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Optimal Reduced-Rank Estimation and Filtering
Yingbo Hua, Senior Member, IEEE, Maziar Nikpour, and Petre Stoica, Fellow, IEEE

Abstract—This paper provides a unified view of, and a further
insight into, a class of optimal reduced-rank estimators and filters.
An alternating power (AP) method for computing the optimal re-
duced-rank estimators and filters is derived and analyzed. The AP
method is a generalization of the conventional power method for
subspace computation, which is shown to be globally and expo-
nentially convergent under weak conditions. When the rank re-
duction is relatively large, the AP method is computationally more
efficient than the conventional methods. The AP method is useful
for adaptive computation of the canonical components of a desired
reduced-rank estimate, which in turn facilitates the detection of a
time-varying rank. The study shown in this paper is particularly
useful for applications that involve a large number of sources and a
large number of receivers, where rank reduction is either inherent
in the multivariate system or required to reduce the model com-
plexity and/or the computational load.

Index Terms—Alternating power method, power method, rank
estimation, rank reduction, reduced-rank channel equalization,
reduced-rank channel identification, reduced-rank estimators, re-
duced-rank filters, reduced-rank maximum likelihood estimation,
reduced-rank multilayer neural network, reduced-rank Wiener
filter, SVD.

I. INTRODUCTION

I N RECENT research of wireless communications and tele-
phone networks [2], the following multivariate linear regres-

sion model has attracted considerable attention:

(1)

Here,
channel output;
channel input;
channel matrix;
channel noise vector.

The channel output vector can be the output of multiple re-
ceivers and/or slide-windowed sequences of the original output
signals. The effects of multipath signals and cross-signal inter-
ference can be described or represented by the internal struc-
ture of the channel matrix. In general, the channel matrix has
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a possibly reduced-rank . Once the channel
transfer function represented byis estimated, efficient ways
are available to estimate jointly the angles and delays of multi-
path signals [18]. As discussed in [1], the model (1) is also ap-
plicable to a range of other applications where multiple sensors
and multiple transmitters are employed. For such reduced-rank
problems, reduced-rank estimators or filters are required for es-
timating the channel matrix and/or the channel input.

Indeed, reduced-rank estimation and filtering are important
for a wide range of signal processing applications where data
or model reduction, robustness against noise or model errors, or
high computational efficiency is desired. Fundamental results
on optimal reduced-rank estimators and filters include the work
by Brillinger [17], the reduced-rank Wiener filter (RRWF) by
Scharf [3], [11]–[13], and the reduced-rank maximum likeli-
hood estimation (RRMLE) by Stoica–Viberg [1]. Other exam-
ples of the reduced-rank estimators and filters include the re-
duced-rank multilayer neural network (RRMNN) by Diaman-
rara–Kung [6], the relative Karhunen–Loeve transform (RKLT)
by Yamashita–Ogawa [4], and the generalized Karhunen–Loeve
transform (GKLT) by Hua–Liu [5]. In Section II, we provide a
unified view of, and a further insight into, these optimal reduced
rank estimators and filters.

A fundamental tool for reduced-rank estimation and filtering
is the singular value decomposition (SVD) [7]. Indeed, most (if
not all) reduced-rank techniques known so far can be expressed
in terms of SVD or its related eigenvalue decomposition (EVD)
or subspace decomposition (SSD). This reality has driven the
search for fast algorithms for computing the SVD, EVD, and
SSD and their adaptive forms. Some of the early research work
in this direction was done by Tufts, among others [16]. More re-
cent results can be found in [14], [15], [23], and the references
therein. However, for many reduced-rank estimators and filters,
the SSD, EVD, or SVD is only an intermediate part of a more
complex process. A fast algorithm for SSD, EVD, or SVD alone
may not be sufficient to make the whole process computation-
ally efficient. In Section III, we show an alternating power (AP)
method for computing the reduced-rank estimators and filters.
If the rank reduction is relatively large, the AP method is much
more efficient in computation than the conventional methods
that require additional computations before and after some fast
SSD, EVD, or SVD is employed. The AP method is a gen-
eralization of the power method [7], [10], [15] for computing
the principal components of a given matrix. As a computational
tool, the AP method is also related to the back propagation (BP)
method [6] for linear multilayer neural network learning where a
rank reduction is implemented via reduced number of inner neu-
rons. However, the AP method and the BP method are based on
different computational principles. The AP method is a general-
ization of an iterative quadratic minimum distance (IQMD) ap-
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proach [8], and the BP method is based on the gradient descent
searching. The AP method converges much faster than the BP
method as the latter requires the use of a very small step size. If
the step size is not small enough, the BP method diverges. (If the
inverse of a Hessian matrix were used, the computation at each
iteration would be significantly increased.) In Section III-A, we
derive the AP method. In Section III-B, we establish the global
and exponential convergence property of the AP method. In Sec-
tion III-C, we demonstrate how the AP method can be used to
compute the canonical components of reduced-rank estimators
and filters. In Section III-D, the detection of time-varying ranks
is discussed. In Section III-E, some issues of adaptive computa-
tion are addressed. Simulation results are provided in Section IV.

