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Optimal Reduced-Order Observer-Estimators

Wassim M. Haddad*
Florida Institute of Technology, Melbourne, Florida 32901

Dennis S. Bernsteint
Harris Corporation, Melbourne, Florida 32902

This paper presents a unified approach to designing reduced-order observer-estimators. Specifically, we seek
to design a reduced-order estimator satisfying an observation constraint that involves a prespecified, possibly
unstable, subspace of the system dynamics and that also yields reudced-order estimates of the remaining
subspace. The results are obtained by merging the optimal projection approach to reduced-order estimation of
Bernstein and Hyland with the subspace-observer results of Bernstein and Haddad. A salient feature of this
theory is the treatment of unstable dynamics within reduced-order state-estimation theory. In contrast to the
standard full-order estimation problem involving a single algebraic Riccati equation, the solution to the reduced-
order observer-estimator problem involves an algebraic system of four equations consisting of one modified
Riccati equation and three modified Lyapunov equations coupled by two distinct oblique projections.

Nomenclature
IR IR, IR",JE = real numbers, r X s real matrices,
IR™!', expected value
1.,0)7,0,44,0, = r X r identity matrix, transpose, r X s
zero matrix, 0,,
tr = trace
N(Z),R(Z) = null space, range of matrix Z

n,n,,ngn.,n.l,qg = positive integers; n, <n,<n,
n :nll +nS’ n(‘ =nll +n€.§‘

X3 X3 Xs s Xe s Xoy s = n9nl(’n59n€’nu’neﬂ[’

Xoss Vs Ve g-dimensional vectors

A,C,L =nxn,!XxXn, gXn matrices

Ay Ay, A = n, Xn,, n, Xn,, ng X N, matrices

C,,C, = [ X n,,l X n; matrices

L, L, = q xn,, q Xn, matrices

R = g X q positive-definite matrix

asymptotically = matrix with eigenvalues in open

stable matrix left-half plane

A.,B,,C, = n,Xn,, n, X1, g xn, matrices

Aeu »Aeu.s »A('su sAas' =n, X (lu s My X gy Pog XAy y Mo X Ry
matrices

B, ,B. = n, x1, n,, X! matrices

Coits Cos = g Xn,, g Xn, matrices

w(t),t =0 = n-dimensional white noise process with
nonnegative-definite intensity V,

wy(1),t =0 = /-dimensional white noise process with
positive-definite intensity V,

Vi, = n X/ cross intensity of w,(¢), wy(¢)

F.F.,H = []n,, On,,xn\]’ [111,, On,,xnm]y
[On\ Xy, ln\]

i _ [A -F'B,,C —FTA,,,,s]

- Blﬂ\C A(’»S

L =[L —C4l

R = [TRL

; _ [ Vi— VBl F —F_"‘B(.,, vl +‘F"'B,.,, ViBIF

B(‘.s VI-’Z - B('v\ VZ B('IMF
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I. Introduction

Sis well known, Kalman filter theory addresses the state-

estimation problem in guidance and navigation applica-
tions by minimizing a least-squares state-estimation error crite-
rion. However, implementation of the standard Kalman filter
is often impractical since it is generally of the same order as the
system model. Consequently, designers must often implement
reduced-order filters to satisfy real-time processing constraints
as well as constraints on filter complexity. A further motiva-
tion is the fact that although a system model may have many
degrees of freedom (such as coloring filter states and vibra-
tional modes), it is often the case that estimates of only a small
number of state variables (e.g., rigid body position and rota-
tional modes) are actually required. The literature on reduced-
order estimator design is vast, and we note a representative
collection of papers'-22 as an indication of longstanding inter-
est in this problem.

Another important issue in estimation theory is the problem
of asymptotic observation. As is well known,?? the steady-state
Kalman filter is also an asymptotic observer. However, in
reduced-order estimation theory the operations of estimation
and observation are distinct, i.e., a reduced-order estimator is
not necessarily also an observer. In many practical applica-
tions, however, it is necessary to design a reduced-order esti-
mator that also observes a specified portion of the system
states. Thus, we seek to design reduced-order subspace observ-
ers that can asymptotically observe a specified subset of system
states.

The contribution of the present paper is a unified approach
to reduced-order observer-estimator design. Specifically, we

VBl —F'B,V, Bq

Bm VZ Bu’\

consider a reduced-order estimation problem that also includes
a subspace observation constraint. By merging the optimal
projection approach to reduced-order state estimation devel-
oped by Bernstein and Hyland” with the subspace-observer
result of Bernstein and Haddad,' a reduced-order observer-
estimator design theory is developed that includes optimal ob-
servation of a prespecified subspace (e.g., rigid body modes
and selected vibrational modes) as well as optimal reduced-
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order estimation of the remaining stable subspace (e.g., color-
ing filter states and remaining vibrational modes).

'An additional feature of our approach is that the observed
subspace need not be stable; i.e., it may include unstable (for
example, neutrally stable) modes. In contrast with the full-
order Kalman filter, reduced-order filters for unstable systems
may diverge since they may fail to adequately track the un-
stable modes. The observer-estimator derived in this paper
circumvents this problem by including all of the unstable
modes within the observed subspace. We note that standard
navigational models?® possess neutrally stable modes, whereas
tracking systems typically model targets as having rigid body
dynamics. Additional examples include large flexible space
structures undergoing open-loop rotational and/or transla-
tional motion.

It is important to stress that our results are not intended to
provide a basis for feedback control. As is well known, feed-
back controllers based on reduced-order filters may exhibit
poor performance, including instability. The preferred ap-
proach is thus to design reduced-order controllers directly.>*?

