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Abstract

One of the challenging tasks in codegeneration for embedded systems is reg
ister assignment. When more live variables than registers exist, some variables

willnecessarilybeaccessedfrom data memory. Because loops are typicallyexe
cuted many times and are often time-critical, good registerassignment in loops
is exceedingly important as accessing data memory can degrade performance.

The issue offinding an optimal register assignment to loops has been openfor
some time. In this paper, we present a techniquefor optimal (i.e., spill mini
mizing) registerassignment to loops. First, we present a technique for register
assignment to processor cores which are characterized by a consolidated regis
ter file. Then, we extend the technique to include architecture styles which are

characterized by the partitioning of registers into multiple register files and/or
a combination of general- and special-purpose registers. Experimental results

demonstrate that, while the optimal algorithm may be computationally pro
hibitive, heuristic versions obtain results with performance better than that of
an existing graph coloring approach.

*This work supported in part by CNR grant K000042879921.





1 Introduction

Typically, an embedded system consists of an embedded, programmable processor interconnected with some

memory and specialized "accelerators" (application-specific components). This.embedded processor can be

realized either by a processor core or by an application-specific instruction-set processor (ASIP). Processor cores

offer the core functionality and datapath regularity of a general purpose processor and represent an "off-the-

shelf" solution, examples of which are the MIPS RC4000 and the microSPARC-II. Conversely, ASIPs offer an

application-specific instruction set and some degree of irregularity in the datapath (for efficient implementation

of the application-specific instructions/features) and represent a semi-custom approach. Examples of ASIPs are

fixed-point DSPs such as Texas Instruments' TMS series. Motorola's 56000 and floating-point DSPs such as

Texas Instruments' TMX320C44.

Currently, much research has focused on code generation for these embedded systems [16, 18, 21, 22, 27].

One of the challenging tasks in generating code for an embedded processor is that of register assignment. In this

assignment process, program values are mapped to the architecture's registers so that values are available and

in the appropriate registers for computation. When the number of simultaneously live variables is larger than

the number of registers available, some of these values will have to reside in the data memory (i.e., "spilled" to

memory), requiring data transfers between memory and registers when those values are updated or necessary

for computation.

Typically, embedded processors have a small number of registers, with, perhaps, some registers having re

stricted or specialized uses. Because of these limitations, register assignment is exceedingly critical, especially

for innermost loops which are executed many times and often time-critical. Thus, any mapping of variables to

registers which contains poor choices for variable spills will adversely affect performance.

In the compiler domain, optimal register assignment solutions have been extensively studied [11, 12, 13].

Although these approaches are effective for straight-line code, they do not address the issue of an optimal

assignment of registers to loops—innermost loops probably being the only place such extreme methods are

practical. Thus, adaptation and extension of this work to the problem of assigning an embedded processor's

registers to program values requires that we overcome the fundamental difficulty that these previous techniques

did not address satisfactorily—that of matching the register usage at the entry and exit of loop iterations. That

is, for loop code to be correct, the mapping of variables to registers at the beginning of an iteration and at the

end of that iteration must be equivalent (i.e., the "right" values must be in the "right" places) so that it is correct

to iterate over that loop code.

In this paper we demonstrate that the algorithms for register assignment in basic blocks given in [12, 13]

can be extended to assign registers in loops by incorporating loop unrolling techniques into the algorithm. We

also present a heuristic derived from our algorithm that, in practice, seems to perform as well as its exponential

counterpart.

In Section 2 we discuss related work and in Section 3 we describe the problem we are addressing. Section 4

discusses the optimal assignment of registers in basic blocks for architectures with consolidated register files,



while Section 5 extends this technique to loops. Section 6 discusses the convergence and optimality ofthe loop

algorithm. Section 7 extends the loop algorithm to assign registers for architectures with multiple register files

and special purpose registers. Section 8 gives our experimentation and observed results and Section 9 concludes

this paper.

2 Related Work

The register assignment problem is an important issue and has become pervasive in many areas: compiler

design, where, typically, the number of registers is fixed and uniform access to all registers is available; high-

level synthesis, where the number and interconnection of registers is being synthesized; and code generation

for embedded systems, where embedded processors have a very limited number of registers, with, perhaps,

partitioned register files and special-purpose registers.

In the compiler domain, the most popular approach to register assignment is the heuristic graph coloring

approach [4, 6]. In assigning registers by graph coloring, a graph is constructed where each node represents a

variable and the edges between nodes represent the overlapping of the respective variable's lifetimes. The task

is then to "color" the graph with the number of colors equal to the number of physical registers. Ifa coloring is

not found, some variable is spilled to memory and the process is repeated. The key to good register assignment

in this scheme is the selection of a particular variable to spill—heuristics for selection have received attention [5]

along with methods of coloring the graph [7]. Also, [10] addresses loops but without regard to the number of

register-to-register transfers potentially required by their technique at the end of an iteration.

Many researchers have felt that for particularly critical code segments, such as the innermost loops oftime-

sensitive applications, an optimal assignment is necessary. Horwitz et al. present a method in [11] for obtaining

an optimal register assignment to index registers which minimizes the number of loads and stores. Further work

either improves upon the efficiency of the Horwitz algorithm [19] or extends the basic algorithm to deal with

simple loops [13], but in doing so loses optimality and degrades performance. More recent research [12] extends

the basic idea in Horwitz s algorithm to include register assignment for general purpose registers.