II. REVIEW OF REDUCED-RANK ESTIMATION AND FILTERING

A. Main Framework

A unified view of several optimal reduced-rank estimators
and filters is shown next. Consider the two random (complex1

) processes and , which may or may
not satisfy the model (1). Let be a reduced-rank
estimate2 of from for some matrix and
rank . The correlation matrix of the error vector

can be expressed as follows:

(2)

where
either ensemble average or
time-averaging over a finite set
of data (i.e., both definitions
are valid in this paper);
conjugate transpose;
auto-correlation matrix of

;
auto-correlation matrix of

;
cross-correlation matrix be-
tween and .

We assume that and are nonsingular. The optimum
choice of the filtering matrix depends on the measure applied
to . There are three common measures:

tr

tr

where tr denotes trace, determinant, and is a non-
singular weighting matrix. The minimizers of the three mea-
sures are different in general. It is obvious that the minimizer
of is a special case of that of , but it is not obvious
how the minimizers of and are related to each other.
Such a connection will be given below.

1Complex data are assumed in this paper unless specified otherwise.
2A constant offset vector may be used as in [18], but it is a trivial part of the

process and, hence, omitted here.

The SVD of matrices will be used frequently. We denote the
SVD of a matrix as ,
where . We also define

diag

diag

It is known from [17, Th. 10.2.4] that the minimizer of is
given by

(3a)

where , and

. The superscript “1/2” denotes the square root
and the superscript “1/2” the inverse square root. The
square-root matrices are not required to be symmetric. Namely,

, and . It is easy to
verify that an alternative form of (3a) is

(3b)

where . Clearly, the minimizer of
is given by (3) with (the identity matrix). The matrix

with will be denoted by .
We now consider . One can verify using (2) that

where , and
. It follows that is proportional to

. It is known (easy to prove)
that all singular values of are no larger than one. If a sin-
gular value of equals one, we can show that the minimum
of is zero and is achieved by a wide range of minimizers.
Therefore, we need to assume here that all singular values of

are strictly less than one, which is satisfied in practice
with probability one unless is a linear transform of
or vice versa. With this assumption, is equivalent to

where is the th singular value of .
Here, the square root is assumed to be conjugate symmetric
without loss of generality. Hence, minimizing is equivalent
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to minimizing all . The matrix can be
rewritten as

It is known (see [17, Th. 3.7.4], for example) that given a fixed
matrix and a rank- matrix (of the same dimensions as

), all the singular values of are minimized by if
. Therefore, all are minimized by the rank-

matrix that satisfies the following:

Since the eigenvectors of are the same as
the left singular vectors of , one can verify that

The above two equations imply that
, and hence, . It

is then easy to verify that

(4a)

or, alternatively

(4b)

where and . It is clear
that (4) is a special case of (3), i.e., with

.
Note that the three minimizers (reduced-rank estimators/fil-

ters) and are dependent on the firstprin-
cipal (left or right) singular vectors of the three “characteristic”
matrices , , and , respectively. The singular vec-
tors of these matrices are called the canonical coordinates with
respect to , and , respectively. From now on, we
will assume that the square roots used in (3a), (3b), (4a), and
(4b) are conjugate symmetric for convenience, unless specified
otherwise.