The starting point for the present paper is the Riccati equa-
tion approach developed in Ref. 9. There it was shown that
optimal reduced-order steady-state estimators can be charac-
terized by means of an algebraic system of equations consisting
of one modified Riccati equation and two modified Lyapunov
equations coupled by a projection matrix 7. Specifically, the
order projection 7 is given by

78 QP (QP) )

where ()" denotes group (Drazin) generalized inverse, and O
and P are rank-deficient nonnegative-definite matrices anal-
ogous to the controllability and observability Gramians of the
estimator. As discussed in Ref. 10, the order projection 7 arises
as a direct consequence of optimality and is not the result of an
a priori assumption on the internal structure of the reduced-
order estimator.

An important point discussed in Ref. 9 is that reduced-order
estimators designed by means of either model reduction fol-
lowed by ““full-order’’ state estimation or full-order state esti-
mation followed by estimator reduction will generally not be
optimal for a given order. This point is illustrated by the fact
that three matrix equations characterize the optimal reduced-
order state estimator with intrinsic coupling between the ‘‘op-
erations’’ of optimal estimator design and optimal estimator
reduction.

The solution presented in Ref. 9, however, did not address
the issue of observation of a prespecified subspace. Conse-
quently, the solution given in Ref. 9 was confined to problems
in which the plant is asymptotically stable, whereas in practice
it is often necessary to obtain estimators for plants with un-
stable modes. Intuitively, it is clear that finite, steady-state
state-estimation error for unstable plants is only achievable
when the estimator retains, or duplicates in some sense, the
unstable modes. The solution given in Ref. 9 is inapplicable to
unstable systems for the simple reason that the range of the
order projection 7 may not fully encompass all of the unstable
modes. A partial solution to this problem, given in Ref. 17,
involves a new and completely distinct reduced-order solution
in which the observation subspace of the estimator is con-
strained a priori to include all of the unstable modes as well as
selected stable modes. Hence the estimator in Ref. 17 effec-
tively serves as an optimal observer for a designated plant
subspace.

The subspace observation constraint addressed in Ref. 17
was embedded within the optimization process by fixing the
internal structure of the reduced-order estimator. This struc-
ture gave rise to a new subspace projection p defined by

u é [ 1”u P“—IPH{I

Ourn, O @
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where P,eIR" <" and P,,eIR" *™ are sub-blocks of an n x#n
nonnegative-definite matrix P satisfying a modified algebraic
Lyapunov equation, #, is the dimension of the observation
subspace of the estimator containing all of the unstable modes
and selected stable modes, and n, is the dimension of the
remaining subspace containing only stable modes. It turns out
that the subspace projection u, which is completely distinct
from the order projection 7 defined by Eq. (1), plays a crucial
role in characterizing the optimal observer gains. Further-
more, it was shown in Ref. 17 that the constrained subspace
observer is characterized by one modified Riccati equation and
one modified Lyapunov equation coupled by the subspace
projection u. This subspace observer, however, was confined
to an n,-dimensional subspace with no estimation of the re-
maining n,-dimensional subspace.

The purpose of the present paper is to combine the results of
Refs. 9 and 17 to obtain a general solution to the reduced-or-
der observer-estimator problem. Specifically, we seek a re-
duced-order observer-estimator of order n, satisfying n, <n,
<n, where 7 is the dimension of the plant, which includes
observation of all of a prespecified n, -dimensional subspace of
the system as well as optimal #,,-dimensional reduced-order
estimation of the n,=#n —n, states in the residual subspace
where n,, =n, —n, <n,. As shown in Theorem 1 in Sec. III,
this general solution to the reduced-order observer-estimator
problem is characterized by four matrix equations, including
one modified Riccati equation and three modified Lyapunov
equations coupled by both the order projection 7 and the sub-
space projection u.

Finally, the results of this paper can be readily extended in
several directions. These include the treatment of parameter
uncertainties,'16 extensions to nonstrictly proper estimators
and singular noise intensity,'>?' worst-case, frequency-domain
design aspects, i.e., an H, constraint on the estimation er-
ror,'%22 and extensions to the discrete-time setting.'®!”

The contents of the paper are as follows. In Sec. II, the
statement of the reduced-order observer-estimator problem is
given. In Sec. 11, Theorem | presents necessary conditions for
optimality that characterize solutions to the reduced-order
observer-estimator problem. To draw connections with the
existing literature, we specialize Theorem 1 in Sec. [V to obtain
the results of Refs. 9 and 17. We also specialize the results of
Theorem 1 to obtain the full-order Kalman filter theory and
show that the four matrix equations collapse to the standard
observer Riccati equation. To illustrate these results, we de-
scribe a numerical algorithm in Sec. V for solving the design
equations and apply the algorithm to illustrative numerical
examples.

1. Reduced-Order Observer-Estimator Problem

For the nth-order system

(1) = Ax(t) + wi(t), t€[0,0) 3)
with noisy measurements
(1) = Cx(£) + wat) 4

design an n.th-order, reduced-order strictly proper observer-
estimator

¥ (1) = Aexo(1) + Bey (1) &)

Ye(t) = CeX, (1) 6

that satisfies the following design criteria: 1) the observer-esti-
mator of Egs. (5) and (6) is a steady-state asymptotic observer
for a specified n,-dimensional subspace of the plant [Eq. (3)]
where n, <n, <n, and 2) the observer estimator is an optimal
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estimator that minimizes the least-squares state-estimation
error criterion

J(Ae,Be,C) B im IE [Lx (1) = yo()] R [Lx (1) =ye(1)]  (7)

To make the first condition more precise, partition Eqs. (3)
and (4) according to

x(t)=[x“(t)JEIR", x, ()eR™,  x.(1)eIR™
xs(1)
n=mn,+n (8)

I:jf'u(t)] - l: Au Aus] I:-xu(t):l + [Wlu(t):| (9)
xx(’) Oann,, As xs(t) Wls(t)
X, (1)

xs([):| + wy(t) (10)

y) =|[c, CS][

and Eqgs. (5) and (6) as

x(,(t)=[x"“(’)]elR"f, X (LYEIR™ | x, (1)EIR "™
Xes(1)
R, =N, + Ay (11)
x?ll(t) Aeu Aeus xeu(t) Beu
= 2
[xﬂm] [Am Aes][xes(z)] * [Bes]y @ a2
_ Xeu (1)
Ye(t) = [Cay ces][xﬂ(,)] (13)

We note that the partitioned form of the matrix A appearing
in Eq. (9) allows us to characterize the two subspaces corre-
sponding to x,(¢) and x,(¢). The n; X n, zero matrix in the
(2,1)-block of A is needed to achieve asymptotic observation
of x,(¢) independently of x,(¢). If necessary, the matrix A can
be recast in the form of Eq. (9) by using a similarity transfor-
mation to a modal basis. Of course, the coupling matrix A,
may be either zero or nonzero.

