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Abstract

We discuss a multiple-play multi-armed ban-

dit (MAB) problem in which several arms are

selected at each round. Recently, Thompson

sampling (TS), a randomized algorithm with a

Bayesian spirit, has attracted much attention for

its empirically excellent performance, and it is

revealed to have an optimal regret bound in the

standard single-play MAB problem. In this pa-

per, we propose the multiple-play Thompson

sampling (MP-TS) algorithm, an extension of TS

to the multiple-play MAB problem, and discuss

its regret analysis. We prove that MP-TS for bi-

nary rewards has the optimal regret upper bound

that matches the regret lower bound provided

by Anantharam et al. (1987). Therefore, MP-

TS is the first computationally efficient algorithm

with optimal regret. A set of computer simula-

tions was also conducted, which compared MP-

TS with state-of-the-art algorithms. We also pro-

pose a modification of MP-TS, which is shown

to have better empirical performance.

1. Introduction

The multi-armed bandit (MAB) problem is one of the most

well-known instances of sequential decision-making prob-

lems in uncertain environments, which can model many

real-world scenarios. The problem involves conceptual en-

tities called arms. At each round, the forecaster draws one

of K arms and receives a corresponding reward. The aim

of the forecaster is to maximize the cumulative reward over

rounds, and the forecaster’s performance is usually mea-

sured by a regret, which is the gap between his or her

cumulative reward and that of an optimal drawing policy.
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Throughout the rounds, the forecaster faces an “exploration

vs. exploitation” dilemma. On one hand, the forecaster

wants to exploit the information that he or she has gath-

ered up to the previous round by selecting seemingly good

arms. On the other hand, there is always a possibility that

the other arms have been underestimated, which motivates

him or her to explore seemingly bad arms in order to gather

their information. To resolve this dilemma, the forecaster

uses an algorithm to control the number of draws for each

arm.

In the stochastic MAB problem, which is the most widely

studied version of the MAB problem, it is assumed that

each arm is associated with a distinct probability distribu-

tion. While there have been many theoretical studies on the

infinite setting in which future rewards are geometrically

discounted (e.g., the Gittins index (Gittins & Jones, 1974)),

recent availability of massive data has led to a finite horizon

setting in which every reward has the same importance. In

this work, we focus on the latter setting.

There has been significant progress in this setting of the

MAB problem. In particular, the upper confidence bound

(UCB) algorithm (Auer et al., 2002) has been widely used

and studied for its computational simplicity and customiz-

ability. Whereas the coefficient of the leading logarithmic

term in UCB is larger than the theoretical lower bound

given by Lai & Robbins (1985), algorithms have been pro-

posed that achieve this bound, such as DMED (Honda &

Takemura, 2010), Kinf, and KL-UCB (Cappé et al., 2013).

Moreover, Thompson sampling (TS) (Thompson, 1933)

has recently attracted attention for its excellent perfor-

mance (Scott, 2010; Chapelle & Li, 2011) and it has been

revealed to be applicable to even a wider class of problems

(Agrawal & Goyal, 2013a; Russo & Roy, 2013; Osband

et al., 2013; Kocák et al., 2014; Guha & Munagala, 2014).

Thompson sampling is an old heuristic that has a spirit of

Bayesian inference and selects an arm based on posterior

samples of the expectation of each arm. It has been shown

that TS has an optimal regret bound (Agrawal & Goyal,
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2012; Kaufmann et al., 2012; Agrawal & Goyal, 2013b).

1.1. Multiple-play MAB problem

The literature mentioned above has specifically dealt with

the MAB problem in which a single arm is selected and

drawn at each round. Let us call this problem single-play

MAB (SP-MAB). While the SP-MAB problem is indis-

putably important as a canonical problem, in many prac-

tical situations multiple entities corresponding to arms are

selected at each round. We call the MAB problem in

which several arms can be selected multiple-play MAB

(MP-MAB). Examples of the situations that can be mod-

eled as an MP-MAB problem include the followings.

• Example 1 (placement of online advertisements): a

web site has several slots where advertisements can

be placed. Based on each user’s query, there is a set

of candidates of relevant advertisements from which

web sites can select to display. The effectiveness of

advertisements varies: some advertisements are more

appealing to the user than others. With the standard

model in online advertising, it is assumed that each

advertisement is associated with a click-through-rate

(CTR), which is the number of clicks per view. Since

web sites receive revenue from clicks on advertise-

ments, it is natural to maximize it, which can be con-

sidered as an instance of an MP-MAB problem in

which advertisements and clicks correspond to arms

and rewards, respectively.

