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Abstract

We show how in the propositional case both Reiter’s and
Scherl & Levesque’s solutions to the frame problem can be
modelled in dynamic epistemic logic (DEL), and provide
an optimal regression algorithm for the latter. Our method
is as follows: we extend Reiter’s framework by integrat-
ing observation actions and modal operators of knowledge,
and encode the resulting formalism in DEL with announce-
ment and assignment operators. By extending Lutz’ recent
satisfiability-preserving reduction to our logic, we establish
optimal decision procedures for both Reiter’s and Scherl &
Levesque’s approaches: satisfiability is NP-complete for one
agent, PSPACE-complete for multiple agents and EXPTIME-
complete when common knowledge is involved.

Introduction

Thielscher (1999) distinguishes two versions of the frame
problem. The representational version is the problem of
designing a logical language and a semantics such that do-
mains can be described without expliciting the interaction
between every action and fluent: basically, when there are
n actions and m fluents, the domain description should be
much smaller than 2 × n × m. The inferential version of
the frame problem is more demanding: given a solution of
the representational version, the problem is to design an ‘ef-
ficient’ decision procedure, where ‘efficient’ roughly means
that its computational complexity should not be too high.

Reiter (1991) solved the representational frame problem
by means of successor state axioms (SSAs). In the proposi-
tional case fluents only have situation arguments, and SSAs
take the form

∀x∀s(p(do(x, s)) ↔ (¬Poss(x, s)∨
(x = a1 ∧ γ+(a1, p, s)) ∨ · · · ∨ (x = an ∧ γ+(an, p, s))∨

(p(s) ∧ ¬(x = a′
1 ∧ γ−(a′

1, p, s)) ∧ · · · ∧
¬(x = a′

m ∧ γ−(a′
m, p, s)))))

where a1, . . . , an are the actions potentially making p true,
and a′

1, . . . , a
′
m are the actions potentially making p false.

For a given action ai, let us note Eff +(ai) the set of
those fluents which ai may make true, and Eff −(ai) the
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set of those fluents which ai may make false (in (Reiter
1991) these sets are left implicit). Then for every fluent
p ∈ Eff +(ai), the formula γ+(ai, p, s) characterizes the
conditions under which ai makes p true, and γ−(ai, p, s)
characterizes the conditions under which ai makes p false.
γ+(ai, p, s) and γ−(ai, p, s) must be uniform in s, which in
particular means that they do not contain the do-function.1

Reiter’s central idea is that due to inertia the sets Eff +(ai)
and Eff −(ai) are ‘small’ subsets of the set of all fluents. For
that reason the size of the set of all SSAs can be expected
to be of the order of the number of actions, and thus much
smaller than the product of the number of actions with the
number of fluents. Hence SSAs count as a solution to the
representational frame problem. Reiter’s solution was ex-
tended in (Scherl & Levesque 2003) to sensing actions.

When SSAs are available for every fluent p, one can re-
duce (‘regress’) any formula ϕ to an equivalent formula
reg(ϕ) not mentioning actions. This leads to a straightfor-
ward decision procedure in the propositional case, that has
been implemented in the GOLOG language (Levesque et al.
1997). However, the reduced formula can be exponentially
larger than the original formula, and therefore the inferential
frame problem has to be considered unsolved in Reiter’s and
Scherl & Levesque’s approaches.

In this paper we solve the inferential frame problem for
the propositional case. For the extension to knowledge,
among the epistemic actions we only consider observations:
all agents observe that some proposition holds in the world,
and update their epistemic state accordingly.2 We give
a satisfiability-preserving polynomial transformation elimi-
nating action operators from formulas. This provides an op-
timal regression procedure for reasoning about actions: both
in Reiter’s case (without knowledge operators) and in the
single-agent case the decision procedure works in nondeter-
ministic polynomial time; in the multiagent case it works in
PSPACE, and in the case of common knowledge in EXP-
TIME. All these results are optimal because they match the
complexity of the underlying epistemic logic.

1In later work Reiter et col. generalized SSAs to equivalences
∀x∀s(p(do(x, s)) ↔ ψ(a, s). We do not consider this here.