Furthermore, in Eqgs. (8-13) we implicitly assume that
0<n,<n,. The special cases n,=0 and n, =n, will be dis-
cussed later in this section and in Sec. 1V. The observation
condition (1) is captured by imposing the additional constraint

Ill_rg [Xu(t)_xeu(t)] =0 (14)

for all x(0) and x,(0) when w,(#)=0 and w,(1)=0. The require-
ment of Eq. (14) implies that zero asymptotic observation
error for a specified n,-dimensional subspace is achieved un-
der zero external disturbances and arbitrary initial conditions.

To require that the observer-estimator is also an optimal
reduced-order estimator, the matrix L identifies the states or
linear combinations of states whose estimates are desired. In
accordance with the partitioning given in Eq. (8), L is parti-
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Since the observer-estimator of Eqgs. (5) and (6) serves as a
reduced-order observer for an #,-dimensional subspace of the
plant of Eq. (3), its order n, must satisfy n, <n,<n.

As will be seen, the observation constraint of Eq. (14) can be
satisfied even if the subspace corresponding to x,(¢) is un-
stable. Thus we allow A, to possess unstable as well as stable
modes. Of course, our results remain valid even if A, is asymp-
totically stable. The subscript «, however, reminds us that 4,
is permitted to be unstable. Furthermore, we require that 4, be
an asymptotically stable matrix. In applications, the matrix A4,
may include the dynamics of all coloring filter states as well as
damped vibrational modes.

Before continuing it is useful to point out that several sim-
pler problems are included as special cases within the preceding
formulation. For example, consider the full-order case n, =x
or, equivalently, n, =n,. In this case the observer-estimator
can observe all of x(¢), and the matrix A, is given by?®
A, =A - B,C. Note that the sub-blocks of A, are thus given by

|: A(’u Aeux:l _ I:Au _BeuCu Aus "Beucs:l (16)
Aesu Aes - B(‘sCu As - BesCs
The optimal value of B, for the least-squares estimator in this
case is, of course, the steady-state Kalman filter gain charac-
terized by the algebraic observer Riccati equation.

Next, consider the case #, <n without the observation con-
straint of Eq. (14), i.e., n, =0. Thus, with x,(¢) and x,,(¢)
absent, we can identify n, = n, n, =n,,and A; = A. This prob-
lem is precisely the reduced-order estimation problem consid-
ered in Ref. 9.

Finally, suppose that n, = n, < n so that the estimator states
Xeu (1) =x.(t) are required to satisfy the observation constraint
of Eq. (14) but that no additional degrees of freedom are
permitted in the estimator, i.e., x.,(¢) is absent. In this case the
estimator acts solely as an optimal reduced-order subspace
observer whose gains are dictated by the optimality criterion
(7). This problem was considered in Ref. 17.

To analyze the observation constraint of Eq. (14), define the
error states

2,(0) B X, (1) = X (1) (17)
so that Eq. (14) can be written as
limz,(1)=0 (18)
Note that the error states z, () satisfy
2,(1) = X, (1) = Xo, (1) = (A, ~ Bo, C)x, (t)
= AoXeu () + (Ays — Boy Co)x (1) — AgysXes (1)
+ Wi, (1) — Bo,wa1) 19

Using Egs. (9), (12), and (19) the overall augmented system of
Eqgs. (3-6) becomes

21/(’) Au _Beucu Aus —Bequ Au _Beucu _Aeu —Aeu.s Z,,([) Wlu(’) - BeuWZ(t)
Xs(t) _ On‘ X1y, As On‘ Xy, On\ X Moy X (’) Wl.s-(’) (20)
"\’(’ll ( [) Bﬂll CH B(’ll CS APU + Bl’ll Cll A(’ll.\' ‘XL’H (t) B(’ll WZ( [)
xl’S(t) BESCH B(’)‘CS' AL’SN + B(‘.) Cll A(‘.S xc's(t) B(‘S Wz(t)
tioned as At this point we make the crucial observation that the explicit
dependence of the error states z,(¢) on the states x,,(f) can be
L4 [Lu LS] (15) eliminated in favor of z,(¢) by constraining the (1,3) and (4,3)

Thus, the goal of the reduced-order observer-estimator prob-
lem is to design a reduced-order observer-estimator of order 7,
that observes a specified plant subspace and provides optimal
estimates of specified linear combinations of plant states.

blocks of the block 4 x4 matrix in Eq. (20) to be zero, i.e.,
Avu é AN - Beucu (21)

Amu é _Bmcu (22)
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With Eqgs. (21) and (22) A, becomes

.Au - Beu Cu Aous
A, = (23)
- Bescu Ae.\

Now the error states z,(¢) satisfy
Zu([) = A(’uzu(t) + (Am _Bmlcs)xs(l) - Aeus-xes([)
+ Wlu([) - B(,,,Wz(t) (24)

where A,, is given by Eq. (21).
Next, note that the least-squares state-estimation error cri-
terion [Eq. (7)] can be written as

J(A¢sBe, Co) = NmIE [Ly2, (1) + Loxs (1)
+ (Lu - Ceu)xeu(t) - Cesxes([)] R [L,,Z,,(f)
+L5X;(f)+ (Lu _Ceu )xeu(t)_cesxes(t)] (25)

Now, to eliminate the explicit dependence of the estimation
error [Eqg. (25)] on x,, (1) in favor of z,(£), we constrain

Co AL, 26)

The constraints (21), (22), and (26) on the reduced-order
observer-estimator gains A, Aew, and C,, are thus imposed
in order for the reduced-order observer-estimator to asymptot-
ically observe the x,(f) subspace of the plant [Eq. (9)]. Note
that Egs. (21) and (22) are consistent with the full-order
Kalman filter result of Eq. (16) in which A, and A, are given
by Egs. (21) and (22).

