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Figure 1: CT scans of a lobster and a tooth, represented on Cartesian and body-centered cubic grids (left and right images, respectively). The
representation via body-centered cubic grids requires approximately 30% less samples.

Abstract

The classification of volumetric data sets as well as their render-
ing algorithms are typically based on the representation of the un-
derlying grid. Grid structures based on a Cartesian lattice are the
de-facto standard for regular representations of volumetric data. In
this paper we introduce a more general concept of regular grids for
the representation of volumetric data. We demonstrate that a spe-
cific type of regular lattice - the so-called body-centered cubic - is
able to represent the same data set as a Cartesian grid to the same
accuracy but with 29.3% less samples. This speeds up traditional
volume rendering algorithms by the same ratio, which we demon-
strate by adopting a splatting implementation for these new lattices.
We investigate different filtering methods required for computing
the normals on this lattice. The lattice representation results also in
lossless compression ratios that are better than previously reported.
Although other regular grid structures achieve the same sample effi-
ciency, the body-centered cubic is particularly easy to use. The only
assumption necessary is that the underlying volume is isotropic and
band-limited - an assumption that is valid for most practical data
sets.

Keywords: volume data, Cartesian grid, close packing, hexagonal
sampling, body centered cubic

1 Introduction

Different grid structures have been studied extensively in various
fields like chemistry [18], solid state physics [1], condensed mat-
ter physics [10] or crystallography [7]. Researchers in these fields
have studied the structure of atoms and molecules, which are often
placed in a regular grid structure. This structure is optimized for
energy states 1 and results in covering space as closely as possible.✂☎✄
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1This is, of course, a serious oversimplification. However, for almost all

the elements the lowest energy state is crystalline [10].

Results in multi-dimensional signal processing show that a
Cartesian sampling structure is not the most efficient one [16].
Efficiency here is measured in terms of sampling points per unit
hyper-volume. Under the assumption that the sampled function is
isotropic and band-limited the resulting frequency support would
be a hyper-sphere. Hence the most efficient sampling scheme
would arrange the replicated (hyper-spherical) frequency response
as densely as possible in frequency domain.

The problem of how to place as many (hyper-)spheres as possi-
ble in a fixed (hyper-)volume is known as the sphere packing prob-
lem [14]. This has been studied by many mathematicians in up to
quite staggering dimensions (Conway and Sloane [3] give examples
of dimensions up to 1048584). The problem of packing spheres
optimally has been stated in 1900 by Hilbert as his now famous
Problem 18 [6]. It is still not solved completely. However, sev-
eral regular grid structures are known which are optimal. Among
these is the body-centered cubic (bcc) grid, which turns out to be
particularly easy to use.

In the image processing community it is well known that sam-
pling an image on a Cartesian grid is not optimal. By using a
hexagonal sampling scheme one can save 13.4% samples [12]. Re-
search has been directed to adapt algorithms like straight line gen-
eration [9], distance transformations [2], or oversampling [8] to
hexagonal grids. However, the inherent Cartesian structure of dis-
play devices limits the use of hexagonal grids for image processing
so that 2D hexagonal grids are rarely used.

In volume visualization, or generally when dealing with 3D
functions we are not bound to Cartesian grids. The representation
of the function we want to visualize can be arbitrarily chosen since
typically only two-dimensional projections of the data set are exam-
ined. Since it has been shown that a bcc grid can represent isotropic,
band-limited data as accurately as Cartesian grids using 29.3% less
samples [4], the advantages of using a bcc grid are significant.

In this paper we will show how we can take advantage of hexag-
onal sampling in volume rendering. We outline and propose solu-
tions for the inherent issues of re-sampling of rectangular grids as
well as interpolation and gradient estimation.

