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Abstract

We consider the problem of finding all enclosing rectangles of minimum area that can
contain a given set of rectangles without overlap. Our rectangle packer chooses the x-
coordinates of all the rectangles before any of the y-coordinates. We then transform the
problem into a perfect-packing problem with no empty space by adding additional rectan-
gles. To determine the y-coordinates, we branch on the different rectangles that can be
placed in each empty position. Our packer allows us to extend the known solutions for a
consecutive-square benchmark from 27 to 32 squares. We also introduce three new bench-
marks, avoiding properties that make a benchmark easy, such as rectangles with shared
dimensions. Our third benchmark consists of rectangles of increasingly high precision. To
pack them efficiently, we limit the rectangles’ coordinates and the bounding box dimensions
to the set of subset sums of the rectangles’ dimensions. Overall, our algorithms represent
the current state-of-the-art for this problem, outperforming other algorithms by orders of
magnitude, depending on the benchmark.

1. Introduction

Given a set of rectangles, our problem is to find all enclosing rectangles of minimum area
that will contain them without overlap. We refer to an enclosing rectangle as a bounding box,
to avoid confusion. The optimization problem is NP-hard, while the problem of deciding
whether a set of rectangles can be packed in a given bounding box is NP-complete, via a
reduction from bin-packing (Korf, 2003). The consecutive-square benchmark is a simple set
of increasingly difficult benchmarks for this problem, where the task is to find the bounding
boxes of minimum area that contain a set of squares of dimensions 1 × 1, 2 × 2, ..., up
to N × N (Korf, 2003). For example, Figure 1 is an optimal solution for N=32. We will
use this benchmark to explain many of the ideas in this paper, but our techniques are not
limited to packing squares, and apply to all rectangles.

Rectangle packing has many practical applications, including modeling some schedul-
ing problems where tasks require resources that are allocated in contiguous chunks. For
example, consider the task of scheduling and allocating contiguous memory addresses to
programs. The width of a rectangle represents the length of time a program runs, and the
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Figure 1: An optimal solution for N=32 of the consecutive-square benchmark, packing
squares of dimensions 1× 1, 2× 2, ..., 31× 31, and 32× 32 in a bounding box of minimum
area, which is 85× 135.
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height represents the amount of contiguous memory it needs. A rectangle packing solution
tells us both when programs should be run, as well as which memory addresses they should
be assigned. Similar problems include scheduling when and where ships of different length
can be berthed along a single, long wharf (Li, Leong, & Quek, 2004), as well as the alloca-
tion and scheduling of radio frequency spectra usage (Mitola & Maguire, 1999). Rectangle
packing also appears when loading a set of rectangular objects on a pallet without stacking
them. Some cutting stock and layout problems also contain rectangle packing subproblems.

1.1 Overview

The remainder of this article is organized as follows. We first introduce various bench-
marks in Section 2 that specifically define the rectangle packing instances we will solve.
In Section 3, we review the state-of-the-art rectangle packers and their techniques, which
provides a foundation upon which we present our new work. We follow in Section 4 with the
data collected and compare our work against the previous state-of-the-art using previous
benchmarks. We also compare the difficulty of previous benchmarks with our new ones.

In Section 5, we present a benchmark of rectangles of successively higher precision
dimensions, new solution techniques to handle this, and follow with experimental results.
Then we compare our methods to the competing search spaces used for packing high-
precision rectangles, and show that our methods remain competitive.

Sections 6 and 7 explain various avenues for future work, concluding this article by
summarizing all of our contributions and results. We have previously published much of
this work in several conference papers (Huang & Korf, 2009, 2010, 2011).

2. Benchmarks

There are several reasons motivating our benchmarks. First, our benchmarks describe
instances with a single parameter N , allowing researchers to easily reproduce the instances.
Second, because the instances are unique, optimal solutions that are reported can be easily
validated by others. These are advantages over many real-world instance libraries and
randomly generated ones. Third, our benchmarks define an infinite set of instances where
each successive instance is harder than the previous. A solver is superior to another solver
if it can solve the same instance faster, or a larger instance in the same amount of time.
By contrast, comparison using a library of instances may require counting the number of
instances that are completed within a given time limit. Furthermore, with instance libraries,
often one solver performs well on one subset of instances while a competing solver performs
well on a different subset, making such comparisons inconclusive.

We believe our benchmarks capture some of the more difficult instances a rectangle
packer may face so we do not investigate the modeling and generation of random problems.
Although Clautiaux et al. (2007) and others have used random instances, the non-random
benchmarks used by Korf (2003) and Simonis and O’Sullivan (2008) have better facilitated
the comparison of state-of-the-art packers. However, for more comprehensive overviews,
we refer the reader to the numerous surveys available (Lodi, Martello, & Vigo, 2002; Lodi,
Martello, & Monaci, 2002; Dowsland & Dowsland, 1992; Sweeney & Paternoster, 1992).
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2.1 Previous Benchmarks

Several of the previous benchmarks used in the literature can be shown to be easier than the
benchmarks that we propose. Part of this is due to the fact that benchmarks, like solvers,
may also be improved with further research, to ensure that they cover various properties of
rectangles, in addition to providing an easy way to compare performance among different
packers and measure progress.

The consecutive-square benchmark (Korf, 2003), is a simple set of increasingly difficult
instances, where the task is to find all bounding boxes of minimum area that contain a set
of squares of sizes 1×1, 2×2, ..., up to N ×N . Prior to our work, many of the recent state-
of-the-art packers used this popular benchmark to measure performance, including that of
Moffitt and Pollack (2006), Korf, Moffitt, and Pollack (2010), and Simonis and O’Sullivan
(2008). To date, the largest instance solved for this problem is N=32, shown in Figure 1,
using our packer (Huang & Korf, 2009). We do not consider the problem of packing squares
in a square because this benchmark gets much easier as the problem size increases, due to
large differences in the areas of consecutive square bounding boxes.

In the unoriented consecutive-rectangle benchmark (Korf et al., 2010), an instance is
a set of rectangles of sizes 1 × 2, 2 × 3, ..., up to N × (N + 1), and rectangles may be
rotated by 90-degrees. As we will subsequently explain, the fact that there are many pairs
of rectangles in this instance which share equal dimensions causes the optimal solutions to
leave no empty space, making this benchmark easy to solve. We include this benchmark for
completeness, but note that it is not an effective measure for comparing different packers.

Finding only the first optimal solution is another benchmark Simonis and O’Sullivan
(2011) have used in conjunction with problem instances from the unoriented consecutive-
rectangle benchmark. In contrast to our problem of finding all optimal solutions, they
measure the time it takes to find only the first optimal solution, which makes it much more
difficult to reliably compare against other solvers unless the focus of the research is on value
ordering and tie-breaking among bounding boxes of equal area.

For example, Simonis and O’Sullivan (2011) report that to find the first solution to
N=26 takes 3:28:20 (3 hours, 28 minutes, and 20 seconds). As shown in Table 8 on page
72, there are six solutions for N=26: 42×156, 52×126, 56×117, 63×104, 72×91, 78×84,
each requiring our solver CPU times of 0:32, 41:40, 53:19, 1:55:04, 1:33:22, and 8:53:01,
respectively. There are no smaller bounding boxes we needed to test because the optimal
solution has no empty space, so if we used Simonis and O’Sullivan’s termination criteria and
just returned the first optimal solution, we would only need 32 seconds. Therefore, finding
all minimum bounding boxes instead of just the first one is a benchmark which produces
harder problems for larger N , and better facilitates program comparisons.

2.2 Properties of Easy Benchmarks to Avoid

To motivate our new benchmarks, we will now explain why the previous benchmarks tended
to be much easier in comparison, and why we have constructed our new benchmarks to
describe instances consisting of rectangles with unique dimensions, without duplicates, and
without most of the area being occupied by only a few rectangles.
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(a) Solution in a 21 × 35 bounding
box for the unoriented instance 1×2,
2× 3, ..., 11× 12, 12× 13.

(b) Solution in a 14 × 26 bounding
box for the unoriented instance 1 ×
12, 2× 11, ..., 11× 2, 12× 1.

Figure 2: Examples of solutions for instances of rectangles with equal dimensions.

2.2.1 Rectangles With Equal Dimensions

In the unoriented consecutive-rectangle benchmark, all rectangles share a dimension with
another rectangle. For example, Figure 2a is an optimal solution for N=12. In optimal
solutions, rectangles of equal dimensions tend to line up next to each other, forming larger
rectangles and leaving little empty space. In Figure 2a, the 8 × 9 and 7 × 8 line up, as
do the 5 × 6 with the 4 × 5, and the 3 × 4 with the 2 × 3. In fact, the solutions to this
benchmark all have a much smaller percentage of empty space than similar-sized instances
from the consecutive-square benchmark, where all rectangles have unique dimensions. We
also notice that benchmarks with duplicate rectangles, such as that in Figure 2b, are solved
quickly.

2.2.2 Rectangles With Small Area and Small Dimensions

Figure 2b is also an example of a perfect packing, because there is no empty space in the
solution. Problems with perfect packings tend to be easy for two reasons. One is that if
we test bounding boxes in increasing order of area, we test fewer boxes, since we never test
a box with more than the minimum area required. The second is that for these problems,
rather than deciding for each rectangle where it should go in the bounding box, a more
efficient algorithm is to decide for each cell of empty space which rectangle should occupy
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it. As soon as a small region of empty space is created that can’t accomodate any remaining
rectangles, the algorithm can backtrack.

In both the consecutive-square and the unoriented rectangle benchmarks, a few large
rectangles capture much of the total area in an instance. Thus, the packer does not search
too deeply before using up the allowable empty space. With little empty space, early
backtracking is very likely since we cannot find a place for the next rectangle. Therefore,
small rectangles in these benchmarks have an insignificant impact on the search effort.

In previous benchmarks, such as the consecutive-square benchmark, the retangles with
the largest area also have the largest dimensions, making it obvious which rectangles to
place first, because the largest rectangles are the most constrained, and impose the most
constraints on the remaining rectangles.

By contrast, in our new benchmarks there is a trade-off between rectangles with large
dimensions and those with large area. The widest rectangle in our oriented equal-perime-
ter benchmark, described below, has the smallest branching factor as we search for x-
coordinates. However, it also has the least area, so during search it won’t constrain the
placement of the remaining rectangles much. This raises the non-trivial question of the best
variable ordering for non-square rectangles.

2.3 New Benchmarks

We propose several new benchmarks that are more difficult when comparing instances
with the same number of rectangles. Our experimental results make use of the following
benchmarks, in addition to the consecutive-square and unoriented consecutive-rectangle
benchmarks described above.

