observation coordinate system R=(xl, xz, x3) for ultrasonic 
measurements. 



(a).(Xl , 0) lncident Plane 
12000, * - 1  

(c).(Xl .90) Incident Plane 
12000, I 

4000 
0 5 10 15 20 25 

INCIDENT ANGLE (Degree) 

(b).(Xl. 45) Incident Plane 

* - Y  Y - 

:si' 
' . ' 

- 

(d).(Xl . 135) Incident Plane 

e x  X% 

0 5 10 15 20 25 
INCIDENT ANGLE (Degree) 

Figure 7.2. Phase velocity (in mls) for an A1203 single crystal verse incident 
angle measured in (a) (XI, o'), (b) (XI, 45'), (c) (XI, 904, (d) (XI, 135') incident 
planes. The starting points are experimental data. The three solid lines are phase 
velocities corresponding to wave modes QL, QT1 and QT2, respectively, which are 
calculated fiom the reconstructed elasticity constants. 



7.2 Results of Reconstructed Elastic Constants 

Results of the elastic constants (in GPa) that are reconstructed from the 

velocity data measured in the observation coordinate system R are 

348.080 4.033 0.6200 0.1006 

1 
GPa 7.1 

140.930 0.4420 0.4801 

sym. 41.410 -81.340 

143.020 

Two eigenvectors of tensor A (Voigt tensor, section 4.1) and B (dilatational 

modulus), respectively, are 

[ 
- 0.0096 - 0.9999 - 0.0040 

[vec - B] = 0.2674 0.001 3 - 0.9636 

0.9635 - 0.0101 0.2673 1 
As noted previously, due to the experimental errors the eigenvectors of A and 

B are not exactly identical. To determine the symmetry planes the material possess, 

the angular deviations between each pair of eigenvectors are calculated. The 

eigenvector pair that exhibits the small angular deviation is considered to be a good 

estimate of a normal to a symmetry plane (see section 4.1). 

Three angular deviations between each pairs of eigenvectors are 

e, = 3.030, 8, = 1.400, 8, = 3.350 7.3 

Equation 7.3 shows that each angular deviation may be considered to be small 

enough to conclude that three symmetry planes exist within the tested material. Recall 



that the original values fiom the material handbook shows that three perpendicular 

symmetry planes exist in a trigonal material. This can be independently verified by 

using X-ray scatting technique. Thus, the material symmetry can be assumed to be 

known. The average of the two vectors Viave (i=l, 2,3) (Equation 7.2) associated with 

the eigenvector pairs is used as good estimates of the normals to the symmetry planes. 

Thus, the three unit vectors of the normals to the symmetry planes with 

respect to the observation coordinate system R are 

where XI, XZ, xf are unit base vectors of the observation coordinate system R . 

7.3 Results of Estimation of Principal Coordinate System 

As introduced in section 4.2, the principal coordinate system R' with respect 

to the observation coordinate system R can be located by determining a set of Euler's 

angle unknowns 6=(a, P, y) with at least one of the unknown is zero [Auld, 1990, and 

Aristegui, 19971. VP" was used to extract the Euler's angles. 

Thus, a set of Euler's angles are 



Therefore, the principal system RP was determined by a rotation through a 

counterclockwise angle a=90.g0 about the x3 axis followed by another 

counterclockwise rotation through an angle p=14.0° about the transformed XI. Figure 

7.3 (b) shows the location of the principal system RP with respect to its observation 

coordinate system R. The rotation is associated with the corresponding Euler angles a 

and p. Figure 7.3 (a) gives an illustration of the orientation of the V,"", which is one 

of the nornlals to the symmetry planes. It should be noted that the Euler's angles 

could also be determined by 6"". 



Figure 7.3 (a). An illustration of normals to the symmetry planes for a single 
crystal of aluminum oxide in an observation coordinate system R. (b). Location of the 
principal coordinate system RP (xIP, x ~ ~ ,  x ~ ~ )  with respect to its observation coordinate 

system R associated with the Euler angles a=90.9' and ~=14'. 