The remainder of this paper is organized as follows. We summa-
rize the results of hexagonal sampling in 2D and derive an optimal



sampling scheme in 3D in Section 2. In Section 3 we show how
the splatting✞ algorithm, including storing of the data and gradient
estimation, can be adopted for bcc grids. Section 4 examines ac-
quisition techniques for data sampled on bcc grids. In Section 5 we
present the results of our experiments. Some ideas for future work
are presented in Section 6, and we derive conclusions of our studies
in Section 7.

2 Baseband Optimal Sampling

Usually, no a priori knowledge about the (continuous) underlying
functions we are sampling is available. Therefore, we assume that
these functions are isotropic, i.e., they do not have a preferred di-
rection. Another common assumption is that they are band-limited.
Both assumptions together result in the property that their fre-
quency responses are hyper-spheres (circles in 2D and spheres in
3D, respectively).

Sampling such spherically band-limited functions will result in
replicating the primary spectrum in the frequency domain [15]. In
order to reconstruct the underlying continuous signal perfectly, we
need to ensure that the samples in spatial domain are close enough,
so that the aliased spectra in the frequency domain do not overlap.
Optimal sampling would be achieved if the number of samples that
fulfill this condition is minimal. In 1D this is also known as the
Nyquist sampling rate. In order to optimally sample in higher di-
mensions (i.e., to use as few samples as possible), aliased spectra in
the frequency domain have to be packed as closely as possible. This
problem is known as the sphere packing problem [14], which has
been extensively studied and solutions for regular packing struc-
tures in 2D and 3D exist.

As a motivation and for the sake of simplicity we will first de-
scribe our method to find an optimal sampling pattern in 2D be-
fore we directly delve into the mysterious structure of 3D Euclidian
space.

2.1 Optimal sampling density in 2D

We will describe sampling as a mapping from indices to actual sam-
ple positions as introduced in [4]:✟✡✠☛✡☞✍✌✏✎✒✑✓✟✕✔✖ ☞

(1)

Here the integers
✔✘✗ ✖

are the indices of the sample and
✠✓✗ ☛

is it’s
corresponding sampling position. The matrix

✎
, which is called

sampling matrix, describes the mapping itself, e.g.,✎✚✙✘✛✢✜✢✣✥✤✧✦★✌ ✟✪✩✬✫ ✭✭ ✩ ✤ ☞
(2)

is the matrix for rectangular sampling which simplifies to the com-
monly used regular (Cartesian) sampling for

✩ ✫ ✌ ✩ ✤
. Hexagonal

sampling is most conveniently described by the matrix✎✯✮ ✛✱✰☎✤✧✦ ✌ ✟ ✩✬✫ ✫✤ ✩✬✫✭ ✩ ✤ ☞
for

✩ ✤✲✌✴✳ ✵✶ ✩✬✫
(3)

which virtually just performs a shear of the rectangular samples
followed by a for-shortening. When

✎
describes the sampling in

spatial domain, the matrix ✷ , satisfying✷✹✸ ✎✺✌ ✶✼✻✾✽
(4)

with ✷ ✸ being the transpose of ✷ and
✽

being the identity matrix,
describes the positions of the replicas in frequency domain. This

has been proven by several people [4]. It is therefore called period-
icity matrix [4]. Applying Eq. 4 to Eq. 2 we obtain the periodicity
matrix for rectangular sampling✷ ✙✿✛❀✜✱✣✥✤✧✦ ✌ ✟❂❁✓✫ ✭✭ ❁ ✤ ☞

(5)

with
❁ ✫ ✌ ✤✱❃❄❆❅ and

❁ ✤ ✌ ✤✱❃❄☎❇ . The periodicity matrix for hexagonal

sampling is obtained as✷ ✮ ✛✱✰☎✤✧✦ ✌ ✟ ❁✓✫ ✭❈ ✫✤ ❁ ✤ ❁ ✤ ☞
for

❁ ✤❉✌ ✶✳ ✵ ❁✓✫
(6)

where again
❁✓✫ ✌ ✤✱❃❄❊❅ . The 2D Fourier Transform ❋ of a circularly

band-limited signal has the property●■❍❑❏ ✫▲✗ ❏ ✤◆▼ ✌ ✭
for

❏ ✤✫P❖ ❏ ✤✤❘◗❚❙ ✤
(7)

where

❙
is the maximum frequency in the data set. This baseband

can be inscribed, for example, in a square with length ❯ ✌ ✶ ❙
(corresponding to rectangular sampling). In other words,