• Example 2 (channel selection in cognitive radio

networks (Huang et al., 2008)): a cognitive radio

is an adaptive scheme for allocating channels, such

as wireless network spectrums. There are two kinds

of users: primary and secondary. Unlike primary

users, secondary users do not have primary access to

a channel but can take advantage of the vacancies in

primary access and opportunistically exploit instanta-

neous spectrum availability when primary users are

idle. However, the availabilities of channels are not

easily known. Usually, secondary users have access

to multiple channels. They can enhance their commu-

nication efficiency by adaptively estimating the avail-

ability statistics of the channels, which can be con-

sidered as an MP-MAB problem in which channels

and the permission of communication are arms and

rewards, respectively.

There have been several studies on the MP-MAB prob-

lem. Anantharam et al. (1987) derived an asymptotic lower

bound on the regret for this problem and proposed an al-

gorithm to achieve this bound. Because their algorithm

requires certain statistics that are difficult to compute, ef-

ficiently computable MP-MAB algorithms have also been

extensively studied. Chen et al. (2013) extended a UCB-

based algorithm to a multiple-play case with combinatorial

rewards and Gopalan et al. (2014) extended TS to a wide

class of problems. Although both papers provide a loga-

rithmic regret bound, the constant factors of these regret

bounds do not match the lower bound. Therefore, it is un-

known whether the optimal regret bound for the MP-MAB

problem is achievable by using a computationally efficient

algorithm.

The main difficulty in analyzing the MP-MAB problem

lies in the fact that the regret depends on the combinato-

rial structure of arm draws. More specifically, an algorithm

with the optimal bound on the number of draws of subopti-

mal arms does not always ensure the optimal regret bound

unlike the SP-MAB problem.

Contribution: Our contributions are as follows.

• TS-based algorithm for the MP-MAB problem and

its optimal regret bound: the first and main contri-

bution of this paper is an extension of TS to the mul-

tiple play case, which we call MP-TS. We prove that

MP-TS for binary rewards achieves an optimal regret

bound. To the best of our knowledge, this paper is

the first to provide a computationally efficient algo-

rithm in the MP-MAB problem with the optimal regret

bound by Anantharam et al. (1987).

• Novel analysis technique: to solve the difficulty in

the combinatorial structure of the MP-MAB problem,

we show that the independence of posterior samples

among arms in TS is a key property for suppressing

the number of simultaneous draws of several subopti-

mal arms, and the use of this property eventually leads

to the optimal regret bound.

• Experimental comparison among MP-MAB algo-

rithms: we compare MP-TS with other algorithms,

and confirm its efficiency. We also propose an em-

pirical improvement of MP-TS (IMP-TS) motivated

by analyses on the regret structure of the MP-MAB

problem. We confirm that IMP-TS improves the per-

formance of MP-TS without increasing computational

complexity.

2. Problem Setup

Let there be K arms. Each arm i ∈ [K] =
{1, 2, . . . ,K} is associated with a probability distribution

νi = Bernoulli(µi), µi ∈ (0, 1). At each round t =
1, 2, . . . , T , the forecaster selects a set of L < K arms

I(t), then receives the rewards of the selected arms. The

reward Xi(t) of each selected arm i is i.i.d. samples from

νi. Let Ni(t) be the number of draws of arm i before round

t (i.e., Ni(t) =
∑t−1

t′=1 1{i ∈ I(t′)}, where 1{A} = 1 if

event A holds and = 0 otherwise.), and µ̂i(t) be the em-

pirical mean of the rewards of arm i at the beginning of

round t. The forecaster is interested in maximizing the sum
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of rewards over drawn arms. For simplicity, we assume

that all arms have distinct expected rewards (i.e., µi 6= µj

for any i 6= j). We discuss the case in which µi = µj

for some i and j in Appendix A.1, which is in Supple-

mentary Material. Without loss of generality, we assume

µ1 > µ2 > µ3 > · · · > µK . Of course, algorithms do

not exploit this ordering. We define optimal arms as top-

L arms (i.e., arms [L]), and suboptimal arms as the others

(i.e., arms [K] \ [L]). The regret, which is the expected loss

of the forecaster, is defined as

Reg(T ) =
T∑

t=1




∑

i∈[L]

µi −
∑

i∈I(t)

µi



 .

The expectation of regret E[Reg(T )] is used to measure the

performance of an algorithm.

3. Regret Bounds

In this section we introduce the known lower bounds of

the regret for the SP-MAB and MP-MAB problems and

discuss the relation between them.