The elastic constants cP referred to its principal coordinate system RP can be 

determined by applying tensor transformation law (Equation 3.12), which is 

c'..,, = aminn jaoka ,,/ Cijk /  7.8 (3.12) 

where [a] is a [3x3] transformation matrix whose numerical components were found 
I 

based on the estimated Euler angles. 

Two transformations have been carried out corresponding to two Euler's 

angles to determine the cP, respectively. From (3.1 2), (3,13) and (3.14), cP (in GPa) 

in coordinated system RP is: 

I c p ]  = 
- 
478.5(495) 178.9(160) 121.9(115) - 1.882(-23) - 23.54(0) 0.801 (0) 

471.9(495) 114.9(115) 2.063(23) 35.02(0) 0.910(0) 

354.5(497) 0.210(0) - 13.33(0) 0.1 lO(0) 

9.170(146) 2.139(0) 47.87(0) 

sym. 144.5(146) - 1.681(-23) 

175.3(168) - 

The numbers in the parenthesis in Equation 7.9 are the elastic constants 

obtained fiom a material handbook [Hellwege, 19791. Comparison of these values 

finds that reconstructed values of CI I, C12, C13, C16, C22, C23, C26, C34, C36, C45, CSS, C66 

match well with the handbook values. 

The reason for the large difference for the remaining may be explained by the 

following. For a trigonal material, in addition to the three perpendicular symmetry 

4 - -  

planes, a symmetry axis also exists. Any of the x, ,x, ,x, coordinate axes can be 

symmetry axis. The handbook value shows that the is the symmetry axis. This is 

because C14, C24, CS6 are non-zeros. However the result in Equation 7.9 indicates that 



- 
x,  may potentially be the symmetry axis in this coordinate system setup. The 

conclusion may be verified from that one of the Euler's angles a is roughly 90'. 

The result shown in Equation 7.9 can be verified by finding the normals to the 

symmetry planes with respect to the constructed principal coordinate system RP. In 

other words the closest of eigenvectors of the tensor A and B determined by the 

components of C' with respect to its coordinate system RP should be the unit base 

vectors of coordinate system RP tself (see section 4.1). This feature can be easily 

drawn from the following calculations. The unit vectors of the normals to the 

symmetry planes in coordinate system RP determined by C' are 

If the experimental errors are taken into count, the ei ( i  = 1,2,3) in Equation 

7.10 actually line up with the three unit vectors x iP  (i = 3,2,1) of RP, respectively, 

which indeed characterizes the feature of that the normals to the symmetry planes in 

its principal coordinate system are the unit base vectors of the coordinate system 

itself 

7.4 Results with Carbon-Carbon Composites 

Testing was also carried out with the carbon-carbon composite materials. The 

carbon-carbon samples used were supplied by Applied Thermal Science, Inc. Four 

samples were tested, each of which was a rectangular parallelepiped in 25.4x25.4 mm 

with a thickness of 6mm. The testing procedures were exactly the same with the 



aluminum oxide described previously. The initial guesses for the carbon-carbon were 

measured by applying a contact technique for 'ultrasonic measurement fiom the 

primary work [Sun and Peterson, 20011, where the material was assumed to be an 

orthotropic material. A Cartesian coordinate system R is set up in such a way that the 

coordinate axes are parallel to the gebmetric axes of the sample. 

A set of initial guess (in GPa) used for carbon-carbon was obtained from the 

initial work [Sun, M. and Peterson, M. 20011, where a contact technique [Buskirk et 

al, 19861 was applied for ultrasonic measurement. 

One of the results of the elastic constants (in GPa) for the carbon-carbon 

sample reconstructed from the velocity data in the observation coordinate system R 

are 

i sym. 

