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Optimal Reduced-Rank Estimation and Filtering

Yingbo Hug Senior Member, IEEBVaziar Nikpour, and Petre StoicBellow, IEEE

Abstract—This paper provides a unified view of, and a further a possibly reduced-rank < min(m, n). Once the channel
insightinto, a class of optimal reduced-rank estimators and filters.  transfer function represented Hyis estimated, efficient ways
An alternating power (AP) method for computing the optimal re- 50 gyailable to estimate jointly the angles and delays of multi-

duced-rank estimators and filters is derived and analyzed. The AP . - . .
method is a generalization of the conventional power method for path signals [18]. As discussed in [1], the model (1) is also ap-

subspace computation, which is shown to be globally and expo- Plicable to a range of other applications where multiple sensors
nentially convergent under weak conditions. When the rank re- and multiple transmitters are employed. For such reduced-rank
duction is relatively large, the AP method is computationally more problems, reduced-rank estimators or filters are required for es-
efficient than the conventional methods. The AP method is useful timating the channel matrix and/or the channel input.

for adaptive computation of the canonical components of a desired K . . filteri .
reduced-rank estimate, which in turn facilitates the detection ofa  Indeed, reduced-rank estimation and filtering are important

time-varying rank. The study shown in this paper is particularly ~ for a wide range of signal processing applications where data
useful for applications that involve a large number of sources anda or model reduction, robustness against noise or model errors, or
large number of receivers, where rank reduction is either inherent  high computational efficiency is desired. Fundamental results
mlet)k(]i(ta mugl/vartlﬁte sySteT tc_>r re?:"r%d to reduce the model com- ' 5tima reduced-rank estimators and filters include the work
plextty andiorthe Compu_ ationatioad. by Brillinger [17], the reduced-rank Wiener filter (RRWF) by
Index Terms—Alternating power method, power method, rank  gearf 3] [11]-[13], and the reduced-rank maximum likeli-
estimation, rank reduction, reduced-rank channel equalization, . . . .
reduced-rank channel identification, reduced-rank estimators, re- hood estimation (RRMLE) bY St0|ca—VIberg [1]._Other exam-
duced-rank filters, reduced-rank maximum likelihood estimation, ~ples of the reduced-rank estimators and filters include the re-
reduced-rank multilayer neural network, reduced-rank Wiener duced-rank multilayer neural network (RRMNN) by Diaman-
filter, SVD. rara—Kung [6], the relative Karhunen—Loeve transform (RKLT)
by Yamashita—Ogawa [4], and the generalized Karhunen—Loeve
I. INTRODUCTION transform (GKLT) by Hua-Liu [5]. In Section Il, we provide a

) o unified view of, and a further insight into, these optimal reduced
N RECENT research of wireless communications and telgs,k estimators and filters.

phone networks [2], the following multivariate linear regres- A fundamental tool for reduced-rank estimation and filtering

sion model has attracted considerable attention: is the singular value decomposition (SVD) [7]. Indeed, most (if
o not all) reduced-rank techniques known so far can be expressed
y(k) = Tx(k) + e(k). @) in terms of SVD or its related eigenvalue decomposition (EVD)
Here, or subspace decomposition (SSD). This reality has driven the
y(k) € ™ channel output; search for fast algorithms for computing the SVD, EVD, and
x(k) € ™  channel input; SSD and their adaptive forms. Some of the early research work
T e C"*™  channel matrix; in this direction was done by Tufts, among others [16]. More re-
e(k) € C™  channel noise vector. cent results can be found in [14], [15], [23], and the references

ceivers and/or slide-windowed sequences of the original outg{ie SSD, EVD, or SVD is only an intermediate part of a more
signals. The effects of multipath signals and cross-signal inté@Mmplex process. A fast algorithm for SSD, EVD, or SVD alone
ference can be described or represented by the internal stfti@y not be sufficient to make the whole process computation-

ture of the channel matrix. In general, the channel matrix hady efficient. In Section Ill, we show an alternating power (AP)
method for computing the reduced-rank estimators and filters.

. . , . If the rank reduction is relatively large, the AP method is much
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proach [8], and the BP method is based on the gradient descerithe SVD of matrices will be used frequently. We denote the
searching. The AP method converges much faster than the 8#D of a matrixR € C"*™ asR = Z;“:l‘(m’ R ow v,
method as the latter requires the use of a very small step sizavHereo; > o2 > - - > oin(m, n)- We also define

the step size is not small enough, the BP method diverges. (If the

inverse of a Hessian matrix were used, the computation at each

Y1 :diag[o*l [ep)) O'r]
iteration would be significantly increased.) In Section IlI-A, we .
derive the AP method. In Section III-B, we establish the global Iy =diagoryr  orp2 min(m, n) |
a}nd exponential convergence property of the AP method. In Sec- U, =Ui(R)=[u; u u, |
tion 111-C, we demonstrate how the AP method can be used to
compute the canonical components of reduced-rank estimators Uz =0Uh(R) = [u41 W2 Upnin(m, n) |
and filters. In Section I1I-D, the detection of time-varying ranks Vi=Vi(R)=[vi v vl
is discussed. In Section III-E, some issues of adaptive computa- et Loz r
tion are addressed. Simulation results are provided in Section IV. Vo =V2(R) =[V,41 Vg2 Vmin(m, n) |