3.1. Regret bound for SP-MAB problem

The SP-MAB problem, which has been thoroughly studied

in the fields of statistics and machine learning, is a special

case of the MP-MAB problem with L = 1. The optimal

regret bound in the SP-MAB problem was given by Lai &

Robbins (1985). They proved that, for any strongly consis-

tent algorithm (i.e., algorithms with subpolynomial regret

for any set of arms), there exists a lower bound

E[Ni(T + 1)] ≥

(
1− o(1)

d(µi, µ1)

)

log T, (1)

where d(p, q) = p log (p/q)+(1−p) log ((1− p)/(1− q))
is the KL divergence between two Bernoulli distributions

with expectation p and q. Note that when arm i is drawn,

the regret increases by ∆i,1 and the regret is written as

E[Reg(T )] =
∑

i 6=1

Ni(T + 1)∆i,1, (2)

where ∆i,j = µj − µi. Therefore, inequality (1) directly

leads to the regret lower bound

E[Reg(T )] ≥
∑

i 6=1

(
(1− o(1))∆i,1

d(µi, µ1)

)

log T. (3)

One may think that applying the techniques of the SP-MAB

problem would directly yield an optimal bound for a more

general MP-MAB problem. However, this is not the case.

In short, the difficulty in analyzing the regret on the MP-

MAB problem arises from the fact that the optimal bound

optimal arms

suboptimal arms

Game 1 Game 2

A MP-MAB instance with K=4, L=2

µ1=0.10

µ2=0.09

µ3=0.08

µ4=0.07

t=1     I(1) = {1, 2}          I(1) = {1, 3}

           (r(1) = 0)               (r(1)=0.01)

t=2     I(2) = {3, 4}          I(2) = {1, 4}

           (r(2) = 0.04)          (r(2)=0.02)

          Regret(2)=0.04      Regret(2)=0.03

Figure 1. Two bandit games with the same set of arms. r(t) is

defined as the increase in the regret at round t. In both games

1 and 2, we have the same number of suboptimal arm draws

(N3(2) = N4(2) = 1). However, the regret in games 1 and 2

are different.

on the number of suboptimal arm draws does not directly

lead to the optimal regret. From this point forward, we

focus on the MP-MAB problem in which L is not restricted

to one.

3.2. Extension to MP-MAB problem

The regret lower bound in the MP-MAB problem, which is

the generalization of inequality (3), was provided by Anan-

tharam et al. (1987). They first proved that, for any strongly

consistent algorithm and suboptimal arm i, the number of

arm i draws is lower-bounded as

E[Ni(T + 1)] ≥

(
1− o(1)

d(µi, µL)

)

log T. (4)

Unlike in the SP-MAB problem, the regret in the MP-MAB

problem is not uniquely determined by the number of sub-

optimal arm draws. As illustrated in Figure 1, the regret is

dependent on the combinatorial structure of arm draws.

Recall that a regret increase at each round is the gap of ex-

pected rewards between the optimal arms and that of the

selected arms. When a suboptimal arm is selected, one op-

timal arm is excluded from I(t) instead of the suboptimal

arm. Let the selected suboptimal arm and excluded opti-

mal arm be i and j, respectively. Then, we lose expected

reward µj − µi. Namely, the loss in the expected reward at

each round is given by

∑

j∈[L]

µj −
∑

i∈I(t)

µi =
∑

j∈[L]\I(t)

µj −
∑

i∈I(t)\[L]

µi

≥
∑

i∈I(t)\[L]

(µL − µi), (5)
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Algorithm 1 Multiple-play Thompson sampling (MP-TS)

for binary rewards

Input: # of armsK, # of selection L
for i = 1, 2, . . . ,K do

Ai, Bi = 1, 1
end for

t← 1.

for t = 1, 2, . . . , T do

for i = 1, 2, . . . ,K do

θi(t) ∼ Beta(Ai, Bi)
end for

I(t) = top-L arms ranked by θi(t).
for i ∈ I(t) do

if Xi(t) = 1 then

Ai ← Ai + 1
else

Bi ← Bi + 1
end if

end for

end for

where we used the fact µj ≥ µL for any optimal arm j.