As with the aluminum oxide, identification of the symmetry planes as well as 

determination of its principal coordinate frame R' were also carried out. Three 

symmetry planes exist in the material. A set if Euler's angles corresponding to R with 

respect to R' in this sample is 



a z 179.2' 

fl z 78.7' 7.12 

y = o  

The misorientation between the geometric axes xl, x2, x3 and the symmetric 

axes xIP, x ~ ~ ,  xJP are shown in Figure 7.4. 

The elastic constants cP referred to its principal coordinate system R' in GPa 

are 

Results of the reconstructed elastic constants in the principal coordinate 

system for the carbon-carbon samples are listed in Table 7.1, including the one shown 

Figure 7.4. An illustration of the misorientation between the geometric axes xl, 

x2, x3 and the symmetric axes xlP, xzp, x3P with 0=11.3' for a carbonprbon 
composite. 



above. Table 7.1 shows that the misorientation between the geometric axes and the 

symmetric axes vary fiom sample to sample. 



the - 
Table 7.1. Results of elastic constants and the associated Euler's angles with 

carbon-carbon -- - composite - material. 

Cij 
- - 

c11 
c12 

c13 

c14 

CIS 

c16 

c 2 2  

c 2 3  

c 2 4  

c25 

c 2 6  

c33 

c34 

c35 

c36 

C44 

c45 

c46 

c55 

c56 

c66 ---- - - -  

Euler's a 

initial data sample I 

angles I3 NIA 
-- - - 

numbers of symmetry 3 

perpendicular 
planes SWletry  

- - - -  

planes 
-- 

deviation of 

geometric axes fiom oO 
symmetric axes 

sample 2 

48.16 

7.594 

6.838 

0.001 

0.000 

0.001 

19.04 

4.390 

0.000 

-0.959 

0.00 1 

24.90 

-0.151 

1 S96 

-0.001 

8.223 

-5.320 

-1.43 1 

13.86 

0.001 

4.525 
-- - 

85.7' 

sample 3 
- ~- 

47.60 

7.556 

7.844 

-0.263 

-0.000 

-0.001 

15.14 

6.713 

2.017 

0.000 

0.001 

15.18 

-2.047 

0.000 

0.000 

6.824 

0.000 

-0.001 

4.717 

-0.299 

5.041 
- .  ~p - 

1 .so 

1 
perpendicular perpendicular 
symmetry 'metry symmetry 

plane 
planes 

~-~p -~ -- planes 



8 CONCLUSIONS AND FUTURE WORK 

From the work described in this thesis, several conclusions can be drawn. 

A water immersion method to optimally recover the elastic constants for a 

general anisotropic material has been demonstrated. The approach is based 
I 

on wave velocity measurements and a Newton-Raphason nonlinear 

optimization. 

Identification of material symmetries and the corresponding principal 

coordinate system has been introduced. 

The recovery of the Euler's angles is tested for the case of two angular 

unknowns. 

Numerical as well as experimental results show the method introduced in 

this work is effective and applicable. 

Future work can focus on the stability of the optimization algorithm. This is a 

quite straightforward procedure since it only involves applying some random scatter 

on the initial guess and on the measured velocity data. Another extension to this work 

is to investigate the sensitivity of this elastic constant determination for weak and 

strong anisotropies. This can be done by using both numerical and experimental data 

from various materials that possess different symmetry classes. 

Finally two other directions are useful. Many materials have not been 

challenged completely by a method such as the one shown. For specimens ranging 

from wood to composites, many interesting results are expected. Further work will 

also consider extending the determination of symmetry class to non-Cartesian 



samples. This is an interesting problem and is with relevance to a range of natural and 

man-made materials. 
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APPENDIX A. TENSOR CONVERSION FROM C~JKL TO CIJ 

A. 1 Background 

The constitutive equation, Hooke's Law, states that the stress Oij, a second 

order three dimensional tensor, is lintarly proportional to the strain Eij, another second 

order three dimensional tensor, and vice versa. In general [Auld, 19971 

where Cijkl are elastic constants, sijkl are compliance constants. They are both fourth 

order three dimensional tensors. 