2Note that observations are different from the sensing actions
present in (Scherl & Levesque 2003). By performing the latter, the
agents observe whether some proposition holds in the world or not.
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Technically, our approach builds on recent progress in the
field of dynamic epistemic logics. In this family of logics sit-
uation terms are left implicit, and there is no quantification
over actions. Thus the central device in Reiter’s solution is
not available. We show that nevertheless one can do with-
out it, and recast this framework in the dynamic epistemic
logic DELC

N of (van Ditmarsch, van der Hoek, & Kooi 2005;
Kooi 2007).3 DELC

N being an extension of Plaza’s public
announcement logic, we extend Lutz’ optimal decision pro-
cedure for the latter (Lutz 2006) to DELC

N , and show that we
keep optimality: checking satisfiability of DELC

N -formulas
is shown to have the same complexity as checking satisfia-
bility in the underlying epistemic logic.

Background: Epistemic Logic ELC
N

Let P be a countably infinite set of propositional letters,
and let N be a finite set of agents. For convenience we
slightly abuse notation and identify N with the set of in-
tegers {1, . . . , |N |}. The language LELC

N
of epistemic logic

with common knowledge is defined by the BNF:
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ

where p ranges over P , i ranges over N , and G ranges over
℘(N). The formula Kiϕ reads ‘agent i knows that ϕ’, and
CGϕ reads ‘it is common knowledge in group G that ϕ’. We
use the common abbreviations for ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ,
and EGϕ. We recall that the latter is defined as: EGϕ =∧

i∈G Kiϕ. The language LELN
is obtained from LELC

N
by

dropping the operator of common knowledge.
An ELC

N -model is a tuple M = 〈W, K, V 〉, where W is
a nonempty set of possible worlds; K : N → ℘(W × W )
associates an equivalence relation Ki to each i ∈ N ; and
V : P → ℘(W ) associates an interpretation V (p) ⊆ W to
each p ∈ P .

For convenience, we define Ki(w) = {w′ | (w, w′) ∈
Ki}. The relation Ki models agent i’s knowledge: Ki(w) is
the set of worlds that agent i considers to be possible at w.

The satisfaction relation ‘�’ is defined as:
M, w � p iff w ∈ V (p)
M, w � ¬ϕ iff not M,w � ϕ
M, w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ
M, w � Kiϕ iff Ki(w) ⊆ �ϕ�M

M, w � CGϕ iff (
⋃

i∈G Ki)∗(w) ⊆ �ϕ�M

where �ϕ�M = {w ∈ W | M,w � ϕ} is the extension of
ϕ in the model M , and the ‘∗’ in the last clause is reflexive
and transitive closure.

A formula ϕ ∈ LELC
N

is: valid in a ELC
N -model M

(notation: M � ϕ) iff �ϕ�M = W ; ELC
N -valid (nota-

tion: |=ELC
N

ϕ) iff M � ϕ for all ELC
N -models M ; ELC

N -
satisfiable iff �|=ELC

N
¬ϕ. Similar notions are defined for the

variant ELN without common knowledge.
We recall that ELN -satisfiability is NP-complete if N =

1, PSPACE-complete if N ≥ 2, and ELC
N -satisfiability is

EXPTIME-complete (Fagin et al. 1995).
3A similar idea is outlined independently in (van Benthem

2007).

Reiter-Style Action Theories

In this section we extend the account of Reiter’s solution in
(Demolombe, Herzig, & Varzinczak 2003), where Reiter-
style action theories are formulated in a propositional dy-
namic logic (PDL) framework.

Action Descriptions

In (Reiter 1991) and (Scherl & Levesque 2003) a number of
simplifying assumptions are made. The most important are:

H1. All action laws are known by all agents.

H2. All action occurrences are public.

H3. All actions are deterministic.

H4. The set of fluents affected by an action is much smaller
than the entire set P of fluents of the language.

H5. There is no action changing the truth value of an infinity
of fluents.

The first two hypotheses say that the agents’ knowledge
about action types (H1) and about action instances (H2) is
accurate. H3 is about the nature of the world. The last two
hypotheses guarantee that Reiter’s proposal indeed solves
the representational frame problem, and are justified by the
underlying hypothesis of inertia: (ontic) actions only change
small parts of the world, leaving the rest unchanged. H4
says just this. Reiter does not explicit H5, but it is necessary
when fluents are propositional. (One could argue that H5 is
entailed by H4.)

Remark 1 Scherl & Levesque moreover suppose that there
is only one agent. We do not make this restriction in this
paper, and also consider the multiagent case.