From this relation, the regret is expressed as

Reg(T ) ≥

T∑

t=1

∑

i∈I(t)\[L]

(µL − µi)

=
∑

i∈[K]\[L]

(µL − µi)Ni(T + 1) (6)

which, combined with (4), leads to the regret lower bound

by Anantharam et al. (1987) that any strongly consistent

algorithm satisfies

E[Reg(T )] ≥
∑

i∈[K]\[L]

(1− o(1))∆i,L

d(µi, µL)
log T. (7)

3.3. Necessary condition for an optimal algorithm

In Sections 3.1 and 3.2, we saw that the derivations of

the regret bounds are analogous between the SP-MAB and

MP-MAB problems. However, there is a difference in the

relation between the regret and Ni(T ), the number of draws

of suboptimal arms, is given as equation (2) in the SP-MAB

problem, whereas it is given as inequality (6) in the MP-

MAB problem. This means that, an algorithm achieving

the asymptotic lower bound (4) on Ni(T ) does not always

achieve the asymptotic regret bound (7).

When suboptimal arm i is selected, one of the optimal arms

is pushed out instead of arm i, and the regret increases by

the difference between the expected rewards of these two

arms. The best scenario is that, arm L, which is the optimal

arm with the smallest expected reward, is almost always

the arm pushed out instead of a suboptimal arm. For this

scenario to occur, it is necessary to ensure that at most one

suboptimal arm is drawn for almost all rounds because, if

two suboptimal arms are selected, at least one arm in [L−1]
is pushed out.

In the next section, we propose an extension of TS to the

MP-MAB problem, and explain that it has a crucial prop-

erty for suppressing this simultaneous draw of two subop-

timal arms.

Remark: Corollary 1 of Gopalan et al. (2014) shows the

achievability of the bound in the RHS of (4) on the num-

ber of draws of suboptimal arms. Whereas this does not

lead to the optimal regret bound as discussed above, they

originally derived in Theorem 1 an O(log T ) bound on the

number of each suboptimal action (that is, each combina-

tion of arms including suboptimal ones) for a more general

setting of MP-MAB. Thus, we can directly use this bound

to derive a better regret bound. However, to show the op-

timality in the sense of regret it is necessary to prove that

there are at most o(log T ) rounds such that an arm in [L−1]
is pushed out. Therefore, it still requires further discussion

to derive the optimal regret bound of TS. Note also that the

regret bound by Gopalan et al. (2014) is restricted to the

case that the prior has a finite support and the true param-

eter is in the support, and thus their analysis requires some

approximation scheme for dealing Bernoulli rewards.

4. Multiple-play Thompson Sampling

Algorithm

Algorithm 1 is our MP-TS algorithm. While TS for single-

play selects the top-1 arm based on a posterior sample θi(t),
MP-TS selects the top-L arms ranked by the posterior sam-

ple θi(t). Like Kaufmann et al. (2012) and Agrawal &

Goyal (2013b), we set the uniform prior on each arm.

In Section 3.3, we discussed that the necessary condition

to achieve the optimal regret bound is to suppress the si-

multaneous draws of two or more suboptimal arms, which

characterizes the difficulty of the MP-MAB problem.

Note that it is easy to extend other asymptotically opti-

mal SP-MAB algorithms, such as KL-UCB, to the MP-

MAB problem. Nevertheless, we were not able to prove

the optimality of these algorithms for the MP-MAB prob-

lem though the achievability of the bound (4) on Ni(T ) is

easily proved, and the simulation results in Section 7 also

imply their achievability of the regret bound. This is be-

cause TS has quite a plausible property to suppress simul-

taneous draws as we discuss below.

Before the exact statement in the next section, we give an

intuition for the natural extension of TS (or other asymp-

totically optimal SP-MAB algorithms) can have the opti-
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mal regret in the MP-MAB problem. Roughly speaking, a

bandit algorithm with a logarithmic regret draws a subop-

timal arm with probability O(1/t) at the t-th round, which

amounts to O(
∑T

t=1 1/t) = O(log T ) regret. Thus, two

suboptimal arms are drawn at the same round with proba-

bility O(1/t2), which amounts to O(
∑T

t=1 1/t
2) = O(1)

total simultaneous draws, provided that each suboptimal

arm is selected independently.

In TS, the score θi(t) for the choice of arms is generated

randomly at each round from the posterior independently

between each arm, which enables us to bound simultane-

ous draws as the above intuition. On the other hand, in

KL-UCB (or in other index policies), the UCB score for

the choice of arms is deterministic given the past results of

rewards, which means that the scores of suboptimal arms

may behave quite similarly in the worst case on the past

rewards.

5. Optimal Regret Bound

In this section, we state the main theoretical result (Theo-

rem 1). The analysis that leads to this theorem is discussed

in Section 6.