❁✓✫
and

❁ ✤
in Eq. 5 have to be equal to

✶ ❙
. On the other hand, the baseband

can also be inscribed in a hexagon with side length ❯ ✌ ✤❱ ❲ ❙
(corresponding to hexagonal sampling). This means that in Eq. 6❁ ✤

has to be equal to
✶ ❙

(see Fig. 2). Calculating the sampling
matrices from these periodicity matrices, we end up with✎ ✙✘✛✢✜✢✣✥✤✧✦ ✌ ✟ ❃❳ ✭✭ ❃❳ ☞

(8)

with ❨
det

✎✚✙✘✛✢✜✢✣✥✤✧✦ ❨ ✌ ✻ ✤❙ ✤
(9)

and ✎✯✮ ✛✱✰☎✤✧✦ ✌ ✟ ✤❱ ❲ ❃❳ ✫❱ ❲ ❃❳✭ ❃❳ ☞
(10)

with ❨
det

✎ ✮ ✛✢✰☎✤✧✦ ❨ ✌ ✻ ✤❙ ✤ ✶✳ ✵P❩ (11)

The sampling density is proportional to

✫
det ❬ [4]. By taking the

ratio
❨
det

✎✚✙✘✛✢✜✢✣✥✤✧✦ ❨❨
det

✎✯✮ ✛✱✰☎✤✧✦ ❨ ✌✴✳ ✵✶ ✌ ✭ ❩ ❭❆❪❆❪ (12)

we see that hexagonal sampling requires 13.4% less samples than
rectangular sampling.

2.2 Optimal sampling density in 3D

Analogous to the 2D case, we can describe the mapping from in-
dices

✔✘✗ ✖ ✗✿❫
to coordinates

✠❴✗ ☛ ✗✘❵
for rectilinear grids using the fol-

lowing matrix: ✎ ✙✿✛❀✜✱✣ ❲ ✦ ✌❜❛❝ ✩ ✫ ✭ ✭✭ ✩ ✤ ✭✭ ✭ ✩ ❲❡❞❢ (13)

which will be regular (rectangular) when
✩✬✫ ✌ ✩ ✤✲✌ ✩ ❲

.
As expected, regular rectangular sampling in 3D is (as in 2D)

not optimal. It is important to note that an optimal sphere packing
for arbitrary packing structures in 3D is not known. However, sev-
eral optimal packing structures, all with equal sampling density, are
known for the case of regular sampling, i.e., structures that can be
described by three base vectors. Fortunately, this is exactly what
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Figure 2: 2D regular rectangular and hexagonal sampling in spatial and frequency domain.

we need, since we do not want to sacrifice the implicit indexing of
the grid points that makes regular grid representations so attractive.

Among the optimal regular packing structures are the hexagonal
close packed (hcp) structure and the face centered cubic (fcc) struc-
ture [3]. In order to achieve a close packing in frequency domain
using an fcc lattice, we use the following matrix:

✷❤❣ ✜✢✜ ✌ ✷✹✸❣ ✜✢✜ ✌❜❛❝ ❁ ✭✐❁✭✐❁ ❁❁ ❁ ✭ ❞❢ (14)

An fcc lattice consists of simple cubic cells with additional sam-
pling points in the center of each cell face. One cell of an fcc lattice
is depicted in Fig. 3 with the base vectors from Eq. 14.