Next, using constraints (21) and (22) to eliminate the explicit
dependence on x,,(¢), it follows that the augmented system
(20) has the form

X(1y=AX(t) + w(t), 1€ 0,00) @7
where
Zu(t) Wlu(t)—BeuWZ(t)
204 | x() |eR W) 8 wis()
x“"(t) BPSWZ(I)
(28)
and
Au - B(‘ll Cu Aus - Beuc.y - Aeus
/4. 4—‘ On‘ X My, As On‘ X Ay
B('.S Cll BPS CY A(’S
A _FTBeuC —FTA‘,,,,.
= (29
B, C A

We now show that the stability of A is equivalent to the stabil-
ity of A..

Lemma 1. A is asymptotically stable if and only if A,
is asymptotically stable. In this case, lim,_ &2,(2)=0 for
wi(1)=0, wy(1)=0, and for all initial conditions x(0),x.(0).
Furthermore, the state-estimation error criterion of Eq. (7) is
given by

J(A,,B.,C,) =tr OR (30)
where the steady-state covariance

0 & lim [E | % ()% 7(1)] 31

OPTIMAL REDUCED-ORDER OBSERVER-ESTIMATORS
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exists and satisfies the algebraic Lyapunov equation
0=A0 + QAT+ V (32)

Proof. To show that A is asymptotically stable consider
the transformation T€lIR!"* ") x i+ given by

On\xn” In‘ On\xnm
T I, Opun Onn, (33)
Onm X1y, Onl.‘ xn, - Inl,g
and define
X5(1)
FDATRO =] 20 (34)
_xes(t)
Using Eq. (34) it follows from Eq. (27) that
Xo(t) = AoFo(1) + Wo(1) (35)
where
— - A 0" n
AABATAT' = . °° X Me (36)
Fe Au: - BeCs Ae
wolr) & Tw (1) 37

Since A4, is asymptotically stable it follows that A is asymptot-
jcally stable if and only if A, is asymptotically stable. In this
case, %(+)—0 and hence z,(¢)—0 for arbitrary initial condi-
tions when w,(¢) and wy(¢) are zero. Finally, the second-
moment equation (32) is a direct consequence of standard
Lyapunov theory (see Ref. 23, p. 104), whereas Eq. (30) is
immediate.

Note that Lemma 1 is valid even if A4, is unstable and that
the assumption that A, is stable is used explicitly in the proof.

‘Finally, to guarantee that J(A,,B.,C.) is finite and to sat-
isfy the observation constraint (14), we define the set of
asymptotically stable reduced-order observer-estimators

$ 4 ((A,,B.,C.)

A, is asymptotically stable and Ay, Aesus and C,, are given by
Egs. (21), (22), and (26)}.

III. Necessary Conditions for the Reduced-Order
Observer-Estimator Problem
In this section we obtain necessary conditions that charac-
terize solutions to the reduced-order observer-estimator prob-
lem. Derivation of these necessary conditions requires addi-
tional technical assumptions. Specifically, we further restrict
(A,.,B.,C,) to the set

§* 8 ((AnB.,C.)ES: (Aes Bes) is controllable

and (A,,C,) is observable] (38)

As can be seen from the Appendix, the set 8* constitutes
nondegeneracy conditions under which explicit gain expres-
sions can be obtained for the reduced-order observer-estimator
problem.

To state the main result we require some additional nota-
tion and a lemma concerning a pair of nonnegative-definite
matrices. )

Lemma 2. Suppose Q,P are nxn nonnegative-definite
matrices and rank QP = n,,. Then there exist n X n matrices
G, T and an n,, X n,, invertible matrix M, unique except for a
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change of basis in IR, such that the product QP can be
factored according to

OP = G™MT (39)

ra’=1

Nes

(40)
Furthermore, the n X n matrices
AgT, 7, 81, —1 @1

are idempotent and have rank #n,, and n — n,,, respectively.
Proof. See Ref. 9.
As shown in Ref. 9, OP has a group (Drazin) generalized
inverse (QP)"—GTM 'T. Using Eq. (40) it follows that the
matrix 7 is given by Eq. (1) since

7=GT = QP(QP) (42)

Note that because of Eq. (40), =G TG T=GT=r,i.e., 1
is idempotent.

The following main result gives necessary conditions that
characterize solutions to the reduced-order observer-estimator
problem. For convenience in stating this result, define

0, 4007+ Vv, 43)

for arbitrary QeIR"*".

Theorem 1. Suppose (4,,B,,C.)€ $* solves the reduced-
order observer-estimator problem. Then there exist # X n non-
negative-definite matrices Q,P,P and an n, x n, nonnegatlve-
definite matrix Q; such that 4,,B,, and C, are given by

IR . F|T
A= I:I‘#l:l(A_QaVz C)[G} 44)
— @ —1
B, = [F#L]QaVz (45)
F T
Ce:L[G] (46)

and such that Q,P,Q;, and P satisfy
0=AQ + QAT+ V,-QV;'Qf
+Tip QV'Q W AT CY)
0=(A—-pA T—#QaVz_]CTL)TP
+ P(A—pAr—pQ, Vs Cr )+ 1T LTRL7, (48)
0=4,0, + QA + H(QV5y'Q
—7op QuV'Q W THT (49)
=(A-Q,V'CYB +PA-Q,V;'Cy+ LTRL

—70LTRLT, + (A -Q, V' C)r|TP

+Plu(A —Q, V' Oy (50)
rank Q = rank P = rank 0P = n, GD
where
[; 1;:‘} ¢ [+ ner ) 52
P,>0 (53)
8L, Ouxnl 811, PP, (54)

J. GUIDANCE
In Plrlplls
uéFT<1>=[O g 0 ] R85, —p (59
. On,  Opxn
Qém[o s }ui (56)
N X Ny, s

Furthermore, the minimal value of the least-squares state-esti-
mation error criterion (7) is given by

J(A.,B,,C.)=1tr QLTRL (57)

Next, we present a partial converse of the necessary condi-
tions that guarantees that the observation constraint (14) is
enforced.