2.3.1 Equal-Perimeter Rectangles

First, we present the oriented equal-perimeter rectangle benchmark, where each instance is a
set of rectangles of sizes 1×N , 2×(N−1), ..., (N−1)×2, N×1, and rectangles may not be
rotated (see Figure 3). Given N , all rectangles are unique and have a perimeter of 2N+2. In
our experiments, this benchmark is much more difficult than either the consecutive-square
benchmark or the unoriented consecutive-rectangle benchmark (Korf et al., 2010) for the
same number of rectangles. We tested our state-of-the-art packer (Huang & Korf, 2010)
on both old and new benchmarks. N=22 from our oriented equal-perimeter benchmark
took over nine hours to solve, while N=22 from the consecutive-square and unoriented
consecutive-rectangle benchmarks took only one second and six seconds, respectively.

Second, we present the unoriented double-perimeter rectangle benchmark, where in-
stances are described as a set of rectangles 1× (2N −1), 2× (2N −2), ..., (N −1)× (N +1),
N × N , and rectangles may be rotated by 90-degrees. All rectangles here are unique and
have a perimeter of 4N . Not only is this benchmark more difficult than the benchmarks
used previously in the literature, but this benchmark also is more difficult than the oriented
one we introduced in the previous paragraph. In our experiments using all of our techniques,
N=18 took over two days to solve.

So far, the benchmarks that we have discussed all have low-precision integer dimensions.
This property poses no problem for our packer, which enumerates the various integer co-
ordinate locations where a rectangle may be placed. With high-precision values, however,
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Figure 3: An optimal solution for N=23 of the oriented equal-perimeter benchmark, packing
oriented rectangles of dimensions 1 × 23, 2 × 22, ..., 22 × 2, and 23 × 1 in a bounding box
of minimum area, which is 38× 61.
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the number of distinct positions increases dramatically. This motivates our study of pack-
ing rectangles with high-precision dimensions. In particular, we propose the unoriented
high-precision rectangle benchmark, where instances are described as a set of rectangles
1
1 ×

1
2 ,

1
2 ×

1
3 , ..., up to 1

N ×
1

N+1 . The methods used to solve this benchmark are quite
different from those used in the low-precision case.

3. Solution Techniques

In this section we describe previous solution strategies as well as the various new techniques
we use in our rectangle packer. We first describe our techniques as they apply to the con-
secutive-square benchmark, the oriented equal-perimeter benchmark, and the unoriented
double-perimeter benchmark. Our work on the unoriented high-precision rectangle bench-
mark is not included here because the methods are significantly different, and is deferred
to Section 5.

3.1 Previous Work

Some of the earlier work that focused on optimal methods for packing a set of rectangles in
a given bounding box were motivated by the problem of pallet loading. Dowsland (1987)
used depth-first search on an abstract graph representation of the search space to solve
the problem optimally on problem sets modeled after real-world pallet and box dimensions.
Although her problem instances contained an average of 30 rectangles and up to 50, her
benchmarks were far easier than those we consider here, as all of the rectangles were the
same size, and there was a significant amount of empty space in the solutions. Bhattacharya
et al. (1998) extended the work with additional lower bounds and pruning techniques based
on dominance conditions and demonstrated their work on the same benchmarks.

In examining rectangle packing instances where rectangles are of different dimensions,
Onodera et al. (1991) used depth-first search, in which each branching point in their search
space was a commitment to a particular non-overlap constraint between two rectangles.
Lower bound and graph reduction techniques were applied to prune the search space, al-
lowing them to optimally solve problems with up to six rectangles.

Chan and Markov’s BloBB (2004) packer used branch-and-bound in order to find the
minimum area bounding box that can contain a set of rectangles. Their solver could handle
up to eleven rectangles, and they observed that instances with duplicate rectangles were
much easier, causing their packer to cluster such rectangles together in an optimal solution.
Lesh et al.’s solver (2004) used depth-first search, placing each rectangle first in the bottom-
most and left-most position in which it fit (the bottom-left heuristic, see Chazelle, 1983), to
determine whether or not a set of rectangles can be packed in a given enclosing rectangle.
They were able to handle about twenty-nine rectangles in ten minutes on average, but their
testbed consisted only of instances whose optimal solutions had no empty space.

Clautiaux et al. (2007) presented a branch-and-bound method in which all the x-coor-
dinates for the rectangles were computed prior to any of the y-coordinates. While assigning
x-coordinates, their method uses a relaxation similar to the cumulative constraint (Aggoun
& Beldiceanu, 1993) which requires that the sum of the heights of all rectangles overlapping
a particular x-coordinate cannot exceed the height of the bounding box. The y-coordinates
are then determined using a search space derived from the bottom-left heuristic (Chazelle,
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1983), using optimized data structures from Martello and Vigo (1998). Beldiceanu and
Carlsson (2001) applied the plane sweep algorithm used in computational geometry to de-
tect violations of the non-overlap constraints, and later adapted the technique to a geometric
constraint kernel (Beldiceanu, Carlsson, Poder, Sadek, & Truchet, 2007). Lipovetskii (2008)
proposed a branch-and-bound algorithm that placed rectangles in the lower-left hand posi-
tions.

The prior state-of-the-art, due to Korf (2003, 2004) and Simonis and O’Sullivan (2008),
both divide the rectangle packing problem into the containment problem and the minimal
bounding box problem. The former tries to pack a given set of rectangles in a given bounding
box, while the latter finds the bounding box of least area that can contain the given set of
rectangles. In both packers the algorithm for the minimal bounding box problem calls the
algorithm for the containment problem as a subroutine.

3.2 Our Overall Search Strategy

Like Korf et al.’s (2010) algorithm, we have a minimum bounding box solver which calls a
containment problem solver, and like Simonis and O’Sullivan (2008), we assign x-coordinates
prior to any of the y-coordinates.

Although we use some of Simonis and O’Sullivan’s (2008) ideas, we do not take a
constraint programming approach in which all constraints are specified to a general-purpose
solver like Prolog. Instead, we implemented our program from scratch in C++, allowing us
to more flexibly choose which constraints to use at what time and to naturally encode the
search space we use for the y-coordinates. We implemented a chronological backtracking
algorithm with dynamic variable ordering. Our algorithm works in five stages as it goes
from the root of the search tree down to the leaves:

1. The minimum bounding box algorithm generates an initial candidate set of bounding
boxes of various widths and heights.

2. The containment solver is called for each bounding box in order of increasing area,
and for each infeasible bounding box, we insert another back into the candidate set of
bounding boxes with a height one unit greater. If a packing was found, we continue
testing boxes of equal area to find all optimal solutions before terminating.

3. The containment solver first works on the x-coordinates in a model where variables
are rectangles and values are x-coordinate locations, using dynamic variable ordering
and a constraint that detects infeasible subtrees.

4. For each x-coordinate solution found, the problem is transformed into a perfect pack-
ing instance.

5. It then searches for a set of y-coordinates in a model where variables are empty corners
and values are rectangles.

We now describe in detail each of these steps.
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3.3 Minimum Bounding Box Problem

One way to solve the minimum bounding box problem is to find the minimum and maximum
areas describing the set of candidate and potentially optimal bounding boxes. Boxes of all
sizes are generated with areas within this range, and then tested in non-decreasing order
of area until all solutions of smallest area are found. A lower bound on the area is the
sum of the areas of the given rectangles. An upper bound on the area is determined by
the bounding box of a greedy solution found by setting the bounding box height to that
of the tallest rectangle, and then placing the rectangles in the first available position when
scanning from left to right, and for each column scanning from bottom to top.

There are several techniques (Korf, 2003, 2004) that we use to prune the set of bounding
boxes, which we review here. We first generate a set of widths for our bounding boxes,
starting with the width of the widest rectangle up to the width of the greedy solution
described above. Then for each width, we generate a feasible height using lower bounds
which we will subsequently describe. The resulting bounding boxes are used to initialize
a min-heap sorted in non-decreasing order of area. The search proceeds by calling the
containment solver on the bounding box of minimal area in this heap. If the box is infeasible,
then we increase the height of the box by one, and insert the new box back into the min-heap.

For a given bounding box width, we initialize its height to the maximum of the following
lower bounds. First, the height must be at least the height of the tallest rectangle in the
instance. Second, the height must be large enough to accommodate the total area of the
rectangles in the instance. Third, for every pair of rectangles, if the sum of their widths
exceed the width of the bounding box, then the bounding box height must be at least
the sum of their heights, since they can’t appear side-by-side, but one must be on top of
the other. Fourth, the set of rectangles whose widths are greater than half the width of
the bounding box must all be stacked vertically, including the rectangle of smallest height
whose width is exactly half the width of the bounding box. Finally, if certain properties
exist for a given rectangle packing instance, we force the height to be greater than or equal
to the width to break symmetry. For example, one sufficient property is having an instance
consisting of just squares, since a solution in a W ×H bounding box easily transforms into
another one in a H×W bounding box. Another sufficient property is when every rectangle
of dimensions w × h can correspond to another one of dimensions h× w.

For unoriented instances, given a bounding box width, certain rectangles may be forced
into one orientation, improving the lower bound on the bounding box height. Note that we
can also break the symmetry on the bounding box dimensions for every unoriented instance.

3.3.1 Anytime Algorithm

In a problem instance with many rectangles, or when an immediate solution is required,
Korf (2003) provides an anytime algorithm for the bounding box problem, replacing the one
described above, which also calls the containment problem solver. We first find a greedy
solution on a bounding box whose height is equal to the tallest rectangle, as described in the
previous section. We then repeatedly call the containment problem solver in the following
way. If the previous attempt for a given bounding box resulted in a packing or if its area
is greater than the area of the best solution seen so far, then we decrease the width by
one unit and attempt to solve the resulting bounding box problem. If instead the previous
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attempt were infeasible, then we increase the height of the bounding box by one unit. The
algorithm terminates when the width of the current bounding box is less than the width of
the widest rectangle.

3.4 Containment Problem

Korf’s (2003) absolute placement approach modeled rectangles as variables and positions in
the bounding box as values. Rectangles were placed in turn with a depth-first search, and
all possible locations were tested for each rectangle. By contrast, Simonis and O’Sullivan’s
(2008) packer assigned the x-coordinates of all the rectangles before any of the y-coordinates,
as suggested by Clautiaux et al. (2007), as well as using the cumulative constraint (Aggoun
& Beldiceanu, 1993), improving performance by orders of magnitude. The cumulative
constraint adds the height of all the rectangles that overlap a given x-coordinate location,
pruning if any of these values exceed the height of the bounding box. This constraint was
checked while exploring x-coordinates and also while exploring y-coordinates later on. We
improved on this by exploring the y-coordinates differently, modeling candidate locations
as variables, and rectangles as values (Huang & Korf, 2009), which made our packer over
an order of magnitude faster than that of Simonis and O’Sullivan’s.