By plugging Eq. 14 in Eq. 4 we end up with a sampling matrix
which describes a body centered cubic (bcc) lattice:✎✚❥ ✜✢✜ ✌❧❦✶ ❛❝ ✩ ❈ ✩ ✩❈ ✩ ✩ ✩✩ ✩ ❈ ✩ ❞❢ (15)

with
✩ ✌ ✤✱❃♠ .

A bcc lattice also consists of a simple cubic cell but with only one
additional sampling point, which is right in the center of the cell.
Fig. 4 depicts one cell of a bcc lattice. Note, that the base vectors of
Fig. 4 do not correspond to Eq. 15, as these are rather unintuitive.
We chose another set of base vectors, which is more convenient for
our purpose of indexing the data points, see Section 3.1. They are
described by the sampling matrix✎✚❥ ✜✢✜ ✌❜❛❝ ✩ ✭ ✫✤ ✩✭ ✩ ✫✤ ✩✭ ✭ ✫✤ ✩ ❞❢ (16)

u1

u2

u3

Figure 3: One cell of an fcc lattice with base vectors
❁✯♥

. The black
dots mark additional sample points (in the center of the faces) as
compared to a simple cubic cell.



To guarantee that the replicas in frequency domain do not overlap,

b1

b3

b2

Figure 4: One cell of a bcc structure with base vectors ♦ ♥ . The only
difference to a simple cubic cell is one additional sample point right
in the center of the cell, marked with a black dot.❁

has to be equal to
✶ ❙

for rectangular sampling. Since the peri-
odicity matrix is analogous to the 2D periodicity matrix we end up
with ❨

det

✎ ✙✘✛✢✜✢✣ ❲ ✦ ❨ ✌ ✻ ❲❙ ❲ (17)

For the fcc lattice,
❁

has to be equal to
✳ ✶ ❙

, which yields❨
det

✎✚❥ ✜✢✜ ❨ ✌ ✻ ❲❙ ❲ ✳ ✶ (18)

By again taking the ratio❨
det

✎✚✙✘✛✢✜✱✣ ❲ ✦ ❨❨
det

✎✚❥ ✜❀✜ ❨ ✌ ✭ ❩ ♣ ✭ ♣ (19)

we see that we need 29.3% less samples than with rectangular sam-
pling2. This means that if we sample a function on a regular rectan-
gular grid with sampling distance

✩ ✙
, we can increase the sampling

distance
✩ ❥

for a bcc grid to
✳ ✶ ✩ ✙

.
In the above example we started with an fcc lattice in the fre-

quency domain which resulted in a bcc lattice in the spatial domain.
We could also choose an hcp lattice, since it has the same packing
density as an fcc lattice [3]. However, an hcp lattice in frequency
domain is also an hcp lattice in spatial domain and hcp lattices are
rather difficult to index [7]. Therefore, we prefer to use a bcc grid.

3 Implementation Details

In order to use a bcc grid in practice we have to address some in-
herent implementation issues. First, we have to think about how to
organize the grid in memory. We present a scheme which stores
the sampling points in a three-dimensional array. The addressing
scheme is of special importance, since we want to take advantage of
the implicit ordering in regular grid structures. Next we describe the
slight modifications necessary to use splatting on bcc grids. Here

2Dudgeon and Mersereau [4] give a ratio of 0.705, i.e., 29.5% less sam-

ples. This is simply due to a rounding error, compare the results of Petersen

and Middleton [16].

we need to address issues of interpolation. In order to incorporate
shading in our rendering algorithm we describe two methods on
how to estimate gradients on grid points of a bcc lattice.

3.1 Storage scheme

For the sake of simplicity and clarity of figures, we first present our
storage scheme in 2D which is then extended to 3D.