Il. REVIEW OF REDUCED-RANK ESTIMATION AND FILTERING
A. Main Framework

A unified view of several optimal reduced-rank estimatorit is known from [17, Th. 10.2.4] that the minimizer gf,_. is
and filters is shown next. Consider the two random (coniplegiven by
) processex(k) € C™andy(k) € C™, which may or may
not satisfy the model (1). Let(k) = Tx(k) be a reduced-rank
estimate of y(k) from x(k) for some matrixI' € C™**™ and
rankr < min(m, n). The correlation matrix of the error vectoryhere U, . ; = Ui(Ry_i), and Ry = WY/2Cyy
z(k) = y(k) — y(k) can be expressed as follows: C/*". The superscript “1/2” denotes the square root
Cow = E{2(k)2 (k)" and the supersprlpt—1/2 the mvgrseb square ro_ot. The |
e - square-root matrices are not required to be symmetric. Namely,
=Cyy = CyxT" = TC + TC T @) w = W2w12" andC,, = CY2c?” Itis easy to
verify that an alternatlve form of (3a) is

r:A[‘w—tr = Wl/QUw—tr, 1U5,’_tr7 1W_1/20yxc;>1 (38.)

where

E{}

either ensemble average or - 1/9H
. i o Tuw_ir = CyxC/?V, Vi Co?
time-averaging over a finite set w—tr yx M xx w—tr, 1 Yw—tr, 1

of data (i.e., both definitions

(3b)

are valid in this paper);
H conjugate transpose;

Cyy = Bly(k)y(k)H} auto-correlation  matrix
y(k);

Cux = E{x(k)x(k)"} auto-correlation  matrix  of
x(k);

Cyx = E{y(k)x(k)"}
tweeny (k) andx(k).

We assume thalx, andCy, are nonsingular. The optimum C_l/QTCW.

cross-correlation matrix be-

whereV,,_i» 1 = Vi(R,—:). Clearly, the minimizefT', of
Ji is given by (3) withW = I (the identity matrix). The matrix

of Ruw—tr With W = T will be denoted byR.,.

We now considet/ ;. One can verify using (2) that
Jaer = det{T — Rye:RL + ZZ" } det{Cyy}

. —1/2 —1/2H _
where Rye; = Cuy' "CyxCix’™ , andZ = Rge; —
It follows that Jy is proportional to

choice of the filtering matrixT depends on the measure applleqet{I — Ru«RI + ZZ"}. It is known (easy to prove)

to C,,. There are three common measures:

Joo =tr{Cp,}
Jw_ie = tr{W™C,,}
Jdet = det{sz}

where t{ } denotes tracelet{ } determinant, an® is a non-

that all singular values dR.,.; are no larger than one. If a sin-
gular value ofR 4.; equals one, we can show that the minimum
of Jue: IS zero and is achieved by a wide range of minimizers.
Therefore, we need to assume here that all singular values of
Ryt are strictly less than one, which is satisfied in practice
with probability one unlesg (%) is a linear transform ok (%)

or vice versa. With this assumptiof.; is equivalent to

singular weighting matrix. The minimizers of the three mea-
sures are different in general. It is obvious that the minimizer
of .Ji, is a special case of that of,_.,, but it is not obvious
how the minimizers of/,,_:, and.J ., are related to each other.
Such a connection will be given below.

det {T+ (I~ RawR{L) /22" (1 - RaaREL) ™/}
=[[a+=)
i
. . . —1/2
1Complex data are assumed in this paper unless specified otherwise. wherecw; is thesth singular value OKI o RdetR ) ?Z.

2A constant offset vector may be used as in [18], but it is a trivial part of th'é|ere the square root is assumed to be ConJUQate symmetrlc
process and, hence, omitted here. without loss of generality. Hence, minimizing. is equivalent
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to minimizing alle;. The matrix(I — RdetRit)—l/QZ can be the expression of (4b) was also obtained in [1], but for the real
rewritten as valued data, and a different approach was used there.
N Another variation of the RRWF is available in [4] and [5] and
H 1/2 H \1/2 1/2 1/2
(I-Raer i)/ *Ruee — (I~ RueRE) C?y/ To. referred to in [5] as the generalized Karhunen—Loeve transform

_1/2 . .
It is known (see [17, Th. 3.7.4], for example) that given a fixefPKLT), whereCy "~ is allowed to be the pseudoinverse of the
matrix M and a rank= matrix N (of the same dimensions as>duare rootof the (possibly singular) mat@... The RRMNN

M), all the singular values d¥ — N are minimized byN if [6] is a neural network version of the GKLT, where the gener-
N : trun,.(M). Therefore, altw; are minimized by the rank- alized singular value decomposition (GSVD) is used in the pre-
matrix ’i‘d1t that satisfies tr']e foflowing: sentation of the optimal reduced-rank transform.
¢ We note that ifC, and W are possibly singular, then the
(I - Ry REL) ™20}/ 2Ty CLL2 rank< minimizer of J,,_, is not unique, but the minimizer with
= trun, (T — Ry R )"1/2Ry,). the minimum F—nprm is still given by (3), except that the in-
runn(( deiRiger) det) verses should be interpreted as the pseudoinverses. Such a proof
Since the eigenvectors ¢f — Rqe. R, )™ 1/2 gre the same as can be obtained by a simple modification of the proof for the
the left singular vectors dR.;, one can verify that GKLT [5]. In the rest of this paper, we only address the nonsin-
gular case, i.e Cxx andW (andC,,,) are nonsingular.
trun, (I — Raee RE) 7/?Rer)
= (I — Ryt RAL) 7Y 2trumn, (Raey ). C. FIR and IIR Filtering