Simonis and O’Sullivan (2008) furthermore applied the least-commitment principle (Yap,
2004) from constraint processing, by first committing the placement of rectangles to an
interval of x-coordinates instead of just a single x-coordinate value. These x-intervals are
explored in turn, and constrain the candidate individual x-coordinates explored later. This
works because committing to an x-interval can induce pruning via the cumulative constraint.
For example, picking an x-interval of [a, b] with a size that is smaller than the width of the
rectangle wr, implies that regardless of which x-coordinate the rectangle eventually takes,
it must contribute its height to each x-coordinate within the interval [b, a + wr]. Finally,
the height of the bounding box constrains the cumulative heights of all rectangles for any
given x-coordinate, similar to the ideas of Beldiceanu et al. (2008). Larger intervals result in
weaker constraint propagation (less pruning) but a smaller branching factor, while smaller
intervals result in stronger constraint propagation but a larger branching factor. The size
of the intervals are experimentally determined.

For example, a 4 × 2 rectangle with x-coordinates restricted to the interval [0,2] con-
tributes a height of 2 at x-coordinates 2 and 3 even prior to deciding its exact x-coordinate
value. This compulsory part (Lahrichi, 1982) constrains the cumulative height of the rect-
angles that may overlap x-coordinates 2 and 3 in the solution. If these interval assignments
were all infeasible, then searching for individual x-values is futile. However, if we do find
a set of interval assignments, then we still have to search for a set of single x-coordinate
values. Simonis and O’Sullivan (2008) assigned x-intervals, single x-coordinates, y-intervals,
and single y-coordinates, in that order.

3.5 Assigning X-Intervals and X-Coordinates

For the x-coordinates, we propose a pruning constraint adapted from Korf’s (2003) wasted-
space pruning heuristic, a dynamic variable order to replace Beldiceanu’s (2008) fixed or-
dering, and a method to optimize the values assigned to our x-interval variables.
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Figure 4: To test for violations of the cumulative constraint, the remaining space after
placing a 3× 2 rectangle at x=2 is represented as the vector 〈3, 3, 1, 1, 1, 3〉.

3.5.1 Pruning Infeasible Subtrees

We present a constraint-based formulation of Korf’s (2003) two-dimensional wasted space
pruning algorithm, adapted to the one-dimensional case. Given a partial solution, Korf’s
algorithm computed a lower bound on the amount of wasted space, which was then used
to prune against an upper bound. By contrast, we do not compute any numerical bounds
and instead detect infeasibility with a single constraint.

As rectangles are placed in the bounding box, the remaining empty space gets chopped
up into small irregular regions. Eventually the empty space is segmented into small enough
chunks such that they cannot accommodate any of the remaining unplaced rectangles, at
which point we backtrack. While assigning x-coordinates in a bounding box of height H,
we keep a histogram 〈v1, v2, . . . , vH〉, where vi is the number of empty cells (units of empty
space) that are in empty columns of height i. For example, assume that in Figure 4 we
assigned only the x-coordinates of a 3× 2 rectangle in a 6× 3 bounding box. The resulting
histogram would be 〈3, 0, 9〉, since there are 3 cells in empty columns of height 1, no empty
cells in columns of height 2, and 9 cells in empty columns of height 3.

Assume now that we only have left to place a 2×3 and a 2×2 rectangle. We can assign
the six cells of the 2× 3 rectangle to the empty cells of v3=9, leaving us with the remaining
empty cells 〈3, 0, 3〉. At this point, we cannot assign the area of the 2× 2, because we only
have 3 empty cells that can accommodate its height and we need 4, so we can prune.

In general, for a set of unplaced rectangles R and a bounding box of height H,

∀h,

 ∑
r∈R,hr≥h

wrhr ≤
H∑
i=h

vi

 , (1)

where a rectangle r ∈ R has dimensions wr × hr. That is, for every given height h, the
amount of space that can accommodate rectangles of height h or greater must be at least
the cumulative area of rectangles of height h or greater. We check this constraint after each
x-coordinate assignment.
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(a) x=2 is a dominated position for
the 4× 4 square.

(b) x=0 is an undominated position
for the 4× 4 square.

Figure 5: Example of dominance conditions.

3.5.2 Pruning With Dominance Conditions

Korf (2003) introduced a set of dominance conditions to prune positions where large rectan-
gles are too close to the sides of the bounding box. For example, imagine that we must pack
the squares 4×4, 3×3, 2×2, and 1×1. In Figure 5a, the placement of the 4×4 square leaves
a 2× 4 gap against the left side of the bounding box in which the 3× 3 square cannot fit.
Only the 2×2 and 1×1 squares can fit within the gap, and in fact they both can be placed
entirely within the gap. Notice that in any solution with an arrangement as in Figure 5a,
we can always rearrange them as in Figure 5b without disturbing any other squares. Thus,
there is no need to try placing the 4×4 square at x=2 so long as we have tried placing it at
x=0. In general, a rectangle placement is dominated if it leaves a gap in which all rectangles
that can individually fit can also be packed together in the gap without protruding from
it. Although Korf hard-coded dominance rules for the consecutive-square benchmark, we
dynamically generate them for every instance with insignificant preprocessing overhead.

3.5.3 Variable Ordering

In the following subsections we consider two variable orders that work together in our packer.
We use a fixed ordering that governs which rectangle is assigned next. This ordering is used
for the x-intervals independently from its use on the single x-coordinate variables. At
any point in time, we also must choose whether to assign the next x-interval or the next
single x-coordinate variable. Since the ordering between x-intervals and single x-coordinate
variables is simpler, we present this technique first.

Ordering Between X-Intervals and X-Coordinates By Area Our variable order
is based on the observation that placing rectangles of larger area is more constraining
than placing those of smaller area. At all times we can either choose to assign a single
x-coordinate to a rectangle for which we previously had assigned an x-interval, or we can
assign an x-interval to a rectangle we have not yet made any assignments for. As shown in
Figure 4, either of these assignments will decrease the amount of empty space represented
in the cumulative constraint vector. We always pick next the variable that results in the
least remaining space.
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Ordering Among Rectangles By Branching Factor There is a natural variable order
that arises from both the consecutive-square and unoriented consecutive-rectangle bench-
marks when using the strategy of picking the most constrained variable next. For example,
in the consecutive-square benchmark, the largest rectangle is clearly the largest in height,
width, and area. However, in our new benchmarks the rectangle of largest width has the
smallest height, but not the largest area, making a good variable ordering non-obvious.

We propose a variable order over rectangles of various aspect ratios by picking the
variable with the fewest number of values first, to favor a smaller branching factor closer
to the root of the search tree. For the oriented equal-perimeter benchmark, recall that we
assign intervals to the x-coordinates before the individual x-coordinates, and like Simonis
and Sullivan (2008) we use a constant factor times the rectangle width to define the interval
size. The branching factor for the x-interval variables for a given rectangle is

b =
Bw − rw
Crw

=
Bw

C

[
1

rw

]
− 1

C
, (2)

where Bw is the bounding box width, rw is the rectangle width, and C is a constant chosen
experimentally. The numerator Bw − rw is the number of x-coordinate values that the
rectangle can have while still fitting in the bounding box, and the denominator Crw is the
size of the interval we will be assigning to the given rectangle. For example, if C=0.75 then
we would assign intervals of size three to a 4× 2 rectangle.

We may drop the translational constant −1/C as well as the positive scalar Bw/C since
we are only interested in a relative ordering for the rectangles, leaving us with 1/rw which
means that for the oriented benchmark we should place the rectangles in order of decreasing
width. For the unoriented double-perimeter benchmark, our packer first tries all values for
a particular x-interval, and then rotates the rectangle 90-degrees before trying another set
of x-interval values. In this case the branching factor is

b =
Bw − rw
Crw

+
Bw − rh
Crh

=
Bw

C

[
1

rw
+

1

rh

]
− 2

C
. (3)

As mentioned before, we can drop the scalar and translational constant, giving us

1

rw
+

1

rh
=

rw + rh
rwrh

. (4)

Because all rectangles in a given instance have the same perimeter by definition, the
numerator of the result in Equation 4 is constant. Therefore for our unoriented benchmark,
we place the rectangles in order of decreasing area.

3.5.4 Determining Sizes of X-Intervals

On the consecutive-square benchmark, our packer used an interval size that is 0.35 times
the width of a given rectangle. We found that larger interval sizes improve the performance
of our packer on the new equal-perimeter benchmarks, and use a value of C=0.55 instead.

As we assign larger intervals to the short and wide rectangles, the x-interval variables
for these rectangles tend to have branching factors of three or less. We should balance the
sizes of these intervals so that the values assigned are equally constraining on their subtrees.
For example, consider C=0.55, a rectangle of width 20, and its set of possible x-coordinate
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values [0,23]. Without balancing the sizes of the intervals, our packer would explore interval
sizes of 20C = 11, such as x=[0,10], x=[11,21], and finally the remaining domain values
with a small interval of x=[22,23]. This results in small compulsory parts and therefore
large search subtrees in the first two branches, but a very large compulsory part and thus
a small search subtree in the third.

Since we must explore three branches anyway, we can balance the sizes of these interval
assignments by exploring x=[0,7], x=[8,15], and x=[16,23]. The eventual effect is a better
balance on the size of the search subtrees amongst branches. Our packer first computes the
branching factor induced by the global interval parameter C=0.55 for each rectangle, and
then it balances the number of values in each interval assignment.

Interactions Between Interval Assignment and Dominance Conditions On con-
secutive-square instances, for most of the squares there are several positions following x=0
that are dominated. Therefore, our packer first branches by assigning the degenerate inter-
val x=[0,0] before exploring interval assignments for the undominated positions. Although
this technique increased the performance of our packer fivefold compared to leaving it out,
the same strategy slowed the performance fivefold on the oriented and unoriented double-
perimeter benchmark. The reason for this degradation of performance is as follows.

In our equal-perimeter benchmarks, the 1×N rectangle can always partially fit in gaps
left by other rectangles, but it must always protrude out of those gaps, thereby eliminating
the dominance conditions we previously described. Without any dominated positions to
account for, simply applying the same strategy used for consecutive-squares on our new
benchmarks results in our packer committing to single x-coordinate values in situations
where it is more desirable to include those positions in a larger interval assignment. To
avoid this, our packer detects when there are no dominated positions and dynamically
chooses whether to assign the degenerate interval as the x-coordinate assignment, or to
immediately begin with interval assignments.