Theorem 2. Suppose there exist # X n nonnegative-definite
matrices Q, P, Pand an n, X n, nonnegative-definite matrix o,
satisfying Eqgs. (47-56). Then, with QO given by Eq. (56), the
matrix

3 AT
g [Q;AQ or T} %)
Q Trer

satisfies Eq. (32) with (A4,,B,,C,) given by Egs. (44-46). Fur-
thermore, (A, V") is stabilizable if and only if 4, is asymptot-
ically stable. In this case, (A,,,B.) is controllable, (A4,,C,) is
observable, the observation constraint (14) holds for all arbi-
trary initial conditions x(0),x,(0) when w,(£)=0, wy(7)=0,
and the least-squares state-estimation error criterion is given
by Eq. (57).

The proofs of Theorems 1 and 2 are given in the Appendix.

Theorem 1 presents necessary conditions for the reduced-
order observer-estimator problem. These necessary conditions
consist of a system of one modified Riccati equation and three
modified Lyapunov equations coupled by two distinct oblique
(not necessarily orthogonal) projections 7 and u. Note that 7
and y are idempotent since 72=7 and p?=p. As discussed ear-
lier, the fixed-order constraint on the estimator order gives rise
to the order projection 7, whereas the observation constraint
of Eq. (14) gives rise to the subspace projection u. It is easy to
see that rank p=n,, and it can be shown® using Sylvester’s
inequality and Eq. (40) that rank 7=n,,.

Remark 1

Note that with B, given by Eq. (45), Egs. (44) and (46) for
Aeus Aesus and C,, are equivalent to the constraints of Eqgs.
(21), (22), and (26).

Remark 2
By defining the n, X n matrices
~ F ~ ]
G4 , ra 59
[ G:I [FI‘ 1 :| 9
it can be shown that
= =~ I 0
FGT= My My X Ry =1 60
|: Onmxn,, In“ e ( )

Using Eq. (60) one can thus define a third composite projec-
tion

FAGT = WF+Tu, =pu+7—70 (61)

where rank 7=n,. Using Eq. (59), the gains of Eqgs. (44-46)
can be written as

A, =T(A-QV;,'C)GT=TAGT - B,CGT (62)
B, =TQV;! (63)

C.=LGT (64)
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Remark 3
It follows from Eqgs. (42) and (56) that

On On X ny
u 1"

T P(QPY (65
ngxXny, Qs ]"" Q

ur = nQP(QP) = pp. [0
Since pu , =0, we obtain
0=npr (66)

as a consequence of optimality. Partitioning

T= l: Tu T“] € IR w15 )x U+ 15) ©7)
Taw  Ts
Equation (66) implies
10= =P PusTsu, Tus = — P PusTs (68)
Remark 4

Note that for (A.,B.,C.) given by Eaqs. (44-46), the ob-
server-estimator of Eq. (5) or equivalently Eq. (12) assumes the
innovations form

x(0) = TAGTx(1) + TQV ' [y = CGTxe()]  (69)

Remark 5
By introducing the quasi-full-state estimate

KRG Tx (t)eIR”
so that
7X(1) =X(1), x.(1)=Tx(t)eIR™
Eq. (69) can be written as
5(1) = FATR() + 7OV [y ()= CX(W)) (70)
or, equivalently,
X =(u+pn VA @+ 10X
+ (i Qs (D)= CX(D)) an
Note that although the implemented observer estimator of Eq.
(69) has the reduced-order state x.(1)eIR", Eq. (71) can be
viewed as a quasi-full-order observer-estimator whose geomet-
ric structure is dictated by the projections 7 and p. Specifically,
error inputs Q,V; '[y(1)— Cx(1)] are annihilated unless they

are contained in |9 +7r )|+ =®|(u+71.)7|. Hence, the
observation subspace of the observer estimator is precisely

R+ i)

Remark 6
In the full-order Kalman filter case, it is well known that an
orthogonality condition

E {[x(1) = x(0)] xI (D] = 0 (72)

is satisfied. For the observer-estimator problem, an analogous
condition® is

I { [, (0 = Xa (0] xE(D] = 0 (73)
This condition does not hold automatically, however, but
must be imposed as an additional side constraint. It can be

shown that requiring Eq. (73) leads to

0=FG’ (74)
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and, consequently,
0=Fr, 0=pulr (75)

Using Eq. (75), it follows that 7 has the structure

. [0 0} 6)
TUI TS
so that the composite projection 7 has the form
7= { . P IPf"l ] w!
On\xn“ Ts — Tsupu Pus

IV. Specializations of Theorem 1
To draw connections with the previous literature, a series of
specializations of Theorem 1 is now given. Specifically, to
recover the full-order steady-state Kalman filter from Theo-
rem 1, take n,, = n, or, equivalently, 7, =n. SinceI'G"=1,, let
S=TeR"*" and S~'=GTeIR"*". In this case the optimal
gains (44-46) become

A =S(A-QV'O)S ! (78)
B, = SQu VZ-I (79)
C,=LS" (80)

Furthermore, in this case since
TL#LZI,,—;L—T’.LL=1,,—GTT=I,,—S_lS=O (81)

the modified Riccati equation (47) specializes to the standard
observer Riccati equation

0=AQ+0AT+V,—Q,Vi'Q/ (82)

and Eqs. (48-50) are superfluous. Note that Egs. (78-80) are
precisely the standard steady-state Kalman filter gains in an
alternative basis specified by the basis transformation S. Since
J(A,,B.,C.)=J(SA,S ~',SB,,C,S™"), however, this change
of basis leaves the estimation error unchanged.