In High-Level Synthesis the problem ofregister assignment traditionally refers to determining the number of

registers necessary tosave values between time-steps [15, 24]. Inorder to reduce the interconnect and multiplexor

cost of scattered registers, some researchers have focused on grouping registers into memory modules [1, 3, 14,

20]. Other research has addressed the assignment of registers to loop variables whose lifetimes are cyclic in

nature [23, 26]. These approaches (arbitrarily) break a cyclic variable's lifetime at loop boundaries, creating two

"coupled" variables which the assignment process tries to assign to the same register. If the coupled variables

are not assigned to the same register, register transfers are necessarily inserted at the end ofthe loop to correctly

set-up the next iteration. Because these techniques were developed for register allocaiion, they do not consider

cases where variables are stored within various levels of a memory hierarchy.

Work in code generation for embedded systems has extended the left-edge algorithm and incorporated register

classes for register assignment [18] or formulated the problem of register assignment as an ILP formulation [28].
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Figure 1: Target architecture organization.

However, these techniques introduce register-to-register moves at loop boundaries. In [16] a complex searching

scheme is used to navigate a large search space with many trade-offs, one of which is register assignment. Some

work has been done in minimizing the number of spills for an accumulator-based architecture [17].

However, none of this previous work has addressed the issue of finding an optimaltissignment of registers to

loops (i.e., an assignment of variables to registers which requires no register-to-register transfers and minimizes

the cost due to added spill code).

3 Target Architecture and Problem Description

An example of the architectural organization that we are targeting is found in Figure 1. In this architecture,

an embedded processor is interconnected with program memory (typically, read-only memory), data memory

and one or more ASICs. The embedded processor can be realized either by a processor core or by an ASIP.

As previously mentioned, a processor core offers the functionality and datapath regularity of a general-purpose

processor (GPP), and compareswith a GPP in the following: a narrower datapath bit-width, a smaller instruction

set, and a fewer number of registers which are consolidated into one register file, examplesof which are the MIPS

RC4000 and Sun Microsystem's microSPARC-II. By contrast, an ASIP offers an application-specific instruction

set and some degree of irregularity in the datapath. Due to the application-specific nature of an ASIP, the

available registers can be partitioned into multiple register files. Examples of which can be found in fixed-point

DSPs such as Texas Instruments' TMS series and Motorola's 56000 and floating-point DSPs such as Texas

Instruments' TMX320C44. Thus, the task of register assignment for a processor core corresponds to determining

a mapping of program variables to the registers contained within one register file and register assignment for an

ASIP corresponds to determining a mapping of program variables to the registers of multiple register files while

honoring any access (i.e., port) restrictions to the register files.

In our approach the task of register assignment follows that of code selection and scheduling ofoperationsinto

time steps. When resource shortages occur during the register assignment phase (i.e., when more live variables

than registers exist, thus requiring multiple variables to share registers) spill code, or explicit data transfer



operations between the registers and data memory, becomes necessary. Our goal is to minimize the number of

transfer operations between the registers and the data memory that will be repeatedly executed within a loop.

Register assignment begins with the analysis of variable accesses in execution to derive the variable access

stream. For example, for the operation A = B + 1, the variable access stream is B, A* (reads of variables

before writes), where denotes a write to a variable. To denote concurrent accesses, parentheses bracket those

reads or writes performed in parallel. For example, if the operations A = B + 1 and C = D + E are executed

concurrently, then the variable access stream is (BDE)(A*C*), as the variables B, Dand E are read concurrently

after which the variables A and C are concurrently written. Once the variable access stream is derived, it is

input to the assignment algorithm.

4 Optimally Assigning Registers in Basic Blocks

Using a variant of the algorithm presented in [12], we can derive an optimal (i.e., spill minimizing) algorithm

that assigns variables to registers in basic blocks. This algorithm, which we call OPT-Assign-BB, is found in

Figure 2. OPT-Assign-BB takes as input the variable access stream for a code segment and the mapping of

variables to registers which immediately precedes that segment (which could be null, signifying that all registers

are initially free). This algorithm then builds an assignment tree where the nodes in the tree correspond to a

variable mapping or configuration representing the contents of each register found at some particular point in

execution and the root of the tree is the given (initial) mapping of variables to registers. Each path in the tree

from the root to a leaf is a (unique) mapping of variables to registers.

As the assignment tree is built, each successive level in the tree is derived by examining the variable stream

and all of the current configurations to determine if they contain the variable under consideration. If the variable

is contained within a configuration, that node is duplicated at the next level of the tree and a zero-cost edge

connects the two. When a variable is not contained within a node, a variable access miss occurs and spill code

might be necessary. For any configuration causing an access miss, each variable currently in that configuration

is replaced in turn by an access to the faulting variable. An edge joining the access miss node with each of the

newly created nodes represents the cost, in spill code, of going from the first mapping to the second. This cost

is composed of the cost of (possibly) storing the replaced register if it is live and dirty^ (the Store-Cost(V') in

our algorithm) and/or the cost of (possibly) loading the faulting variable (the Load-Cost(V) in our algorithm)

if this is a variable read. Setting the load and store costs both to one gives a total cost equal to the number of

memory operations^. Thus, if there are r registers, a faulting configuration in the current level will generate r

configurations in the next level, resulting in an optimal, but exponential method. Heuristics can be (and have

been) used to prune this search space [11, 12, 13].

Once the last variable access is considered, all the leaves of the assignment tree are examined for the lowest

' Every variable is assumed to have a unique memory location where it may be kept ifa spill of that variable is necessary. Dirty

refers to the case where the value in a register is inconsistent with the value storedin the memory location.

^Priorities canbe given to loads or to stores simply by changing these costs.



Function OPT-Assign (REGS : Initial register configuration;

VA : Variable access pattern)

Begin

Set curr_states set to REGS

Foreach varible access V in VA do

Foreach config. N in curr.state set do

If V G N then

Copy N to new.states set

Otherwise

Forall registers R do

N' = copyjstate(N)

Replace variable, V, currently in R with V

Cost(N') = Load-Cost(V) + Store-Cost(V') + Cost(N)

Add N' to children of N

Add N' to newjstates set

Enddo

Endif

Enddo

Set curr.states set to new.states set

Enddo

Return new.states set

End OPT-Assign

Figure 2: A register assignment algorithm.
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cost node. Tracing the path from the root to this lowest cost node will yield an assignment of registers to

variables that results in the minimal cost in terms ofmemory loads and stores due to spill code, because it has

exhaustively generated every possible assignment.