3.6 Perfect Packing Transformation

For every complete x-coordinate solution, we transform the problem instance into a perfect
packing problem instance before working on the y-coordinates. A perfect packing instance
is a rectangle packing problem with the property that the solution has no empty space.
The transformation is done by adding to the original set of rectangles a number of 1 × 1
rectangles necessary to increase the total area of the rectangles to that of the bounding box.
Although the new 1 × 1 rectangles increase the problem size, the hope is that the ease of
solving perfect packing instances will offset the difficulty of packing more rectangles. Next
we describe our search space for perfect packing. As we will show, our methods rely on the
perfect packing property of having no empty space.

3.7 Assigning Y-Coordinates

An alternative to asking “Where should this rectangle go?” is to ask “Which rectangle
should go here?” In the former model, rectangles are variables and empty locations are
values, whereas in the latter, empty locations are variables and rectangles are values. For
y-coordinates, we search the latter model. We use a 2D bitmap to draw in placed rectangles
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to test for overlap, and we backtrack on positions that cannot accommodate any remaining
rectangles, or as required by Korf’s (2003) wasted space pruning rule.

3.7.1 Empty Corner Model

In all perfect packing solutions, every rectangle’s lower-left corner fits in some lower-left
empty corner formed by other rectangles, the sides of the bounding box, or a combination
of both. In this model, we have one variable per empty corner. In the final solution, since
each rectangle goes into exactly one empty corner, the number of empty corner variables is
equal to the number of rectangles in the perfect packing instance. The set of values is just
the set of unplaced rectangles.

This search space has the interesting property that variables are dynamically created
during search because the x- and y-coordinates of an empty corner are known only after the
rectangles that create it are placed. Furthermore, placing a rectangle in an empty corner
assigns both its x- and y-coordinates.

Note that the empty corner model can describe all perfect packing solutions. Given any
perfect packing solution, we can list a unique sequence of all the rectangles by scanning
left to right, bottom to top for the lower-left corners of the rectangles. This sequence
corresponds to a sequence of assignments from the root of this search space to a leaf in the
tree. This property also bounds the maximum size of the search space by N ′! where N ′ is
the number of rectangles after we have performed the perfect packing transformation.

3.7.2 Duplicate Rectangles

Due to the additional 1 × 1 rectangles from the perfect packing transformation, we have
introduced additional redundancy into the problem. A simple way to handle this is as
follows. For a particular empty corner, we never place a rectangle that is a duplicate of one
we have already tried at that position. This method of handling duplicates also applies to
duplicate rectangles in the original problem instance.

4. Experimental Results

We benchmarked our packers in Linux on a 2GHz AMD Opteron 246 with 2GB of RAM.
The packer we call KMP10 (Korf et al., 2010) was benchmarked on the same machine,
so we quote their published results. We do not include data for their relative placement
packer because it was not competitive. Results for Simonis and O’Sullivan’s packer (2008),
which we call SS08, are also quoted, obtained from SICStus Prolog 4.0.2 for Windows on a
3GHz Intel Xeon 5450 with 3.25GB of RAM. Since their machine is faster than ours, these
comparisons are a conservative estimate of our relative performance.

4.1 Previous Benchmarks

Because both the consecutive-square benchmark and the unoriented consecutive-rectangle
benchmarks (Korf et al., 2010) have been used in the literature to measure performance,
we include data collected using these two benchmarks.
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Size KMP10 SS08 FixedOrder HK09
N Time Time Time Time

20 1:32 :02 :00 :00
21 9:54 :07 :03 :03
22 37:03 :51 :02 :02
23 3:15:23 3:58 :14 :12
24 10:17:02 5:56 :40 :37
25 2:02:58:36 40:38 2:27 2:14
26 8:20:14:51 3:41:43 10:25 9:39
27 34:04:01:03 11:30:02 1:08:55 35:12
28 2:18:12:13 4:39:31
29 8:06:03
30 2:17:32:52
31 4:16:03:42
32 33:11:36:23

Table 1: CPU times required by various packers on the consecutive-square benchmark,
where the task is to pack squares from 1× 1 up to N ×N .

4.1.1 Consecutive Squares

Table 1 compares the CPU runtimes of four packers on the consecutive-square benchmark.
The first column specifies the instance size, which is both the number of squares and the
size of the largest one. The remaining columns specify the CPU times required by various
algorithms to find all the optimal solutions in the format of days, hours, minutes, and
seconds. When there are multiple boxes of minimum area, as for N=27 as listed in Table
8 of Appendix 4.4, we report the total time required to find all optimal bounding boxes.
We do this for two reasons. First, finding all minimum area bounding boxes removes the
question of which bounding box to test first if more than one have the same area. Second,
by providing all optimal solutions, other researchers working on rectangle packing can use
this information to verify the correctness of their programs.

HK09 includes our wasted space pruning rule for the x-coordinates, dynamic variable
ordering between x-intervals and x-coordinates, the perfect packing transformation, and
its related search space and inference rules. We have named this packer to be consistent
with our previous work (Huang & Korf, 2009). SS08 refers to the previous state-of-the-art
packer (Simonis & O’Sullivan, 2008). The largest problem previously solved was N=27
and took SS08 over 11 hours. We solved the same problem in 35 minutes and solved five
more open problems up to N=32. KMP10 refers to Korf et al.’s (2010) absolute placement
packer. FixedOrder assigns all x-intervals before any single x-coordinates, but includes all
of our other ideas. HK09’s dynamic variable ordering for the x-coordinates was an order
of magnitude faster than FixedOrder by N=28. The order of magnitude improvement
of FixedOrder over SS08 is likely due to our use of perfect packing for assigning the y-
coordinates. We do not include the timing for a packer with perfect packing disabled
because it was not competitive (e.g., N=20 took over 2.5 hours).
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Size X-Coordinate Seconds Seconds Ratio
N Solutions in X in Y X:Y

21 665 0.35 1.04 0.3
22 283 0.95 0.18 5.3
23 391 6.54 0.31 21.1
24 870 19.41 1.08 18.0
25 193 73.38 0.14 524.1
26 1,026 313.81 1.39 225.8
27 244 1,181.53 0.60 1,969.2
28 2,715 8,987.36 23.40 384.1
29 11,129 15,677.20 28.82 544.0
30 10,244 124,399.74 17.97 6,922.6
31 73,614 214,575.08 254.42 843.4
32 37,742 1,916,312.67 102.59 18,679.3

Table 2: CPU times spent searching for x- and y-coordinates for the consecutive-square
benchmark

In Table 2 the second column is the number of complete x-coordinate assignments our
packer found over the entire run of a particular problem instance. The third column is the
total time spent in searching for the x-coordinates. The fourth column is the total time
spent in performing the perfect packing transformation and searching for the y-coordinates.
Both columns represent the total CPU time over an entire run for a given problem instance.
The last column is the ratio of time in the third column to that of the fourth. Interestingly,
almost all of the time is spent on the x-coordinates as opposed to the y-coordinates, which
suggests that if we could efficiently enumerate the x-coordinate solutions, we could also
efficiently solve rectangle packing. This is confirmed by the relatively few x-coordinate
solutions that exist even for large instances. The data in Table 2 was obtained on a Linux
2.93GHz Intel Core 2 Duo E7500 machine in a separate experiment from that of Table 1,
which is why the total time spent on a given instance is different.

4.1.2 Unoriented Consecutive Rectangles

Table 3 compares the CPU times of our packer on the unoriented consecutive-rectangles
benchmark with that of Korf et al. (2010). Although the techniques due to Simonis and
O’Sullivan (2008) outperform those of Korf et al. on the consecutive-square benchmark,
there were no previously published results on this benchmark besides that of Korf et al.
Because this benchmark is easier than the consecutive-square benchmark, we do not break
down the contributions of each of our techniques, as these differences were delineated more
clearly in the previous section. The primary differentiating feature of this benchmark is
that rectangles are unoriented.

The first column gives the size of the problem instance. The second column gives the
performance of the previous state-of-the-art packer on this benchmark, using Korf et al.’s
code (2010). The third column gives the performance of our packer on this benchmark. All
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Size KMP10 HK10
N Time Time

16 :01 :00
17 :05 :00
18 :17 :00
19 :07 :00
20 8:11 :05
21 15:00 :06
22 1:09:45 :17
23 8:51:46 :47
24 11:53:17 13:38
25 7:17:00:03 2:21:10
26 6:31:51
27 4:07:37:08
28 1:16:43:02
29 6:04:47:06

Table 3: CPU times required by two packers on the unoriented consecutive-rectangle bench-
mark, where the task is to pack unoriented rectangles of sizes 1×2, 2×3, ..., and N×(N+1).

of the data in this table was collected on a Linux 2.93GHz Intel Core 2 Duo E7500 machine,
except for N=28 and N=29, which were collected on a Linux 2.53GHz Intel Xeon E5630
with 12GB of RAM, and which our experiments revealed to be 20% faster than the former
machine.

For this benchmark our techniques have allowed us to extend the known solutions from
N=25 to N=29 and allowed us to solve N=25 about 80 times faster than the previous
state-of-the-art on this benchmark.

4.2 Oriented Equal-Perimeter and Unoriented Double-Perimeter Rectangles

This section uses our new benchmarks to compare the techniques we have developed for
non-square instances. The techniques we discuss here, including the dynamic adjustment
of interval sizes and the generalized variable order based on branching factor, largely do
not affect the performance of our packer on the consecutive-square benchmark. In fact, we
tested this packer on that benchmark to see the effects of any extra overhead added by
our improvements. Our new packer resulted in only a five percent speedup compared to
our packer without these changes on the consecutive-square benchmark, likely due to minor
improvements in data structures, and balancing interval sizes. Therefore, we compare the
effects of these techniques only on our new benchmarks. Because the techniques we have
developed for our new benchmarks improve performance in both the oriented and unoriented
cases, we discuss them together.

Table 4 compares the performance of our packers on the oriented equal-perimeter bench-
mark while Table 5 compares the same packers using our unoriented double-perimeter
benchmark. The first column refers to the problem size of the instance, which is the number
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Size Boxes HK09 OptDom BrFactor C=0.55 HK10
N Tested Time Time Time Time Time

13 7 :01 :00 :00 :00 :00
14 7 :02 :01 :00 :00 :00
15 10 :16 :05 :01 :00 :00
16 9 :57 :16 :02 :00 :00
17 8 5:56 1:21 :27 :03 :02
18 12 1:06:32 14:47 6:15 :32 :22
19 12 6:35:48 1:26:16 31:23 3:34 2:15
20 11 1:18:51:34 7:36:09 1:51:10 13:06 7:51
21 9 3:21:31:46 13:33:16 4:22:49 20:49 11:20
22 15 14:22:03 9:12:37
23 16 3:22:50:38

Table 4: CPU times required by various packers on the oriented equal-perimeter rectangle
benchmark, where the task is to pack oriented rectangles of sizes 1 × N , 2 × (N − 1), ...,
(N − 1)× 2, and N × 1.