Next, to recover the optimal projection results of Ref. 9 in-
volving reduced-order estimators for stable plants without a
subspace observation constraint, let n,=0, ny=n, Nes =N,
A, =A,and n,<n, set p=0so that pu, =/,, and replace

[FH and [Z]T

by I'and G 7, respectively. Then the optimal gains of Egs. (44-
46) become

A, =T(A-QV;'O)GT (83)
B, =TQV;" (84)
C.=LG" (85)

and Egs. (47-50) specialize to
0=AQ + QA"+ V, = QV'Ql +7.05'Q/7\  (86)
0=AQ + QAT +Q,V: 'Qf —7.QV7'Q/7\ (87
0=(A—-Q,, 'CYP+PA-QV:y'C)
+L'RL —7L"RLT, (88)

These arc cquations (2.10-2.12) of Ref. 9.
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Finally, we can also recover the results of Ref. 17 where the
reduced-order observer is constrained to observe an n,-dimen-
sional plant subspace without estimating the remaining n,-di-
mensional subspace. In this case, let n, =n,, n,, =0, and 7=0
so that 7, =1,. Furthermore, let

[Ff} and [g]T

be replaced by ¢ and F7, respectively, so that the gain expres-
sions of Eqgs. (44-46) become

A, =®A -0,V 'C)FT (89)
B, =%Q,V,! (90)
C,=LFT7 n

and Egs. (47-50) specialize to
0=AQ + QAT+ V, - Q. Vy'Q] +p, Q V5! Jul (92)
=(A—pQ, Vs 'CY'P +P(A—-uQ,V;,'Cy+ LTRL (93)

These are equations (2.17) and (2.18) of Ref. 17.

V. Numerical Algorithm and Illustrative
Numerical Examples

In this section we present a numerical algorithm for solv-
ing the optimality conditions for the reduced-order observer-
estimator problem and consider two illustrative numerical
examples.

Algorithm 1. To solve Egs. (47-50), carry out the follow-
ing steps:

1) Initialize k =1, u=1,, 'V=1,.

2) With p=pu'® and 7=7%, solve Eq. (47) for Q¥ =Q.

3) With Q=0%, u=pu®, and r=1%, solve Eqs. (48) and
(49) for P¥=pP and Q"" —Q .

4) With Q=0Q%, P=pP®, y=uy®, and 7=7%, solve Eq.
(50) for P =p,

5) If convergence of Q) and P has been attained, then
evaluate A,,B,,C, using Eqgs. (44-46) and stop; else continue.

6) Use P=P®, O, =0® and P=PW® to define p*+V=y
and 7%+ Y =7 using Eqs. (39-41), (55), (56).

7) Replace &k by k +1 and go to Step 1.

The preceding algorithm is a straightforward iterative
scheme that is fairly easy to implement. More sophisticated
algorithms can be developed by using homotopic continuation
techniques.?’ For the examples to be discussed, however, Al-
gorithm 1 proved to be adequate.

Our first examp]e (adopted from Ref. 28, pp 99 101), in-
volves a satellite in circular orbit. The linearized error equa-
tions representing the deviation from a perfect circular orbit
are given by

¥ 0 10 0 0 0/|]|r 0
F 302 0 0 2wr, O O |F my
9 0 0 0 1 0 0|6 0
6] |0 —2em 0 0 0 0|6 . m
b 0 0 0 0 0 1]||¢ 0
$ 0 0 0 0 -o —¢|lé] |}
x W, (94)
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where r, 8, ¢ are spherical coordinates, ry is the orbit radius,
w denotes orbital frequency, and ¢>0.
Here the state vector represents the deviation from a circular
equatorial orbit and is expressed in spherical coordinates. We
note that e=0 was assumed in Ref. 28, although ¢>0 is
assumed here to reflect dissipation in this coordinate due pos-
sibly to on-board forces. Furthermore, stochastic disturbance
models are used here in place of deterministic inputs appearing
in Ref. 28. To reflect a plausible mission we assume the follow-
ing data:
w = 2w rad/day, m, =50 kg, =42.2%10°m (96)
2
o (Wy)/m = 384 Nt — day 97)
oX(W3") = 8.9 x 10¢ m? — day (98)
(W) = (W) = 7.84 x 1077 rad? — day (99)
Note |
where ¢%(-) denotes noise intensity. and tw
To treat this problem within our formulation, we note that dampi
the upper left 4 x 4 block of Eq. (94) has neutrally stable eigen- body 1
values 0,0,/w, and —jw. Hence we set n, =4 and n, =2 and (i.e.,
seek to design an optimal fourth-order observer for the un- to esti
stable subspace. In this case #, = 0 and thus we need only solve chose!
the subspace observer equations (92) and (93). As inputs to the the dy
estimator design process we chose to weight the angular posi- For
tion coordinates by r, in the interest of dimensional compati- estimze
bility, i.e., freque
order
R=1, L=[1 0 r, 0 r, 0 (100) systen
ated
A study was conducted to assess the performance of the opti- Algor
mal subspace observer compared to a full-order steady-state obtair
Kalman filter as well as a reduced-order Kalman filter obtained J=1
using a truncated model consisting of only the first n, =4 A s
states. The study involved a series of designs for decreasing “full-
magnitudes of the parameter ¢, i.e., decreasing stability of rigid
the ¢ and ¢ states. The results of the study are summarized in estim:
Fig. 1. subsp
mode
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Fig. 1 Estimator performance comparison.
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To further illustrate the algorithm, we consider an example
reminiscent of a rigid body with flexible appendages. Hence
define

[0 1 o o |
00 0 0
00 1 0 0
A=
00 -1 —001 0 0
00 0 0 0 1
00 0o 0 -4 -002
c=[1 o1 0190
L=[1 000 0 0] R=1
0.1 0]
0 1
0.1 0
V|:DDT, D= N V12=0, V2:l
0 1
0.1 0
LO 1

Note that the dynamic model involves one rigid body mode
and two flexible modes at frequencies 1 and 2 rad/s with 0.5%
damping ratios. The matrix C captures the fact that the rigid
body position measurement is corrupted by the flexible modes
(i.e., observation spillover), the matrix L expresses the desire
to estimate the rigid body position, and the matrix V; was
chosen to capture the type of noise correlation that arises when
the dynamics are transformed into a modal basis.