In Figure 3(a), anexample code segment appears and Figure 3(b) contains the variable access stream for this

segment. For this example, there are two registers which have been initially assigned R1 to a and R2 to b. The

OPT-Assign-BB algorithm begins with this (initial) mapping and constructs the assignment tree in Figure 3(c).

The first two variable accesses, to the variables a and b*, are to variables contained in the current configu

ration, therefore, no spill code is necessary. However, the next access to c causes a variable access miss and spill

code becomes necessary. Two configurations are generated at the next level, corresponding to assigning c to R1

or to R2. The left child assigns c to Rl, displacing the variable a. Since a does not need to be stored (its value

is consistent with that in memory), the spill code generated by this is the load of c, for a cost ofone. The other

possibility, assigning c to R2, is represented by the right child and displaces the variable b. Since b is dirty (it

has previously been written), b must be stored and then c is loaded, for a cost of two.

This process, examining the next variable access(-es) and checking whether they are contained within the

current configurations, continues for the remainder of the variable access stream and the full tree in Figure 3(c)

is generated. In Figure 3(c), there are some nodes which have dashed outlines. These nodes can be pruned from

the tree as there are identical nodes at the same level which will generate identical sub-trees. Within agroup of

identical nodes, only the one with lowest cost need be kept, breaking ties arbitrarily.

5 Extending the Basic Block Algorithm to Loops

By applying the OPT-Assign-BB algorithm to the body of a loop, we get an optimal assignment for a single

execution of that code. Since this code is contained within a looping construct, it is necessary for the register

mappings at the beginning and end of the code segment to match in order to correctly iterate over that segment.

In general, the assignment produced by OPT-Assign-BB will not satisfy this criteria (i.e., the lowest cost config-



uration at a leaf of the assignment tree does not necessarily match the root). Thus, this basic algorithm is not

adequate to optimally assign registers to loop code.

To remedy this, one might try simply to add register-to-register moves and/or spill code (loads and/or stores)

to enforce a match. However, since the cost of this additional spill code may vary greatly from each conceivable

mapping to another, and would vary further by unrolling the loop some number of times, OPT-Assign-BB's

results, which ignore this effect, cannot be optimal. Another sub-optimal approach is to 'force' a match between

loop top and bottom, i.e., to choose from the exponential tree derived by OPT-Assign-BB the least cost leaf

node which is identical to the initial configuration (leaf configurations which match the root configuration are

not necessarily guaranteed to be those with lowest cost).

5.1 Our Algorithm

It is not immediately obvious how many iterations suffice to produce an assignment which results in the minimal

amount of spill code. In fact, this is why this problem has been an open issue. If the process of unwinding a

loop and applying OPT-Assign-BB is continued, the cost may be decreased. By iteratively unrolling one loop

iteration and applying OPT-Assign-BB to the resulting code, we can find a new loop body, potentially spanning

several iterations of the original loop, such that; a) the cost of spills per iteration in the loop body is minimal;

and b) the entry and exit configurations of the new loop match.

Our algorithm for assigning registers to loop code, which we will refer to as OPT-Assign-LOOP, is found in

Figure 4. The general structure of our algorithm is to iteratively unroll the loop one iteration and then to apply

OPT-Assign-BB to the new iteration once for each possible previous iteration exit mapping. Then the algorithm

analyzes each resulting exit mappings of that new iteration to determine if matches between those nodes and

iteration ancestors (i.e., a node in the assignment tree that lies on the path from the root to this node and also

lies on an iteration boundary). If so, a legal register assignment to the unrolled loop has been found. If not,

then that exit mapping becomes one of the mappings which will be used as an initial configuration to the next

iteration.

Each time that a match is found, our algorithm computes the average cost per iteration for that assignment

(since the assignment may span multiple iterations). If the loop were fully unrolled, the assignment with the

lowest average cost per iteration would be the optimal assignment for the loop. Since full unrolling of the loop

is not necessarily practical, we have parameterized our algorithm with K, the number of unrollings of the loop

body to perform. The lowest cost mapping found with this "cut-ofT' scheme is a local minimum, but is "global"

over the number of iterations unrolled so far (K). Note that this algorithm must always get an average cost

less than or equal to what OPT-Assign-BB would get because we deal strictly with the costs calculated by

OPT-Assign-BB and add nothing more—beyond unrolling.



Function OPT-Assign-LOOP (REGS : Initial mapping;

VA : Variable access pattern;

K : number of iterations)
Begin

Set MIN to an empty configuration with oo average cost

Set i to 0

Set curr_states set to REGS

Loop

Set save_state_set to null

Foreach state S in the curr_state set do

new state set = OPT-Assign(S, VA)

Foreach state N in new state set do

If N matches an ancestor A then

Direct N to A

Delete N from newjstates set

AveCosUN) =

If AveCost{MIN) > AveCost(N) then
MIN = N

Endif

Endif

Enddo

Set savejstatejset to save_setjstate U new_setjstate

Enddo

Set i to i + 1

Set current register state set to save_state_set

Until i = K

Return MIN

End OPT-Assign-LOOP

Figure 4: A loop register assignment algorithm.



5.2 Heuristic Pruning

Although our algorithm may be computationally prohibitive even for moderately long loops, it does provide a

strong starting point for determining good heuristics. The computational complexity in this algorithm arises

from the replacement of each register in the current configuration when a variable read or write miss occurs. Our

heuristic modification is a simplistic pruning strategy where only the m best configurations are kept for future

expansion once all mappings at a particular level are generated. That is, for each node in the current level, when

an access miss occurs, all possibilities for spills are considered. Then, of those newly generated nodes, the m

lowest cost nodes are retained for consideration.