In 2D the optimal sampling pattern is hexagonal sampling.
Hexagonal sampling as described by Eq. 3, results in rather awk-
ward indexing as we still want to sample a rectangular area. The
meaning of the matrix in Eq. 3 is to shift the

✖ ✣ ✮
row by the amount✫✤ ✩ ✫ ✖

. Since this holds for infinite long rows, the result would be the

same to shift the same row by

✫✤ ✩ ✫ ❍ ✖ ❈ ✶ ▼ ✌ ✫✤ ✩ ✫ ✖ ❈ ✩ ✫ . Extending
this idea and since we actually like to describe a finite, rectangular
area, we shift only rows with odd index which is achieved by the
following matrix:✎✯✮ ✛✱✰☎✤✧✦ ✌ ✟ ✩✬✫ ✫✤ ✩✬✫ ❍ ✖

mod
✶ ▼✭ ✩ ✤ ☞

for
✩ ✤ ✌✴✳ ✵✶ ✩ ✫

(20)

The effect is illustrated in Fig. 5. On the left, the result of applying
Eq. 3 can be seen whereas the effect of applying Eq. 20 is depicted
on the right.

The same problem exists in 3D. However, the solution is as sim-
ple as in 2D. The following matrix✎✚❥ ✜❀✜ ✌❜❛❝ ✩ ✭ ✫✤ ✩ ❍ ❫

mod
✶ ▼✭ ✩ ✫✤ ✩ ❍ ❫

mod
✶ ▼✭ ✭ ✫✤ ✩ ❞❢ (21)

shifts only planes with odd z-coordinates half a unit in x and y di-
rection. The result is that the slices with even z coordinates make
up a 3D Cartesian grid, the slices with odd z coordinates also make
up a 3D Cartesian grid which is shifted to the centers of the first
grid. Fig. 6 shows a bcc grid with the two inter-penetrating Carte-
sian grids marked differently. In practice we still store the data in a
3D array with an implicit shift of slices with odd z coordinates.

Figure 6: A bcc grid interpreted as two inter-penetrating Cartesian
grids.

3.2 Splatting on bcc grids

The original splatting algorithm, as described by Westover [19], is
straightforwardly adopted to bcc grids. This algorithm gains its
power by using spherical reconstruction kernels. These kernels
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Figure 5: Different indexing schemes. The image on the left corresponds to Eq. 3. The figure on the right corresponds to Eq. 20

have spherical extend in the frequency domain. Hence these ker-
nels preserve a spherical region during the reconstruction process.
Since the aliased spectra for the hexagonal grid are redistributed
such that they do not overlap with the primary spectrum, we can
use the existing spherical kernels without any modifications.

Since the data is still organized in a 3D array, we traverse it in
a back to front manner. Care has to be taken when traversing in
z-direction as planes with odd and even z-coordinates have to be
separated. Before applying the transformation matrix we apply the
sampling matrix (Eq. 21) to shift the voxels to the correct position.
One more thing has to be changed in existing code, that is the com-
putation of gradients for shading. For this purpose, we adopted
central differences to bcc grids.

3.3 Central Differences on bcc grids

Gradients are rather important in volume visualization. They are
most often used for classification and shading. Therefore, we need
to be able to compute gradients on bcc grids. The most commonly
used method to estimate gradients is the central differences method.
There are two ways to adopt this method to bcc grids.

The first idea exploits the fact that we have a Cartesian grid struc-
ture in all the slices that are parallel to a major axis direction. Hence
partial derivatives in each direction can be computed through stan-
dard central differences. However, using our indexing scheme we
have to adopt the following equation for computing the central dif-
ference in the z direction:q☎rts ✠✓✗ ☛ ✗✧❵❊✉ ✌✈❦✶ ✩ ❍ q✓s ✠✓✗ ☛ ✗✱❵ ❖ ✶ ✉ ❈ q✓s ✠✓✗ ☛ ✗✘❵ ❈ ✶ ✉ ▼

(22)

This method requires exactly as many operations as central differ-
ences on Cartesian grids. The conceptual problem with this method
is that we do not use the actual closest points in order to estimate the
derivatives. Furthermore the distances in the

❵
direction are wider

than in the
✠

and

☛
directions. Hence we would expect anisotropic

artifacts using this method.