For the full-order steady-state Kalman filter, the optimal
estimation error was J = 1.533. We then truncated the higher
frequency flexible mode and obtained a suboptimal fourth-
order observer as a ‘‘full-order’’ estimator for the truncated
system. The performance of this suboptimal estimator evalu-
ated for the sixth-order plant was J=3.537. By applying
Algorithm 1, an optimal fourth-order subspace observer 'was
obtained. The performance of this optimal estimator was
J=1.572.

A second-order suboptimal filter was also obtained as a
«full-order’’ estimator for a truncated plant consisting of the
rigid body mode only. The performance of this suboptimal
estimator was J = 78.74. In contrast, the optimal second-order
subspace observer constrained to observe only the rigid body
mode had performance J =2.328.

V1. Conclusion

Optimality conditions have been obtained for the problem
of designing reduced-order observer-estimators. The principal
feature of the theory presented herein is the ability of the
reduced-order observer estimator to observe a possibly un-
stable subspace of the plant while providing optimal estimates
of specified linear combinations of the remaining plant states.
The necessary conditions for optimality comprise a system of
four matrix equations coupled by two oblique projections that
determine the optimal estimator gains. The results given herein
generalize previous results obtained for the stable plant case.

Appendix: Proofs of Theorem 1 and Theorem 2
To optimize Eq. (30) over the open set $* subject to the
constraint (32), form the Lagrangian

L(Aws,Aeir1BerCon s O, PN B tr[xQﬁ

+|AQ+ QAT+ V|P) (A1)
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where the Lagrange multipliers A=0 and Pe R+ ne)xintna)
are not both zero. We thus obtain

6—5—47‘F+ﬁ'+>\ﬁ (A2)
a0

Setting 9£/8Q =0 yields
0=ATP +PA +\R (A3)

Since A is assumed to be stable, A=0 implies P =0. Hence, it
can be assumed without loss of generality that A =1. Further-
more, P is nonnegative definite.

Now partition (7 + fe) X (1 + 1) @, Pinto n X n,n X fe,
and n, X #,, sub-blocks as

~ . P, P
R R L
Qn O P, P
Thus, with A =1 the stationarity conditions are given by
ég—,ziT'+15'+1€:—0 (A5)
a0 -
R r
A PLOn+ PyQy=0 (A6)
L
5/4—‘ =F(P\Q+ P =0 (AT)
L T —1
3B, - FP,F'B,, — FP,Q,V; '+ FP3B, =0 (A8)
a£ T T
= P,BV,— P50, + PIZFTBL,,, V=0 (A9)
dB,,
R
—— = —RLQ;; + RC0,=0 AlQ
ac.. On -2 (A10)
Expanding Egs. (32) and (AS5) yields
0= AQ, — FTBoCQ\ - FTA4,Qf + QA"
~Q,CTBLF — QuALF + Vi— VB F
—~FTB, V% + F'B, V2BoF (A1)
0= AQIZ - FTB()HCQL’_ - FTAeusQZ + QICTB(»Z
+ QuAL + ViBy — FTBu V2B, (A12)
0= Ay0s + Q1AL + BuCQiz + QLCTB,
+ B, V,BL (A13)
0=A"P,— CTBLFP, + CTBJP), + P\A
— P\F'B,C + P3B.,C + LTRL (Al4)
0=A 'I‘PIZ - CTB(Z;FPIZ + CTB(IPZ - PlFTAeus
+ PpAy — L'RC, - (A15)
0= APy + PrAg — AL FP1 — PLFT Avs
+ CIRC,, (A16)

Lemma 3. Q,, Py, and P, A FpFT—FP, P, '\PLFT are
positive definite.
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Proof. By a minor extension of the results from Ref. 29,
Eq. (A13) can be rewritten as

0= (A('.s + BcsCQIZQ;)QZ + QZ (Aes + BL‘SCQIZQ;)T
+ BVyB (A17)

where Q," is the Moore-Penrose or Drazin generalized inverse
of Q,. Next note that since (A.,B,) is controllable, it fol-
lows from Lemma 2.1 and Theorem 3.6 of Ref. 30 that
(Ags + B,sCQ 1,05, Bes V") s controllable. Now, since Q, and
B.,V,BI are nonnegative definite, Lemma 12.2 of Ref. 30 im-
plies that Q, is positive definite. To show that P, and P, are
positive definite, consider the transformation 7T given by Eq.
(33) such that xy(1) = Tx(¢t) where Xy(¢) is given by Eq. (34).
Using this transformation Eq. (AS) becomes

O=/-1.0TT_TIST_1 + T-7TPT'4y+ T-TRT! (A18)
where A, is given by Eq. (36). Noting that 7-"= T and that

HP,HT HP,FT HP,
T-TPT-'=| FP,HT FP,FT FP, (A19)
PLHT PLFT P,

the (2,2) block of the preceding Lyapunov equation is

0=AP, + P,A, + CIRC, (A20)
where
FP,FT FP,
pA A2l
[ PLFT P, 2D

Using Eq. (A20) and the fact that (A4,,C,) is observable, it
follows that P, is positive definite. Hence, it follows from
Ref. 29 that P, and P, & FP,FT— FP\,P; 'PLFT are positive
definite.