Size Boxes HK09 OptDom BrFactor C=0.55 HK10
N Tested Time Time Time Time Time

11 12 :01 :00 :00 :00 :00
12 17 :20 :04 :04 :01 :01
13 13 1:45 :21 :21 :06 :06
14 17 28:48 4:53 4:53 1:19 1:15
15 21 1:43:01 11:36 11:36 3:33 2:34
16 35 1:16:46:44 4:13:34 4:13:34 1:16:02 1:01:54
17 27 1:12:40:14 1:12:40:14 9:44:14 7:53:50
18 35 2:02:10:38

Table 5: CPU times required by various packers on the unoriented double-perimeter rect-
angle benchmark, where the task is to pack unoriented rectangles of sizes 1 × (2N − 1),
2× (2N − 2), ..., (N − 1)× (N + 1), and N ×N .
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of rectangles. The second column gives the number of bounding boxes tested in order to
find all optimal solutions. The remaining columns represent the CPU times for different
versions of our packer in the format of days, hours, minutes, and seconds. We wrote our
packer in C++ and collected our data on a Linux 2.93GHz Intel Core 2 Duo E7500 machine.

From left to right, each successive packer improves on the previous one by including an
additional technique. The column called HK09 is data collected using only the techniques
developed specifically for consecutive-square packing, which include the perfect packing
transformation and its related inference rules, dynamic variable ordering between single
x-coordinates and x-intervals, and the wasted space pruning rule for the x-coordinates
(Huang & Korf, 2009). To compare against our new variable ordering over rectangles of
various aspect ratios, we used the order of decreasing area by default in HK09.

OptDom improves upon HK09 by dynamically detecting when dominance rules apply or
are inapplicable, and optimizes the x-interval assignments with this knowledge. BrFactor
improves upon OptDom in that it orders the oriented equal-perimeter benchmark by de-
creasing width and the unoriented double-perimeter benchmark by decreasing area. C=0.55
improves upon BrFactor in that we use an interval size of 0.55 instead of C=0.35 as we
did for the consecutive-square benchmark. Finally, HK10 improves upon C=0.55 by using
knowledge of the branching factor to rebalance the sizes of the interval assignments for the
x-coordinates.

Notice that OptDom, BrFactor, and C=0.55 introduce techniques that reduce the
branching factor, and so they have a greater effect on performance than HK10, whose
new technique seeks to make the intervals assigned equally constraining. Our experiments
reveal that these techniques interact with one another, and we note that without including
dominated positions in the intervals, the performance gained from the other techniques
appears muted. This interaction is also why we tune the global interval parameter C only
after including the other techniques that affect the branching factor.

Ordering by branching factor improved performance for our oriented equal-perimeter
benchmark but not for our unoriented benchmark. In the latter case, as seen in Table 5,
our technique of ordering by branching factor prescribes ordering by decreasing area, which
is what we gave the packer as a reasonable default. Therefore, there is no difference in the
algorithm nor in its performance between the OptDom and BrFactor columns of Table 5.

Note that the unoriented double-perimeter benchmark requires our packer to try over
twice as many bounding boxes for a given parameter N than that required for our ori-
ented benchmark. This is due to having 2N -1 as the largest dimension in the unoriented
benchmark while having N as the largest dimension in the oriented benchmark. The larger
rectangles introduce a higher precision into the problem, and so we must try more bounding
boxes. The containment problem for an unoriented instance has a problem space that is
a factor of 2N larger than that of an oriented instance due to the two orientations of each
rectangle. Thus, an instance with N rectangles in this benchmark is incomparable to an
instance of N squares from the consecutive-square benchmark when evaluating benchmark
difficulty.

In summary, using all of our techniques together, we can solve N=21 of the oriented
equal-perimeter benchmark about 500 times faster and N=16 of the unoriented double-
perimeter benchmark about 40 times faster than the techniques we presented optimized
only for consecutive squares.
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Size Boxes Tested CPU Time

N Squares Perimeter Squares Perimeter

16 10 9 :00 :00
17 5 8 :00 :02
18 14 12 :00 :22
19 12 12 :00 2:15
20 14 11 :00 7:51
21 20 9 :01 11:20
22 17 15 :01 9:12:37
23 19 16 :07 3:22:50:38
24 19 :20
25 17 1:14
26 21 5:15
27 22 19:42
28 30 2:30:11
29 27 4:21:46
30 21 1:10:33:38
31 30 2:11:40:29
32 36 22:04:20:15

Table 6: Number of bounding boxes tested and CPU time required to solve a given instance
in the consecutive-square and the oriented equal-perimeter benchmarks.
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4.3 Comparing Easy and Hard Benchmarks

The following tables compare the difficulty of various benchmarks using our packer (Huang
& Korf, 2010) with all optimizations enabled.

4.3.1 Consecutive Squares vs. Equal-Perimeter Rectangles

In Table 6, the first column indicates the number of rectangles in the instance. The second
and third columns labeled “Boxes Tested” give the number of bounding boxes that were
tested when finding all optimal solutions for the consecutive-square benchmark and the
oriented equal-perimeter benchmark, respectively. The fourth and fifth columns give the
performance of our rectangle packer on both benchmarks as well. Each data point in this
table was collected using a Linux 2.93GHz Intel Core 2 Duo E7500 using one process, one
thread, and one core.

Notice that for a given instance with the same number of rectangles, the oriented equal-
perimeter benchmark is significantly harder than the consecutive-square benchmark. This
is due to the fact that for a given problem size, the consecutive-square benchmark contains
many little squares that are typically easy to place – a property missing in the equal-
perimeter benchmark. In fact, by N=23 our packer requires over four orders of magnitude
more time to find the optimal solutions to our new benchmark compared to an instance
with the same number of items from the consecutive-square benchmark.

4.3.2 Unoriented Consecutive-Rectangles vs. Unoriented Double-Perimeter
Rectangles

Table 7 shows how removing certain properties results in successively more difficult bench-
marks. We start with the unoriented consecutive-rectangle benchmark (Korf et al., 2010)
which contains many easy properties. In the “Doubly Scaled” column we pack 2× 4, 4× 6,
6×8, ..., (2N)×(2N+2) rectangles, which simply scales up the unoriented consecutive-rect-
angle benchmark by a factor of two. This benchmark is more difficult because integers of
higher magnitude lead to more x-coordinates to search, which in turn increases the branch-
ing factor of the problem. In the “Unique Dimensions” column we now pack rectangles of
sizes 1× 2, 3× 4, 5× 6, ..., (2N − 1)× (2N), which differs from the previous benchmark in
that all dimensions are unique. The last column distributes the area among the rectangles
more uniformly to avoid consolidating most of the area in the first few rectangles. This
column is also the culmination of all of the difficult properties which we have identified for
a rectangle packing benchmark, which we call our unoriented double-perimeter benchmark.
All data points in this table were collected using a Linux 2.93GHz Intel Core 2 Duo E7500
machine without any parallelization, except for N=28 and N=29, which were collected on
a Linux 2.53GHz Intel Xeon E5630 machine with 12GB of RAM, which we estimate to be
thirty percent faster.

4.4 Bounding Boxes of Minimum Area

In this section we list all of the optimal bounding boxes on various benchmarks found by
our program with all optimizations enabled. Notice that we do not duplicate the data for
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Unoriented Unoriented
Size Consecutive- Doubly Unique Double-
N Rectangles Scaled Dimensions Perimeter

12 :00 :00 :00 :01
13 :00 :00 :00 :06
14 :00 :00 :01 1:15
15 :00 :00 :00 2:34
16 :00 :00 :01 1:01:54
17 :00 :00 :01 7:53:50
18 :00 :01 :03 2:02:10:38
19 :00 :01 :11
20 :05 :09 :50
21 :06 :10 3:00
22 :17 :29 15:34
23 :47 1:13 3:21:36
24 13:38 27:37 12:23:37
25 2:21:10 6:41:20
26 6:31:51 1:02:12:06
27 4:07:37:08
28 1:16:43:02
29 6:04:47:06

Table 7: CPU time required for our optimized packer on various benchmarks of increasing
difficulty.
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the unoriented high-precision rectangle benchmark, and leave it in Table 10, Section 5.5.2,
since the discussion there refers to this data.

The first column in tables 8 and 9 refer to the size of the problem instance for their
respective benchmarks. The columns called Optimal Solution give the dimensions of the
optimal bounding boxes for a given instance. The next column called Empty Space gives
the percent of empty space in the optimal solution. The next column gives the number of
bounding boxes that were tested in order to find all optimal solutions for a given instance.

5. Absolute Placement on High-Precision Instances

Meir and Moser (1968) first proposed the problem of finding the smallest square that can
contain an infinite series of rectangles of sizes 1

1 ×
1
2 ,

1
2 ×

1
3 , 1

3 ×
1
4 , ..., etc. The rectangles

cannot overlap and are unoriented. The unit square has exactly enough area since the total
area of the rectangles in the infinite series is one. On the other hand, no space can be
wasted, suggesting that the task is infeasible. Inspired by this problem, we propose our last
benchmark and developed several new techniques.

We introduce the unoriented high-precision rectangle benchmark, where the task is to find
all bounding boxes of minimum area that can contain a finite set of unoriented rectangles
of sizes 1

1 ×
1
2 ,

1
2 ×

1
3 , ..., up to 1

N ×
1

N+1 . For example, for N=4 one must pack rectangles of

sizes 1
1 ×

1
2 , 1

2 ×
1
3 , 1

3 ×
1
4 , and 1

4 ×
1
5 . Alternatively, one may try to pack rectangles of sizes

60×30, 30×20, 20×15, and 15×12 into a 60×60 square, which is just the original instance
scaled up by a factor of 60, the least common multiple of the rectangle denominators. This
strategy is required for the broad class of recent rectangle-packers that explore the domain
of integer x- and y-coordinates for the rectangles and quickly break down at higher N .
For example, the optimal solution of N=15 has over 400 billion unique coordinate pairs
that rectangles can be assigned to. Our benchmark complements rather than replaces the
current low-precision benchmarks, which until now have neglected high-precision instances.