This can be rectified in our second method. For the second
method we follow the philosophy that the eight closest points
should have the main impact on the reconstructed value. Hence we
are computing the average of the central differences at each edge of
the cubic cell that the current point is located in (compare Fig. 4).

This results in the following formulas for the partial derivatives:q ✰ s ✠✓✗ ☛ ✗✘❵❊✉ ✌ ❦✇ ✩ ①♥✥② ③☎④⑥⑤✧⑦⑧② ✫✢⑨⑩ ④t⑤⑧❶ ✫ ② ✫✢⑨❸❷ ❍ ✔ ▼ q✓s ✠ ❈ ✔✘✗ ☛ ❈ ✖ ✗✧❵ ❈ ❫⑥✉
q✼❹ts ✠✓✗ ☛ ✗✘❵❊✉ ✌ ❦✇ ✩ ①♥✥② ③☎④⑥⑤✧⑦⑧② ✫✢⑨⑩ ④t⑤⑧❶ ✫ ② ✫✢⑨ ❷ ❍ ✖ ▼ q✓s ✠ ❈ ✔✧✗ ☛ ❈ ✖ ✗✿❵ ❈ ❫⑥✉

(23)

q r s ✠✓✗ ☛ ✗✘❵❊✉ ✌ ❦✇ ✩ ①♥✥② ③☎④⑥⑤✧⑦⑧② ✫✢⑨⑩ ④t⑤⑧❶ ✫ ② ✫✢⑨ ❷ ❍ ❫ ▼ q✓s ✠ ❈ ✔✧✗ ☛ ❈ ✖ ✗✿❵ ❈ ❫t✉
with ❺ ✌ ❺ ❖ ❍ ❵

mod
✶ ▼

and

❷ ❍ ✠ ▼ ✌❼❻ ❦
if

✠ ✌ ✭
or

✠ ✌ ❈ ❦❈ ❦
if

✠ ✌ ❦ (24)

The introduction of ❺ and ❷ ❍ ✠ ▼
are due to the properties of our

storage scheme.

This method requires 8 operations per partial derivative as op-
posed to one subtraction per partial derivative for Cartesian grids.
However, as we are calcualting the gradients in a preprocessing
step, this has no major impact on the rendering performance.

4 Acquisition of Optimally Regular Sam-
pled Volume Data

After having settled technical details about using optimally sampled
regular volume data, we have to deal with the question where to get
data sets sampled on such bcc grids. There are several possibilities.

The first possibility is to sample artificial data sets, given as
3D analytic functions, like a sphere or the Marschner-Lobb func-
tion [11], on a bcc grid. Generally, data sets obtained via voxeliza-
tion [17] can straightforwardly be generated on a bcc grid. This is
especially useful for evaluating the applicability of bcc grids as the
frequency content of such data can directly be controlled.

Second, there is of course the possibility to resample data sets
on Cartesian grids to a bcc grid. Since this resampling step has to
be performed just once for generating the new data set, an arbitrary
good reconstruction kernel (e.g., a rather wide windowed sinc) can
be used.

The third and most interesting possibility is to take raw data from
modalities like CT or MRI and directly generate bcc grid data sets
from them. Raw data from tomography data sets (CT, PET, SPECT)
is typically given by many 2D or 1D projections. Hence adapting



reconstruction algorithm for bcc grids has the potential of speeding
up these❽ typically very costly operations by almost 30%. Likewise
image data acquired in the frequency domain (e.g. MRI) could be
(re)sampled onto an fcc grid. We could easily acquire the samples
in the frequency domain on a face centered cubic grid and use a
modified inverse FFT to generate a bcc grid data set. That would
allow either faster acquisition times or more accurate images when
samples are acquired on a bcc grid.