Since @, and P, are invertible, Egs. (A6) and (A7) can be
written as

-Py'PLOLQs ! =1, (A22)

0=F(P,Q0;0Q5 '+ Pp) (A23)

Now define the n X n matrices
040-0:07'00,
04 0,0,'05,

8 — 0,0, PP (A26)

P& P —P.PI'Pl, (A2

PAPp,P'PL (A25)

and the n, X n, n, X n,, and n, X n matrices
A p-1nT
G = QZ QIZ’

Note that Q,P,0,P are nonnegative definite and that

FPFT=pP,. Next partition nxn P,Q into n, xn,, n, xn,,
and n, X n, sub-blocks as

— PH Pll.\ ~ _ Ql4 QAM\
”‘[PT P} Q‘{Q.z Qx] (AZ8)

iy
Since P, is invertible (see Lemma 3) define the n, X n matrices

MAaQ,p, TA_p/'pl  (A2))

F&IL, O]  ®28|1L, P'P (A29)
and n X n matrix

pBF® (A30)

J. GUIDANCE

Next note that with the preceding definitions, Eq. (A22) is
equivalent to Eq. (40) and that Eq. (39) holds. Hence 7=GT
is idempotent, i.e., 7> = 7. Similarly, since ¢FT=1,,”, u is also
idempotent.

It is helpful to note the identities

0=0uG=G"Q,=G"0:,G

P=—pP,T=-T"P,=T7P,T (A3D)
7GT=G7, I'r=T (A32)

0 =10, P =Pr (A33)

Qﬁ = —Q12P1T2 (A34)

Using Eq. (A22) and Sylvester’s inequality, it follows that
rank G = rank I = rank Q,; = rank P; = n, (A35)
Now using Eq. (A31) and Sylvester’s inequality yields

Hes =rank Qp, + rank G — n, < rank Q < rank Qy, = 1,
(A36)
which implies that rank Q = n,,. Similarly, rank P =n,,, and

rank QP = n,, follows from Eq. (A34).

Next, using Eq. (A34) and the preceding identities, it follows
from Eq. (A23) that

0=FPO (A37)

Use of the partitioned form [Eq. (A28)] of Pand 0, Eq. (A37)
implies

A On On xn T
= o e A38
Q “L[Onsxn,, 0. }ul (A38)

The components of ¢ and P can be written in terms of Q, P,
O, P,G,and T as

Q=0+0, P =P+P (A39)
O = QT7, Py=—PGT (A40)
Q,=TQr7 P, = GPGT (A41)

Furthermore, it is useful to note that
F®T=F, 0=®G7, FT=uF7, 0=FATPGT (A42)

0=GPu, I, =Tu,G7, &=Fy (A43)

O=pr, 7=p.7, p=pr,, 7Tip,=p.7,.p0, (Add)

which follow from Eqgs. (A37) and (A38).

The expressions for Eqs. (45) and (46) follow from Egs.
(A8-A10) by using the preceding identities. Next, computing
G (A15)+ (A16) along with Eq. (A16) vields Eq. (44). Substi-
tuting Eqs. (A39-A41) into Eqgs. (A11-A116) along with the
expression for A, it follows that Eq. (A13)=T(A12) and Eq.
(A16)=G(A15). Thus, Eqgs. (A13) and (A16) are superfluous
and can be omitted. Thus, Egs. (A11-A16) reduce to

0=AQ +QA"+u, AQ + QAU + V,
- Q¥ 'Q + i Qv 'O uh (A45)

0=|pn, AQ+ QAW +u, Q. V' QIu’ |TT  (Ad6)
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0=(A-uQ,Vs'C)TP + P(A—pQ, V7 'C)
+(A—=QV'CTP + P(A-Q,Vy'C)+ LTRL (A47)
0=[(A4-QWy'C)P + P(A —-Q,V5'0)

+ Pu(A —Q,V5'C)+ L'TRLIG” (A48)
Next, using Eq. (A45)+GTT(A46)G —(A46)G — [(A46)G17
yields Eq. (47). Similarly, using Eq. (A47)+ I'"G(A48)T
—(A48)T —[(A48)T1” and T7G(A48)T —(A48)T — [(A48)T]7
yields Egs. (48) and (50). Now using G'T(A46)G —(A46)G
—[(A46)G]T yields

0=p,AQ + QAW +p. Q. V' Ofpl
—ripa Q¥ QI H T (A49)

Using Eq. (A38), Eq. (A49) becomes

0, Gy, xn T 1T, T
0= o N I "J + HV .
“‘L[Onsxn“ Ast"’QsA;T]#l w1 QaVy Qany
-7 01 QeVy ! QaT/“"Tl TTL (A50)

Next, computing H(AS0)H " yields Eq. (49). Note conversely
that if Eq. (49) is satisfied, then (A36) holds since p, 7,0,
STily -

Finally, to prove Theorem 2 we use Egs. (44-50) to obtain
Eq. (32) and Eqgs. (A5-A10). Let A, B., C., G, T, F, ®, 7, 1,
0, P, 0, P, Q,, O be as in the statement of Theorem 1 and
define Qy, @12, Qa, Pi1, P12y P2 by Eas. (A8-A10). Using Eq.
(40), ®FT=1, , Egs. (45) and Eq. (46), it is easy to verify Egs.
(A39-A41). Next substitute the definitions of 0, P, 0, P, G,
T, F,®, 7, pinto Egs. (47-50) using Eq. (40), Eq. (41), and Eq.
(A33) to obtain Eq. (32) and Eq. (A5). Finally, note that

5 O Oun.| . | 1] 5
¢- [0 0, ] * [F]Q[ln 7]

which shows that 0 =0. Now using the assumed existence of
a nonnegative-definite solution to Eq. (32) and the stabilizabil-
ity condition (A, V"), it follows from the dual of Lemma 12.2
of Ref. 30 that A is asymptotically stable. Since Ao is upper
block triangular, A, is also asymptotically stable. Conversely,
since A, is assumed to be asymptotically stable, A, stable im-
plies (4, V") stabilizable.
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