The remainder of this section is organized as follows. We first review some of the previous
work proposing solution techniques that may be unaffected by the precision of the rectangle
dimensions. Then we describe several adaptations of our low-precision techniques to the
high-precision case, along with some new techniques developed specifically for high-precision
rectangle instances, and finally follow with experimental results.

5.1 Previous Work

The relative placement approach of Moffitt and Pollack (2006) for rectangle packing, and
similar types of search spaces used in resource-constrained scheduling (Weglarz, 1999),
promises to be immune to the problem of high-precision rectangle instances. However, since
there are so many techniques that we have described in the previous sections that cannot
be extended to a packer working in the relative placement search space, we have decided
to stay within the absolute placement framework and attempt to mitigate the problems
introduced by high-precision numbers.
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Consecutive Squares Consecutive Rectangles

Size Optimal Empty Boxes Optimal Empty Boxes
N Solutions Space Tested Solutions Space Tested

1 1×1 0.00% 1 1×2 0.00% 1
2 2×3 16.7% 1 2×4 0.00% 1
3 3×5 6.67% 1 4×5 0.00% 1
4 5×7 14.3% 1 5×8, 4×10 0.00% 2
5 5×12 8.33% 1 5×14 0.00% 2
6 9×11 8.08% 1 6×19 1.75% 2
7 11×14, 7×22 9.09% 3 12×14 0.00% 2
8 14×15 2.86% 2 15×16 0.00% 1
9 15×20 5.00% 4 16×21, 14×24 1.79% 5
10 15×27 4.94% 5 17×26 0.45% 5
11 19×27 1.36% 3 22×26 0.00% 2
12 23×29 2.55% 6 21×35 0.95% 4
13 22×38 2.03% 5 26×35 0.00% 1
14 23×45 1.93% 8 32×35, 28×40 0.00% 2
15 23×55 1.98% 13 34×40 0.00% 1
16 28×54, 27×56 1.06% 10 32×51 0.00% 2
17 39×46 0.50% 5 34×57 0.00% 2
18 31×69 1.40% 14 30×76 0.00% 3
19 47×53 0.84% 12 35×76, 38×70 0.00% 2
20 34×85 0.69% 14 35×88, 44×70, 55×56 0.00% 4
21 38×88 0.99% 20 39×91 0.20% 2
22 39×98 0.71% 17 44×92 0.00% 2
23 64×68 0.64% 19 40×115, 46×100 0.00% 3
24 56×88 0.58% 19 40×130, 52×100, 65×80 0.00% 4
25 43×129 0.40% 17 45×130, 65×90, 75×78 0.00% 5
26 70×89 0.47% 21 42×156, 52×126, 56×117, 0.00% 7

63×104, 72×91, 78×84
27 47×148, 74×94 0.37% 22 63×116 0.00% 3
28 63×123 0.45% 30 56×145, 70×116 0.00% 3
29 81×106 0.36% 27 62×145 0.00% 2
30 51×186 0.33% 21
31 91×110 0.33% 30
32 85×135 0.31% 36

Table 8: The optimal solutions for the consecutive-square benchmark, where the task is to
pack squares of sizes 1×1, 2×2, ..., and N×N , and for the unoriented consecutive-rectangle
benchmark, where the task is to pack unoriented rectangles of sizes 1 × 2, 2 × 3, ..., and
N × (N + 1).
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Oriented Equal Perimeter Unoriented Double Perimeter

Size Optimal Empty Boxes Optimal Empty Boxes
N Solutions Space Tested Solutions Space Tested

1 1×1 0.00% 1 1×1 0.00% 1
2 2×3 33.3% 1 3×3 22.2% 1
3 3×4 16.7% 1 3×8 8.33% 2
4 4×6 16.7% 1 6×9 7.41% 2
5 6×7 16.7% 4 6×17 6.86% 8
6 6×10 6.67% 2 9×19 5.85% 9
7 8×11 4.55% 2 13×20 3.08% 11
8 8×16 6.25% 5 18×21 1.59% 8
9 11×16 6.25% 6 13×41 1.50% 13
10 11×21 4.76% 8 24×30 0.69% 8
11 14×21 2.72% 6 29×33 1.15% 12
12 13×29 3.45% 7 21×59 1.37% 17
13 16×29 1.94% 7 38×41 0.71% 13
14 19×30, 15×38 1.75% 7 38×51, 17×114 0.67% 17
15 24×29 2.30% 10 44×54 0.67% 21
16 23×36 1.45% 9 45×64, 30×96, 0.83% 35

40×72, 48×60
17 24×41 1.52% 8 39×88, 52×66 0.44% 27
18 24×48 1.04% 12 55×74 0.57% 35
19 32×42, 24×56 1.04% 12
20 37×42 0.90% 11
21 35×51 0.78% 9
22 34×60 0.78% 15
23 38×61 0.78% 16

Table 9: The optimal solutions to the oriented equal-perimeter rectangle benchmark, where
the task is to pack oriented rectangles of sizes 1 × N , 2 × (N − 1), ..., (N − 1) × 2, and
N × 1, and to the unoriented double-perimeter rectangle benchmark, where the task is to
pack unoriented rectangles of sizes 1× (2N − 1), 2× (2N − 2), ..., (N − 1)× (N + 1), and
N ×N .
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(a) (b)

Figure 6: Examples of mapping solutions to one where rectangles are in their left-most,
bottom-most positions.

5.2 Overall Strategy

Given an instance from our high-precision benchmark described in rational numbers, we
multiply all values by the least common multiple of the denominators to get an instance
with integer dimensions. We then apply the absolute placement solution techniques, with
improvements we will subsequently explain, in order to find the optimal solutions. Once
found, we divide all x- and y-coordinates describing the optimal solutions by the initial
scaling constant in order to obtain the optimal solutions for the original problem.

Note that we can map every solution to one where all rectangles are slid over to the
left and to the bottom as much as possible (Chazelle, 1983). For example, the solution in
Figure 6a can be transformed into that of Figure 6b. Since all rectangles are now propped
up from the left and below by other rectangles, each rectangle’s x-coordinate is the sum
of a subset of the widths of the other rectangles and each rectangle’s y-coordinate is the
sum of a subset of the heights of the other rectangles. Similarly, the width and height of
the bounding box must be the sum of a subset of the widths and heights of the rectangles,
respectively.

In the following subsections we first explain our techniques with respect to oriented
instances, and then follow with how to handle the unoriented case.

5.3 Minimum Bounding Box Problem

Since we build the initial set of bounding boxes from all pairwise combinations of widths
and heights within given ranges, the space is pruned by considering only bounding box
widths and heights equal to the subset sums of the rectangle widths, and the subset sums
of the rectangle heights, respectively. Recall from Section 4.4 that for every bounding box
width, we compute a lower bound on the height. We further modify this by rounding the
resulting bound up to the next subset sum of the rectangle heights.
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5.3.1 Precomputing Subset Sums

We compute the set of all subset sums prior to searching. For oriented rectangles which
cannot be rotated we compute two sets: one based only on the heights of the rectangles
representing the candidate y-coordinates, and one based just on their widths representing
the candidate x-coordinates. This distinction generates fewer subset sums compared to a
single set of subset sums generated from both widths and heights.

5.3.2 Pruning Combinations of Widths and Heights

We can reject some bounding boxes for which certain width and height combinations are
infeasible. This pruning technique relies on the observation that in certain cases, there may
be only one unique set of rectangles that generate a specific width (height) for the bounding
box.

For example, consider a bounding box width which can only be generated by a unique
set of rectangles. Now assume that the heights of the same set of rectangles also uniquely
determine the subset sum for a specific bounding box height. We say that this combination
of bounding box width and height is incompatible. The reason is that this set of rectangles
is the only way we can have a bounding box of the given width, and that implies this set
of rectangles must appear in the solution laid out horizontally to one another. Thus, the
same set of rectangles cannot appear stacked vertically in the solution. This contradicts the
implications of a bounding box of the given height. Note that in this particular example,
the only compatible height is the maximum height of the rectangles.

5.3.3 Learning From Infeasible Attempts

Recall that the algorithm for solving the minimal bounding box problem repeatedly calls
the algorithm to solve the containment problem. Bounding boxes are tested in order of
non-decreasing area until the first boxes with solutions are found. We can learn from the
infeasible attempts.

For example, consider having to pack N rectangles {r1, r2, ..., rN}. Note that we use a
pre-computed variable order for the rectangles. Let rd, d < N be the rectangle corresponding
to the deepest in the search tree our depth-first search was able to go, during the entire
search effort for a given bounding box. If the containmnet solver says this bounding box
is infeasible, then the next bounding box height that we should consider can be the next
greatest subset sum based on the smaller set {r1, r2, ..., rd+1} instead of considering all N
rectangles. The intuition behind this is that since our containment solver failed to even
find an arrangement for the first d + 1 rectangles, it doesn’t make sense to involve any of
the remaining rectangles {rd+2, ...rN} in the next largest subset sum for the bounding box
height.

This method resembles conflict-directed backtracking. In our implementation, we also
consider the effect of pruning using the wasted space heuristic as well.

5.4 Containment Problem

Similar to our low-precision methods, we first assign x-coordinates for the rectangles, then
conduct a perfect packing transformation, and finally work on the y-coordinates (Huang
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& Korf, 2010). The main difference between our high-precision methods and our low-
precision methods are that instead of considering all possible integers as the domain of
x- and y-coordinates, we consider the smaller set of subset sums of the widths and heights
of the rectangles. The methods for using x-intervals remain unchanged and so we only
describe how we search individual x-coordinates here.

5.4.1 Assigning X-Coordinates

For oriented rectangles, we choose x-coordinates from the set of subset sums of rectangle
widths. Instead of precomputing the set as we did in the minimal bounding box problem,
here we generate it dynamically at every node during the search prior to branching on
various x-coordinate value assignments. The set is computed as follows:

1. Initialize the set with the value 0, as this represents placing a rectangle against the
left side of the bounding box.

2. For every rectangle r already assigned an x-coordinate at this point of the search,
insert into the set the sum of its x-coordinate and its width. This represents placing
a rectangle against the right side of r.

3. For every rectangle with its x-coordinate still unassigned, add its width to every
element in our set, and insert the new sums back into the set.

5.4.2 Perfect Packing Transformation

After assigning x-coordinates, we create a number of 1 × 1 rectangles to account for all
empty space in the original instance. The transformation results in a new instance, with no
empty space, and consists of the original rectangles plus the new 1× 1 rectangles. Then for
a given empty corner in a partial solution, we ask which of the original unplaced rectangles
might fit there, or a 1 × 1 rectangle, essentially modeling empty corners as variables and
rectangles as values.