Let A be a countably set of action letters (abstract atomic
actions), and let a range over A.

Definition 2 We define an action description as the tuple
D = 〈Poss,Eff +,Eff −, γ+, γ−〉 such that:

• Poss : A → LELC
N

assigns a formula to each action that
describes its executability precondition;

• Eff + : A → ℘(P ) assigns a finite set of possible positive
effects to each action;

• Eff − : A → ℘(P ) assigns a finite set of possible negative
effects to each action;

• γ+ is a family of functions γ+(a) : Eff +(a) → LELC
N

.
It thus assigns a formula to each pair (a, p) that describes
the precondition for the action a making p true; and

• γ− is a family of functions γ−(a) : Eff −(a) → LELC
N

.
It thus assigns a formula to each pair (a, p) that describes
the precondition for the action a making p false.

If Eff +(a) = Eff −(a) = ∅, then we call a an epistemic
action. In the sequel, all epistemic actions are observations.

H1 and H2 make that the functions in D do not depend on
agents. H3 makes that for any action a, its ontic effect can
be characterized by γ+(a) and γ−(a). Finiteness of Eff +

and Eff − is due to H5. Finally, H4 allows to claim that
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the representational frame problem is solved by such action
descriptions. In addition, Reiter (and we) assume:

H6. All γ+(a, p) ∧ γ−(a, p) are inconsistent in ELC
N .

Remark 3 Note that (Scherl & Levesque 2003) restrict the
ranges of Poss , γ+ and γ− to boolean formulas. We extend
them to the epistemic logical formulas in LELC

N
. This allows

for actions such as ‘make a phone call’, whose precondition
of execution is that the phone number is known.

Example 4 To illustrate the definition, suppose that a robot
does not know whether the light is on or not. The available
ontic action is toggling a switch, with Poss(toggle) = �,
Eff +(toggle) = Eff −(toggle) = {light},
γ+(toggle, light) = ¬light , and γ−(toggle, light) = light .
The observations are oDark and oBright , with
Poss(oDark) = ¬light , and Poss(oBright) = light ,
and Eff +(oDark) = Eff −(oDark) = Eff +(oBright) =
Eff −(oBright) = ∅.

Models for an Action Description

Let D be an action description for the action letters in A.
Models for D are obtained by adding transition relations to
the models of epistemic logic.

Definition 5 A D-model is a tuple M = 〈W, K, T, V 〉,
where 〈W, K, V 〉 is an ELC

N -model and T : A → ℘(W ×
W ) associates a relation Ta to each a ∈ A.

The relation Ta models the transition relation associated to
the abstract action a: letting Ta(w) = {w′ | (w, w′) ∈ Ta},
Ta(w) is the set of possible results of the execution a at w.

Moreover D-models satisfy the following constraints:
C1. No-Forgetting: (Ta ◦ Ki)(w) ⊆ (Ki ◦ Ta)(w).
C2. No-Learning: if Ta(w) �= ∅, then

(Ki ◦ Ta)(w) ⊆ (Ta ◦ Ki)(w).
C3. Determinism: if v1, v2 ∈ Ta(w), then v1 = v2.
C4. Executability: Ta(w) �= ∅ iff 〈W, K, V 〉, w � Poss(a).
C5. Postcondition: if v ∈ Ta(w), then

• p �∈ Eff +(a) and w �∈ V (p) implies v �∈ V (p);
• p �∈ Eff −(a) and w ∈ V (p) implies v ∈ V (p);
• p ∈ Eff +(a) and 〈W, K, V 〉, w � γ+(a, p) implies

v ∈ V (p);
• p ∈ Eff −(a) and 〈W, K, V 〉, w � γ−(a, p) implies

v �∈ V (p);
• p ∈ Eff +(a) and 〈W, K, V 〉, w �� γ+(a, p) and w �∈

V (p) implies v �∈ V (p);
• p ∈ Eff −(a) and 〈W, K, V 〉, w �� γ−(a, p) and w ∈

V (p) implies v ∈ V (p).
C1 implements H1 and H2. It guarantees that every world

in (Ta ◦ Ki)(w) has an antecedent. This is also called per-
fect recall in (Fagin et al. 1995). In other words, there
is no action able to make agents forget facts. C2 is mo-
tivated by H1–H3. For epistemic actions learning about

the mere occurrence of an observation is sufficient for each
agent to make his epistemic state evolve: the execution of an
observation action a eliminates the possible worlds where
Poss(a) is false. C1 and C2 together correspond to Scherl
& Levesque’s SSA for knowledge in the case of an ontic ac-
tion. C3 is motivated by H3. C4 defines the condition for
an action be executable. C5 corresponds to Reiter’s SSA for
facts (as opposed to knowledge). Note that its consistency is
guaranteed by H6.