Theorem 1. (Regret upper bound of MP-TS) For any suffi-

ciently small ǫ1 > 0, ǫ2 > 0, the regret of MP-TS is upper-

bounded as

E[Reg(T )] ≤
∑

i∈[K]\[L]

(
(1 + ǫ1)∆i,L log T

d(µi, µL)

)

+Ca(ǫ1, µ1, µ2, . . . , µK) +Cb(T, ǫ2, µ1, µ2, . . . , µK),

where, Ca = Ca(ǫ1, µ1, µ2, . . . , µK) is a constant inde-

pendent on T and is O(ǫ−2
1 ) when we regard {µi}

K
i=1 as

constants. The value Cb = Cb(T, ǫ2, µ1, µ2, . . . , µK) is

a function of T , which, by choosing proper ǫ2, grows at a

rate of O(log log T ) = o(log T ).

By letting ǫ1 = O((log T )−1/3) we obtain

E[Reg(T )] ≤
∑

i∈[K]\[L]

∆i,L log T

d(µi, µL)
+O((log T )2/3) (8)

and we see that MP-TS achieves the asymptotic bound in

(7).

Expected regret and high-probability regret: Anan-

tharam et al. (1987) originally derived a regret lower bound

in a stronger form than (7) such that for any ǫ > 0, the

regret of a strongly consistent algorithm is lower-bounded

as

lim
T→∞

Pr




Reg(T )

log T
≥

∑

i∈[K]\[L]

(1− ǫ)∆i,L

d(µi, µL)



 = 1.

Combining this with (8) we can easily see that MP-TS sat-

isfies

lim
T→∞

Pr




Reg(T )

log T
≤

∑

i∈[K]\[L]

(1 + ǫ)∆i,L

d(µi, µL)



 = 1, (9)

that is, MP-TS is also asymptotically optimal in the sense

of high probability. Since an algorithm satisfying (9) is not

always optimal in the sense of expectation, our result, the

expected optimal regret bound, is also stronger in this sense

than the high-probability bound by Gopalan et al. (2014).

6. Regret Analysis

We first define some additional notation that are useful for

our analysis in Section 6.1 then analyze the regret bound

in Section 6.2. The proofs of all the lemmas, except for

Lemma 2, are given in the Appendix.

6.1. Additional notation

Let µ
(−)
L = µL − δ and µ

(+)
i = µi + δ for δ > 0 and

i ∈ [K] \ [L]. We assume δ to be sufficiently small such

that µ
(−)
L ∈ (µL+1, µL) and µ

(+)
i ∈ (µi, µL). We also

define N suf
i (T ) = log T

d(µ
(+)
i

,µ
(−)
L

)
. Intuitively, N suf

i (T ) is the

sufficient number of explorations to make sure that arm i is

not as good as arm L.

Events: Now, let max
(m)
i∈S ai denote the m-th largest el-

ement of {ai}i∈S ∈ R
|S|, that is, maxi∈S

(m)ai =
maxS′⊂S:|S′|=m mini∈S′ ai. We define θ∗(t) =

max
(L)
i∈[K] θi(t) as the L-th largest posterior sample at round

t (i.e., the minimum posterior sample among the selected

arms), and θ∗∗\i,j(t) = max
(L−1)
k∈[K]\{i,j} θk(t) as the (L− 1)-

th largest posterior sample at round t except for arms i and

j. Moreover, let ν = µL−1+µL

2 . Let us define the following

events.

Ai(t) = {i ∈ I(t)},

B(t) = {θ∗(t) ≥ µ
(−)
L },

Ci(t) =
⋂

j∈[K]\([L−1]∪{i})

{θ∗∗\i,j(t) ≥ ν},

Di(t) = {Ni(t) < N suf
i (T )}.

Event Ai(t) states that arm i is sampled at round t, and

Di(t) states that arm i has not been sampled sufficiently

yet. The complements of B(t) and Ci(t) are related to the

underestimation of optimal arms. Since the optimal arms

are sampled sufficiently, Bc(t) or Cci (t) should not occur

very frequently.

6.2. Proof of Theorem 1

We first decompose the regret to the contribution of each

arm. Recall that, the regret increase by drawing suboptimal
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arm i is determined by the optimal arm excluded in the

selection set I(t). Formally, for suboptimal arm i, let

∆i(t) =

{

(maxj∈[L]\I(t) µj)− µi if I(t) 6= [L],

0 otherwise,

(10)

and

Regi(T ) =

T∑

t=1

1{i ∈ I(t)}∆i(t).