B. Relations to Some Existing Results

It is easy to verify from (3b) and (4b) that without rank
reduction [i.e., ], the minimizer of each of
the three measures is simply the well-known Wiener filter

. The reduced-rank Wiener filter (RRWF) [3],
[11] is simply . The singular vectors of
are called the canonical coordinates of the RRWF [3], [11]. A
newest version of the RRWF is shown in [12] and [13], where
the singular vectors of are used as
the “full” canonical coordinates to form the RRWF. The “full”
RRWF is simply or with . The matrix

is called the coherence matrix in [12] and [13].
The multivariate linear regression model (1) is considered in

[1], where is assumed to be uncorrelated with , tempo-
rally white Gaussian, and of zero-mean and an unknown covari-
ance matrix . As shown in [1], the reduced-rank maximum
likelihood estimate (RRMLE) of is simply . Note that

the expression of (4b) was also obtained in [1], but for the real
valued data, and a different approach was used there.

Another variation of the RRWF is available in [4] and [5] and
referred to in [5] as the generalized Karhunen–Loeve transform
(GKLT), where is allowed to be the pseudoinverse of the
square root of the (possibly singular) matrix . The RRMNN
[6] is a neural network version of the GKLT, where the gener-
alized singular value decomposition (GSVD) is used in the pre-
sentation of the optimal reduced-rank transform.

We note that if and are possibly singular, then the
rank- minimizer of is not unique, but the minimizer with
the minimum F-norm is still given by (3), except that the in-
verses should be interpreted as the pseudoinverses. Such a proof
can be obtained by a simple modification of the proof for the
GKLT [5]. In the rest of this paper, we only address the nonsin-
gular case, i.e., and (and ) are nonsingular.

C. FIR and IIR Filtering

The framework shown in Section II-A is also applicable to
finite impulse response (FIR) channels. For example, if one is
interested to identify the multi-input and multi-output (MIMO)
FIR system , one can construct the
“expanded” vectors and matrix , , and from ,

, and , respectively, such that (see,
for example, [19]–[21]). Provided that the rank of [not ]
is of interest, the formulation shown in Section II-A clearly
holds. One should note, however, that with the reconstructed
model , the corresponding noise term in (1)
is generally temporally correlated and has some well-defined
structure. In this case, the RRMLE is unknown, and the statis-
tical analyzes shown in [1], [17], and [22] are invalid. More re-
search in this direction is desirable.

In some applications, one may be interested in a more general
setup as follows. Assume a system , where

, , , and
the operator denotes convolution. The optimum reduced-rank
filters and can be chosen such that one of the cost
functions , , or is minimized. An early study based
on is available in [17], although the optimal causal filters
remain an open research topic. This paper will not address this
area further, but it is important to note that the AP method shown
in Section III can be modified to compute the optimum filters

and given in [17] through the spectral density func-
tions of and .

III. COMPUTATION OF REDUCED-RANK ESTIMATORS AND

FILTERS

The efficient computation of the reduced-rank estima-
tors or filters may seem straightforward as there are indeed
efficient algorithms to compute the principal singular vec-
tors of any of the characteristic matrices , , and

. However, the major computational burden here is
not just the SVD of a given matrix. Consider in (4b),
for example. A conventional method to compute first
requires the computation of ,
then the SVD (or the like) of , and, finally, the product

. The computations
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required before and after the SVD involves, in particular,
square-root-inverses of large matrices, which alone requires
more than flops.

The objective of this section is to present an efficient approach
to computing the reduced-rank estimators and filters for the case
where . Without loss of generality, however,
we will focus on the computation of . For simplicity of
notation, we will use , and

. It is clear that is the minimizer of .

A. Alternating Power Method

We write

tr (5)

We can also write the rank-matrix as , where
and . One can then verify that

tr

tr

(6)

where

tr

tr

We now try to minimize with respect to and , alter-
nately. Let denote the index of iteration. Given , the new

is obtained by minimizing (6) with respect to, and
then, the new is obtained by minimizing (6) with re-
spect to . A simple analysis of (6) shows that the above process
leads to the following iterative equations:

(7a)

or, equivalently

(7b)

The above algorithm is a more general form of the itera-
tive quadratic minimum distance (IQMD) method shown in [8].
This algorithm can be further generalized into the following AP
method.