Validity in D-models

We now introduce a combination of epistemic logic and
PDL which will be interpreted in D-models. The language
LD extends LELC

N
with dynamic operators, and is defined

by the BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ | [a]ϕ

where p ranges over P , i ranges over N , G ranges over
℘(N), and a ranges over A. The formula [a]ϕ reads ‘ϕ holds
after all possible executions of a’. We use the common ab-
breviation 〈a〉ϕ = ¬[a]¬ϕ. Thus 〈a〉� expresses that a is
executable, and [a]⊥ expresses that a is inexecutable.

We define the satisfaction relation ‘�’ as for ELC
N , plus:

M,w � [a]ϕ iff Ta(w) ⊆ �ϕ�M

A formula ϕ ∈ LD is: valid in a D-model M (notation:
M � ϕ) iff �ϕ�M = W ; D-valid (notation: |=D ϕ) iff
M � ϕ for all D-models M ; and D-satisfiable iff �|=D ¬ϕ.

For our running example we have

�|=D [toggle]Kilight
|=D [oDark ][toggle]Kilight

|=D ¬Ki¬light → [toggle]¬Kilight

Remark 6 Although epistemic actions do not change the
world, note that [a]Poss(a) is not D-valid, even if a is an
epistemic action. To see this, consider a such that Poss(a)
is the so-called Moore-sentence: p∧¬Kip. Then after learn-
ing that p ∧ ¬Kip holds the agent will know that p, hence
¬Kip does not hold any longer.

Regression

Let an action description D be given. Table 1 shows a num-
ber of valid D-equivalences. In each of those validities the
complexity of the formula under the scope of the dynamic
operator [·] decreases from the left to the right. For formulas
without the common knowledge operator this allows for the
definition of a procedure regD, called regression in (Reiter
2001), that repeatedly applies these equivalences until the
resulting formula does not contain dynamic operators any
more. It follows that for every domain description D and
formula ϕ without CG we have:

|=D ϕ iff |=ELC
N

regD(ϕ)

For example, [toggle]Kilight is first reduced to
Poss(toggle) → Ki[toggle]light (by 7) and then to
Ki¬light (by 4); and [oDark ]Ki¬light is first re-
duced to Poss(oDark) → Ki[oDark ]¬light (by 7)
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1. [a]p ↔ (Poss(a) → p)
if p �∈ Eff +(a) ∪ Eff −(a)

2. [a]p ↔ (Poss(a) → (γ+(a, p) ∨ p))
if p ∈ Eff +(a) and p �∈ Eff −(a)

3. [a]p ↔ (Poss(a) → (¬γ−(a, p) ∧ p))
if p �∈ Eff +(a) and p ∈ Eff −(a)

4. [a]p ↔ (Poss(a) → (γ+(a, p) ∨ (¬γ−(a, p) ∧ p)))
if p ∈ Eff +(a) ∩ Eff −(a)

5. [a]¬ϕ ↔ (Poss(a) → ¬[a]ϕ)
6. [a](ϕ1 ∧ ϕ2) ↔ ([a]ϕ1 ∧ [a]ϕ2)
7. [a]Kiϕ ↔ (Poss(a) → Ki[a]ϕ)

Table 1: Relevant D-validities

and then to ¬light → Ki(¬light → ¬light) (by 5 and
then 1). The latter being ELN -valid, it follows that
|=D [oDark ][toggle]Kilight .

Unfortunately, regD is a suboptimal decision procedure
because there are formulas such that regD(ϕ) is exponen-
tially larger than ϕ (Reiter 2001, Section 4.6).

Dynamic Epistemic Logic DELC
N

A different tradition in modelling knowledge and change
has been followed in (Plaza 1989; Baltag, Moss, & Solecki
1998; van Benthem 2006). Logics in this tradition are,
e.g., that of (van Ditmarsch, van der Hoek, & Kooi 2005;
Kooi 2007), that are based on public announcements and
public assignments.