The framework shown in Section II-A is also applicable to
finite impulse response (FIR) channels. For example, if one is
interested to identify the multi-input and multi-output (MIMO)
FIR systemy(k) = El o T(1)x(k — 1), one can construct the
Tae = CY2Uue UL, Cy 120, Cy L (4a) “expanded”vectors and matri(k), y’(k), andT’ fromx(k),

’ yv(k), andT(l), respectively, such thgt’(k) = T'x/(k) (see,

The above two equations |mpIy thatyy * T CE =
trun,(Raet), and henceTy.. = Cy 1/2 v trun, (Rdet)C_l/Q. It
is then easy to verify that

or, alternatively for example, [19]-[21]). Provided that the rankBf [not T'(%)]
. _1jom 12 is of interest, the formulation shown in Section II-A clearly
Taer = CyxCri/? Vaer, 1 VL, 1 CLd (4b)  holds. One should note, however, that with the reconstructed

modely’(k) = T'x/(k), the corresponding noise term in (1)
is generally temporally correlated and has some well-defined
structure. In this case, the RRMLE is unknown, and the statis-

whereUger, 1 = Ur(Raet) andVaer, 1 = Vi(Raer). Itis clear
that (4) is a special case of (3), i.&yet = Tiw_ir With W =

ny
Note that the three minimizers (reduced-rank estlmators/fllgglr;? ?r:ytzh?i an\é\'t?ol: |[51]de[gl1ba|12d [22] are invalid. More re-
ters)Ttr, w—tr, ANdTye; are dependent on the firstprin-

» Insome applications, one may be interested in a more general
cipal (left or right) singular vectors of the three * characterlstlcSetu as follows. Assume a systeific) = T(k) + x(k), where
matricesR.;, R, ., andR.¢, respectively. The singular vec- P y ) y

k = ®(k) * V() , &(k) € C™", U(k) € C™*", and
tors of these matrices are called the canonical coordmates

he operaton< denotes convolut|on The optimum reduced-rank
respect to/;,, J,_ i andJye;, respectively. From now on, we

will assume that the square roots used in (3a), (3b), (4a), f||téars ®(k) and ¥ (k) can be chosen such that one of the cost

(4b) are conjugate symmetric for convenience, unless spemﬂecrzlmt'ons‘]“’ Ju—ix, OF Juer IS Minimized. An early study based
otherwise. on .Ji, is available in [17], although the optimal causal filters

remain an open research topic. This paper will not address this
B. Relations to Some Existing Results area further, butitis important to note that the AP method shown

in Section Ill can be modified to compute the optimum filters

It is easy to ver|fy from (3b) and (4b) that without rankq) k) and¥ (k) given in [17] through the spectral density func-
reduction [i.e.,r = min(imn, n)], the minimizer of each of tlons ofx(k) andy (k)

the three measures is simply the well-known Wiener filter

Twr = nyC . The reduced-rank Wiener filter (RRWF) [3],

[11] is simply T,. The singular vectors @R, = CyxCi’*

are called the canonical coordinates of the RRWF [3], [11]. A

newest version of the RRWF is shown in [12; and [13], where The efficient computation of the reduced-rank estima-

the singular vectors dRqge; = Cyy nycxx are used as tors or filters may seem straightforward as there are indeed

the *full” canonical coordinates to form the RRWF. The “full’efficient algorithms to compute the principal singular vec-

RRWEF is simpIdeet or Ty_i; With W = Cyy,. The matrix tors of any of the characteristic matric&;,, R,,_;, and

R is called the coherence matrix in [12] and [13]. Raet. However, the major computational burden here is
The multivariate linear regression model (1) is considered itpt just the SVD of a given matrix. COﬂSIdﬂ?def in (4b),

[1], wheree(k) is assumed to be uncorrelated watfk), tempo- for example. A conventional method to Complm%let first

rally white Gaussian, and of zero-mean and an unknown covagquires the computation ORge; = C;§ 2nyC_1/2

ance matrixCee. As shown in [1], the reduced-rank maximunthen the SVD (or the like) oRuq., and, finally, the product

likelihood estimate (RRMLE) off' is simply Tue;. Note that Taee = CyxCix’*Vaer,1 VA, 1Cxx’”. The computations

I1l. COMPUTATION OF REDUCED-RANK ESTIMATORS AND
FILTERS
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required before and after the SVD involves, in particulahe shown in Section 1lI-B that with a very wide range of
square-root-inverses of large matrices, which alone requiddwices ofG(%k) and a weak condition on the initial matrix

more thanO(min(m?n, n?m)) flops.

B(0) and the singular values @y, both A(k) and B(k)

The objective of this section is to present an efficient approaélom (8) remain upper bounded for al, and the product
to computing the reduced-rank estimators and filters for the ca&¢k)B(k)H converges tdl,; globally and exponentially.

wherer < min(m, n). Without loss of generality, however,

we will focus on theA compu}ation of et For simplicity of
notation, we will us€lo,; = Taer, Jopt = tr{Cyy Cyz}, and
Ropt = Rue. Itis clear thatL,, is the minimizer o/, .