In our high-precision benchmark, solving N=15 requires creating over 1.5 billion 1× 1
rectangles because we scaled the problem up by a very large number. Here our packer
simply requires too much memory and time. We avoid this problem by creating fewer and
much larger rectangles to account for the empty space.

Widening Existing Rectangles Assume in Figure 7a that the task is to pack three
rectangles. Here we have a 10× 20, 20× 10, and a 40× 10 rectangle in a 60× 50 bounding
box, and assume we have assigned x-coordinates but not y-coordinates. Given that the
x-coordinates are already assigned, in any resulting packing solution the space to the right
of the 40× 10 rectangle must always be empty. Thus, we replace the 40× 10 rectangle with
a 60 × 10 rectangle, effectively widening the original rectangle. Likewise, we replace the
20× 10 rectangle with a 30× 10 rectangle, and the 10× 20 rectangle by a 30× 20 rectangle,
as in Figure 7b. Our packer greedily attempts to widen the rectangles towards the right
before widening them towards the left. After solving the problem we can just return the
rectangles back to their original widths. This avoids creating many 1× 1 rectangles during
the perfect packing transformation to represent empty space.
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(a) A partial solution where only x-
coordinates are known.

(b) The result of widening the rect-
angles.

Figure 7: Widening existing rectangles.

(a) A partial solution where only x-
coordinates are known.

(b) A solution without 60×1 rectan-
gles for empty space.

Figure 8: Consolidating empty space into horizontal strips.

Turning Empty Space Into Large Rectangles In the partial solution of Figure 8a, we
have assigned only the x-coordinates of the rectangles in a 60× 40 bounding box. Instead
of creating three hundred 1 × 1 rectangles to represent the empty space indicated by the
single hash marks, we can use ten 30 × 1 rectangles without losing any packing solutions.
Similarly, we represent the doubly-hashed empty space with twenty 30×1 rectangles instead
of six hundred 1 × 1 rectangles. Note that we cannot use 60 × 1 rectangles for the empty
space since we would inadvertently prune out the potential solution in Figure 8b.

5.4.3 Assigning Y-Coordinates

After the perfect packing transformation, we assign y-coordinates by asking which rectangle
can be placed in a given empty corner. As before, we enforce the constraint that the y-
coordinate of each rectangle must be a subset sum of the rectangle heights. Note that the
rectangles we create via the perfect packing transformation are not included in the subset
sum calculations, since they represent empty space.

5.4.4 Handling Unoriented Instances

For unoriented instances, when computing the initial bounding box widths and heights,
we generate a single set of subset sums using both widths and heights from all rectangles
in the instance instead of keeping the widths separated from the heights. Likewise, when
generating the set of candidate x- and y-coordinates, we must add a fourth step to the
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Size Optimal Bits of HK10 Subsets Mutex HK11
N Solution LCM Precision Boxes Boxes Boxes Boxes

1 1/2×1 2 2 1 1 1 1
2 1/2×4/3 6 6 1 1 1 1
3 1/2×19/12 12 8 2 2 2 2
4 5/6×1, 1/2×5/3 60 12 30 5 4 4
5 1/2×17/10 60 12 20 7 7 7
6 1/2×107/60 420 18 1,979 59 44 29
7 1/2×107/60 840 20 4,033 151 107 46
8 1/2×163/90 2,520 23 39,357 693 465 124
9 1/2×163/90 2,520 23 13,571 1,083 755 192
10 1/2×1817/990 27,720 30 2,682,948 7,489 4,901 585
11 1/2×7367/3960 27,720 30 31,196 22,822 1,641
12 1/2×67/36 360,360 37 66,425 38,827 2,366
13 1/2×185/99 360,360 37 289,217 162,507 5,027
14 1/2×169/90 360,360 37 549,135 382,059 9,548
15 1/2×79/42 720,720 39 1,171,765 651,041 15,334

Table 10: The minimum-area bounding boxes and number of bounding boxes tested when
packing unoriented rectangles 1

1 ×
1
2 , 1

2 ×
1
3 , 1

3 ×
1
4 , ..., and 1

N ×
1

N+1 .

bulleted list in subsection 5.4.1 where we add the height of every rectangle which has not
yet been placed, to every element in the set of subset sums, as this represents the possibility
of rotating the rectangle.

5.5 Experimental Results

We present two different data tables, one relating to improvements in the minimal bounding
box problem measured by the number of bounding boxes tested, and another one on the
overall CPU time for solving the entire rectangle-packing problem. We can separate our
experiments this way because our solution schema decouples the minimal bounding box
problem from the containment problem.

5.5.1 Minimum Bounding Box Problem

Table 10 shows the optimal solutions for our unoriented high-precision rectangle benchmark
along with various properties of the corresponding instances. The first two columns give the
problem size and the dimensions of the optimal solutions, respectively. The third gives the
least common multiple of the first N+1 integers. The fourth is the number of bits required
to represent the area of the minimal bounding box. Note that all but one of the optimal
solutions have a width of 1

2 , since the first rectangle is much larger than any of the others.
For N=12 and larger, the required precision exceeds that of a 32-bit integer.

The fifth through eighth columns compare the number of bounding boxes that various
packers test to find all optimal solutions on our unoriented high-precision rectangle bench-
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Size HK10 Empty Space Dynamic HK11
N Time Time Time Time

6 :00 :00 :00 :00
7 :02 :00 :00 :00
8 1:11 :00 :00 :00
9 1:51 :03 :00 :00
10 1:57 :02 :01
11 41:40 :57 :18
12 7:30:26 6:38 :33
13 2:20:12 16:41
14 1:05:56:14 46:56
15 4:28:20

Table 11: CPU times of various packers to find all minimum-area bounding boxes containing
unoriented rectangles 1

1 ×
1
2 , 1

2 ×
1
3 , 1

3 ×
1
4 , ..., and 1

N ×
1

N+1 .

mark. For each column going from left to right, we add one new technique for the minimal
bounding box problem.

HK10 is the number of bounding boxes required when simply scaling up the problem
to an instance described completely in integers. The column called Subsets improves upon
the second by testing only those bounding boxes whose dimensions are constrained by our
subset sums technique. The column called Mutex improves upon the third by rejecting
bounding boxes if the subset sum corresponding to its width is mutually exclusive to the
subset sum corresponding to its height. HK11 improves upon the previous packer by using
information learned from an infeasible attempt to reject future bounding boxes.

Using all improvements, by N=10 we test 4,500 times fewer bounding boxes compared
to the previous state-of-the-art. On this instance HK10 ran out of memory on the last
bounding box because of the sheer number of 1 × 1 rectangles created during the perfect
packing transformation. The introduction of the prime number 11 as a denominator in the
problem instance is responsible for the increased difficulty between N=9 and N=10.

5.5.2 Containment Problem

Table 11 compares the performance of various packers using our techniques. Because we
have decoupled the minimal bounding box problem from the containment problem, in this
table we use all of our optimizations for the minimal bounding box problem, and only
compare the individual techniques applied to the containment problem. Therefore, the
performance data reported is what is required to solve the overall problem using various
containment problem packers.

The first column gives the size of the problem instance from our high-precision rectangle
benchmark. As in previous tables, each successive column from left to right improves upon
the previous column by an additional technique. The column called HK10 corresponds to
using the previous state-of-the-art with our improved minimal bounding box algorithm.
The column called Empty Space improves upon HK10 by precomputing all of the subset
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sums prior to searching for the x-coordinates, and uses our techniques to consolidate empty
space in the y-coordinates. The column called Dynamic improves upon the previous one
by dynamically computing subset sums. Finally, the last column called HK11 adds the
ability to learn which unplaced rectangles to exclude from the subset sums computation
after exploring an infeasible subtree. This data was collected using a Linux eight core 3GHz
Intel Xeon X5460 without parallelization.

At N=10, the problem was scaled up 27,720 times in both dimensions, requiring HK10
to create 6,597,361 1 × 1 units of empty space during the perfect packing transformation
and causing it to run out of memory. Empty Space could not complete N=13 within a
day because of the sheer number of subset sums that must be explored for both x- and
y-coordinates, a problem avoided by Dynamic.

5.5.3 Comparison to Relative Placement

It is interesting to note that the number of bounding boxes appears to be increasing ex-
ponentially, mostly likely due to the exponential growth of the number of subset sums
introduced by each successive rectangle in our high-precision benchmark. The difficulty of
our unoriented high-precision rectangle benchmark is compounded by the fact that as the
precision increases, the branching factor for the single x- and y-coordinate values in the
containment problem also increases.

In contrast to our absolute placement technique, Moffitt and Pollack’s (2006) relative
placement techniques do not enumerate the different exact locations for the rectangles, and
therefore promise to be immune to the problem of high-precision rectangles. They used a
variable for every pair of rectangles to represent the relations above, below, left, and right.
Their search algorithm then required at least one of these non-overlapping constraints to
be true for every pair of rectangles. Their meta-CSP approach was modeled after work
by Dechter, Meiri, and Pearl (1991) on solving binary constraint satisfaction problems,
and included various pruning techniques such as model reduction, symmetry breaking, and
graph-based pruning heuristics (Korf et al., 2010). They solve the minimum bounding box
problem with a branch-and-bound algorithm, evaluating the size of the bounding box when
all non-overlapping relationships have been determined, and keeping track of the bounding
box of smallest area seen so far.

Note that by contrast, our solver tests bounding boxes in order of non-decreasing area.
Also, the size of their formulation uses N2 variables while we use only N . Finally, their
packer only returns one optimal solution as opposed to ours, which does more work by
returning all of the optimal solutions.

We have been able to benchmark their code on our machine in order to provide some
kind of comparison between their methods and ours. This is a crude comparison, because
we cannot run their packer on our unoriented high-precision rectangle benchmark since they
have hard-coded into their packer the unoriented consecutive-rectangle benchmark, a much
easier benchmark as we have shown in Table 7.

The first column in Table 12 refers to the problem size. The second column called MP06
gives the CPU time required for Moffitt and Pollack’s code on problem instances from the
unoriented consecutive-rectangle benchmark, which uses low-precision rectangles. The third
column called HK11 gives the CPU time required by our packer on problem instances from
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Size MP06 HK11
N Time Time

10 :03 :01
11 :13 :18
12 2:26 :33
13 17:40 16:41
14 1:48:09 46:56
15 7:27:42 4:28:20

Table 12: CPU times required by Moffitt and Pollack’s packer on the unoriented consecutive-
rectangle and our packer on the unoriented high-precision rectangle benchmarks.

the unoriented high-precision rectangle benchmark. Each data point in this table was
collected using an eight core 3GHz Intel Xeon X5460 in Linux without parallelization. Note
that our algorithm packs the same number of rectangles somewhat faster than that of Moffit
and Pollack’s.