Syntax

The language of dynamic epistemic logic with common
knowledge LDELC

N
is defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ | [!ϕ]ϕ | [σ]ϕ
σ ::= ε | p :=ϕ, σ

where p ranges over P , i ranges over N , G ranges over
℘(N), and ε is an empty assignment. Again, the formula
[α]ϕ is read ‘ϕ holds after all possible executions of α’.
The action !ϕ is the public announcement of ϕ.4 The ac-
tion p :=ϕ is the public assignment of the truth value of
ϕ to the atom p. For example, p :=⊥ is a public assign-
ment, and Ki[p :=⊥]¬p is a formula. When assignments
are made in parallel, the same propositional letter can ap-
pear only once on the left hand side of the operator ‘:=’.
For convenience, we identify (p1 :=ϕ1, . . . , pn :=ϕn) with
the set {p1 :=ϕ1, . . . , pn :=ϕn}, thus ε is identified with ∅.

The fragment of DELC
N without assignments is Plaza’s

public announcement logic with common knowledge
(PALC

N ) (Plaza 1989), whose fragment without common
knowledge we note PALN .

Announcements model epistemic effects of actions, while
assignments model ontic effects of actions. For exam-
ple, the epistemic action oDark of Example 4 is modelled

4Note that announcement operators are different from the stan-
dard PDL test operator (usually noted ϕ?): the former have epis-
temic effects, but the latter has not.

1. [!ϕ]p ↔ (ϕ → p)
2. [!ϕ]¬ψ ↔ (ϕ → ¬[!ϕ]ψ)
3. [!ϕ](ψ1 ∧ ψ2) ↔ ([!ϕ]ψ1 ∧ [!ϕ]ψ2)
4. [!ϕ]Kiψ ↔ (ϕ → Ki[!ϕ]ψ)
5. [σ]p ↔ σ(p)
6. [σ]¬ϕ ↔ ¬[σ]ϕ
7. [σ](ϕ ∧ ψ) ↔ ([σ]ϕ ∧ [σ]ψ)
8. [σ]Kiϕ ↔ Ki[σ]ϕ

Table 2: Relevant DELC
N -validities.

as !¬light , and the ontic action toggle as the assignment
σtoggle = (light :=¬light). In other words, the truth value
of light is toggled.

Semantics

DELC
N -models are tuples M = 〈W, K, V 〉 that are defined

just as for epistemic logic ELC
N . The satisfaction relation

‘�’ is as there, plus:

M, w � [!ϕ]ψ iff M,w � ϕ implies M !ϕ, w � ψ
M, w � [σ]ϕ iff Mσ, w � ϕ

where M !ϕ and Mσ are modifications of the epistemic
model M that are defined as follows:

M !ϕ = 〈W !ϕ, K !ϕ, V !ϕ〉
W !ϕ = W ∩ �ϕ�M

K !ϕ
i = Ki ∩ (�ϕ�M × �ϕ�M )

V !ϕ(p) = V (p) ∩ �ϕ�M

and
Mσ = 〈W, K, V σ〉
V σ(p) = �σ(p)�M

and where σ(p) is the formula assigned to p in σ. If there
is no such a formula, i.e., if there is no p :=ϕ in σ, then
σ(p) = p. (In particular ε(p) = p, for all p.)

As usual, a formula ϕ ∈ LDELC
N

is: valid in a DELC
N -

model M (notation: M � ϕ) iff �ϕ�M = W , DELC
N -valid

(notation: |=DELC
N

ϕ) iff M � ϕ for all epistemic models
M , and DELC

N -satisfiable iff �|=DELC
N

¬ϕ. For example,
Kip → [q := p]Kiq is DELC

N -valid.
A number of relevant DELC

N -validities are listed in Table
2. When there are no CG operators then the equivalences in
Table 2 obviously allow the definition of a regression pro-
cedure regDELN

, that eliminates dynamic operators from an
expression (van Ditmarsch, van der Hoek, & Kooi 2005):

|=DELC
N

ϕ iff |=ELC
N

regDELN
(ϕ)

DELN -regression has the same problem of D-regression:
the size of the resulting formula regDELN

(ϕ) can be ex-
ponentially larger than that of ϕ (Lutz 2006, Theorem 2).
Moreover, no such equivalences exist for the CG operator
(Baltag, Moss, & Solecki 1998).