A. Alternating Power Method
We write

Jopt = 1{C53(Cyy — Cyx T — TCH 4+ TC, TH)}. (5)

We can also write the rank-matrix T asABH, whereA €
C™" andB € C™*". One can then verify that

Jopt =t1(CTLHA(BT CxxB) — CyxB)(BY CxxB)™*

Yy
(A(B¥CxB) — CyxB)) + f(B)
—1 H~—1 H —1
=tr(Cryx (CxxB(A CJA) — CJL CJA)
H~— — H~—
(AT C ;AT (Cux B(AYC A)
— ClLC A +g(A)

yxX Yy

(6)
where
f(B) =n — tr(Cy; CyxB(B" Cx B) " 'BY CLL)

_ H — H~— — H —~—
g(A) =n —tr(CiCLCIA(ATC A) TP AT C ) Cy).

We now try to minimizeJ,,,; with respect toA andB, alter-
nately. Letk denote the index of iteration. GivaB(k), the new
A(k+ 1) is obtained by minimizing (6) with respect #, and
then, the nevB(k + 1) is obtained by minimizing (6) with re-

Note thatrange(A) = range(Top ) and thatrange(B) =
mnge(Tg{,t). The AP method updates the two subspaces alter-
nately by matrix multiplications. The matrices left multiplied to
A(k + 1) andB(k) update their column spaces. The matrices
right multiplied toA (k+1) andB(k) serve as “matrix scaling,”
which ensures thak (k) andB(k%) are bounded for alt and that
their product converges to the desired matrix.

Computationally, the AP method is attractive. Due to the
smaller dimensions ofA (k) and B(k), the AP method can
be implemented using onl@(max(m?r, n*r)) flops at each
iteration, wherer can be much smaller thamin(m, n) in
practice. As shown in Section IlI-B, the number of iterations
required in practice can be very small. Note that the inverses
C;t and Cy; do not need to be computed explicitly. Indeed,
C,+A(k + 1) can be obtained by solving the linear equation
CyyA'(k+1) = A(k+1) for A’(k+1), which requires only
O(n?r) flops [7]. The inverseC} should be similarly handled
after the product of the matrices on the right sideQf} is
obtained. It can be shown that if the AP method is implemented
adaptively with the approach in [10], the number of flops can
be reduced further.

B. Global and Exponential Convergence

The following analysis establishes a global and exponential
convergence property of (8). Although relatively lengthy, this
analysis provides an important insight into the AP method. A
different approach [6] can be used to show the fact that the cost
function J,,,; has only one global minimizer, and all but one
stationary points of,,,; are saddle points. However, this fact is

spect tdB. A simple analysis of (6) shows that the above processt sufficient to imply (although a good hint) that either (7) or

leads to the following iterative equations:
A(k+1)(B(k)" CyxB(k)) — CyxB(k) = 0
CuxB(k+ 1)(A(k+ 1)HCyA(k + 1))
—CH CIAk+1)=0

yxX Tyy

(7a)

or, equivalently

Alk+1) = nyB(k)(B(k)HCxxB(k))_l
{ B(k+1) = CiiCE CyIA(k +1) (7b)

(Ak+ DHC AR +1)7

(8) is globally convergent. We will need the following SVD of
Ropt:

H
Ropt = Uopt 20})tv

opt

whereU,,, € C™*™ is the matrix of the left singular vectors;
Vopt € C™*™ is the matrix of the right singular vectors; and
Yopt = diag o1 o2 Omin(m, n) ) 1S then x m “diag-
onal” matrix of the singular values in descending order. It then
follows that

—1/2

xXx

’i‘opt = nyc;i/QVOIdt, IVH

opt, 1

The above algorithm is a more general form of the itera-

tive quadratic minimum distance (IQMD) method shown in [8
This algorithm can be further generalized into the following A

method.
Batch Version of the AP Method:

Ak + 1) = CyB(k)G(k)
B(k+1) = CLiCL CIlA(k+1)
(Ak+D)PCEA(E+ 1))

where G(k) € C™7 is a nonsingular matrix. If
G(k) (B(k)T CxxB(k))~1, (8) becomes (7b). It will

8

whereV,: 1 = Vi(Ropt). With the assumption thallxx is

I[';onsingular, one can express

B(k) = Cop/* Vo P(k) (9)

whereP (k) ism x . It will be assumed that the top<» subma-

trix of P(0) is nonsingular. This assumption is clearly satisfied
with probability one by a randomly select®&{0), which means
that the convergence proved in the sequel is “almost global.”
Substituting (9) into (8) yields

B(k +1) = Col/?VopP(k +1) (10)
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where It will be shown next that the norm ak'/?P(2k) is nonde-
creasing and upper bounded for/allThis implies that the norm
P(k+1) = AP(K)(P(R)TAP(K))"'G(k)™™  (11) of Py(2k) is upper bounded for akl. The behavior of the norm

of AY2P(2k+-1) is similar to the one aA'/2P(2k), and hence,

with A = diag{ A1 A2 -+ Awingm,n) } = B Bope: e its analysis is omitted. A simple iteration of (17) gives
diagonal elements of which are in descending order. We assume

thatA, > A1 [which is a weak generic condition that is alsoP(2k + 2)=A*P(2k)(P(2k) AP (2k)) ' P(2k) "AP(2k).

required for (4)B Denote the topr x = submatrix of P(k) (18)
by P (k) and the lower(m — ) x r submatrix of P(k) by LetS(l) = A/2P(2l). Then, (18) becomes
Py(k). Accordingly, letA; = diag{ Ay A --- A.} and 2 a2 e H
Ay = diag{ Ar11 A2 o Amingm,n) - Itis clear from S(I+1) = AT8(H(SHTAS() ™" ST S(). (19)
(1_1) thatP; (k) is nonsingular for any finité. Then, (11) im- |t is clear from (19) thaS()#S(I + 1) = S(I)S(I). This
plies that equation, along with the fact th48(1)7 S(1)|| = ||S(?)||* and
S(HESI+ )| < IS - |IS(I + 1)||, implies that
Pyl + DP1(E+ 1)) = MPo(Py (kAT (12) IS8+ DIl < [[SMDI] - I8¢+ D]
IS¢+ 1)l = ISO)l (20)

and hence _ . .
which means that the 2-norm Bf!) is nondecreasing.