Tensor transformation law is also applicable to Oij, Eij and Cijkl, which are 

where ai j  is a [3x3] transformation matrix, whose physical quantities are direction 

cosines of the transformed coordinate axes with respect to its initial coordinate axes. 

It is obvious from Equation A.4 that complicated algebraic manipulation 

exists when using Equation A.4 to obtain elastic constants in a transformed 

coordinate system. Therefore, it is of considerable importantance to perform 

coordinate transformations directly in an abbreviated subscript notation (second order 

six-dimensional tensor Cij) without the effort required to convert to full subscripts 

(fourth order three-dimensional tensor Cijkl), and reconvert back to the abbreviated 

notation after applying the transformation law. An eficient method for this purpose is 





Simply because of the symmetric properties of oij and Eij, the following 

conditions hold 

Therefore, the four subsrcipts of Cijkl may be reduced to two CIJ by using 

abbreviated subscript notation, where 

Relationships between Cijkl and Cu are obtained by considering individual 

terms in the constitutive equation (Equation A. 1) [Auld, 19701. For example, 

Conversion of the stress and strain to abbreciated subscripts gives 

Consequently, 



Therefore, in general 

In a similar way, the compliance constants sijkl are found to be 

1 for I and J = 1,2,3 

2 for I or J = 4,5,6 A.ll. 

4 for I and J = 4,5,6 

The differences between Equation A.9 and Equation A. 10 result f?om the 

factors of two shown in Equation AS. 

With the introduction of abbreviated subscripts, Hooke's law (Equation A.l) 

may be written as a matrix equation. A complete expression for Hooke's Law is 

Many advantages exist with the introduction of the abbreviated notions. One 

of these can be seen immediately from Equation A.ll that the compliance matrix [s] 

is simply the inverse of the stiffness matrix [c]. That is 

[ s ] '  = [c] 

Another important result is that Cu and Su in Equation A.ll are in fact higher 

dimensional tensors rather than matrices used for notation only. The feature of being 

higher dimensional tensors can be M e r  drawn from the following section. 

A. 3 Transformations with Abbreviated subscripts 

Consider the stress ai j .  In full subscript notation, the transformation law 

applies, which is 



where [a] is the [3x3] transformation matrix introduced previously. 

To convert to abbreviated subscripts, each stress component must be 

examined individually. For example, 

Conversion of ai to abbreviated notation a, gives 

Repetition of the same procedure for each component of a,' obtains the 

transformation law 

where Mu defines a [6x6] transformation matrix. 

Similarly, the transformation law for the strain in its abbreviated notion is 

E,'= N I J  E~ A.16. 

where the transformation matrix [N] is 



A.17. 

Transformation of CIJ can be obtained by applying Equation A.14 to Hooke's 

Law (Equation A. 12). 

The inverse of Equation A. 16 is 

Substitution for [E] in Equation A. 19 gives 

Comparison of Equation A.20 with Hooke's Law (Equation A. 1) shows 

Investigation of the two transformation matrixes [MI and [v in Equation A. 15 and 

A.17 gives 

Therefore the transformation law for elastic constants CI, is 

C'rr = M k i M r j  Cij 

In a similar manner, the transformation law for compliance is 



S'kr = N k i N r j  S i j  A.23. 

The primary advantage of Equations A.22 and A. 23 is that they can be 

applied directly to elastic constants given in abbreviated subscript notation. They are 

economical of space and easy to manipulate compared to the awkward work required 

to the fill subscript notation. The derivation demonstrated above strictly follows the 

general tensor transformation. Therefore, results in Equations A.22 and A. 23 indicate 

that the abbreviated subscript notation CIJ and Su are indeed second order six- 

dimensional tensors, rather than the matrix notion only. Thus, all tensor properties do 

apply to them. 
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