Batch Version of the AP Method:

(8)

where is a nonsingular matrix. If
, (8) becomes (7b). It will

be shown in Section III-B that with a very wide range of
choices of and a weak condition on the initial matrix

and the singular values of , both and
from (8) remain upper bounded for all, and the product

converges to globally and exponentially.
Note that and that

. The AP method updates the two subspaces alter-
nately by matrix multiplications. The matrices left multiplied to

and update their column spaces. The matrices
right multiplied to and serve as “matrix scaling,”
which ensures that and are bounded for all and that
their product converges to the desired matrix.

Computationally, the AP method is attractive. Due to the
smaller dimensions of and , the AP method can
be implemented using only flops at each
iteration, where can be much smaller than in
practice. As shown in Section III-B, the number of iterations
required in practice can be very small. Note that the inverses

and do not need to be computed explicitly. Indeed,
can be obtained by solving the linear equation

for , which requires only
flops [7]. The inverse should be similarly handled

after the product of the matrices on the right side of is
obtained. It can be shown that if the AP method is implemented
adaptively with the approach in [10], the number of flops can
be reduced further.

B. Global and Exponential Convergence

The following analysis establishes a global and exponential
convergence property of (8). Although relatively lengthy, this
analysis provides an important insight into the AP method. A
different approach [6] can be used to show the fact that the cost
function has only one global minimizer, and all but one
stationary points of are saddle points. However, this fact is
not sufficient to imply (although a good hint) that either (7) or
(8) is globally convergent. We will need the following SVD of

:

where is the matrix of the left singular vectors;
is the matrix of the right singular vectors; and

diag is the “diag-
onal” matrix of the singular values in descending order. It then
follows that

where ). With the assumption that is
nonsingular, one can express

(9)

where is . It will be assumed that the top subma-
trix of is nonsingular. This assumption is clearly satisfied
with probability one by a randomly selected , which means
that the convergence proved in the sequel is “almost global.”
Substituting (9) into (8) yields

(10)
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where

(11)

with diag , the
diagonal elements of which are in descending order. We assume
that [which is a weak generic condition that is also
required for (4)].3 Denote the top submatrix of
by and the lower submatrix of by

. Accordingly, let diag and
diag . It is clear from

(11) that is nonsingular for any finite . Then, (11) im-
plies that

(12)

and hence

(13)

Since , (13) implies that converges
to zero exponentially, and for large, it is on the order of

. If is such that is upper bounded for
all , then the above means that converges to zero expo-
nentially. Assuming this property (to be established later), (11)
becomes, for large

(14)

From (8)–(10), one has

(15)

Then, (14) and (15) imply that for large

(16)

which means that converges to exponentially.
Note that when the norm of is upper bounded for all,

the norm of is also upper bounded [from (9)]. If, in addi-
tion, the norm of is upper bounded, then the norm of
is also upper bounded [from (8)]. Therefore, the algorithm (8)
indeed yields the desired solution provided that a right choice
of is made.

There are an infinite number of ways of choosing to
ensure that the norms of and are upper bounded
for all . Let us consider the simplest choice (with a
constant norm) , where is an arbitrary nonzero real number,
and is the identity matrix. (This is a case more difficult to
analyze than that considered in [8].)

With the choice , (11) becomes

(17)

3Otherwise, it can be shown that the rank-r minimizer of (2) is not unique
and that the method (8) converges to a random solution within the space of all
valid solutions.

It will be shown next that the norm of is nonde-
creasing and upper bounded for all. This implies that the norm
of is upper bounded for all. The behavior of the norm
of is similar to the one of , and hence,
its analysis is omitted. A simple iteration of (17) gives

(18)
Let . Then, (18) becomes

(19)

It is clear from (19) that . This
equation, along with the fact that and

, implies that

(20)

which means that the 2-norm of is nondecreasing.
By iterating (19) from , one can verify that

(21)

where

(22)

Applying the same partitions to and as for and ,
(22) becomes

(23)

Then, applying the matrix identity
to the inverse matrix in (23), one

can verify that for large

(24)

where is the identity matrix. It then follows from (21)
that

(25)



462 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 3, MARCH 2001

This completes the proof of the fact that the norm of
(and, similarly, ) is always upper bounded when

, where is an arbitrary nonzero real number.