6 Convergence and Optimality of the Loop Algorithm

Previously it was not known whether optimal register assignment for a loop could be accomplished, regardless

of the efficiency of the algorithm. The difficulty was due to the fact that in order to ensure optimality for the

overall loop, matching of registers at the top and bottom of the loop body may require additional spills. To

optimally minimize these spills, loop unwinding with different register assignments in each unwound iteration

may be needed. Furthermore, it was not known whether any finite unwinding can be guaranteed to converge

and result in an optimal assignment.

To answer these questions, we introduce the notion of a configuration graph. A node in the configuration

graph corresponds to a specific mapping of variables to registers found at an iteration boundary and a directed

edge in the configuration graph corresponds to the cost in spill code of using the source node as the initial

mapping to an iteration, applying the loop algorithm and having the sink node as one of the resultant nodes.

Thus, the edge represents the cost of spill code with the source node as the initial register assignment to and the

sink node resulting from an iteration of the loop.

Figure 5 illustrates the method of building a configuration graph. We use the same assignment tree from

Figure 3 and have labelled,the leaf nodes. A partial configuration graph, shown in (b), can be constructed from

the assignment tree in (a). Traversing a path from the root configuration, which has been labelled P, to each

leaf configuration gives a directed edge in the configuration graph from P to that respective node with a weight

equal to the cost of the path. For instance, the path from the root to the first leaf node on the left, labelled Q,

has a cost of three. Thus, an edge in the configuration graph from P to Q is added with that edge having weight

three. Similarly, other edges are added to the configuration graph by traversing the various paths. The partial

configuration graph in (b) results. To construct the complete graph requires that we build the assignment trees

for each possible exit configuration.

6.1 Convergence

In order to guarantee that our algorithm converges, it must shown that by unrolling, new exit configurations

(i.e., mappings of variables to registers) that previously did not exist are not generated. Because our algorithm





exhaustively replaces registers each time a variable access miss occurs, all conceivable mappings are generated.

Stated another way, when an unrolling of the loop body and assignment to that iteration is performed, the

costs associated with going from the initial to the derived exit mappings become known. Thus, the edges in

the configuration graph which connect the initial configuration with all of the possible exit configurations are

generated. If the assignment algorithm is again applied to each of these nodes (e.g. unroll the loop body for

another iteration), directed edges fromeachof those exit configurations to oneanother are obtained. Convergence

of our algorithm, therefore, is equivalent to finding a cycle in the configuration graph. Thus, our algorithm

converges because the number of variables and the number of registers is finite and, therefore, the number of

permutations of the variables in the registers is finite, although exponential.

6.2 Optimality

An optimal assignment is one in which the memory traffic is minimized. When the loop body is unrolled, an

optimal assignment is an assignment which has minimal memory traffic or spill cost over the iterations that

are contained within the unrolled loop. Thus, in the optimal assignment, the ratio of the spill cost for the

new unrolled loop body to the number of iterations it contains, is minimized. In the configuration graph this

corresponds to the ratio of the total cost of some cycle to the number of nodes in that cycle.

Therefore, an optimal assignment is found by examining the average costs of all possible cycles of all possible

lengths in the configuration graph and taking the minimum. Note that this does not necessarily correspond to

the minimal cycle of length one in the graph^. In the worst-case it is possible that the optimal cycle must make

a complete tour of the graph.

7 Extending the Model to Heterogeneous Register Usages

The algorithm presented earlier for register assignment in loops has the underlying cissumption that access to all

available registers is equivalent, as is found, for instance, in general-purpose processors and processor cores. That

is, all registers are consolidated into one register file and any variable mapped to a register is uniformly available

to any operation using that variable. However, in the case of ASIPs, or any architecture where the available

registers have been partitioned into disjoint register files or some of the available registers have specialized

purposes, this assumption must be modified to generate feasible register assignments. Also, previously there was

the assumption that enough ports on the register file exist to support the reading and writing of all variables

accessed in a particular step. However, in the case of ASIPs, it is possible that restrictions are present on

the number of registers that are concurrently accessible (i.e., the number of read/write ports on a register file

constrains the number of reads/writes to that register file).

In this section we discuss the extension of our algorithm to loop register assignment when the target architec-

®Acycle oflength onewould imply that some assignment to the loop body is minimeil and its initial configuration naturally (i.e.

without spills or moves) matches its exit configuration.



ture contains multiple register files and/or special-purpose registers and specific restrictions on register accessing

exist. First, we start by discussing the addition of register classes to the model. Then, we consider separate

modifications necessary to our algorithms to handle special-purpose registers and multiple register files.

7.1 Adding Register Classes to the Model

To extend our algorithms, we introduce the notion of register classes. Register classes have been used in compilers

[2, 25] and in microcode synthesis [8, 18] to denote functional equivalences between registers. However, combining

all registers having the same (potential) usages into one class is not precise enough for register assignment toour

target architecture class. To see this, consider a simple case where two register files are composed of "general-

purpose registers, each register file connected to a different ALU. Clearly, any operation scheduled on either

ALU must have its operands present in the respective register file. However, ifthe collective registers are grouped

into one register class (called 'general-purpose"), it is possible that the necessary operands have been assigned

in such away as to honor the register classes, but be invalid for execution, thus, making that register assignment

invalid. The main cause of this problem is not due to registers being grouped by their equivalency, but, rather,

how the equivalency is established.