Py(k+1)Py(k+1)"" = AATIP,(0)P1(0)* A, *TY. (13) By iterating (19) fromi = 0, one can verify that
Since\, > A.11, (13) implies thatP, (k)P (k)~! converges S(D) =H(OH{ -~ 1) H(1)S(0) (1)
to zero exponentially, and for larggit is on the order of(k) =  where
(Arg1/A)%. If G(k) is such thatP, (k) is upper bounded for ol s . oo
all k, then the above means tHR$ (k) converges to zero expo-  H(l) = ATS(0)(S(0)" A*775(0))"S(0)" A=, (22)

nentially. Assuming this property (to be established later), (1;\)pplying the same partitions 42 andS({) as forA andP(k)
becomes, for largé (22) becomes |

P(k+1) = Pl(/f)_F;G(/f)_H FO(e(k).  (14) H(l) = Rzzlégﬂ (S1(0) A428, (0)
From (8)—(10), one has +52(0)7 A3?S5(0)) 7
A(k+1)B(k+1)" (S1(O)TAT? 4 8,(0) A7), (23)

= CyxCrt* Vo P(k)G(R)P(k+1)" VI C1/?. (15) Then, applying the matrix identityC + D)~' = C~!' —
C~1D(I + C'D)~1C~! to the inverse matrix in (23), one
Then, (14) and (15) imply that for large can verify that for largé

A(k+ DB+ 1" H(l) = {L‘ 0} +O(eX(1)) (24)
= Cy Gl Vo VA, CL2 4 O(e(k))  (16) 00
wherel, is ther x r identity matrix. It then follows from (21)
which means thaA (k) B (k) convergestd‘opt exponentially. that
Note that when the norm @& (k) is upper bounded for afl,

the norm ofB(k) is also upper bounded [from (9)]. If, in addi- [[S(ea)ll < IS(O)]] H IH)]]

tion, the norm ofG (k) is upper bounded, then the normafk) (=L

@s also upper boundec_zl [from (8_)]. There_zfore, the algorithm (_8) =|IS(0)|| H (1 + O(e2(1)))
indeed yields the desired solution provided that a right choice =1, oo

of G(k) is made.

There are an infinite number of ways of choosi@gk) to o,
ensure that the norms @&(%) andP+ (k) are upper bounded =[IS(0)][ exp Z log(1 + O(e7(2)))
for all k. Let us consider the simplest choiG&k) = cI (with a =1,y 00
constant norm) , where is an arbitrary nonzero real number,
andI is the identity mgtrlx. (Th|s is a case more difficult to <||S(0)|| exp Z O(<2(1))
analyze than that considered in [8].) el o

With the choiceG(k) = I, (11) becomes

Plk+1) = ~AP(R)PR)TAPKR).  (17) =[IS©O)llexp | O ( > 52('5)))
C i=1,---, 00

3Otherwise, it can be shown that the rankninimizer of (2) is not unique

. ) 1
and that the method (8) converges to a random solution within the space of all _
valid solutions. HS(O)H P <O <1 - ()\r+1/)\r)2 )) (25)
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This completes the proof of the fact that the normBuf(2k) one can verify that (29) yields the 4 1)th pair of canonical
(and, similarly,P,(2k + 1)) is always upper bounded whenvectors at the rate af\,. o/\.41)* = (0,42/0,41)%F for a

G(k) = I, wherec is an arbitrary nonzero real number. random choice ob,.;1(0).
Since (8) yieldsA, and B, asymptotically, (29) and (8)
C. Computing the Canonical Components can be run at the same time, with, in (29) replaced by
It has been shown that under a weak condition, the algd{k + 1). Furthermore, (29) can be run successively for
rithm (8) converges globally and exponentially B, with ~ = 0,1, -+, 7o < min(m, n), for each giverk, to retrieve

a preselected rank, which is now denoted b{f',; .. Re- all desired canonical vectors. This algorithm can be easily
call the expressiofi: — C..CIY¥?y . vH 72 derived and, hence, only summarized as follows.

- opt, r ~yx XX ) opty Yopt, XX - . .
Let Q be a nonsingular matrix. We define thith column of  Canonical Component Version of the AP Metholt each
nyC;,i‘/QVOptlQ as theith left canonical vectodenoted by itérationk, do the following forr =0, 1, 2, ---, ro:
a; and theith column of Cxy/*V,,,. Q# as theith right B
canonical vectodenoted byb;. We rgfer toa; b’ as theith -
canonical matrix I;c then follows thatT'ope 41 = Topt,r + Crp1(k+1) = Cra g1 (k+1)
a1 b = S 4 a;b! . Although the canonical vectors are -
obviously not unique, the canonical matrices are unique if thg drt1(k+1) = Ap(b+1) " ey (+1)
singular values 0R.y = Cre/*Cl Cyy/” are distinct. In | g (k+1) = arpr (k1) 7 eppr (k+1)

(k+1)

( a,41(k+1 nyBr+l(k)