In the next sections we provide a better solution. The first
step is to formally link Reiter-style action descriptions D
with DELC

N .
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Translating Reiter-Style Theories into DELC
N

The D-validities presented in Table 1 are similar to the
DELC

N -validities presented in Table 2. We show in this sec-
tion that: (1) the executability preconditions Poss in D can
be modelled in DELC

N as public announcements, because
once an action is executed, all the agents now know that it
was executable at the previous instant; and (2) the changes
brought about by actions can be modelled as public assign-
ments.

Definition 7 Let an action description D be given. The
translation δD from LD to LDELC

N
formulas is defined as

follows:
δD(p) = p
δD(¬ϕ) = ¬δD(ϕ)
δD(ϕ ∧ ψ) = δD(ϕ) ∧ δD(ψ)
δD(Kiϕ) = Ki(δD(ϕ))
δD([a]ϕ) = [!Poss(a)][σa]δD(ϕ)

where σa is the complex assignment:
{p := γ+(a, p) ∨ p | p ∈ Eff +(a) and p �∈ Eff −(a)} ∪
{p :=¬γ−(a, p) ∧ p | p �∈ Eff +(a) and p ∈ Eff −(a)} ∪
{p := γ+(a, p) ∨ (¬γ−(a, p) ∧ p) | p ∈ Eff +(a) ∩ Eff −(a)}
LD-formulas do not have the common knowledge oper-

ator, there is thus no clause for it. Also note that δD(a)
is well-defined because Eff +(a) and Eff −(a) are finite by
H5. For example, δD([oDark ]¬light) = [!¬light ][ε]¬light ,
which is equivalent to � (remember that ε is the empty as-
signment); and δD([toggle]¬light) = [!�][light :=¬light ∨
(¬light ∧ light)]¬light , which is equivalent to light .

We now show that this translation is polynomial. We
therefore define the function len() that returns the length of
a given expression. In the case of sets and tuples, we count
the length of each element and also the commas and delim-
iters, while for formulas each atom and each operator has
length 1. For example, len(〈t1, . . . , tn〉) = (1 + len(t1)) +
· · ·+(1+len(tn))+1, and len([{p := q, q := p∧q}]Kip) =
1+len({p := q, q := p∧q})+len(Kip) = 12+2+1 = 15;

Lemma 8 Let D be a finite Reiter-style action description
and let ϕ ∈ LD. Then len(δD(ϕ)) ≤ O(len(D) × len(ϕ)).

And also the following holds (cf. Table 1 and 2):

Proposition 9 Let D be a Reiter-style action description
and let ϕ ∈ LD. Then ϕ is D-satisfiable if and only if δD(ϕ)
is DELC

N -satisfiable.

Hence D-satisfiability check can be polynomially trans-
formed into DELC

N -satisfiability check.5

Optimal Regression for DELC
N

We now give a polynomial satisfiability-preserving reduc-
tion from DELC

N to ELC
N . The idea is first eliminate as-

signments, and then apply Lutz’ reduction to eliminate an-
nouncements (Lutz 2006).

5The reader can find the proofs of Lemma 8 and Proposition 9
in (van Ditmarsch, Herzig, & de Lima 2007).

Eliminating Assignments

We apply a technique that is fairly standard in automated
theorem proving (Nonnengart & Weidenbach 2001).

Proposition 10 Let [p1 :=ϕ1, . . . , pn :=ϕn]ψ be a subfor-
mula of a LDELC

N
-formula χ. Let ψ′ be obtained from ψ

by substituting every occurrence of pk by xpk
, where xpk

is a new propositional letter not occurring in χ. Let χ′ be
obtained from χ by replacing [p1 :=ϕ1, . . . , pn :=ϕn]ψ by
ψ′. Let B abbreviate the conjunction of equivalences (biim-
plications)

∧
1≤k≤n(xpk

↔ ϕk).

1. If χ ∈ LDEL1 then χ is DEL1-satisfiable iff
χ′ ∧ KiB

is DEL1-satisfiable.
2. If χ ∈ LDELN

, N ≥ 2, then χ is DELN -satisfiable iff
χ′ ∧ ∧

�≤md(ϕ) E
�
NB

is DELN -satisfiable, where the modal depth md(ϕ) is
the maximal number of nested modal operators of ψ, and
E�

Gϕ means ‘EG . . .EGϕ, � ≥ 0 times’.