From inequality (5) the following inequality is easily de-

rived

Reg(T ) ≤
∑

i∈[K]\[L]

Regi(T ).

We next decompose Regi(T ) into several terms by using

events A–D. After giving bounds for these terms, we fi-

nally give the total regret bound, which proves Theorem

1. Note that, in bounding the deviation of Bernoulli means

and Beta posteriors in the Appendix, our analysis borrowed

some techniques developed in the context of the SP-MAB

problem, mostly from Agrawal & Goyal (2013b), and some

from Honda & Takemura (2014).

Lemma 2. The regret by drawing suboptimal arm i > L is

decomposed as:

Regi(T ) ≤
T∑

t=1

1{Bc(t)}

︸ ︷︷ ︸

(A)

+

T∑

t=1

1{Ai(t), C
c
i (t)}

︸ ︷︷ ︸

(B)

+
∑

j∈[K]\([L−1]∪{i})

T∑

t=1

1{Ai(t), Ci(t),Di(t),Aj(t)}

︸ ︷︷ ︸

(C)

+

T∑

t=1

1{Ai(t),B(t),D
c
i (t)}

︸ ︷︷ ︸

(D)

+N suf
i (T )∆i,L,

where, for example, {A,B} abbreviates {A ∩ B}.

Roughly speaking,

• Term (A) corresponds to the case in which, some of

the optimal arms are under-estimated.
• Term (B) corresponds to the case in which, arm i is

selected and some of the arms in [L − 1] are under-

estimated.
• Term (C) corresponds to the case in which, arm i ∈
[K] \ [L] and j ∈ [K] \ ([L− 1] ∪ {i}) are simulta-

neously drawn. In particular, term (C) is unique in

the MP-MAB problem that causes additional regret

increase, and in analyzing this term we fully use the

fact that the samples of the posterior distributions on

the arms are independent of each other.

• Term (D) corresponds to the case in which, arm i is

selected after it is sufficiently explored.

Proof of Lemma 2. The contribution of suboptimal arm i
to the regret is decomposed as follows. By using the fact

∆i(t) ≤ 1 and the following decomposition of an event

Ai(t) ⊂ B
c(t) ∪ {Ai(t), C

c
i (t)} ∪ {Ai(t),B(t), Ci(t)}

⊂ Bc(t) ∪ {Ai(t), C
c
i (t)}

∪ {Ai(t),B(t),D
c
i (t)} ∪ {Ai(t), Ci(t),Di(t)},

we have

Regi(T ) =

T∑

t=1

1{Ai(t)}∆i(t)

≤

T∑

t=1

1{Bc(t)}+

T∑

t=1

1{Ai(t), C
c
i (t)}

+

T∑

t=1

1{Ai(t),B(t),D
c
i (t)}

+

T∑

t=1

1{Ai(t), Ci(t),Di(t)}∆i(t). (11)

Recall that ∆i(t) is defined as (10). At each round, when L
and all suboptimal arms, except for i, are not selected, then

I(t) = {1, 2, . . . , L− 1, i}; ∆i(t) = ∆i,L. Therefore,

T∑

t=1

1{Ai(t), Ci(t),Di(t)}∆i(t)

≤

T∑

t=1

1{Ai(t), Ci(t),Di(t)}∆i,L

+

T∑

t=1

1{Ai(t), Ci(t),Di(t),
⋃

j∈[K]\([L−1]∪{i})

Aj(t)}

≤
T∑

t=1

1{Ai(t),Di(t)}∆i,L

+
∑

j∈[K]\([L−1]∪{i})

T∑

t=1

1{Ai(t), Ci(t),Di(t),Aj(t)}

≤ N suf
i (T )∆i,L

+
∑

j∈[K]\([L−1]∪{i})

T∑

t=1

1{Ai(t), Ci(t),Di(t),Aj(t)}.

(12)

Summarizing (11) and (12) completes the proof.

The following lemma bounds terms (A)–(D).

Lemma 3. (Bounds on individual terms) Let ǫ2 > 0 be

arbitrary. For sufficiently small δ and ǫ2, the four terms
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are bounded in expectation as:

E[(A)] = O

(

1

(µL − µ
(−)
L )2

)

= O

(
1

δ2

)

, (13)

E[(B)] = O(1), (14)

E[(C)] ≤
∑

j∈[K]\([L−1]∪{i})

(

ǫ2 + 4T−
ǫ2∆2

L,L−1
8

)

log T

d(µi, µL)
+O(1),

and (15)

E[(D)] ≤ 2+
1

d(µ
(+)
i , µi)

= O

(
1

δ2

)

. (16)

The proof of Lemma 3 is in Appendix A.4. Lemma 3 states

that terms (A), (B), and (D) are O(1/δ2). Moreover, the

following lemma bounds term (C).