In our approach, two types of register classes are defined: connectivity register classes and operation register

classes. The connectivity register class (conn_RC) defines the equivalency between registers £is a function of

the architecture's connectivity, while the operation register class (oper_RC) defines the equivalency between

registers as a function ofan operation's semantics. The motivation for deriving both of these clcisses is that the

connectivity of the architecture defines which registers may be read from or written into by some functional unit,

while the semantics of a particular operation executing on a particular functional unit may preclude the use

some ofthe connected registers (a load operation, for instance, may require that the memory address reside in a

specific register, while the functional unit that executes that load operation may be connected to many registers

which do not serve the same purpose).

Figure 6contains an algorithm to derive the register classes for a given architecture. Aconnectivity register

class is derived for each ofthe inputs and outputs ofeach functional unit in the architecture based upon which

registers may be accessed by that input or output. Operation register classes are derived by examining which

operations a functional unit can execute and selecting all of the readable (and writable) registers imposed by an

operation's semantics. In a large number ofcases, the conn_RC and oper_RC will be equivalent.

7.2 Extension to Special-Purpose Registers

The algorithm OPT-Assign-BB exhaustively generates variable mappings by placing a variable in each register

either when a read miss occurs (requiring a load ofthe variable) orwhen a variable iswritten. When access to all

registers is uniform, this strategy is correct. However, when some registers have specialized usages, this strategy

generates some mappings which are invalid as variables have been assigned to registers which cannot perform

the required specialized function. Thus, it is necessary to restrict the placement of variables into registers so



Procedure Derive-Register-Classes()

Begin

Foreach FU, / in the architecture do

Foreach Input, i of / do

Set RegClass{f, i) to U all regs connected to i

Enddo

Foreach Output, o of / do

Set RegClass{f, o) to U all regs that / may write

Enddo

Foreach operation, op, that / can execute do

Set RegClass{f, op-inpui) to U all regs that op may read

Set RegClass{f, op.output) to U all regs that op may write

Enddo

Enddo

End Derive-Register-Classes

Figure 6: An algorithm to derive register classes.

that variables only reside in registers which can perform the necessary functionality.

With the notion of register classes, we can extend the OPT-Assign-BB algorithm to handle registers which

have specialized usages. When a variable causes an access miss, only those registers which perform the necessary

functionality are considered. These are found by intersecting the operation register class for the accessing

operation and the connectivity register class for the functional unit that is executing that operation. Recall that

we perform register assignment on a scheduled dataflow graph. Thus, when performing register assignment the

operations (and their types) which access variables, as well as the functional units that those operations execute

on, are known—retrieving this information is a simple matter.

Figure 7 contains an extended version of the OPT-Assign-BB algorithm for register assignment with special

ized register usages. The function op_o/ returns the operation which currently accesses the variable V. From

this, the type of operation and the functional unit that executes the operation are found via calls to functions

OperationType and FunctionalUnit, respectively. Then, the appropriate operation register class and connec

tivity register class are found and intersected. RC_intersect, the intersection of these classes, defines the feasible

registers in which a variable V may reside. If the variable is in one of those registers, then no spill code is

necessary. If not, then all of the registers contained in RCJntersect are candidates for replacement and spill code

is generated.

7.3 Extension to Multiple Register Files

To extend our algorithms to assign registers to multiple register files requires that the notion of a node in the

assignment tree be altered. In assigning registers to an architecture with a consolidated register file, the semantics

of a node are that all registers are uniformly available. For instance, if there are eight registers filled with the



Function OPT-Assign (REGS : Initial register configuration;
VA ; Variable access pattern)

Begin

Set currjstates set to REGS

Foreach varible access V in VA do

Set op-type to OperationType{op-of(V))
Set fu to FunctionalUnit{opjof{V))
Set RCJntersect to RegisterClass{opJ,ype) DRegisterClass{{\i)
Foreach config. N in curr_state set do

If V G RCJntersect then

Copy N to new_states set

Otherwise

Forall registers R G RC Jntersect do

N' = copyjstate(N)

Replace variable, V, currently in R with V

Cost(N') = Load-Cost(V) + Store-Cost(V') + Cost(N)
Add N' to children of N

Add N' to newjstates set

Enddo

Endif

Enddo

Set curr_states set to new_states set

Enddo

Return newstates set

End OPT-Assign

Figure 7; Extending OPT-Assign-BB to special-purpose registers.



variables a-h, a mapping of variables to registers is represented as {a,b,c,d,e,f,g,h}, signifyingthat a is mapped

to register one, b is mapped to register two, etc.

To model multiple register files, we change the information contained-in a node to refiect the grouping of

registers into a register file. Each node in the assignment tree is then composed of a number of register sets equal

to the number of register files.

7.3.1 Assigning Variables

Figure 8 contains an extended version of the OPT-Assign-BB algorithm which assigns registers to multiple

register files. The main modification required when multiple register files exist is, only the registers in the

respective register file are examined to determine if a variable is resident. If a variable is not contained within

the necessary register file, rather than loading it from memory, a check is first made to see if the variable is

contained within one of the other register files. If so, then a move operation is used to transfer the value into

the necessary register file if the necessary connections exist as this transfer is likely to have a lower latency

than a load from (slower) memory. Otherwise, the variable is loaded from memory. Once a spill is considered'',

any access restrictions present on the register files, such as the number of registers which can be simultaneously

accessed, are considered. If the restrictions are satisfied, then the assignment is valid and is maintained for future

assignment, otherwise the mapping represents an assignment which causes an access conflict to exist and the

node is removed from future consideration.