5 Results

We peformed several tests to evaluate the applicability of bcc grids.
First, we compared our gradient reconstruction schemes to the com-
monly used central differences on Cartesian grids. Then, we modi-
fied an existing splatter to operate on bcc grids. Finally, as sampling
on bcc grids results in a kind of compression of the data, we also
compared it to existing compression techniques for volumetric data.

5.1 Gradient estimation

In order to evaluate the quality of the gradient approximation we
used three different analytical functions for comparison purposes:❾

spherical with linear falloff:q ✫ ❍ ✠✓✗ ☛ ✗✘❵ ▼ ✌❂❿ ✠ ✤ ❖ ☛ ✤ ❖ ❵ ✤
(25)❾

Sinc function:q ✤ ❍ ✠✓✗ ☛ ✗✧❵ ▼ ✌➁➀✧➂➄➃ ❍ ❿ ✠ ✤ ❖ ☛ ✤ ❖ ❵ ✤ ▼❿ ✠ ✤ ❖ ☛ ✤ ❖ ❵ ✤ (26)

❾ simplified Marschner-Lobb:q ❲ ❍ ✠❴✗ ☛ ✗✧❵ ▼ ✌ ➀✧➂➅➃ ❍ ✠ ✤ ❖ ☛ ✤ ❖ ❵ ✤ ▼
(27)

We computed the actual function values at the positions defined by
the bcc grid so that no errors were introduced during the sampling
process. We then applied our two gradient reconstruction schemes
and computed the difference of the normals with the analytically
computed normals at the sampling grid. We recorded two errors
– the error in the magnitude of the normal as well as the angular
error in the normal. We then looked at these errors in one slice at
a time. Since in our indexing scheme an xy-slice (z is constant) is
easy to extract we chose xy slices. Furthermore, we were interested
in how well these errors compare to errors introduced by central
differences and linear filtering on regular rectilinear grids. Hence
we computed the normals as if the original data set was given on a
rectangular grid using central differences and linear interpolation.

The results of our experiment can be seen in Fig 7 (a) – (c). The
first row shows the relative error in magnitude where the second
row shows the angular error. Column one depicts the error of our
first gradient reconstruction method (Eq. 22) that is based on cen-
tral differences at the grid point itself. Column 2 corresponds to
method two (Eq. 23), which is the average of all central differences
at the of the cube edges surrounding the sampling point. In the last
column we computed the linearly interpolated central differences,
assuming the data set was given on a regular grid with correspond-
ing dimensions.

Fig 7(a) shows the error images for function
q ✫

. In this image an
angular error of 15 degrees and an amplitude error of 30% corre-
sponds to white (255). Fig. 7(b) shows the error images for functionq ✤

. Here an angular error of 30 degrees and an amplitude error of
60% corresponds to white (255). Finally the results for function

q ❲

(a)

(b)

(c)

Figure 7: Difference images of analytically calculated gradients to
our gradient estimation schemes (see Sec. 3.3), first two columns,
and central differences with linear interpolation, third column, for
(a) sphere, (b) Sinc, and (c) simplified Marschner-Lobb function.
The top rows show the error in magnitude whereas the bottom rows
show the angular error.(a) error in magnitude by 30% and an an-
gular error of 15 degrees corresponds to white, (b) amplitude error
of 60% and an angular error of 30 degrees corresponds to white,
(c) amplitude error of 10% and an angular error of 5 degrees corre-
sponds to white.



are displayed in Fig. 7(c). Here 5 degrees for the angular error and
10% for the amplitude error correspond to white (255).

From these images we conclude that both our difference meth-
ods are quite comparable with central differencing and linear in-
terpolation on regular grids. Hence one need not to worry about
quality loss by using bcc grids for volume rendering applications.
Furthermore since there are no large differences between the two
introduced methods in Section 3.3, we don’t find the expensive op-
erations of method 2 justified.