C. Computing the Canonical Components

It has been shown that under a weak condition, the algo-
rithm (8) converges globally and exponentially to with
a preselected rank, which is now denoted by . Re-
call the expression .
Let be a nonsingular matrix. We define theth column of

as the th left canonical vectordenoted by
and the th column of as the th right

canonical vectordenoted by . We refer to as the th
canonical matrix. It then follows that

. Although the canonical vectors are
obviously not unique, the canonical matrices are unique if the
singular values of are distinct. In
fact, the th canonical matrix is unique if and only if theth
singular value of is distinct from the rest of the singular
values.

Given and

, which consist of the first canonical components of
, an AP algorithm for computing the th pair of canon-

ical vectors can be derived as follows. Recall the SVD of :

(26)

where the first term on the right is associated with the first
canonical components, and the second term is associated with
the rest. It follows that

(27)
and hence

(28)

Note that (28) is a deflated version of . To retrieve the
th pair of canonical vectors, we now replace inherent in

(8) by its deflated version, which yields (with )

(29)

where and denote the estimates of and at
iteration , respectively. Following a proof similar to that for (8),

one can verify that (29) yields the th pair of canonical
vectors at the rate of for a
random choice of .

Since (8) yields and asymptotically, (29) and (8)
can be run at the same time, with in (29) replaced by

. Furthermore, (29) can be run successively for
, for each given , to retrieve

all desired canonical vectors. This algorithm can be easily
derived and, hence, only summarized as follows.

Canonical Component Version of the AP Method:At each
iteration , do the following for :

(30)
where , , and must be ignored.
Efficient programming of the above algorithm requires some
care. The operations should be carried out “from right to left,”
i.e., scalar-vector multiplication first and the vector-matrix mul-
tiplication second. Any matrix-matrix multiplication can and
should be avoided. The standard partitioned-matrix inversion
lemma (e.g., see [9]) should be applied to compute the inverse
of recursively with respect to, namely, as in (31),
shown at the bottom of the page, where

(32)

D. Rank Detection with the AP Method

In the case where the rank of the matrixin (1) is unknown,
the canonical components can be used to detect it. In a high
SNR environment, the rank of can be chosen to be the first
for which . In general, however,
it may be difficult to attach a precise meaning to the condi-
tion “ ,” and the (simplified) generalized likelihood ratio test

(31)
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Fig. 1. Estimation errors of the batch version of the AP method with ten independent initializations. (a) Linear scale (b) Logarithmic scale.

(GLRT) developed in [1] can be used. The GLRT requires the
availability of the singular values of . The singular values
can be easily computed once the canonical vectors are avail-
able. This is explained below. Upon convergence, the estimated
canonical vectors and yield the unique canonical matrix

, and one can write
and , where is a complex
scalar,4 and is the th right singular vector of . It is
easy to verify that . Therefore, the singular
values can be updated as

(33)

The GLRT developed in [1] is summarized here for conve-
nience. Define the test statistics

(34)

where is the length of data (or the effective window length
in on-line applications). Define the threshold to be such
that the following condition is met:

(35)

where is a small positive number (much smaller than 1),5 and
is a chi-square distributed random variable with

degrees of freedom. Then, the rank at timeshould be the first
(starting from 1) that satisfies

(36)

E. Adaptive Computation

Because of its recursive nature, the AP method can be easily
applied to track the time-variations of a rank-reduced matrix

4It is easy to show that
(k + 1) = 1=
(k) .
5� = 0:05 is chosen in the simulations.

in (1). The idea is simply to allow the correlation matrices
, , and to be updated as new data become available

during the iteration of the AP method. The inverses of the auto-
correlation matrices can be efficiently obtained at each iteration
by using the standard rank-one inverse update. For example, if

, where is a
forgetting factor between (0, 1), then

(37)
where , and

. With the updated correlation matrices
and their inverses, one can easily update the canonical compo-
nents by (30), the singular values by (33), and, hence, the rank
of by (34)–(36). In the context of on-line applications, the
data length shown in (34) should be replaced by the effec-
tive (asymptotical) window length . If the rank of
increases or decreases by no more than one within an effective
window, only the first pairs of the canonical vectors (as
opposed to all canonical vectors) need to be tracked at any given
time without losing track of the rank (here,is the current esti-
mate of the rank).