7.3.2 A Note on Optimality

With the addition of register classes and extension to special purpose registers, our algorithm derives optimal

(i.e., spill minimizing) results. However, with multiple register files and the version of our algorithm presented, it

may be possible that sub-optimal results are obtained. Previously, when a variable was assigned to a register, all

registers were viewed as candidates for replacement. Extending this to cases where some registers have special

purposes merely removes some number of registers as candidates (and, thus, serves to restrict the growth of the

assignment tree). However, in the case of multiple register files, our algorithm may no longer derive an optimal

solution. When one variable is displaced by another in the same register file, that displaced variable may need to

be stored into data memory, requiring a load when it is needed in the future. However, if a free register exists in

some other register file, then it might be possible to "store" the displaced value there temporarily until its future

use. Further, even if there is no free register in the remote file, it still possible that some remote variable can be

spilled without loss of performance, thus freeing a register. In general, this effect can have cascading effect and

become quite complex, with a variable "hopping" from register file to register file until its future use. Extending

our algorithms to handle this would be straightforward, but impractical.

^We can assign different costs for spilling to memory, fetching from memory and fetching from another register file.



Function OPT-Assign (REGS : Initial register configuration;

VA : Variable access pattern)
Begin

Set curr^tates set to REGS

Foreach varible access V in VA do

Foreach config. N in curr^tate set do

If /* V is already in proper RF */ then
/* Copy the current state to the next level */

Else Forall register files, RF, do

If /* V is contained in another RF */ then
/* Generate a move of V to this RF */
/* Check access restrictions */

Endif

Otherwise /* V must be loaded from memory */
/* Generate all possible spills of */
/* variables contained in this RF */
/* Check access restrictions */

Endif

Enddo

Set curr_states set to new_states set

Enddo

Return new.states set

End OPT-Assign

Figure 8: Extending OPT-Assign-BB to multiple register files.



8 Experiments and Results

To examine the benefits of our technique, we conducted two sets ofexperiments. The first targeted architectures

with consolidated register files (e.g., processor cores), while the second targeted architectures with partitioned

register files and special use registers (e.g., ASIPs).

For both experiments, our benchmark suite consisted of six numerical codes written in C and then compiled

into RISC-like code which is typical of the code executed by most embedded core processors and ASIPs. From

those codes, the variable access streams were derived and used as input to our algorithms. For each experiment,

we derived register assignments from the optimal basic block algorithm (OPT-Assign-BB), the optimal loop

algorithm (OPT-Assign-BB-Loop), and a heuristic version of the loop optimal algorithm (heuristic OPT-Assign-

BB-Loop) and counted the number of spills (i.e., loads and stores) for those assignments.

In generating assignments for the OPT-Assign-BB algorithm, the registers were assumed to be empty upon

initial assignment to the loop. Because OPT-Assign-BB is not guaranteed to produce an assignment in which

the initial and exit mappings match, we note the point at which the registers became full (i.e., the point where

more live variables than registers exist) and introduce spill code and/or moves to match usage from the minimal

(leaf) node to the previously noted (initial) node. Also, in order to create opportunity for OPT-Assign-BB to do

well, we used enlarged loop bodies constructed by unwinding the loops three times. Thus, some of our results

for OPT-Assign-BB are not whole numbers as they represent averages for a single iteration of the original loop.

8.1 Experimentation with A Consolidated Register File

We use the microSPARC-II as a target for code generation to an architecture with a consolidated register file as

the microSPARC-II has a RISC instruction set similar to that found in many embedded core processors. Using

the variable access streams, register assignments were produced by the OPT-Assign-BB, OPT-Assign-LOOP and

heuristic OPT-Assign-LOOP algorithms. From those register assignments, the number of spill code operations

were counted. In section 8.1.1, we compare the OPT-Assign-BB and OPT-Assign-LOOP results. Next, we

compare our heuristic version of OPT-Assign-LOOP to the graph coloring approach implemented in the Gnu C

Compiler^ in section 8.1.2. Subsection 8.1.3 compares the optimal and heuristic loop versions and section 8.1.4

compares the number of iterations spanned by the optimal and heuristic loop assignments.

8.1.1 Comparison of OPT-Assign-BB and OPT-Assign-LOOP

Table 1 contains our observed results and contains the number of spills per iteration for OPT-Assign-BB and

OPT-Assign-LOOP, as well as the absolute percentage improvement ofOPT-Assign-LOOP over OPT-Assign-BB

measured as: ^ general trend for the percentage improvement to increase as the

number of registers increases (i.e., the disparity between the loop assignments and the basic block assignments

increases as the number of registers increases) which can be attributed to the fundamental difference between

®The code produced by thiscompiler is generally accepted to be ofhigh quality [9].



Program

2D- Hydrodynamics

Inner Product

Linear Equations

Tri-diag. Elim.

(below diag.)

Tri-diag. Elim.

(above diag.)

Prefix Sums

(scan)

Number of

Registers

, TO. /

OPT-Assign-BB

Spills

per

Iteration

33.3

OPT-Assign-LOOP

Spills

per

Iteration

% Improvement

Table 1: Comparison of basic block optimal and loop optimal for the microSPARC-II.



Program Number of

Registers

Gnu gcc

Heuristic

OPT-Assign-LOOP

Spills

per

Iteration

Spills

per

Iteration

2D- Hydrodynamics 4

6

8

19

16

12

14

8

3

Inner Product 4

6

8

8

8

8

2

1

0

Linear Equations 4

6

8

12

10

8

10

6

1

Tri-diag. Elim.

(below diag.)

4

6

8

29

24

17

16

9

0

Tri-diag. Elim.

(above diag.)

4

6

8

27

22

19

17

8

0

Prefix Sums

(scan)

4

6

8

7

6

6

4

2

0

% Improvement

Table 2: Comparison of graph coloring and our heuristic for the microSPARC-II.