5.2 Splatting

Fig. 8 shows images of the Marschner-Lobb data set sampled on
a
✇ ✭➇➆ ✇ ✭➈➆ ✇ ✭

Cartesian grid (as described by Marschner and
Lobb [11]) on the left respectively a

✶ ❭ ➆ ✶ ❭ ➆➊➉ ❪ bcc grid on
the right. This data set is quite demanding for a straightforward
splatter, however, the results of the two different grid structures are
comparable in quality.

The data sets that we used for rendering the images in Fig. 9 (see
color plate) were produced using a high-quality interpolation filter.
We used the ➋ ❲ -4EF filter as designed by Möller et al [13]. In Fig. 9
we show results of rendering the lobster lobster data set, as well as
“neghip” data set as well as the High Potential Iron Protein data set
by Louis Noodleman and David Case, of Scripps Clinic, La Jolla,
California. Again, a regular Cartesian grid was used on the left and
a bcc grid on the right. There are some small visible differences
in the images, which mostly stem from the different transfer func-
tions. Since we classify different values that represent 2 different
grid positions one cannot expect identical pictures. Hence we see
some differences resulting from the problem of pre-classification
[20].

We also did some timings which are reported in Table 1. It is
interesting to note that the speedup for some data sets were bigger
than expected. This could have been caused by the decreased mem-
ory caching necessary. For a very small data set (lobster) we saw
expected speedups near 30%.

5.3 Compression

Our results indicate that the resampled data have the potential to
lead to better compression. We were able to show that our compres-
sion ratios for practical data sets are better than what was achieved
using the gzip utility. Also, our overall compression ratios were
better then previously reported [5]. Table 2 shows compression ra-
tios of various volume data sets. Note, that the last two columns
give percentages as compared to the original data size indicating
the overall compression ratio, which is what we are interested in.
However, the compression of synthetic data sets is a rather surpris-
ing result and needs to be further investigated.

6 Future Work

We would like to adopt other volume rendering algorithms to body
centered cubic grids and see how they perform. As the bcc grid ac-
tually consists of two Cartesian grids which are shifted with respect
to each other, it should be possible to design a shear-warp like al-
gorithm for bcc grids. For the same reason it should be possible to
accelerate volume rendering by the use of graphics hardware.

It would also be necessary to come up with a ray-casting algo-
rithm. For this purpose it would be interesting to investigate the
effects of interpolating within bcc grids. Therefore, we would like
to adopt our filter analysis and design method [13] to bcc grids.
Since each sampling point in a bcc grid has eight nearest neigh-
bors (as opposed to a Cartesian grid), spherically symmetric filters
would deserve a more thorough investigation.

7 Conclusions

We have presented a sampling scheme of volume data which saves
29.3% samples as compared to Cartesian grids. We assume that
the functions we are dealing with are isotropic and band-limited,
i.e., their frequency spectra are spheres. Therefore, a sampling pat-
tern can be used in a way that the replicas in frequency domain
(introduced by the sampling process) are packed closely. There is
no unique sampling pattern which achieves this, however, we have
showed that a body centered cubic grid results in a close packing in
frequency domain and is easy to use. With this sampling pattern we
reduce data size and therefore improve rendering rates without loss
of quality.

To demonstrate the applicabilty in volume rendering, we have
adopted the splatting algorithm to bcc grids. This requires just a
few changes of an existing code and is straightforward to imple-
ment. In order to perform classification and shading of the data we
developed two gradient reconstruction schemes. Empirical experi-
ments with analytical 3D functions show that these are comparable
with central differences commonly used on Cartesian grids. We be-
lieve that significant gains can be achieved by using bcc grids in
volume visualization and volume graphics in general.
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Figure 9: Images generated via splatting on a Cartesian grid on the left respectively a body-centered cubic grid on the right. The body-centered
cubic grids require approximately 30% less samples. Only small quality differences are visible, that likely are caused by pre-classification.