Lemma 4. (Asymptotic convergence of ǫ2-dependent fac-

tor) By choosing an O((log log T )/ log T ) value of ǫ2, we

obtain E[(C)] = O(log log T ).

The proof of Lemma 4 is in Appendix A.5. Now it suf-

fices to evaluate N suf
i (T ) = log T

d(µ
(+)
i

,µ
(−)
L

)
to complete the

proof. From the convexity of KL divergence there exists a

constant ci = ci(µi, µL) > 0 such that

d(µ
(+)
i , µ

(−)
L ) = d(µi + δ, µL − δ) ≥ (1− ciδ)d(µi, µL)

and therefore

E[Reg(T )]≤
∑

i∈[K]\[L]

E[Regi(T )] ≤
∑

i∈[K]\[L]

E

[
T∑

t=1

1{Ai(t)}∆i(t)

]

≤
∑

i∈[K]\[L]

{
E [(A) + (B) + (C) + (D)] +N suf

i (T )∆i,L

}

≤
∑

i∈[K]\[L]

∆i,L log T

(1− ciδ)d(µi, µL)

︸ ︷︷ ︸

main term

+O

(
1

δ2

)

︸ ︷︷ ︸

Ca

+O(log log T )
︸ ︷︷ ︸

Cb

.

Since (1 − ciδ)
−1 ≤ 1 + 2ciδ for ciδ ≤ 1/2, we com-

plete the proof of Theorem 1 by letting ǫ1 < 1/2 and

δ = ǫ1/maxi∈[K]\[L] ci = Θ(ǫ1).

7. Experiment

We ran a series of computer simulations1 to clarify the em-

pirical properties MP-TS. The simulations involved the fol-

lowing three scenarios. In Scenarios 1 and 2, we used fixed

arms similar to that of Garivier & Cappé (2011), and Sce-

nario 3 is based on a click log dataset of advertisements on

a commercial search engine.

Algorithms: the simulations involved MP-TS, Exp3.M

(Uchiya et al., 2010), CUCB (Chen et al., 2013), and

1The source code of the simulations is available at
https://github.com/jkomiyama/multiplaybanditlib.

MP-KL-UCB. Exp3.M is a state-of-the-art adversarial

bandit algorithm for the MP-MAB problem2. The

learning rate γ of Exp3.M is set in accordance with

Corollary 1 of Uchiya et al. (2010). Note that the

CUCB algorithm in the MP-MAB problem at each

round draws the top-L arms of the UCB indices µ̂i +
√

(3 log t)/(2Ni(t)). MP-KL-UCB is the algorithm that

selects the top-L arms in accordance with the KL-UCB in-

dex supq∈[µ̂i(t),1] {q|Ni(t)d(µ̂i(t), q) ≤ log t}.

Scenario 1 (5-armed bandits): the simulations

include 5 Bernoulli arms with {µ1, . . . , µ5} =
{0.7, 0.6, 0.5, 0.4, 0.3}, and L = 2.

Scenario 2 (20-armed bandits): the simulations in-

clude 20 Bernoulli arms with µ1 = 0.15, µ2 = 0.12,

µ3 = 0.10, µi = 0.05 for i ∈ {4, 5, . . . , 12}, µi = 0.03 for

i ∈ {13, 14, . . . , 20}, and L = 3.

Scenario 3 (many-armed bandits, online advertisement

based CTRs): we conducted another set of experiments

with arms whose expectations were based on the dataset

provided for KDD Cup3 2012 track 2. The dataset involves

a click log on soso.com (a large-scale search engine ser-

viced by Tencent), which is composed of 149 million im-

pressions (view of advertisements). We processed the data

as follows. First, we excluded users of abnormally high

click probability (i.e., users who had more than 1, 000 im-

pressions and more than 0.1 click probability) from the log.