IV. SIMULATION EXAMPLES

To illustrate the performance of the AP method in the context
of RRMLE of the matrix in (1), and are
chosen (i.e., is ), and is constructed as follows:

(38)

where and are randomly selected. The rank of this matrix
is . Each element of the input signal is independently

selected from , and each element of the noise
is independently selected from . The SNR is

defined as SNR
tr . The SNR is 10 dB for all the cases

shown below. For a wide range of SNR, a behavior similar to
what is shown next has been observed, and hence, the cases for
other SNRs will not be shown.



464 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 3, MARCH 2001

(a) (b)

(c) (d)

Fig. 2. Estimation errors of the adaptive batch version of the AP method with a varied number of iterations per sample index: (a) One iteration. (b) Two iterations.
(c) Three iterations. (d) Four iterations.

As before, we denote theth pair of the ideal canonical vectors
by and and the corresponding estimated vectors byand

. The estimation error of theth canonical matrix is defined as

(39)

which is also referred to as the “th component error.” We also
define the rank- group of the ideal left canonical vectors as

and the rank- group of the ideal
right canonical components as .
The groups of the estimated canonical vectors are sim-
ilarly defined, i.e., , and

. The following is referred to
as the “rank- group error”:

(40)

Case 1—Batch AP Method:The rank of is fixed at .
The correlation matrices are computed from samples
and kept constant during the iteration of the AP method (8).6

Fig. 1(a) shows the rank-4 group error versus the iteration index
, where ten independent initializations are used. This figure

suggests that after the fourth iteration, the error is very small (not

6The gain matrixG(k) is the identity for all cases.

visible). Fig. 1(b) shows the logarithm-scale version of Fig. 1(a).
The straight lines in this figure are consistent with the theoretical
result that the AP method is exponentially convergent.

Case 2—Adaptive Batch AP Method:The assumptions used
here are the same as for Case 1, except that the correlation ma-
trices are updated using a new sample pair and after
one or more iterations of the AP method. The forgetting factor
used for updating the correlation matrices in this case (and other
cases shown later) is 0.99. Fig. 2 (a)–(d) shows the rank-4 group
errors versus the iteration index for ten independent initializa-
tions (and ten independent runs), where the number of iterations
for each new sample pair is 1, 2, 3, and 4, respectively. It is clear
that one can control the accuracy of the adaptive AP method by
choosing the number of iterations: the more iterations, the more
accurate the method.

Case 3: the adaptive canonical component AP method. The
rank of the matrix is varied after every 500 samples. The
sequence of ranks is 2, 3, 4, and 3. The canonical component AP
method (30) is used where the correlation matrices are updated
at each iteration (i.e., one iteration for each new sample).

Fig. 3(a)–(f) shows the errors of the estimated components and
the errors of the corresponding estimated singular values as func-
tions of the sample index. It can be observed from Fig. 3(b)–(c)
that the errors of the second and third components are relatively
large at the sample indices around 1500. This is because the
second and third singular values are very close to each other at
those sample indices (see Fig. 5). It is clear from Fig. 3(d)–(f) that
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(a) (a’)

(b) (b’)

(c) (c’)

Fig. 3. Component errors: (a)–(a’) First-order. (b)–(b’) Second-order. (c)-(c’) Third-order component errors.

the errors corresponding to the noise (nondominant) components
are always large, which is consistent with the fact that the “noise
singular values” are close to each other.

Fig. 4(a)–(f) shows the group errors of different ranks as func-
tions of the sample index. Comparing Fig. 3(b) with Fig. 4(b),
for example, suggests that errors of the estimated singular values
are related to the errors of the corresponding group errors than
not more corresponding (vector) component errors. This is a
rather surprising phenomenon. However, an explanation is given
in Appendix B.

Fig. 5 shows the ten estimated (nonzero) singular values as
functions of the iteration (sample) index. A few critical singular
values are marked in the figure. Fig. 6 shows the detected ranks
based on the estimated singular values using (36). All ranks are
correctly detected after some delays, as expected. The delays
are somewhere between 100 and 120 samples. Clearly, these de-
lays largely depend on the choice of the forgetting factor used in
updating the correlation matrices. Indeed, the delays are about
the same as the effective window length (which is 100) corre-
sponding to the forgetting factor used (which is 0.99).
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(d) (d’)

(e) (e’)

(f) (f’)

Fig. 3.(Continued.) Component errors. (d) (d’) Fourth-order. (e) (e’) Fifth-order. (f) (f’) Sixth and higher order.