OPT-Assign-BB and OPT-Assign-LOOP: OPT-Assign-BB assigns registers without regard to the effect of iter

ating on those register usages, while OPT-Assign-LOOP examines the iterating effects on register usages while

naturally discovering a minimal assignment for a loop. The minimal assignments produced by OPT-Assign-BB

are not guaranteed to match at the loop entry and exit points. Therefore, some spill code becomes necessary

to match the register usage at those two points. However, because OPT-Assign-LOOP explores the possibilities

of keeping the variables in registers found at the loop end as it assigns registers to the next iteration, it discov

ers better register usages and places for inserting spill code. Essentially, OPT-Assign-LOOP produces superior

results as it naturally (i.e., without additional loads, stores and/or register moves) finds a match between loop

entry and exit configurations during the assignment process.

8.1.2 Comparison of Heuristic OPT-Assign-LOOP and Graph Coloring

Gcc was configured to produce SPARC code and the register assignment module was modified so that gcc would

produce code which used four, six and eight registers®. Forour heuristic version of OPT-Assign-LOOP we used a

pruning factor parameter m = 2 best configurations^. Table 2 summarizes the results of the spill code produced

by gcc as well as our heuristic algorithm. Percentage improvement is measured as:
^piliSheur

In all cases, our heuristic produced assignments that were superior to gcc. In the graph coloring approach,

®Gcc producedan internal compilererror when the real registercount w£ts set to two.
^Recall that ovu" pruning strategy keeps the m best configurations after considering aU possibilities each time a veiriable miss

occurs.



variables are assigned to registers for their entire lifetime. In some segments of code, where a variable assigned to

some register is currently not being accessed, keeping that variable in a register causes high "register pressure"

where more loads and stores ofother variables (which currently are being accessed) aregenerated than isnecessary

if the unaccessed variable had been previously spilled to memory during this segment.

Another interesting result is that our heuristic produces assignments which are better than OPT-Assign-BB

(the optimal assignment for basic blocks) in a number of cases. Comparing Tables 1 and 2 shows that our

heuristic results are better than optimal basic block assignment by an average of 8%. Although this is a heuristic

version of the loop algorithm, it is able to derive better results than OPT-Assign-BB because it has the ability

to find matching register assignments over loop execution which the OPT-Assign-BB algorithm does not.

8.1.3 Comparison of OPT-Assign-LOOF and Heuristic OPT-Assign-LOOP

Table 3 contains the number of spills per iteration for the OPT-Assign-BB-Loop and heuristic OPT-Assign-BB-

Loop algorithms in columns three and four, respectively. Column five contains the percentage within optimal

that the heuristic results are, measured as: Pqj^jjjg measure, lower numbers are better (i.e.,

the lower the number, the closer the heuristic is approximating the optimal). In half of the cases (12 of 24),

the heuristic produced results that are equal to the optimal. Also, 71% of the cases (17 of 24) are within 10%

of the optimal, while 92% (22 of 24) are within 20% of the optimal. These results demonstrate that, while the

optimal may be computationally prohibitive, the simple heuristic version, which executes in a matter of seconds,

produces results that are acceptably close enough to the optimal.

8.1.4 Code Size of Loop Register Assignments

One concern of our technique is the increase in code size that results from loop unrolling as our method typically

produces register assignments which span multiple iterations. This is especially a concern in the context of

embedded code generation where the program code resides in ROM, and, thus, directly affects the ROM size.

In Table 4 we have noted the number of iterations spanned by the assignments produced by OPT-Assign-LOOP

and heuristic OPT-Assign-LOOP® in columns three and four, respectively. Column five of Table 4 indicates

whether the heuristic version derived cissignments with the same amount of spill code as the optimal.

In the majority of CEises (18 of 24), the number of iterations spanned by both versions is the same. Of those

18 cases, the heuristic version derived assignments with the same amount of spill code as the optimal in nine

cases (50%). There are a few cases (5 of 24) where the heuristic spanned more iterations than the optimal,

and of those, the same amount of spill code was produced in three cases. There is one case where the heuristic

version spanned a fewer number of iterations than the optimal due to the nature of the heuristic. However, in

this case, the heuristic version produced more spill code. Overall, the number of iterations spanned by the loop

assignments ranges between two and five, which, we feel, is within acceptable limits for the performance gain

®Results for the two register c£ise for theheuristic version appear in this table, butdo notappear inTable 2as,mentioned earlier,

they are not available for gee.



Program

2D-Hydrodynamics

Inner Product

Linear Equations

Tri-diag. Elim.

(below diag.)

Tri-diag. Elim.

(above diag.)

Prefix Sums

(scan)

Heuristic

OPT-Assign-LOOP OPT-Assign-LOOP
Number of Spills per Spills per % within

Registers Iteration Iteration Optimal

2 32 34 6%

4 12 14 17%

6 7 8 14%

8 2 3 50%

2 9 10 11%

4 2 2 0%

6 1 1 0%

8 0 0 0%

2 21 22 5%

4 9 10 11%

6 5 6 20%

8 1 1 0%

2 52 54 4%

4 16 16 0%

6 7 9 29%

8 0 0 0%

2 53 55 4%

4 17 17 0%

6 8 8 0%

8 0 0 0%

2 13 14 8%

4 4 4 0%

6 2 2 0%

8 0 0 0%

Table 3: Comparison of loop assignments for the microSPARC-II.
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resulting from fewer memory accesses.

8.2 Experimentation with Distributed Register Files -

We use the TMX320C44 as an example of an architecture with distributed register files. Figure 9 shows a

simplified view of the architecture and in section 8.2.1 we give a brief overview. For the purposes of code

generation we use "scaled-down" versions of the TMX320C44 in which we parameterize the number of registers

for the register banks. In our tables, the "# Registers" column denotes this number (i.e., a '2' means that

each bank contained two registers—two extended precision, two general-purpose and twoauxiliary registers—for

a total of six). We then generated assignments with OPT-Assign-BB, OPT-Assign-LOOP and our heuristic

version of OPT-Assign-LOOP. In section 8.2.2 we compare the results of basic block optimal and loop optimal.