5.6 Summary of High-Precision Rectangles

In this section we proposed a new benchmark consisting of instances with rectangles of
high-precision dimensions as well as techniques for using subset sums to limit the number of
positions that must be considered, rules to filter out these subset sums for both the minimal
bounding box and containment problems, methods to learn from infeasible subtrees, and
ways to reduce the number of rectangles created during the perfect packing transformation.
These techniques exploit no special properties of the benchmark, but are most useful for
rectangles with high-precision dimensions.

Using all of our methods, we solved six more problems up to N=15 on our new bench-
mark compared to using our low-precision packer on a scaled up instance. Our packer is
over two orders of magnitude faster at N=9 than the previous state-of-the-art, and tests
4,500 times fewer bounding boxes. A cursory comparison between the state-of-the-art using
the relative placement search space and our own shows that we perform slightly faster than
Moffitt and Pollack’s packer, on a benchmark which we have previously shown in Section
4.3.2 to be significantly more difficult than the unoriented consecutive-rectangle benchmark
that Moffitt and Pollack’s program was run on.

6. Future Work

Humans solve jigsaw puzzles both by asking where a particular piece should go, as well
as asking what piece should go in some empty region. Our packer makes use of both
models, the former for the x-coordinates and the latter for the y-coordinates. It would
be interesting to see how applicable this dual formulation is in other packing, layout, and
scheduling problems. Currently, we work on the x-coordinates by asking “Where does this
go?”, and we work on the y-coordinates by asking “What goes in this location?” Our
method has reduced the time spent in the y-coordinates so much that now the time spent
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working on the x-coordinates is orders of magnitude greater than the time spent working
on the y-coordinates. This suggests that performance might be improved by considering
both models simultaneously.

As another direction for continued work, the data indicates that the number of bounding
boxes explored by our minimum bounding boxes solver is the main bottleneck to solving
larger instances of our unoriented high-precision rectangle benchmark. An observation we
can make is that across many of these bounding boxes, the same partial solutions are being
explored, resulting in much redundant computation. Consequently, a branch-and-bound
method that starts with a large bounding box, and gradually reduces its dimensions while
various packings are explored would be a promising avenue of further research.

7. Conclusions

We have presented several new improvements to the previous state-of-the-art in optimal
rectangle packing. Within the schema of assigning x-coordinates prior to y-coordinates, we
introduced a dynamic variable order for the x-coordinates, and a constraint that adapts
Korf’s (2003) wasted space pruning heuristic to the one-dimensional case. For the y-
coordinates we work on the perfect packing transformation of the original problem, by
using a model that assigns rectangles to empty corners, and inference rules to reduce the
model’s variables.

Our improvements in the search for y-coordinates helped us solve N=27 of the con-
secutive-square benchmark over an order of magnitude faster than the previous state-of-
the-art, and our improvements in the search for x-coordinates also gave us another order
of magnitude speedup by N=28, compared to leaving those optimizations out. With all
our techniques, we are over 19 times faster than the previous state-of-the-art on the largest
problem solved to date, allowing us to extend the known solutions for the consecutive-square
benchmark from N=27 to N=32. Furthermore, the data show that very little time is spent
searching for y-coordinates, suggesting that rectangle packing may be largely reduced to
the problem of determining the x-coordinates.

All of the techniques presented to pick y-coordinates are tightly coupled with the dual
view of asking what must go in an empty location. Furthermore, while searching for x-
coordinates, our pruning rule is based on the analysis of irregular regions of empty space,
and our dynamic variable order also rests on the observation that less empty space leads
to a more constrained problem. The success of these techniques in rectangle packing make
them worth exploring in many other packing, layout, and scheduling problems.

We have also introduced two new benchmarks, one oriented and one unoriented, that
include rectangles of various aspect ratios. These new benchmarks avoid various properties
of easy instances, which we have identified, and were shown to be much harder through a
side-by-side comparison between various benchmarks using the same state-of-the-art packer.
We have also proposed several search strategies to improve performance on our new bench-
marks. We improved upon our strategies used to handle dominance conditions, proposed
a variable ordering heuristic based on increasing branching factor that generalizes previous
strategies, tuned a global interval parameter, and introduced a method to balance the sizes
of the intervals assigned to the x-coordinate variables.
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Our experiments revealed that it takes orders of magnitude more time to solve our new
benchmarks compared to instances from the consecutive-square benchmark with the same
number of rectangles. We therefore advocate the inclusion of these new, more difficult
benchmarks in the suite of benchmarks used for research in optimal rectangle packing. Fi-
nally, using all of our techniques together, we solved N=21 of the oriented equal-perimeter
benchmark about 500 times faster, and N=16 of the unoriented double-perimeter bench-
mark about 40 times faster than simply using methods tuned for consecutive-squares.

In order to test the limits of our rectangle packer, we presented a new high-preci-
sion benchmark specifically capturing the pathological case where each successive rectangle
quickly increases the precision required to represent coordinate locations. We presented
various techniques to adapt the absolute placement approach to handle these types of in-
stances, including dynamically using subset sums to limit the number of coordinate values
that must be tested, mutex reasoning that allows us to reject certain combinations of subset
sums used for a bounding box’s width and height, a general method for rejecting future sub-
set sums based on a previously infeasible search, and finally a memory-efficient adaptation
of our perfect packing transformation to high-precision rectangle instances.

We solved N=12 of the high-precision benchmark in half a minute, 800 times faster than
a basic version of our packer augmented with only the high-precision version of our perfect
packing inference rules so that it did not run out of memory. This was also the first instance
requiring precision exceeding the capacity of a 32-bit integer. Our techniques allowed us
to solve up to N=15 compared to N=9, the largest instance our low-precision techniques
alone could solve. Our methods also reduced the number of bounding boxes generated by
a factor of 4,500. At this point we are solving problems that require a minimum of 39 bits
of precision, which should meet the requirements of many real-world problems.

We then provided a comparison to the state-of-the-art relative placement packer showing
that our absolute-placement packer remains competitive even on rectangles of high-preci-
sion, and reported on promising avenues of research which may potentially give the absolute
placement approach a clear competitive edge over relative-placement methods.

Although we have mainly focused on obtaining optimal solutions in our benchmarks,
our work may be easily adapted to applications requiring quick suboptimal solutions by
simply replacing our algorithm for the minimum bounding box problem with alternatives
such as the anytime algorithm that we described in Section 3.3.1.

7.1 Comparison to Constraint Programming Methodologies

There are clearly tradeoffs between taking our ground-up programming approach in C++
and taking a constraint programming approach. While the latter provides quick prototyping
and reuse of constraint libraries that other researchers have already implemented, it also
forces the problem to be expressed in the abstract constraint language. Such an abstract
layer turns out to add unnecessary overhead for the algorithms and data structures that
one naturally uses to solve our problem of optimal rectangle packing.

For example, as we previously described, for the cumulative constraint, we simply add
a constant to a consecutive range in an integer array when we assign an x-coordinate to a
rectangle. When we backtrack, we scan the same array and just subtract the same constant.
Scanning and manipulating arrays, iteration, and fast pushing and popping of the program
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stack in recursive algorithms are precisely the operations that modern computer hardware
has been optimized for. This is significant as we explore over two trillion search nodes
for N=32 in the square-packing benchmark, and in fact our solver spends about 75% of
its time on just these array manipulation operations alone. This is how we explain the
orders of magnitude speedup for processing just the x-coordinate solutions in a 1D array
instead of the 2D bitmap by Korf (2003). As we move from 1D arrays, to 2D bitmaps, to
abstract representations of variables and values in constraint programming, the patterns
of computation and data structures simply become too distant from what the underlying
hardware is optimized for.

For optimal rectangle packing, it happens that the algorithms and data structures that
naturally solve the problem map very nicely in form and function to the hardware of modern
computers. Note that one may always port this code into a constraint module that may be
called by a constraint solver, but there is still some computational indirection between this
module and the backtracking control logic of the constraint solver. The sacrifice we make
in our approach, however, is the fact that our solver is tailored specifically to the rectangle
packing problem as we have defined it, and it would require more implementation effort to
reconfigure our algorithms and heuristics for a slightly different rectangle packing problem.
We hope, however, that this latter problem is ameliorated by disciplined object-oriented,
modular software design.

8. Broader Lessons

Beyond the specific problem of rectangle packing, what broader lessons can we learn from
this work? We believe there are several.

One of the main applications of rectangle packing is to scheduling. As described in the
introduction, the rectangle packing problem is an abstraction of a scheduling problem where
different tasks take different amounts of time, and all require different amounts of a one-
dimensional resource that must be allocated contiguously, such as memory on a computer.
The width of the bounding box becomes the total time, the height the total amount of the
resource available, and each job becomes a rectangle with width equal to time duration,
and height equal to the amount of the resource required.

What we found, however, is that vast majority of the time used by our rectangle packer
is in assigning just the x-coordinates of the rectangles, subject to the cumulative constraint,
which is that for every x-coordinate in the bounding box, the sum of the heights of the rect-
angles that overlap that x-coordinate cannot exceed the height of the bounding box. This
important subpart of the rectangle-packing problem models a much more general problem
known as the resource-constrained scheduling problem. This is the same as the scheduling
problem described above, but without the constraint that the resource be allocated contigu-
ously. For example, in scheduling tasks on a planetary rover with a limited power budget,
the sum of the power requirements of all the tasks that are active at any given time cannot
exceed the total power budget of the rover. Thus, this subpart of our rectangle packer can
be used to tackle this more general scheduling problem.

Another general lesson that can be learned from this work is that the absolute placement
approach to various packing problems in two, three, or more dimensions may be effective
even on problems with high precision dimensions. One might expect that absolute placement
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would not be competitive with relative placement approaches on these problems, but the
key to our success in this area is that instead of considering all possible placements, we
only consider placements that correspond to subset sums of the relevant dimensions. While
there is no guarantee that this approach will work in other high-precision packing problems,
we have shown that it is at least worth considering, and may be effective.

Perhaps the largest lesson to be learned here is both encouraging and discouraging. The
problem of rectangle packing is extremely simple, and can be understood by and played
as a game by children. Yet the research over the last decade described here shows that
the most efficient algorithms are quite complex. If the best algorithms for such a simple
problem are so complex, it is likely that the best algorithms for more complex problems
are even more complex, which is the discouraging part. The encouraging part is that the
history of this research has shown that each new idea can result in an order of magnitude
improvement over the previous state of the art on larger problems, suggesting that there is
still very significant progress to be made on this problem, and by extension others like it.
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