V. CONCLUSIONS

Aclassofoptimalreducedrankestimatorsandfiltershavebeen
reviewedinaunifiedway,andafurther insighthasbeenpresented.
The alternating power (AP) method developed in this paper is an
efficient way for computing the rank-reduced estimators and fil-
ters when the rank reduction is relatively large. It is particularly
useful for on-line adaptive applications.Theglobaland exponen-
tial convergence property of the AP method is an important fea-
ture.Thecanonicalcomponentsobtainedby theAPmethodmake
the adaptive rank detection an easy task. A useful specialization
of the AP method is shown in Appendix A.

APPENDIX A
SPECIALIZATION OF THE AP METHOD

This section shows a specialized version of the AP method
(8) for computing the optimum rank-reduction of an arbitrary

matrix of rank no less than. Let the SVD of be
expressed as , where the first term
contains the principal components of the SVD. It is known
[7], [17] that the optimum rank-reduction (in F-norm) of is
given by . By setting and

in the AP method (8), onecan construct the follow–
ing algorithm for computing (without computing the
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Fig. 4. Group errors: (a) Rank-1. (b) Rank-2. (c) Rank-3. (d) Rank-4. (e) Rank-5. (f) Rank-6 (and higher).

SVD explicitly):

(A.1)
where and are -column matrices. Under a condition sim-
ilar to that of (8), the product from (A.1)
globally and exponentially converges to . Provided that the
desired rank is given and much smaller than , (A.1) is
an efficient algorithm for computing as it requires

flops at each iteration. This algorithm can also be adopted for
on-line applications where the matrix varies.

APPENDIX B
GROUPERROR VERSUSCOMPONENTERROR

This section shows that the accuracy of the estimated singular
values based on (33) is at least as good7 as the accuracy of a

7In terms of the order of errors.



468 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 3, MARCH 2001

Fig. 5. Estimated singular values of the characteristic matrix by the adaptive
component version of the AP method.

Fig. 6. Estimated rank values.

group of estimated canonical components, regardless of the
accuracy of individual estimated canonical components. This
is somehow counterintuitive and, hence, surprising at the first
sight.

The component errors and the group errors are defined in
(39) and (40), respectively. The convergence rate of theth
(with ) component error is asymptotically8 governed by

, which can be very slow if the noise level is low
[see (C.3)]. On the other hand, it can be shown that the rank-
group error converges to zero at a rate asymptotically governed
by , which is fast, provided that the noise level is
not too high and the matrix has a “well defined” rank .

Assuming that the rank-group error is in the order
where is a small number dependent on the data length and the
noise level, we can write

(B.1)

It then follows that

(B.2)

where , and hence, .

8Assuming that all the correlation matrices are kept constant. This assumption
is made throughout this section.

According to (33), the estimated singular values are given by
the diagonal elements of

(B.3)

where the correlation matrices are assumed to be constant.
Using (B.2) in (B.3) and some simple manipulation (recall

and ) yields

(B.4)

where diag . Applying the property
, one has . We have now shown

that the accuracy of the first estimated singular values is at
least as good as that of the group (or span) of the firstpairs
of estimated canonical components (matrices) despite possible
large errors of individual canonical components (matrices).

APPENDIX C
SINGULAR VALUES OF

This section provides an explicit expression of the singular
values of for the multivariate linear regression model
where the noise is spatially white, i.e., , where is
the noise variance. With this assumption, we have

(C.1)

Let the singular value decomposition of be ,
where diag , and the diagonal
elements are in descending order. It then follows that

(C.2)

and hence, the singular values of are

(C.3)

As expected, all the singular values are between (0, 1). A useful
observation from (C.3) is that when the noise is much weaker
than the signal [associated with ], all the dominant singular
values are close to one, and as the noise level increases, all the
singular values are pulling toward zero. Note that although each
of the first estimated canonical matrices is not reliable
when SNR is very high, it does not affect (as much) any of the
corresponding estimated singular values or of rank [pro-
vided that is the correct rank of the model (1)].
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