We also excluded minor advertisements (ads) that had less

than 5, 000 impressions. There are a wide variety of ads

on a search engine (e.g., ”rental cars”, ”music”, etc.) and

randomly picking ads from a search engine should yield a

set of irrelevant ads. To address this issue, we selected pop-

ular queries that had more than 104 impressions and more

than 50 ads that appeared on the query. As a result, 80
queries were obtained. The number of ads associated with

each query ranged from 50 to 105, and the average click-

through-rate (CTR, the probability that the ad is clicked) of

an ad on each query ranged from 1.15% to 6.86%. After

that, each ad was converted into a Bernoulli arm with its

expectations corresponding to the CTR of the ad. At the

beginning of each run, one of the queries was randomly se-

lected, and the bandit simulation with the arms correspond-

ing to the query and L = 3 is then conducted. This scenario

was more difficult than the first two scenarios in the sense

that 1) a larger number of arms were involved and 2) the

reward gap among arms was very small.

The simulation results are shown in Figure 2. In all sce-

narios, the tendency is the same: our proposed MP-TS per-

forms significantly better than the other algorithms. MP-

KL-UCB is not as good as MP-TS, but clearly better than

CUCB and Exp3.M. While it is unclear whether the slope

2Note that, Exp3.M is designed for the adversarial setting in
which the rewards of arms are not necessarily stationary.

3https://www.kddcup2012.org/
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Figure 2. Regret-round plots of algorithms. The regret in Scenarios 1 and 2 are averaged over 10, 000 runs, and the regret in Scenario 3

is averaged over 1, 000 runs. “Lower Bound” is the leading Ω(log T ) term of the RHS of inequality (7). We do not show Lower Bound

in Scenario 3 because the coefficient of the bound can sometimes be quite large (i.e., in some runs, 1/d(µL+1, µL) is large).

of the regret of MP-KL-UCB converges to the asymptotic

bound or not, the slope of the regret of TS quickly ap-

proaches the asymptotic lower bound.

7.1. Improvement of MP-TS based on the empirical

means
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Figure 3. Before/after comparison of MP-TS. All settings (except

for algorithms) are the same as that of Scenario 3.

We now introduce an improved version of MP-TS (IMP-

TS). In the theoretical analysis of the MP-MAB problem,

we observed that an extra loss arises when multiple subop-

timal arms are drawn at the same round. Based on this ob-

servation, the new algorithm selects L−1 arms on the basis

of empirical averages and selects the last arm on the basis

of TS to avoid simultaneous draws of suboptimal arms. In

other words, this algorithm is further aimed to minimize

the regret by purely exploiting the knowledge in the top-

(L − 1) arms; thus, limiting the exploration to only one

arm. One might fear that this increase in exploitation could

devastate the balance between exploration and exploitation.

Although we provide no regret bound for the improved ver-

sion of the algorithm, we expect that this algorithm will

also achieve the asymptotic bound for the following reason.

When we restrict the exploration to one arm, the number of

opportunities for an arm to be explored may decrease, say,

from T to T/L. Still, T/L opportunities are sufficient since

O(log(T/L)) = O(log T ). In fact, the algorithm proposed

by Anantharam et al. (1987) achieves the asymptotic bound

even though L − 1 arms are selected based on empirical

means as in IMP-TS. Similarly, we define an improved ver-

sion of MP-KL-UCB (IMP-KL-UCB) for selecting the first

L − 1 arms on the basis of empirical averages. The be-

fore/after analysis of this improvement is shown in Figure

3. One sees that, (i) MP-TS still performs better than IMP-

KL-UCB, and (ii) IMP-TS reduces the regret throughout

the rounds. In particular, when the number of the rounds is

small (T ∼ 103–104), the advantage of IMP-TS is large.

8. Discussion
We extended TS to the multiple-play setting and proved its

optimality in terms of the regret. We considered the case in

which the total reward is linear to the individual rewards of

selected arms. The analysis in this paper fully uses the in-

dependent property of posterior samples and paves the way

to obtain a tight analysis on the multiple-play regret that de-

pends on the combinatorial structure of arm selection. We

now point out two promising directions for future work.

• Position-dependent factors for online advertising:

it is well-known that the CTR of an ad is dependent

on its position. Taking the position-dependent fac-

tor into consideration changes the MP-MAB problem

from the L-set selection problem to the L-sequence

selection problem in which the position of L arms

matters. For the starting point, we consider an ex-

tension of MP-TS for the cascade model (Kempe &

Mahdian, 2008; Aggarwal et al., 2008) that corrects

position-dependent bias in Appendix A.2.

• Non-Bernoulli distributions for general problems:

for the ease of argument, we exclusively consider the

binary rewards. The analysis by Korda et al. (2013)

is useful in extending our result to the case of the 1-d

exponential families of rewards. Moreover, extend-

ing our result to multi-parameter reward distributions

(Burnetas & Katehakis, 1996; Honda & Takemura,

2014) is interesting.
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