3. If χ ∈ LDELC
N

then χ is DELC
N -satisfiable iff

χ′ ∧ CNB
is DELC

N -satisfiable.

Proof. To simplify suppose the subformula of χ is [p :=ϕ]ψ.
⇒: Suppose M = 〈W, K, V 〉 is an ELC

N -model such
that M,w � χ. We construct an ELC

N -model Mxp
=

〈W, K, Vxp
〉, where Vxp

(p) = V (p) for all p �= xp, and
Vxp

(xp) = �ϕ�M . We then prove that Mxp
� [p :=ϕ]ψ ↔

ψ′, from which all three cases follow.
⇐: We suppose w.l.o.g. that M is generated from w, and
observe that Ki is a ‘master modality’ for single-agent ELN ,
and CG for ELC

N , and the conjunction up to modal depth
of EG-operators for multi-agent ELN : for example, when
M,w � CGχ then M � CGχ.

Renaming avoids exponential blow-up. This allows the
definition of reduction operators regDEL1

, regDELN
, and

regDELC
N

that iteratively eliminate all assignments. For
instance, consider the following DELN -unsatisfiable for-
mula: ¬[!¬light ][light :=¬light ]Kilight . Its reduction is
¬[!¬light ]Kixlight ∧ Ki(xlight ↔ ¬light).

Proposition 11 regDEL1
, regDELN

and regDELC
N

are poly-
nomial transformations, and preserve satisfiability in the re-
spective logics.

Proof. Satisfiability-equivalence follows from Proposition
10. For the single-agent and the common-knowledge case
we prove that the size of the reduction of χ is at most
len(χ) × (len(χ) + 6), and for the case of DELN we prove
that the size of the reduction of χ is at most len(χ)2 ×
(len(χ) + 6). Indeed, in Proposition 10 the size of χ′ is
at most len(χ), the size of each equivalence in B is at most
len(χ)+4, and the number of these equivalences is bound by
the number of (atomic) assignments in χ, which is at most
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len(χ). In the case of the E operator the number of equiva-
lences has to be multiplied by the modal depth of χ, which
is at most len(χ).

Eliminating Announcements

Once assignments are eliminated, we can eliminate an-
nouncements by Lutz’ procedure. We don’t have space to
go into the details, and just restate the relevant theorem.

Proposition 12 ((Lutz 2006)) PALN -satisfiability is NP-
complete if |N | ≤ 1, and PSPACE-complete if |N | ≥ 2.
PALC

N -satisfiability is EXPTIME-complete.

Via Proposition 9 one obtains:

Corollary 13 D-satisfiability without CG-operators is NP-
complete if |N | = 1, and PSPACE-complete if |N | ≥ 2.
D-satisfiability with CG-operators is EXPTIME-complete.

Conclusions

We have modelled the frame problem in dynamic epis-
temic logic by providing correspondents for situation cal-
culus style ontic and observation actions, and we have given
complexity results using that translation. As far as we know,
this is the first optimal decision procedure for a Reiter-style
solution to the frame problem.

Scherl & Levesque’s epistemic extension of Reiter’s so-
lution allows not only for observations, but also for sens-
ing actions ?ϕ, which test whether some boolean formula
ϕ is true. Such sensing actions can be viewed as abbre-
viating the nondeterministic composition of two announce-
ments: ?ϕ = !ϕ ∪ !¬ϕ. Expansion of such abbreviations
leads to exponential blow-up, which does not allow to ex-
tend our approach and integrate primitive sensing actions: it
is not clear how the associated successor state axiom

[?ϕ]Kiψ ↔ ((ϕ → Ki(ϕ → [?ϕ]ψ))∧
(¬ϕ → Ki(¬ϕ → [?ϕ]ψ)))

could be compiled into Lutz’ polynomial transformation.
Further evidence that the presence of sensing actions in-
creases complexity is provided by the result in (Herzig et
al. 2000) that plan verification in this case is Πp

2-complete.
We leave integration of sensing actions as future work.

We moreover intend to generalize our results to non-
public actions, as in (Baltag, Moss, & Solecki 1998; Bac-
chus, Halpern, & Levesque 1999).
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