)
)

fact, theith canonical matrix is unique if and only if thigh . .

singular value ofR,; is distinct from the rest of the singular b1 (k+1 CoxCyx

values. A (erpr(k+1) — CLEA (E+1)S,(k+1) " dyy 1 (k+1))
Given A, = CyxCixx’ Vop, Q and B = Q*lv({j{)tl )

Cx/?, which consist of the first canonical components of

Topt, an AP algorithm for computing the+1)th pair of canon- art1(k+1)
ical vectors can be derived as follows. Recall the SVIRgf;: A (B+1) =[A(k+]1) a1 (k+1)]
S, (k+1 d, 1 (k+1
Ropt = Voptlz‘{itlUg’tl + V()pt2 E(I){)tz Ug3t2 (26) S1+l(k+ 1) = ( )H + ( )
\ d,+1(l€+1) Oé,+1(]€+1)
where the first term on the right is associated with the first . (30)
canonical components, and the second term is associated Wifif€Ao(k + 1), So(k + 1), andd, (k + 1) must be ignored.
the rest. It follows that Efficient programming of the above algorithm requires some
care. The operations should be carried out “from right to left,”
C;;/QAT _ C§y1/20yxC;§/2VoptlQ = Uopt, Sopt, Q i.e., scalar-vector multiplication first and the vector-matrix mul-

27) tiplication second. Any matrix-matrix multiplication can and
should be avoided. The standard partitioned-matrix inversion
lemma (e.g., see [9]) should be applied to compute the inverse

Cc-l/2cH 071/2(1 _C-lzp (AHCIIA ))71AH071/2) of S;41(k+ 1) recursively with respect to, namely, as in (31),

TYRTYY yy SR vy A4 shown at the bottom of the page, where

and hence

= VothEg)tQUH (28)

opt2-

. . . e,,+1(/€ + 1) = S,,(If + 1)_1d1j+1(k + 1)
Note that (28) is a deflated versionBf,,,;. To retrieve thér +

1)th pair of canonical vectors, we now replde,; inherentin  #r(k +1) = appa(k + 1) = drga (b + 1) e, (b + 1).
(8) by its deflated version, which yields (witB(k) = T) (32)

ﬁ,q_l(lf + 1) = C}’XBT—I—l(k)

Bt (k+1) = CLICH (Cyl - CHlA, D. Rank Detection with the AP Method

(29)  Inthe case where the rank of the mafiixn (1) is unknown
(AHeC-1 —1AHC—1\5 ,
(A Cory AT A CyyJars (b + 1) the canonical components can be used to detect it. In a high
(B (b +DHC o (k+1) ! SNR environment, the rank & can be chosen to be the first

) for which | Tope, »|| > || 2o, &b In general, however,
wherea; (k) and b, (k) denote the estimates ef andb; at it may be difficult to attach a precise meaning to the condi-
iterationk, respectively. Following a proof similar to that for (8) tion “>>,” and the (simplified) generalized likelihood ratio test

—1_ | Se(h+ Dt +epib+ Ve (b + D /po(k+1) —era(k+1)/p(k+1)

—e,q1(k+ D)7 /p (k4 1) 1/pr(k+1) (31)

S,k +1)
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Fig. 1. Estimation errors of the batch version of the AP method with ten independent initializations. (a) Linear scale (b) Logarithmic scale.

(GLRT) developed in [1] can be used. The GLRT requires tHE in (1). The idea is simply to allow the correlation matrices
availability of the singular values d&,.. The singular values Cyx, Cy,, andC, to be updated as new data become available
can be easily computed once the canonical vectors are avdiltring the iteration of the AP method. The inverses of the auto-
able. This is explained below. Upon convergence, the estimatastrelation matrices can be efficiently obtained at each iteration
canonical vectoré; andb; yield the unique canonical matrix by using the standard rank-one inverse update. For example, if
a;bH = a;bH, and one can writé; (k) = (k)CyxCit’>v; Coxlk + 1) = 6Cy (k) + x(k + )x(k + 1), wheres is a
andb;(k) = (1/7(k)#)Cxx'?v;, where~(k) is a complex forgetting factor between (0, 1), then

scalart andv; is the:th right singular vector oR. It is
easy to verify thah/ C} Cyxb; = o2. Therefore, the singular

i -1 _ 1 -1 _ H
values can be updated as Coox(b+1)7" = 5 Cox() gkt gk +1)7/Bk+1)

@37)
X R B . whereg(k + 1) = (1/8)Cux (k) "*x(k + 1), andB(k + 1) =
6i(k)* = a;(k)" Coy Cyxbi(k). (33)  x(k+1)"g(k + 1) + 1. With the updated correlation matrices

and their inverses, one can easily update the canonical compo-
The GLRT developed in [1] is summarized here for convéents by (30), the singular values by (33), and, hence, the rank

nience. Define the test statistics of T by (34)—(36). In the context of on-line applications, the
data lengthV shown in (34) should be replaced by the effec-
min(n, m) tive (asymptotical) window length/(1 — §é). If the rank of T
(k) =—-N Z In(1 — c?i(/f)Q) (34) increases or decreases by no more than one within an effective
Parei window, only the firstr + 1 pairs of the canonical vectors (as

opposed to all canonical vectors) need to be tracked at any given

where N is the length of data (or the effective window Iengtﬁime without losing track of the rank (herejs the current esti-
in on-line applications). Define the threshakd (7) to be such Mate of the rank).

that the following condition is met:
IV. SIMULATION EXAMPLES

prob{w > Ba(7)} = « (35) To illustrate the performance of the AP method in the context
of RRMLE of the matrixT in (1), m = 10 andn = 20 are

. . chosen (i.e.T'is 10 x 20), andT is constructed as follows:
wherec is a small positive number (much smaller thart &nd (ieT )

wis achi-square distributed random variable with—7)(n—7) .
degrees of freedom. Then, the rank at timghould be the first T = Z a;bH (38)
7(starting from 1) that satisfies = !