As we are unable to gain access to a commercially available compiler which generates code for the TMX320C44,

a comparison between our heuristic and another heuristic is unavailable. However, in section 8.2.3, we compare

the results of OPT-Assign-LOOP to the heuristic OPT-Assign-LOOP. Subsection 8.2.4 compares the code size

of the loop assignments.

8.2.1 TMX320C44 Overviewf

Figure 9 shows a simplified view of the TMX320C44. In this architecture, there are three register files: Extended

Precision Registers which are 40-bits wide and used for floating-point and long integer arithmetic; Auxiliary

Registers which are 32-bits wide and used as address pointers with dedicated address generation hardware to

auto-increment and auto-decrement address values; and General-Purpose Registers which are 32-bits wide. All

register files are connected to the Regl and Reg2 busses and available to the Multiplier and ALU. The Multiplier

and ALU may both write to the Extended Precision Registers or one of them may write to either the Auxiliary

Registers or the General Purpose Registers. Additionally, an operand may be supplied to the Multiplier or ALU

by the memory.

8.2.2 Comparison of OPT-Assign-BB and OPT-Assign-LOOP

Table 5 contains our observed results and contains the number of spills per iteration for OPT-Assign-BB and

OPT-Assign-LOOP, as well as the absolute percentage improvement ofOPT-Assign-LOOP over OPT-Assign-BB

measured as Loll'before, there is ageneral trend for the percentage improvement to increase
as the number of registers increases due to OPT-Assign-LOOP's ability to naturally match the register usages

at loop top and bottom. Upon inspection of the assignments produced it was noted in some cases that the

assignments produced by the basic block scheme assigned an address variable to a general purpose register near

the end of the iteration. This variable was heavily used at the top of the loop, so more spill code (spills ofother

address variables currently within the Auxiliary Registers) than necessary was generated to accommodate that

variable.



Memory

Ext. Precision

Registers

Multipuer

Gen. Purpose

Registers

Adder

Auxiiiary

Registers

Shifter/ALU

Figure 9: A simplified view of the TMX320C44.

Program

2D-Hydrodynamics

Inner Product

Linear Equations

Tri-diag. Elim.

(above diag.)

Prefix Sums

(scan)

Number of

Registers

OPT-Assign-BB

Spills

per

Iteration

OPT-Assign-LOOP

Spills

per

Iteration

% Improvement

Table 5: Comparison of basic block optimal and loop optimal for the TMX320C44.



Program Number of

Registers

2D-Hydrodynamics 2

4

Inner Product 2

4

Linear Equations 2

4

Tri-diag. Elim. 2

(below diag.) 4

Tri-diag. Efim. 2

(above diag.) 4

Prefix Sums 2

(scan) 4

OPT-Assign-LOOP

Spills

per

Iteration

Heuristic

OPT-Assign-LOOP

Spills

per

Iteration

% Improvement

Table 6: Comparison of loop assignments for the TMX320C44.

8.2.3 Comparison of OPT-Assign-LOOP and Heuristic OPT-Assign-LOOP

Table 6 presents the results of the spill code produced by the optimal and heuristic algorithms in columns

three and four, respectively. Column five contains the percentage withing optimal that the heuristic results are,

measured as Poj this measure, lower numbers are better (i.e., the lower the number, the

closer the heuristic is approximating the optimal. In a few cases (3 of 12), the heuristic produced results that are

equal to the optimal. For 58% of the cases (7 of 12) results were produced that are within 15% of the optimal.

For the rest of the cases (5 of 12), the percentage within optimal is higher, however, the actual difference in spill

code produced is only one instruction.

8.2.4 Code Size of Loop Register Assignments

Again, because code size directly affects the size of the program ROM, we study the number of iterations produced

by our loop assignments. Table 7 contains the number of iterations spanned by each of the loop methods for

the given number of registers, as well as indication of whether the heuristic method produced an equal amount

of spill code as the optimal. In the majority of cases (9 of 12) our heuristic derived assignments which spanned

the same number of iterations as the optimal, and, of those, generated the same amount of spill code in three

cases (33%). In the other cases (3 of 12), the heuristic assignments spanned one more iteration, producing the

same amount of spill code in one case (33%). The overall range of the number of iterations spanned by the

assignments is between two and four, which we believe is within acceptable limits.



# Iterations

Program Number of Heuristic Equal

Registers OPT-Assign-LOOP OPT-Assign-LOOP Spill Code?

2D-Hydrodynamics 2 3 3 no

4 2 2 yes

Inner Product 2 3 4 no

4 3 3 no

Linear Equations 2 4 4 no

4 3 4 no

Tri-diag. Elim. 2 3 3

(below diag.) 4 2 2

Tri-diag. Elim. 2 2 2 no

(above diag.) 4 2 2 no

Prefix Sums i 2 3 yes
(scan) II 4 2J 2 ^

Table 7: Comparison of loop assignment code sizes for the TMX320C44.

9 Conclusion

In this paper we have motivated and presented an algorithm which optimally assigns registers to loops. In this

case an optimal assignment is one in which the memory traffic resulting from spill code is minimized. Our work

answers the long standing question ofwhether it is possible to, in principle, achieve optimal (minimal) spill code

in loops. We have demonstrated the feasibility of using our technique for the task of register assignment in

embedded code generation by conducting experiments on RISC-like code typical of embedded core processors.

We have also extended our algorithm to assign registers to irregular datapaths, such as those found in many

ASIPs, where some registers have specialized uses and/or registers are partitioned into multiple register files.

Experimentation with our methods hcis demonstrated that heuristic methods obtain suitable performance, while

out-performing the graph coloring-based approach used by the Gnu C compiler (gcc).
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