(k) < Bal(r). (36) wherea, andb; are randomly selected. The rank of this matrix
T is r. Each element of the input signa{k) is independently
selected fromN (0, 02I), and each element of the noise
E. Adaptive Computation e(k) is independently selected froiN (0, o2T). The SNR is
defined as SNR= 10 log;, E(||Tx(k)||?)/E(|le(k)|*) =
log, o 0 2tr(TTH)/mo2. The SNR is 10 dB for all the cases
own below. For a wide range of SNR, a behavior similar to
41t is easy to show that(k 4+ 1) = 1/~v(k)". what is shown next has been observed, and hence, the cases for
5u = 0.05 is chosen in the simulations. other SNRs will not be shown.

Because of its recursive nature, the AP method can be ea
applied to track the time-variations of a rank-reduced matriy,
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Fig. 2. Estimation errors of the adaptive batch version of the AP method with a varied number of iterations per sample index: (a) One iteratioteréjohso i
(c) Three iterations. (d) Four iterations.

As before, we denote thith pair of the ideal canonical vectorsvisible). Fig. 1(b) shows the logarithm-scale version of Fig. 1(a).
by a; andb; and the corresponding estimated vectorapgnd The straight lines in this figure are consistent with the theoretical
b;. The estimation error of thih canonical matrix is defined asresult that the AP method is exponentially convergent.

Case 2—Adaptive Batch AP Methodhe assumptions used
. l|a; (k)b; (k)H — a;bH || here are the same as for Case 1, except that the correlation ma-
Ji(k) = la:b | (39)  trices are updated using a new sample géir) andy (k) after
‘ one or more iterations of the AP method. The forgetting factor
which is also referred to as théth component error.” We also Used for updating the correlation matrices in this case (and other
define the rank- group of the ideal left canonical vectors a$@ses shown later) is 0.99. Fig. 2 (a)—(d) shows the rank-4 group

A, =la ay a,.] and the rank- group of the ideal €ITOrs versus _the iteration index for ten independent ipitiali_za—
right canonical components @, = [b; by --- b,]. tions(andtenindependentruns), where the number of iterations
The groups of the estimated canonical vectors are Si|fﬁ).r each new Sample pairis 1,2,3, and 4, respectlvely. Itis clear
ilarly defined, ie, A, = [4 & --- & and thatonecan controlthe accuracy of the adaptive AP method by
B, = [b, by, --- b,]. The following is referred to choosing the number of iterations: the more iterations, the more
as the “ranke group error”: accurate the method.
Case 3: the adaptive canonical component AP method. The
IIAT(/f)ET(/f)H _ ABIA| rank of the matrixT is varied after every 500 samples. The
Jr(k) = . (40) sequence ofrranksis 2, 3, 4, and 3. The canonical component AP

H
lA-Bl method (30) is used where the correlation matrices are updated

at each iteration (i.e., one iteration for each new sample).
Fig. 3(a)—(f) shows the errors of the estimated components and

The correlation matrices are computed fram= 500 samples . ) .
and kept constant during the iteration of the AP method (s)the errors of the corr_espondlng estimated smgularval_ues asfunc-
fions of the sample index. It can be observed from Fig. 3(b)—(c)

Fig. 1(a) shows the rank-4 group error versus the iteration index . .
: AT o at the errors of the second and third components are relatively
k, where ten independent initializations are used. This flgur

e T S
suggests that after the fourth iteration, the errorisverysmall(ng{ge at the Sf?‘mp'.e indices around 1500. This is because the
second and third singular values are very close to each other at

6The gain matrixG (k) is the identity for all cases. those sampleindices (see Fig. 5). Itis clear from Fig. 3(d)—(f) that

Case 1—Batch AP MethodThe rank ofT is fixed atr = 4.
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Fig. 3. Component errors: (a)—(a’) First-order. (b)—(b") Second-order. (c)-(c’) Third-order component errors.

the errors corresponding to the noise (nondominant) componentgig. 5 shows the ten estimated (nonzero) singular values as
are always large, which is consistent with the fact that the “noiienctions of the iteration (sample) index. A few critical singular
singular values” are close to each other. values are marked in the figure. Fig. 6 shows the detected ranks
Fig. 4(a)—(f) shows the group errors of different ranks as funbased on the estimated singular values using (36). All ranks are
tions of the sample index. Comparing Fig. 3(b) with Fig. 4(bxorrectly detected after some delays, as expected. The delays
for example, suggests that errors of the estimated singular valaes somewhere between 100 and 120 samples. Clearly, these de-
are related to the errors of the corresponding group errors tHays largely depend on the choice of the forgetting factor used in
not more corresponding (vector) component errors. This isupdating the correlation matrices. Indeed, the delays are about
rather surprising phenomenon. However, an explanation is givtie same as the effective window length (which is 100) corre-
in Appendix B. sponding to the forgetting factor used (which is 0.99).
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Fig. 3.(Continued.) Component errors. (d) (d’) Fourth-order. (e) (e’) Fifth-order. (f) (f)) Sixth and higher order.

V. CONCLUSIONS APPENDIX A

Aclassofoptimalreducedrank estimators andfilters have been SPECIALIZATION OF THE AP METHOD

reviewedinaunifiedway, andafurtherinsighthasbeenpresentedThis section shows a specialized version of the AP method
The alternating power (AP) method developed in this paper is ) for computing the optimum rank+eduction of an arbitrary
efficient way for computing the rank-reduced estimators and fila x » matrix X of rank no less than. Let the SVD ofX be

ters when the rank reduction is relatively large. It is particularlgxpressed aX = U3 VI + U, 3.V, where the first term
useful for on-line adaptive applications. The global and exponerentains ther principal components of the SVD. It is known
tial convergence property of the AP method is an important feg], [17] that the optimum rank-reduction (in F-norm) oX is
ture. The canonical components obtained by the AP method makeen by X,. = U; 3, V. By settingCyx = X andCyx =

the adaptive rank detection an easy task. A useful specializatiog,, = I in the AP method (8), onecan construct the follow—
of the AP method is shown in Appendix A. ing algorithm for computingX,. (without computing the
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Fig. 4. Group errors: (a) Rank-1. (b) Rank-2. (c) Rank-3. (d) Rank-4. (e) Rank-5. (f) Rank-6 (and higher).

SVD explicitly): flops at each iteration. This algorithm can also be adopted for
on-line applications where the matiX varies.

{A(k +1) = XB(k)G(k)

APPENDIX B

— H H -1

B(k+1) =X"A(k+ D(A(k+1)7 Ak +1)) (A.1) GROUP ERROR VERSUSCOMPONENT ERROR

whereA andB arer-column matrices. Under a condition sim- - This section shows that the accuracy of the estimated singular

ilar to that of (8), the producA(k + 1)B(k + 1)" from (A.1)  values based on (33) is at least as goas the accuracy of a
globally and exponentially convergesX0.. Provided that the

desired rankis given and much smaller thaim (2, n), (A.1) is
an efficient algorithm for computin¥.,. as it require€)(mnr) 7In terms of the order of errors.
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1.00 According to (33), the estimated singular values are given by
0.0 the diagonal elements of
0.80 e A Hel .
0.70 A=A C ,CyB, (B.3)
¥ 060 where the correlation matrices are assumed to be constant.
2 050 Using (B.2) in (B.3) and some simple manipulation (recall
L3 — — .
.—§ 0.40 A, = nyCxi/QVopt1 andBf = Vi{,tlcxiﬂ) yields
[

A=QIAIC,}Cy:B.Q, + O(c)

H‘fﬁ(ﬂ ;:),;M.t_».r =QIAQ, +O(e) (B.4)

g™ N LV WL _..\,;"1\"_’-:‘ . .

il whereA = diag 0? o3 --- o2). Applying the property

0 500 1000 1500 2000 QEQ, =1, one hass? = o2 + O(g). We have now shown
sample index, k that the accuracy of the first estimated singular values is at

least as good as that of the group (or span) of the fifsairs
Uf estimated canonical components (matrices) despite possible
large errors of individual canonical components (matrices).

Fig. 5. Estimated singular values of the characteristic matrix by the adapt
component version of the AP method.

10.00
9.00 APPENDIX C
8.00 SINGULAR VALUES OF Rt
L 700 This section provides an explicit expression of the singular
§ 600 values of R,y for the multivariate linear regression model
2 500 where the noise is spatially white, i.€.. = 021, wheres? is
g 4.00 the noise variance. With this assumption, we have
§ 300 Ropt = (TCxxTH + 021)_1/2Tcxxc;i/2
2.00 -
o = (TCyxx T + o21)~Y/2TCL2. (C.1)
0.00 4 , ., , , Let the singular value decomposition @CL/? be ESF,
0 500 1000 1500 2000 whereS = diag(s1 s2 - - Smin(m,n) ), and the diagonal
sample index, k elements are in descending order. It then follows that
_ 2 2m\l/2qEpH
Fig. 6. Estimated rank values. Rope = E(S™ + 0 I)"/"SF (C.2)
and hence, the singular valuesR{,,; are
group of estimated canonical components, regardless of the o = Si (C.3)
(2 .

accuracy of individual estimated canonical components. This Vs?+ ag'

is somehow counterintuitive and, hence, surprising at the filgt expected, all the singular values are between (0, 1). A useful
sight. observation from (C.3) is that when the noise is much weaker

The component errors and the group errors are definediin the signal [associated wittik)], all the dominant singular
(39) and (40), respectively. The convergence rate ofithe \4)es are close to one, and as the noise level increases, all the

(with ¢ < 27’;) component error is asymptoticaelI}gOVeme{j by singular values are pulling toward zero. Note that although each
(0i1/i)”", which can be very slow if the noise level is lowyf the first — 1 estimated canonical matrices is not reliable
[see (C.3)]. On the other hand, it can be shown that the rankynen SNR is very high, it does not affect (as much) any of the

group error converges to zero at a rate asymptotically governggresponding estimated singular valuedgg, of ranks [pro-
by (or+1/0+)?*, which is fast, provided that the noise level iS;ijed that- is the correct rank of the model @]
not too high and the matriX has a “well defined” rank:.

Assuming that the rank-group error is in the orde®)(e)

wheree is a small number dependent on the data length and the N ] ]
noise level, we can write During the course of writing this paper, the first author had
discussions with L. Scharf on several occasions. The generous
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